

JJCIT

Jordanian Journal of Computers and Information Technology (JJCIT)

The Jordanian Journal of Computers and Information Technology (JJCIT) is an

international journal that publishes original, high-quality and cutting edge research

papers on all aspects and technologies in ICT fields.

JJCIT is hosted by Princess Sumaya University for Technology (PSUT) and supported

by the Scientific Research Support Fund in Jordan. Researchers have the right to

read, print, distribute, search, download, copy or link to the full text of articles. JJCIT

permits reproduction as long as the source is acknowledged.

AIMS AND SCOPE

The JJCIT aims to publish the most current developments in the form of original

articles as well as review articles in all areas of Telecommunications, Computer

Engineering and Information Technology and make them available to researchers

worldwide. The JJCIT focuses on topics including, but not limited to: Computer

Engineering & Communication Networks, Computer Science & Information

Systems and Information Technology and Applications.

INDEXING

JJCIT is indexed in:

EDITORIAL BOARD SUPPORT TEAM

EDITORIAL BOARD SECRETARY

Eyad Al-Kouz

LANGUAGE EDITOR

Haydar Al-Momani

All articles in this issue are open access articles distributed under the terms and conditions of

the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

 JJCIT ADDRESS

WEBSITE: www.jjcit.org

EMAIL: jjcit@psut.edu.jo

ADDRESS: Princess Sumaya University for Technology, Khalil Saket Street, Al-Jubaiha

B.O. BOX: 1438 Amman 11941 Jordan

TELEPHONE: +962-6-5359949

FAX: +962-6-7295534

http://scitechnol.com/information-technology/current-research-in-cyber-security.php
http://scitechnol.com/computer-engineering/current-research-in-embedded-systems.php
http://scitechnol.com/information-technology/articles-on-database-management-systems.php
http://scitechnol.com/computer-engineering/articles-on-robotics.php
http://scitechnol.com/computer-engineering/journals-on-mobile-computing.php
http://scitechnol.com/computer-engineering/current-research-in-robotics.php
http://creativecommons.org/licenses/by/4.0/
http://www.worldcat.org/search?qt=worldcat_org_all&q=jjcit
http://www.scilit.net/journals/387088
https://www.base-search.net/Search/Results?lookfor=JJCIT&name=&oaboost=1&newsearch=1&refid=dcbasen
https://scholar.google.com/citations?user=88ospLoAAAAJ&hl=en
http://creativecommons.org/licenses/by/4.0/

JJCIT

EDITORIAL BOARD

Ahmad Hiasat (EIC) Adil Alpkoçak

Adnan Gutub Adnan Shaout

Arafat Awajan Christian Boitet

Gheith Abandah Haytham Bani Salameh

Ismail Ababneh João Luis Marques Pereira Monteiro

Leonel Sousa Mohammad Mismar

Omer Rana Taisir Alghanim

INTERNATIONAL ADVISORY BOARD

Ahmed Yassin Al-Dubai Albert Y. Zomaya
UK AUSTRALIA

Chip Hong Chang Enrique J. Gomez Aguilera
SINGAPORE SPAIN

Fawaz Al-Karmi George Ghinea
JORDAN UK

Gian Carlo Cardarilli Issam Za'balawi
ITALY JORDAN

João Barroso Karem Sakallah
PORTUGAL USA

Khaled Assaleh Laurent-Stephane Didier

UAE FRANCE

Lewis Mackenzies Zoubir Hamici
UK JORDAN

Marc Dacier Marco Winzker
QATAR GERMANY

Martin T. Hagan Marwan M. Krunz
USA USA

Michael Ullman Mohammad Alhaj Hasan
USA JORDAN

Mohammed Benaissa Mowafaq Al-Omosh
UK JORDAN

Nadim Obaid Nazim Madhavji
JORDAN CANADA

Omar Al-Jarrah Othman Khalifa
JORDAN MALAYSIA

Paul G. Plöger Shahrul Azman Mohd Noah
GERMANY MALAYSIA

Shambhu J. Upadhyaya Wejdan Abu Elhaija
USA JORDAN

“Opinions or views expressed in papers published in this journal are those of the author(s)

and do not necessarily reflect those of the Editorial Board, the host university or the policy of

the Scientific Research Support Fund”.
يس فساااااا يأ يالجفمعاااااا يأ يالتح ياااااا ي ئاااااا هيآ اءيبفلضاااااا ييعكاااااا ي لايالبااااااف يآ اءيعاااااا ييعباااااا يالمجلاااااا يذههااااااماااااافي ي اااااا ي"

ي."العلم يالبحثي عميصند قي

1

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

J. Al-Azzeh is with Department of Computer Engineering, Al-Balqa Applied University, Al-Salt, Jordan. Email:
jamil.azzeh@bau.edu.jo

DISTRIBUTED MUTUAL INTER-UNIT TEST METHOD

FOR D-DIMENSIONAL MESH-CONNECTED

MULTIPROCESSORS WITH ROUND-ROBIN COLLISION

RESOLUTION

Jamil Al-Azzeh

(Received: 16-Oct.-2018, Revised: 23-Nov.-2018, Accepted: 8-Dec.-2018)

ABSTRACT

A collision-free extension to the mutual inter-unit test methodology for d-dimensional VLSI multiprocessors is

proposed to guarantee that any processor core is tested only by its neighboring node at a time and no special care

needs to be taken to choose those moments when test actions should start. Collision resolution hardware based on

the round-robin arbitration routine is discussed in detail. A parallel collision-resolution-aware mutual inter-unit

test algorithm is formulated and diagrammed. The proposed approach has been shown to improve the testability

of mesh-connected multiprocessors by increasing the probability of successful fault detection as compared with

the distributed self-checking methodology. Further, the new approach drastically reduces extra connectivity in the

multiprocessor with respect to known mutual inter-unit test methods and leads to more easily manufactured

multiprocessor fabric. For example, in a 4-dimensional system, we need 55% less extra connections with our

approach.

KEYWORDS

Multiprocessors, VLSI, Mesh topology, Reliability, Testability, Self-test, Mutual inter-unit test.

1. INTRODUCTION

Continuing VLSI miniaturization has enabled the production of high-performance multicore and many-

core single-chip multiprocessors comprising up to thousands of processor cores [4], [7]. However, the

unreliability of such multiprocessor components has emerged as one of the crucial limitations to future

scaling [12]-[13]. To maintain the correct operations of these multiprocessor systems with unhealthy

components, specific fault-tolerance issues must be addressed when designing the multiprocessor [1],

[3], [11], [15], [23], [27], [34] and [38]-[39]. Detecting the location of faulty components is one of these

issues [2], [17] and [36].

A VLSI multiprocessor containing faulty components can be considered healthy if a dedicated fault

detection and isolation mechanism is deployed [6], [9], [16], [21], [24], [31]-[32], [37]. With no specific

mechanism of spare replacements, the multiprocessor maintains its operation, but its performance

gradually degrades [19]-[20]. If a spare replacement mechanism is assumed [14], [18], the

multiprocessor’s performance is retained in the presence of the unhealthy components.

The detection of faulty components in VLSI multiprocessors is typically solved by built-in distributed

self-checking or neighbor-checking methods [5], [10], [26], [28], [30], [40]. It is important that fault

detection is done in-operation, which means that no long-term interruption of the multiprocessor is

required to pinpoint an unhealthy component. Distributed self-test methods are an efficient, yet simple,

solution to fault detection [8], [22], [25], [29], [33], [35]. However, these methods are characterized by

relatively low testability: they may miss faulty components in some cases and/or treat healthy units as

defective. Thus, the probability that a processor core is properly self-detected as faulty is not high

enough for many practical applications. Another straightforward approach to fault detection is that a

processor occasionally sends probe signals to its neighbors and marks neighbor cores as defective if no

2

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

acknowledgment is received within an established period of time. Such a neighbor-checking approach

is also relatively simple to implement. However, it cannot provide better testability as compared to self-

checking, because processor nodes test their peers independently and healthy/faulty decisions are made

locally with no inter-processor cooperation.

A more complex fault detection mechanism, the mutual inter-unit test, has been specifically designed to

improve multiprocessor testability by employing checking schemes with neighbor cooperation, by

which each processor node is occasionally checked by a number of its neighbors and the final

faulty/healthy decision is made according to the majority operator rule [41]. With this approach and

depending on the topology of the multiprocessor, the probability of successful fault detection can be

increased by at least 10% as compared to self-checking mechanisms. To improve the utilization of

testing the hardware across a multiprocessor mesh and to make an additional increase in the probability

of successful fault detection, a multiplexed mutual inter-unit test method based on a similar checking

scheme to that of [41] and combined with distributed self-checking has been proposed [42]. Each test

unit of each processor is now allowed to check a pair of its neighbors, A and B (not necessarily direct

neighbors). The checking time period is split into two phases. During the first phase, neighbor A is tested

while neighbor B is expected to send a test response. During the second phase, neighbor B is checked

while neighbor A is expected to provide a test response. Thus, idle time is minimized and the testing

hardware is used more efficiently in a time division manner. With this approach, the number of testing

neighbors at each processing node is double of that in [41] with small hardware overhead, allowing a

higher probability of successful fault detection. The main drawback of the multiplexed mutual inter-unit

test is the assumption that each processor node (including those with non-direct processor cores) has

many extra connections, which drastically increases the complexity of the communication network and

may pose a serious problem if more dimensions are assumed. The inter-unit test methods presuppose

that testing neighboring processor subsets check corresponding tested processors asynchronously, which

may lead to collisions (two or more testing cores trying to check the same tested node at the same time);

thus, special care must be taken to eliminate them.

Here, we propose another extension to the mutual inter-unit test methodology for d-dimensional VLSI

multiprocessors by using a similar cooperating neighbor-checking scheme as that of [41]. Our main

contribution is the use of a novel collision resolution mechanism (the round-robin collision resolution

scheme), which guarantees that any processor core is tested by only one neighbor node at a time, so that

no special care need be taken to choose the moments when test actions should start. In the following

sections, we formally state the proposed method for a d-dimensional VLSI multiprocessor to

concurrently detect faulty/defective nodes across a mesh. A parallel inter-unit test algorithm based on

the proposed formal approach is presented and the dedicated test hardware implementing the above

algorithm is diagrammed and briefly discussed. We also take a closer look at the round-robin collision

resolution scheme, which is the cornerstone of our method. At the end of the paper, we compare our

approach to the distributed self-checking technique and existing inter-unit test methods.

2. MUTUAL INTER-UNIT TEST AND COLLISION RESOLUTION FUNDAMENTALS

The idea of the mutual inter-unit test is straightforward. Each processor core is occasionally checked by

its neighbors (referred to as “testing neighbors”). It is also assumed that a processor core periodically

performs self-testing. The faulty/healthy decision for each processor is made according to the majority

operator rule applied to the individual faulty/healthy decisions arriving from the testing neighbors and

self-test hardware. The set of testing neighbors for each processor is formed according to the number of

dimensions (d) of the multiprocessor topology, whose cardinality should be odd to make the majority

operator applicable. The mutual inter-unit test procedure is carried out concurrently across the mesh, so

that the faulty processors are detected and the corresponding signals are immediately transferred to the

physical neighbors in order to isolate the faulty/defective cores in a timely manner. Unlike the distributed

self-checking and neighbor-checking methods, the mutual inter-unit test mechanism provides for the

operability of the test hardware itself to be tested implicitly. For example, if one of the testing processors

issues a wrong faulty/healthy decision for its neighbor, then the tested neighbor (which is, in fact,

healthy) will not be assumed as faulty by mistake, because the resulting faulty signal is formed by the

majority operator. Therefore, the probability of successful fault detection increases.

The problem with the inter-unit test mechanism is that collisions may occur when several testing

3

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

neighbors start checking the same tested processor at the same time. Known inter-unit test schemes do

not introduce any dedicated procedures and hardware to resolve the collisions; so, extra software-level

solutions are necessary to calculate the time windows when a processor is allowed to test its neighbors

with no collisions. However, this may drastically slow down the test process across the mesh, but may

work against the multiprocessor’s reliability. Hence, we propose an extended version of the inter-unit

test with no possible inter-processor collisions. We assume that a hardware-level collision resolution

mechanism, which we refer to as the round-robin arbitration scheme, is added to each processor core.

The idea of the collision resolution mechanism is for each testing neighbor (including the self-test units)

of a given processor to be assigned an arbitration flag whose high value grants permission to start the

test procedure. If this flag is zero, then the corresponding testing neighbor is not permitted to perform

the test. The set of arbitration flags of each tested neighbor are organized as a ring shift register

containing only the high value, which moves along the ring in a given direction and activates only one

testing neighbor at a time. When a testing neighbor is about to initiate the test, it first polls the arbitration

flag. If the flag is high, then the testing neighbor commences the test procedure and the flag stops moving

until the test is finalized. If the flag is low, then the test is not initiated. The testing neighbor may be put

into a queue to spin until the flag clears or simply leaves and tries to initiate the test the next time. With

such an arbitration scheme, each processor is guaranteed to be tested by only one neighbor (or self-test

unit) at a time. Therefore, no extra software-level support is required to pre-determine the time for

initiating the test.

The remainder of the paper is organized as follows. In Section 3, we formally define the construction

rule of the testing neighbor sets for a d-dimensional multiprocessor. Section 4 provides details on the

proposed inter-unit test procedure. In Section 5, a hardware-level implementation of our approach is

discussed. Section 6 provides the necessary details on the round-robin arbitration scheme. Section 7 is

dedicated to the evaluation and comparison of our proposed approach to the distributed self-test and

existing inter-unit test solutions. Section 8 contains the concluding remarks.

3. THE FORMATION OF TESTING NEIGHBOR SETS

We propose a more straightforward rule to form testing neighbor sets for each processor as compared

to those defined in [41] and [42]. We assume that only the direct neighbors of a given core can be its

testing neighbors, thereby eliminating extra diagonal connections among the processors and reducing

the communication hardware complexity of the multiprocessor. With 4 direct neighbors in a 2-

dimensional mesh, each processor has 5 testing neighbors if self-checking capabilities are assumed.

With 6 direct neighbors in a 3-dimensional mesh, there will be 7 testing neighbors at each processor

node. Analogously, in a d-dimensional mesh, each processor will be checked by 2𝑑 + 1 testing

neighbors.

Taking into account the processor nodes at the edges of the mesh, we can formally state the above rule

as follows. Let us first consider a 2-dimensional multiprocessor. Let 𝑈 = {𝑢𝑥𝑦} be the set of its

processors with x and y standing for the coordinates of a processor relative to the leftmost and lowermost

node of the mesh, 𝑥 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and 𝑦 = 0, 𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, respectively. m and n denote the numbers of rows

and columns, respectively, of the mesh structure. Then, the testing neighbor set 𝐾𝑥𝑦
′ of processor 𝑢𝑥𝑦,

𝑥 ∈ {0,1, … , 𝑛 − 1}, 𝑦 = {0,1, … , 𝑚 − 1}, will be formalized as:

 𝐾𝑥𝑦
′ = 𝐾𝑥𝑦 ∪ {𝑢𝑥𝑦}, (1)

          , 1 mod 1 mod , 1 sign 1, , 1 sign 1

, , ,xy x y m x n y x x n y x y y m
K u u u u

       
 . (2)

In Figure 1, different allocations of testing neighbors for the 2-dimensional case are illustrated. The

testing neighbors are shown in grey and the dotted squares denote the testing nodes (which are mapped

onto the corresponding cores at the opposite sides of the mesh) missing at the edges of the mesh.

Rules (1) and (2) can be directly expanded into a d-dimensional multiprocessor case:

 

1 2 1 2 1 2d d dx x x x x x x x xK K u   (3)

4

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

     

        

1 1 2 1 2 2 3 1 2

1 2

1 1 2 1 2 2 3 1 2

1 mod , , , , 1 mod , , , , , , 1 mod

1 sign 1, , , , 1 sign 1, , , , , , 1 sign 1

, , , ,

, , ,

d d d d

d

d d d d

x n x x x x n x x x x x n

x x x

x x n x x x x y n x x x x x y n

u u u
K

u u u

  

        

  
  
  

. (4)

It is evident that

1 2

2
dx x xK d , (5)

1 2

2 1
dx x xK d   . (6)

Formula (6) guarantees an odd number of testing neighbors at each processor and renders the majority

operator applicable to faulty/healthy decisions. The collision resolution mechanism, in turn, guarantees

that any processor
xyu is never checked by more than one peer at a time.

xyu

n-1n-20

xyum-1

m-2

0

xyum-1

m-2

0

n-1n-20

xyu

Figure 1. Possible allocations of testing neighbors 𝐾𝑥𝑦 in a 2-dimensional multiprocessor.

4. MUTUAL INTER-UNIT TEST PROCEDURE

The above conceptual description and formal rules allow the creation of an algorithm representing the

process of the inter-unit test occasionally performed by each processor as we explain in detail below.

We consider a d-dimensional multiprocessor and its arbitrary processor 𝑢𝑥1𝑥2…𝑥𝑑
. For clarity, we

indicate 𝑢𝑥1𝑥2…𝑥𝑑
. with the superscript 0 and enumerate its consecutive neighbors by the

superscripts1,2, … ,2𝑑, respectively. For the 2-dimensional case, we would have 4 neighbors renumbered

as 𝑢𝑥𝑦
1 , 𝑢𝑥𝑦

2 , 𝑢𝑥𝑦
3 , 𝑢𝑥𝑦

4 .

The proposed algorithm is presented in Figure 2. All the symbols used in the flow-chart are explained

in Table 1.

5

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

BEGIN

END

0B 2dB

1 2 dx x x0

1

 1 2: dx x x
T T k

: 0 

  max: 1 mod    

0 

1

0

 
1 2

max: 1 mod
dx x xk k k 

1

3

4

5

6

7

8

10

9

: 0k 

2

1 2
: 0, 1,2 ,

d

i

x x xz i d 
1 2

0 : 1
dx x xz 

1 2
: 1, 0,2 ,

d

i

x x xb i d 

1B

Figure 2. The proposed mutual inter-unit test algorithm.

Table 1. Symbols used in the flowchart shown in Figure 2.

No. Symbol Meaning

1  1 2 dx x x
T k kth test signature issued by processor

1 2 dx x xu

2 k,
1 2

max0, 1
dx x xk k  Test signature counter

3 T

Current test signature to be transferred to the tested neighbors

4
1 2

max

dx x xk Number of test signatures supported by node
1 2 dx x xu

5  Test loop start timer

6
max Time between two adjacent test loops (in clock ticks)

7
1 2 d

i

x x xz Test enable flag for testing node
1 2 dx x xu and tested node

1 2 d

i

x x xu

8
1 2 d

i

x x xb
Test enable flag for tested node

1 2 d

i

x x xu and other testing

neighbors (not including
1 2 dx x xu)

9
1 2 dx x x

Healthy/faulty flag of node

1 2 dx x xu

10 𝐵0, 𝐵1, … , 𝐵2𝑑

Separate parallel test threads corresponding to the tested

neighbors and the self-test hardware of node
1 2 d

i

x x xu

11 := Assignment/transfer operator

6

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

The algorithm contains an outermost loop, including a parallel section and commences execution with

the initialization (see Statement 2) to set up the collision resolution flags properly. Flags
1 2 d

i

x x xz are

reset to zero, which means that no neighbor of the current processor is allowed to start the test routine.

In contrast, flag
1 2

0

dx x xz is set to logical “1,” which means that it is allowed to perform the self-test.

As soon as the initialization ends, the algorithm enters the loop and executes until the current node is

assumed to be healthy (see Condition 3). When the next iteration begins, the test loop timer starts

counting down first (see Vertices 4–6). As soon as the timer has finished (the predefined time interval

𝜏𝑚𝑎𝑥 has elapsed), the next test signature 𝑇𝑥1𝑥2…𝑥𝑑 (𝑘) is fetched to initiate the test actions in the

tested neighbors of the current node. A test signature may be interpreted as a pointer (address) to the test

routine to be executed. All test routines are assumed to have been predefined and distributed among the

processor cores in advance.

As soon as test signature 𝑇𝑥1𝑥2…𝑥𝑑 (𝑘) is read out, the algorithm enters the parallel section and threads

𝐵0, 𝐵1, … , 𝐵2𝑑
to start the execution (see dashed–dotted squares in Figure 2). All these threads are

identical. Thread 𝐵𝑖 corresponds to the ith tested neighbor and thread 𝐵0 is mapped onto the current node

(self-test). When all the threads terminate, Statement 8 executes to increment the test signature counter

k and the next iteration begins. As soon as all
1 2

max

dx x xk test signatures are fetched and processed, the

algorithms roll back to test signature 𝑇𝑥1𝑥2…𝑥𝑑 (0), assuming 𝑘 = 0.

Each thread 𝐵𝑖 (𝑖 = 0,2𝑑̅̅ ̅̅ ̅̅) can be represented as a separate algorithm, as shown in Figure 3. All the

symbols used in the flow-chart of Figure 3 are explained in Table 2.

iB

1 2
:

d

i

x x xu T : 0i 

  max: 1 modi i i    

0i 
0

 
1 2

:

d

i

x x x

R
R k


 
1 2

0 ,0
:

d

i

x x x

R
R k


0R R
1

0

1 2
: 0

d

i

x x x 3i 4i

5i

6i

7i 8i

9i

ai

1

01i

1

1 2 d

i

x x xz

1 2
: 0

d

i

x x xb 

2i

1 2
: 1

d

i

x x xb 

bi

Figure 3. Flow-chart representing thread 𝐵𝑖.

7

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Table 2. Symbols used in the flowchart shown in Figure 3.

No. Symbol Meaning

1 max , 0,2i i d  Node
1 2 d

i

x x xu response time limit

2 , 0,2i i d  Node
1 2 d

i

x x xu response time counter

3  
1 2 d

i

x x x
R k

Node
1 2 d

i

x x xu response token corresponding to test signature

 1 2 dx x x
T k

4  
1 2

,0

d

i

x x x
R k

Node
1 2 d

i

x x xu expected response corresponding to test

signature  1 2 dx x x
T k

5
1 2 d

i

x x x

Node
1 2 d

i

x x xu faulty/healthy decision made by processor

1 2 dx x xu

6
1 2 d

i

x x xu

ith tested node of the current processor

7 0,R R Extra buffers

In the first step, thread iB starts to spin while waiting for condition
1 2

1
d

i

x x xz  to become true (see

Vertex 1i). Immediately, the test (self-test) routine begins for tested neighbor (current node)
1 2 d

i

x x xu .

Then, flag
1 2 d

i

x x xb is reset (Vertex 2i), leading to no other nodes being allowed to test
1 2 d

i

x x xu . As a

result, no collisions occur, because for any testing unit trying to start checking, the ith tested neighbor

1 2 d

i

x x xz is clear. During the next step, test signature  1 2 dx x x
T k is transferred to

1 2 d

i

x x xu (Statement

3i) and the timer counts down until
max

i elapses (see Vertices 4i–6i). As soon as 0i  , test response

 
1 2 d

i

x x x
R k arrives (or does not in some cases) from tested node

1 2 d

i

x x xu (Statement 7i). Concurrently,

expected test response  1 2 dx x x
R k is fetched (Statement 8i) to be compared to  

1 2 d

i

x x x
R k (see

Condition 9i). If the test response (or whatever has arrived) differs from what is expected to arrive, then

1 2 d

i

x x xu is assumed to be faulty and flag
1 2 d

i

x x x is reset to zero (Statement ai). Otherwise, nothing

happens and
1 2 d

i

x x x remains high. In parallel, flag
1 2 d

i

x x xb is again set high (Statement bi), making it

possible to self-test or for the other neighbors to test node
1 2 d

i

x x xu .

One must mention that all the statements and conditions in the above algorithm are based on simple

atomic operations, such as increment, assignment, set/reset, compare and test for zero/one. Therefore, it

can be directly implemented in hardware.

5. HARDWARE-LEVEL IMPLEMENTATION

In this section, we discuss the possible hardware-level implementation of the above mutual inter-unit

test mechanism. We consider both test units and collision resolution hardware. Taking into account that

all processor cores in the multiprocessor are identical, we pick up an arbitrary node for consideration.

Assuming a 2-dimensional multiprocessor, we can represent the structure of the test hardware, as shown

in Figure 4.

The unit presented in Figure 4 contains 4 identical neighbor check units (NCU1–NCU4) and a self-test

unit (STU). The operation of these units is based on the thread algorithm shown in Figure 3. A test

organization unit (TOU) is needed to store and fetch test signatures mapped onto the current node in

order to control the delay between adjacent test cycles and to coordinate the operation of the NCUs and

8

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

STU. TOU implements all the sections of the proposed test algorithm (Figure 2) except for parallel

threads 𝐵0, 𝐵1, … , 𝐵2𝑑. Arbitration flip-flops AF0–AF4 organized in a ring shift register are required to

perform the proposed round-robin collision resolution scheme to guarantee that two or more neighbors

never start checking the same processor within the overlapping time frames. Only one AF can be high

at a given moment. This high value moves from one flip-flop to its neighbor and lets each neighboring

processor check the current node in a time division manner. A clock pulse generator (CPG) is used to

synchronize the operation of the test hardware components. A separate CPG may be employed or the

processor’s main pulse generator may be considered as a CPG.

The neighbor check units form and issue healthy/faulty flags 𝜑𝑥𝑦
𝑖 for the corresponding neighbor nodes

according to the following rule: 𝜑𝑥𝑦
𝑖 = 1 if processor 𝑢𝑥𝑦 makes a decision that neighbor 𝑢𝑥𝑦

𝑖 is healthy

and 𝜑𝑥𝑦
𝑖 = 0 otherwise (we assume that 𝑢𝑥𝑦

0 ≡ 𝑢𝑥𝑦). The same is carried out by the testing neighbors

of the current processor. As an addition, node 𝑢𝑥𝑦 occasionally performs a self-checking routine that

results in a healthy/faulty flag 𝜑𝑥𝑦
0 . Finally, a generalized faulty/healthy flag 𝜑𝑥𝑦 is calculated by the

majority rule:

  0 1 2 3 4# , , , ,xy xy xy xy xy xy       , (7)

NCU1

NCU2

NCU3

xyu

#

xy

NCU4 STU

TOU

AF

1

AF

2

AF

3

AF

4

AF

0

To neighbor above

To neighbor below

T
o

 l
e

ft
 n

e
ig

h
b

o
r

T
o

 r
ig

h
t
n

e
ig

h
b

o
r

CPG

CLK1

CLK2

Figure 4. The organization of processor node test hardware in a 2-dimensional multiprocessor.

where # denotes the majority operator. If 𝜑𝑥𝑦 = 1, then 𝑢𝑥𝑦 is assumed to be healthy. If 𝜑𝑥𝑦 = 0, then

it is further treated as faulty.

9

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

The structure shown in Figure 4 can be extended to a multiprocessor of any given dimension 𝑑 ≥ 2. In

a general case, a processor’s test hardware includes 2𝑑 NCUs operating in parallel, 2𝑑 bidirectional

links needed to transfer test signatures to the tested neighbors and to receive response tokens, as well as

to receive test signatures from the testing neighbors and transfer response tokens, 2𝑑 input terminals

required to receive healthy/faulty flags from the testing neighbors and 2𝑑 output terminals to issue the

generalized healthy/faulty flag to the direct neighboring processors. The count of the majority gate’s

input terminals is calculated by Formula (7).

6. THE ROUND-ROBIN ARBITRATION MECHANISM

Using the above conceptual representation, we have developed a functional diagram embodying the

round-robin arbitration mechanism necessary to avoid inter-processor test collisions. The scheme of a

2-dimensional multiprocessor is shown in Figure 5, which includes five JK flip-flops with input

invertors needed to store the test enable flags. Consequent flip-flop enumeration is adopted and

corresponds to the enumeration of the neighbor nodes (the ith flip-flop together with its inverter

corresponds to the AFi unit in the block diagram of Figure 4). The flip-flops are connected to each other

to form a ring shift register whose operation is clocked by pulse chain CLK1 issued by CPG (not shown

in Figure 5 for simplicity). The AND gates are introduced to block pulse chain CLK1 from clocking the

flip-flops when the current node is being tested by a neighbor or being self-tested.

RST

CLK1

 
3

, 1 modx y m
z



 
4

1 mod ,x n y
z



  
1

, 1 sign 1x y y m
z

  

  
2

1 sign 1,x x n y
z

  

0

xyz

 
3

, 1 modx y m
b



 
4

1 mod ,x n y
b



  
1

, 1 sign 1x y y m
b

  

0

xyb
  

2

1 sign 1,x x n y
b

  

J

Q

Q

K

SET

CLR

1

J

Q

Q

K

SET

CLR

2

J

Q

Q

K

SET

CLR

3

J

Q

Q

K

SET

CLR

4

J

Q

Q

K

SET

CLR

0

5

4
3

1

2

Figure 5. The round-robin arbitration hardware functional diagram for a 2-dimensional multiprocessor.

Initially, a system reset pulse arrives to initialize the flip-flops. As a result, flip-flop 0 is set to “1” while

the remaining flip-flops are reset to “0.” Thus, the initial state of the test hardware will be in accordance

with Statement 2 of the above algorithm (see Figure 2); i.e., all processors are initialized to start self-

test routines.

If the current processor is about to start a self-test, then STU (see Figure 4) issues flag 𝑏𝑥𝑦
0 = 0 (which

implies that Vertex 2i of thread 𝐵0 will execute). As a result, gate 5 is blocked and no pulse CLK1 is

able to clock the flip-flops. Flip-flop 0 remains set while the rest of the flip-flops are reset until the self-

test routine terminates. As soon as self-test is done, high flag 𝑏𝑥𝑦
0 = 1 arrives (see Vertex bi of the above

algorithm) and the AND gates are unblocked, making it possible to clock the flip-flops. Note that flag

𝑏𝑥𝑦
0 may remain set and the AND gates may be open if the test routine start timer has not finished

counting down yet.

Another pulse CLK1 passes by AND gate 5, feeds the clock inputs of all the flip-flops and transfers the

value of logical “1” to flip-flop 1 from flip-flop 0. In turn, flip-flop 0 is reset to zero because of the low

10

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

state of flip-flop 4. As a result, flip-flop 1 is set while the remaining peers are reset. After that, flag

𝑍𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 = 1 arises and allows neighboring processor 𝑢𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚 to initiate the test process for

the current node (superscript “3” implies that current node 𝑢𝑥𝑦 is the third neighbor of processor

𝑢𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚).

When processor 𝑢𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚 starts checking the current node, its NCU3 issues flag 𝑏𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 =

0 (which corresponds to Vertex 2i in thread 𝐵3 of the proposed algorithm). AND gate 5 becomes blocked

and pulses CLK1 can no longer feed the clock inputs of the flip-flops. Flip-flop 1 stays high while the

rest remain clear until the test terminates. As soon as the test is finished, flag 𝑏𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 = 1 arrives

(corresponding to Vertex bi of our algorithm), the AND gates are unblocked and clock pulses CLK1

start feeding the flip-flops. If flag 𝑏𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 is not reset to zero (the test routine start timer has not

counted down yet), then the AND gates remain open.

Analogously, the high-level value is transferred from flip-flop 1 to flip-flop 2, then travels from flip-

flop 2 to flip-flop 3 and finally returns to flip-flop 0 from flip-flop 4, meaning that another arbitration

loop is complete. The operation of the test hardware stays the same as discussed above. If flip-flop 2

becomes high, then node 𝑢(𝑥+1)𝑚𝑜𝑑 𝑛,𝑦 gains the right to start testing the current processor. In turn, when

flip-flop 3 is high, neighbor 𝑢𝑥,𝑦+(1−𝑠𝑖𝑔𝑛(𝑦))𝑚−1 will check the current processor.

Note that the round-robin arbitration hardware can be easily extended to a d-dimensional case, but would

include more flip-flops, inverters and terminals. For a 3-dimensional multiprocessor, 7 flip-flops are

necessary, whereas 9 flip-flops are required in a 4-dimensional case.

7. COMPARISON OF THE PROPOSED APPROACH

7.1 Probability of Successful Fault Detection Evaluation

To compare the proposed inter-unit test method to the existing alternatives, the probability of successful

fault detection is theoretically evaluated first and its dependencies on the multiprocessor dimension and

reliability of separate test units are explored. The results are compared to the distributed self-checking

and known mutual inter-unit test methods.

We take into account that a faulty node may be erroneously reported as healthy (“hidden fault”) by a

test unit and that a healthy processor may be mistakenly treated as faulty (“false fault”). All faults that

are neither hidden nor false are known as “explicit faults;” i.e., detected faults that really exist. Thus, we

define the probability of successful fault detection as a measure of the probability of properly detecting

faulty nodes that really exist in the multiprocessor.

Let 𝜋(𝑡) be the probability that a separate test unit of a processor properly detects a faulty neighbor node

(or the current node in the case of self-checking). Let 𝜋−(𝑡) and 𝜋0(𝑡) be the probabilities that a separate

test unit is unable to detect a faulty node and claims a healthy node to be faulty, respectively. Then, the

following fundamental relation will take place:

      01t t t      . (8)

Assuming 𝜋(𝑡), 𝜋−(𝑡) and 𝜋0(𝑡) are the same for all the multiprocessor’s nodes across the mesh, we

deduce the probability of successful fault detection formula for the proposed approach.

For the simplest 2-dimensional case, |𝐾𝑥𝑦
′ | = 5 and we obtain:

        
5 5

5

2 5 5

3 3

1
iii i

d

i i

P t P t C t t




 

        , (9)

where 𝑃5
𝑖(𝑡) denotes the probability that i out of |𝐾𝑥𝑦

′ | = 5 testing nodes properly detect a faulty

neighbor and 𝐶5
𝑖 is the number of i item selections out of 5 items. For a 3-dimensional multiprocessor,

|𝐾𝑥𝑦
′ | = 7 and we have:

        
7 7

7

3 7 7

4 4

1
iii i

d

i i

P t P t C t t




 

        , (10)

11

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

where 𝑃7
𝑖(𝑡) denotes the probability that i out of |𝐾𝑥𝑦

′ | = 7 testing nodes properly detect a faulty

neighbor. Using formulae (9) and (10), we deduce

    
 

   
 

2 1 2 1
2 1

2 1 2 1

2 1 2 1
2 2

1
d d

d iii i

d d

d d
i i

P t P t C t t
 

 

 

    
    
   

        . (11)

Using Formula (11), we can investigate the dependencies of the probability of successful fault detection

on the multiprocessor dimension and reliability of the separate test units. Having deduced the same

formulae for existing approaches, it is possible to compare these approaches to our method on various

factors.

Let us first compare our approach to the distributed self-test method. The self-test is able to detect faulty

nodes with probability 𝜋(𝑡),

because there is only one test unit in a given processor across the mesh.

Therefore, this unit is sufficient to evaluate and explore the relation 𝜑(𝑡) = 𝑃(𝑡)/𝜋(𝑡)

in order to

compare the proposed method to the distributed self-test. Figure 6 shows the 𝜑(𝑡) versus probability

𝜋(𝑡) graphs obtained using Formula (11).

Figure 6 shows that the proposed approach has the greatest advantage when 𝜋(𝑡) ≈ 0.7. For a 2-

dimensional multiprocessor, the maximum 𝜑(𝑡) value attained is 1.1956, which takes place at 𝜋(𝑡) =
0.7 and means that the probability of successful fault detection increases by almost 20% as compared to

the distributed self-test approach. The higher the multiprocessor dimension d, the greater the advantage

of our method. For example, in a 5-dimensional mesh-connected multiprocessor, 𝜑(𝑡) becomes higher

than 1.3 at 𝜋(𝑡) = 0.7, which signifies a 30% advantage. For higher values 𝜋(𝑡) ≥ 0.9, our method

becomes less advantageous than a simple self-test. However, higher reliability test units are hard to build

up in practice. For lower values 𝜋(𝑡) ≤ 0.6, our method also works worse and for 𝜋(𝑡) ≤ 0.5, it does

not work at all. However, the case 𝜋(𝑡) ≤ 0.5 corresponds to “extremely unreliable” test units, which

(according to Formula (8)) would claim faulty units to be healthy and/or treat healthy units as faulty in

most cases such that a self-test would not be feasible with such units.

Figure 6. 𝜑(𝑡) versus 𝜋(𝑡)

graphs for fixed 2 ≤ 𝑑 ≤ 9.

Let us now compare our approach to the mutual inter-unit test method presented in [41] under the same

assumptions as those formulated above. Let 𝑃0(𝑡) denote the probability of fault detection attained when

the mutual inter-unit test [41] is employed. Then, it is sufficient to evaluate and explore the relation

𝜓(𝑡) = 𝑃(𝑡)/𝑃0(𝑡) to compare the proposed method to the mutual inter-unit test. Figure 7 presents the

𝜓(𝑡) versus probability 𝜋(𝑡) graphs obtained using Formula (11) and a similar formula found in [41].

12

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

Figure 7. 𝜓(𝑡)versus 𝜋(𝑡) graphs for fixed 2 ≤ 𝑑 ≤ 9.

Analyzing the graphs of Figure 7, we can see that our approach works better for 2-dimensional

multiprocessors. It is evident that these results are from the higher testing neighbor set cardinality. With

𝑑 = 2 and 𝜋(𝑡) = 0.7, the advantage of our approach is about 7%. In the 3-dimensional case, our

method demonstrates the same probability 𝑃(𝑡) values as does the inter-unit test. For 𝑑 ≥ 4, our method

becomes slightly worse than the inter-unit test at 𝜋(𝑡) ≥ 0.7 and loses at 𝜋(𝑡) ≈ 0.6, for which the

probability is actually a bit too low for practical cases.

7.2 Connection Complexity Evaluation

Excessive connectivity is the main drawback of known mutual inter-unit test approaches. To deploy an

inter-unit test environment, each processor node needs many external connections (input and output

terminals) to communicate to its peers while performing test routines. This connectivity depends highly

on the multiprocessor dimension and test unit parameters and so, may become a serious concern when

complex systems are being manufactured.

In what follows below, we compare the connectivity factor in our approach to those in the known mutual

inter-unit test methods and demonstrate that our proposed method can drastically decrease

multiprocessor connectivity. The connection complexity is formally defined as the required number of

extra direct connections between a given processor and all its peers to perform test routines. Only extra

test connections are considered. It is assumed that the “regular” connections required for inter-processor

data exchange and control are the same whichever test method is used, but only external connections

are under consideration. For example, the links between the processor core and STU are not taken into

account, because they are internal.

According to Figs. 4 and 5, ith NCU needs Ω𝑖 = 𝑊𝑅 + 𝑊𝑇 + 4 input/output terminals, where 𝑊𝑅 and

𝑊𝑇 are the widths of response packets and test signatures, respectively. Thus, taking into account the

round-robin arbitration unit connections, the majority gate terminals and the backward test/response

buses, the total number of extra input/output terminals of a processor may be calculated as:

   2 2 4 1R Td W W     . (12)

In the same fashion, the connection complexity of known mutual inter-unit test schemes can be

evaluated. For the inter-unit test method presented in [41], the following formula will take place:

    0 2 1 1 1R Td d W W d        
. (13)

Formula (13) takes into account all extra test connections to the peers of a given processor.

13

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

To compare our approach to the inter-unit test method of [41], we calculate the relation 𝜉 = Ω0/Ω for

different values of the multiprocessor dimension d and fixed 𝑊𝑅 and 𝑊𝑇 (We assume that 𝑊𝑅 = 𝑊𝑇 for

simplicity reasons). In Figure 8,  versus d graphs are shown for 𝑊𝑅 + 𝑊𝑇 ∈ {32,64,128,256}.

According to the graphs of Figure 8, our approach requires a few more extra connections in the 2-

dimensional case. For 𝑑 > 2, our method works better than that of [41]. For example, given a 4-

dimensional multiprocessor, the inter-unit test method would require 55% more extra connections than

does our approach. Thus, with our proposed test method, higher dimension fault-tolerant

multiprocessors would be significantly easier to implement because of the lower extra connectivity.

Figure 8.  versus d graphs for fixed 𝑊𝑅 + 𝑊𝑇 ∈ {32,64,128,256}.

8. CONCLUSION

In this paper, we proposed a new approach of a mutual inter-unit test with round-robin collision

resolution to improve the testability of mesh-connected multiprocessors by increasing the probability of

successful fault detection as compared with simple distributed self-checking. Compared with other

mutual inter-unit test methods, such as [41] and [42], our approach automatically resolves the collision

problem when two or more neighboring processors are about to start checking the same peer during

overlapping time windows. Our method can be applicable to multiprocessors of arbitrary dimensions,

with 2-dimensional ones having the maximum effectiveness, which matches the technological

limitations of modern VLSI multiprocessors. For future scaling, our approach must allow drastic

reduction of the multiprocessor connectivity with respect to known mutual inter-unit test methods. For

example, in a 4-dimensional system, we need 55% less extra connections with our approach, while in a

5-dimensional case, we reduce extra connectivity by over 90%. The new mutual inter-unit test technique

allows for the online hardware-level testing of all processor nodes across the mesh in parallel, thereby

significantly contributing to the performance of the test environment.

REFERENCES

[1] M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital Systems Testing and Testable Design," IEEE

Press, Piscataway, NJ, 1994.

[2] M.K. Aguilera, W. Chen and S. Toueg, "Failure Detection and Consensus in the Crash-Recovery Model,"

Distributed Computing, vol. 13, no. 2, pp. 99–125, 2000.

[3] R. Ahlswede and H. Aydinian, "On Diagnosability of Large Multiprocessor Networks," Discrete Applied

Mathematics, vol. 156, no. 18, pp. 3464–3474, Nov. 2008.

[4] L. Benini and G. De Micheli, "Networks on Chips: A Paradigm," IEEE Transactions on Computers,

14

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

 vol. 35, no. 1, pp. 70–78, 2002.

[5] P. Bernardi, L.M. Ciganda, E. Sanchez and M. Sonza Reorda, "MIHST: A Hardware Technique for

Embedded Microprocessor Functional On-Line Self-Test," IEEE Transactions on Computers, vol. 63, no.

11, pp. 2760–2771, Nov. 2014.

[6] R. Bianchini and R. Buskens, "Implementation of On-Line Distributed System-Level Diagnosis Theory,"

IEEE Transactions on Computers, vol. 41, pp. 616–626, May 1992.

[7] T. Bjerregaard and S. Mahadevan, "A Survey of Research and Practices of Network-on-Chip," ACM

Computing Surveys, vol. 38, no. 1. pp. 1–51, 2006.

[8] D. Blough and H. Brown, "The Broadcast Comparison Model for On-Line Fault Diagnosis in

Multicomputer Systems: Theory and Implementation," IEEE Transactions on Computers, vol. 48, pp.

470–493, May 1999.

[9] B. Ciciani, Ed., Manufacturing Yield Evaluation of VLSI/WSI Systems, Los Alamitos, CA: IEEE

Computer Society Press, 1998.

[10] S. R. Das, "Self-testing of Cores-based Embedded Systems with Built-in Hardware," IEE Proceedings–

Circuits, Devices and Systems, vol. 152, no. 5, pp. 539–546, Oct. 2005.

[11] E. P. Duarte Jr. and T. Nanya, "A Hierarchical Adaptive Distributed System-Level Diagnosis Algorithm,"

IEEE Transactions on Computers, vol. 47, pp. 34–45, Jan. 1998.

[12] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw and D. Sylvester, "Vicis: A Reliable Network for

Unreliable Silicon," Proc. of the 46th DAC, pp. 812–817, Jul. 2009.

[13] S. Furber, "Living with Failure: Lessons from Nature?," Proc. of the 11th IEEE ETS, pp. 4–8, May 2006.

[14] T. Horita and I. Takanami, "Fault-tolerant Processor Arrays based on the 1.5-track Switches with Flexible

Spare Distributions," IEEE Transactions on Computers, vol. 49, no. 6, pp. 542–552, June 2000.

[15] S. Y. Hsieh and C. Y. Kao, "The Conditional Diagnosability of k-Ary n-Cubes under the Comparison

Diagnosis Model," IEEE Transactions on Computers, vol. 62, no. 4, pp. 839 – 843, April 2013.

[16] L. M. Huisman, "Diagnosing Arbitrary Defects in Logic Designs Using Single Location at a Time

(SLAT)," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no.

1, pp. 91–101, 2004.

[17] S. M. A. H. Jafri, S. J. Piestrak, O. Sentieys and S. Pillement, "Design of the Coarse-grained

Reconfigurable Architecture DART with On-line Error Detection," Microprocessors and Microsystems,

vol. 38, no. 2, pp. 124–136, 2014.

[18] G. Jiang, W. Jigang and J. Sun, "Efficient Reconfiguration Algorithm for Three-dimensional VLSI

Arrays," Proc. of the IEEE 26th International Parallel and Distributed Processing Symposium Workshops

& Ph.D. Forum, pp. 261–265, 2012.

[19] W. Jigang, T. Srikanthan, G. Jiang and K. Wang, "Constructing Sub-Arrays with Short Interconnects

from Degradable VLSI Arrays," IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 4,

pp. 929–938, April 2014.

[20] A. Kohler and M. Radetzki, "Fault-tolerant Architecture and Deflection Routing for Degradable NoC

Switches," Proc. of the 3rd ACM/IEEE Int. Symp. NoC, pp. 22–31, May 2009.

[21] E. Kolonis, M. Nicolaidis, D. Gizopoulos, M. Psarakis, J. Collet and P. Zajac, "Enhanced Self-

configurability and Yield in Multicore Grids," Proc. of the 15th IEEE IOLTS, pp. 75–80, Jun. 2009.

[22] A. Krstic, W. C. Lai, K. T. Cheng, L. Chen and S. Dey, "Embedded Software-based Self-test for

Programmable Core-based Designs," IEEE Design and Test of Computers, vol. 19, no. 4, pp. 18–27,

July/Aug. 2002.

[23] J. C. M. Li and E. J. McCluskey, "Diagnosis of Resistive-Open and Stuck-Open Defects in Digital CMOS

Ics," Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 11, pp.

1748–1759, 2005.

[24] L. Lin, S. Zhou, L. Xu and D. Wang, "The Extra Connectivity and Conditional Diagnosability of

Alternating Group Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 8, pp.

2352–2362, Aug. 2015.

[25] S. Lin, W. Shen, C. Hsu, C. Chao and A. Wu, "Fault-tolerant Router with Built-in Self-test/Self-diagnosis

15

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

 and Fault-isolation Circuits for 2D Mesh-based Chip Multiprocessor Systems," Proc. Int. Symp. VLSI-

DAT, pp. 72–75, Apr. 2009.

[26] P. Maestrini and P. Santi, "Self-diagnosis of Processor Arrays Using a Comparison Model," Proc. Of the

14th Symp. on Reliable Distributed Systems, pp. 218–228, 1995.

[27] J. Mekkoth, M. Krishna, J. Qian, W. Hsu, C.-H. Chen, Y. S. Chen, N. Tamarapalli, W. T. Cheng, J. Tofte

and M. Keim, "Yield Learning with Layout-Aware Advanced Scan Diagnosis," Proc. of the International

Symposium for Testing and Failure Analysis, pp. 412–418, 2006.

[28] M. Psarakis, D. Gizopoulos, E. Sanchez and M. Sonza Reorda, "Microprocessor Software-based Self-

testing," IEEE Design and Test of Computers, vol. 27, no. 3, pp. 4–19, May/June 2010.

[29] J. Raik and V. Govind, "Low-area Boundary BIST Architecture for Meshlike Network-on-Chip," Proc.

of the 15th IEEE Int’l Symp. DDECS, pp. 95–100, Apr. 2012.

[30] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, "Embedded Deterministic Test," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776–792, 2004.

[31] S. Rangarajan, A. T. Dahbura and E. Ziegler, "A Distributed System-Level Diagnosis Algorithm for

Arbitrary Network Topologies," IEEE Transactions on Computers, vol. 44, pp. 312–334, Feb. 1995.

[32] S. Rangarajan and D. Fussell, "Diagnosing Arbitrarily Connected Parallel Computers with High

Probability," IEEE Transactions on Computers, vol. 41, pp. 606–615, May 1992.

[33] A. Sengupta and A. T. Dahbura, "On Self-Diagnosable Multiprocessor Systems: Diagnosis by the

Comparison Approach," IEEE Transactions on Computers, vol. 41, pp. 1386–1396, Nov. 1992.

[34] M. Sharma, C. Schuermyer and B. Benware, "Determination of Dominant-Yield-Loss Mechanism with

Volume Diagnosis," Proc. of IEEE Design & Test of Computers, vol. 27, no. 3, pp. 54–61, 2010.

[35] C. Stroud, J. Sunwoo, S. Garimella and J. Harris, "Built-in Self-test for System-on-Chip: A Case Study,"

Proc. of the Int’l Test Conf., pp. 837–846, 2004.

[36] W. C. Tam, O. Poku and R. D. Blanton, "Systematic Defect Identification through Layout Snippet

Clustering," Proc. of the IEEE International Test Conference, pp.1, 2010.

[37] H. Tang, S. Manish, J. Rajski, M. Keim and B. Benware, "Analyzing Volume Diagnosis Results with

Statistical Learning for Yield Improvement," Proc. of the European Test Symp., pp. 145–150, 2007.

[38] Z. Wang, M. Marek-Sadowska, K. H. Tsai and J. Rajski, "Analysis and Methodology for Multiple-Fault

Diagnosis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,

no. 3, pp. 558–575, 2006.

[39] L. Zhang, "Fault-Tolerant Meshes with Small Degree," IEEE Transactions on Computers, vol. 51, no. 5,

pp. 553–560, May 2002.

[40] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi and F. Pecheux, "On-the-Field Test and

Configuration Infrastructure for 2-D-Mesh NoCs in Shared-Memory Many-Core Architectures," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 6, pp. 1364–1376, June 2014.

[41] J. Al-Azzeh, M. E. Leonov, D. E Skopin, E. A. Titenko and I. V. Zotov, "The Organization of Built-in

Hardware-Level Mutual Self-Test in Mesh-Connected VLSI Multiprocessors," International Journal on

Information Technology, vol. 3, no. 2, pp. 29–33, 2015.

[42] J. Al-Azzeh, "A Distributed Multiplexed Mutual Inter-Unit in-Operation Test Method for Mesh-

Connected VLSI Multiprocessors," Jordan Journal of Electrical Engineering, vol. 3, no. 3, pp. 193-207,

2017.

16

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

 ملخص البحث:

فيييييييل رييييييي ا تراح يييييييدي ةيييييييال ت اييييييياتو داة يييييييد ةييييييي ر ييييييي تر ا ييييييي ييييييي ترا ييييييي ت فيييييييل

تر ع رجيييييي تر ييييييد داعيييييي تة عيييييي فييييييل جيييييي ذ ك ييييييد ترا ديييييي ت يييييي تر جيييييي ذ يييييي ت ي ريييييي

دعييييي ري ةجيييييا ف قيييييع ف يييييج دييييي ييييي ترع ييييي تر جييييي ح ريييييع ارييييي فيييييل رضييييي ي ي

ترا ييييت تكييييع ي ييييع ر ييييت ر يييي ص ييييد ر يييي ت ةييييد ييييد ا يييي ح تر يييي تراييييل ةجيييي ي

ك ييييي ي ف لييييي ت ييييي تر ييييي ل ع يييييل ي ترجاة يييييد تر اا يييييد ك يييييا يييييا كعييييي ح فيييييل

 ا .ف ترا ت . كل ء اتحزد د د رل ت ترغ

 يييييي يل اييييييت ترجاة ييييييد تر اا ييييييد ي ليييييي ك جييييييا ت ييييييل ك يييييي ر يييييي تر ع رجيييييي تر ييييييد

تر اقيييييي د فييييييل ر خييييييد يييييي دل ديييييي ييييييلأ زةيييييي ت ا ر ييييييد ر يييييي تر يييييي تيييييي تة جيييييي ء

ديييييي يييييي ط يييييياي ك يييييي ترجاة ييييييد تر اا ييييييد د ح ييييييد جاة ييييييد تر يييييي تريييييي تكل تر ازتييييييد.

تريييييي ق ر ت اح ييييييت يييييي رجاذ تة ييييييا يييييي يييييي ديييييي ترا ييييييلأ ترلأزدييييييد فييييييل تر عيييييي ري

تر عا ييييييد ر يييييي تر ا يييييي يييييي ترا يييييي ت ي ديييييي لييييييل فلييييييل ك ييييييل ديييييي ت ييييييد كقيييييي

تر ع رجييييييي تر يييييييد. فع يييييييل ييييييي تر قييييييي ي فيييييييل ييييييي ح ييييييي تل تة عييييييي ي ك يييييييا ترجاة يييييييد

 %.55تر اا د ترل كخ ض ترا لأ تلإض ف د ترلأزدد د

17

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Y. E. M. Hamouda is with Department of Computer, Al-Aqsa University, Gaza, Palestine. Email: ye.hamouda@alaqsa.edu.ps

MODIFIED RANDOM BIT CLIMBING (λ -MRBC) FOR

TASK MAPPING AND SCHEDULING IN WIRELESS

SENSOR NETWORKS

Yousef E. M. Hamouda

(Received: 8-Nov.-2018, Revised: 17-Dec.-2018, Accepted: 23-Dec.-2018)

ABSTRACT

This paper examines the problem of Task Mapping and Scheduling (TMS) in Wireless Sensor Networks (WSNs).

The application, which is supposed to be executed in WSNs, can be divided into interdependent tasks. The key

objectives of TMS in WSNs are the improvement of execution time, energy consumption and network lifetime. A

modified version of Random Bit Climbing (RBC) optimization method, also called λ-Modified Random Bit

Climbing (λ-mRBC), is developed to get better and faster optimal or near-optimal solution. In the proposed λ-

mRBC method, a new operator, called transposition operator, is added to improve the exploration of search

space and hence to escape from the local optima. The deepth of exploration is controlled by using a single

parameter (λ). Firstly, a number of sensor nodes is selected to cooperatively execute the application with the

purpose of improving the network lifetime. After that, the proposed λ-mRBC method is performed to get the

optimal or near-optimal task/sensor pair solution, so that the execution time and energy consumption are

minimized.

The simulation results show that λ-mRBC method enhances the TMS performance. Compared with the

traditional RBC method, the proposed λ-mRBC method converges to better fitness value, make-span and total

energy consumption by 19.1%, 19.6% and 22.3%, respectively. Furthermore, the network lifetime is prolonged

through using the proposed selection algorithm. The distribution of remaining energy among sensor nodes is

improved about three times, compared with the random selection scheme. Furthermore, compared with the

random selection, the number of neighbours for sensor nodes is improved by 20.1% using the proposed selection

algorithm.

KEYWORDS

Application DAG, Optimization methods, Random bit climbing, Task mapping and scheduling, Wireless sensor

networks.

1. INTRODUCTION

Sophisticated technologies and applications, such as smart homes, Internet of Things (IoT), smart grid,

precision agriculture and automated control have provoked the need of developing self-organized,

multi-hop and ad-hoc Wireless Sensor Networks (WSNs). WSNs are made up of hundreds or

thousands of tiny and cheap sensor nodes with limited resources. Sensor nodes cooperate with each

other to execute the applications. In addition, sensor nodes are scattered randomly or in a planned

manner to monitor and control the field of interest [1]. Sensor node consists of energy unit, processing

unit, sensing unit, wireless communication unit and storage unit [2]. In several applications, WSNs are

positioned in sites that are difficult to be physically accessed; i.e., forest. Therefore, network lifetime

is an essential requirement for WSNs to prolong the lifetime of the sensor nodes and the network

connectively [3, 4]. Lots of civil and military applications employ WSNs. Civil applications, for

example, include healthcare [5], precision irrigation [6], smart grid [7], home automation [8] and

surveillance [9], while military-based applications usually include intrusion detection and detection of

illegal crossings [10].

Given the fact that the sensor nodes have limited resources, improving the energy-efficiency and

application execution time of WSNs seems to be plausible to increase the network lifetime [11]. In

fact, energy is consumed from the battery during sensing, communicating and processing activities. In

18

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

addition, numerous applications in WSNs require massive in-network processing capability. For

instance, smart visual sensor networks usually go through several subsequent executional jobs,

including image processing, computer vision and image sensing [12]-[13]. Furthermore, application

should complete its execution at the right time, after which the execution of the application will not be

useful anymore. In most cases, sensor node is not fast enough to execute the complex application in a

reasonable amount of time.

Parallel computing refers to the methods that solve a problem within a reasonable amount of time (i.e.,

called make-span) by dividing it into smaller parts and solving the parts using multiple physical

processors [14]. As a result, a complicated application of WSNs is decomposed into smaller tasks.

Afterward, Task Mapping and Scheduling (TMS) techniques are developed in order to share the

execution of divided tasks among sensor nodes [15]. As shown in Figure 1, four phases are required to

perform a parallel system [35]: The first phase is called task decomposition. In this phase, the

application is divided into small tasks. These small tasks depend on each other by using dependencies.

The dependence analysis is performed in the second phase to order the tasks in line with the

dependencies. Task graphs, such as Direct Acyclic Graphs (DAGs), are employed to model the tasks

with dependencies. The third phase is called task mapping and scheduling. The main purpose of task

mapping is to allocate the tasks to the processors or computing nodes. Consequently, the task

scheduling aims to order the task execution according to the dependencies through determining the

start times of task execution. The fourth phase is called parallel programming and aims to develop the

application, based on the result of task mapping and scheduling. This paper considers the mechanism

of task mapping and scheduling, explained in the third phase.

Figure 1. Task mapping and scheduling concept.

However, unlike the traditional parallel computing systems, TMS in WSNs focuses not only on the

execution time of the application, but also on energy-efficient schemes that prolong the network

lifetime. Therefore, TMS is generally modelled as a multi-objective optimization problem, which has

been proved to be non-deterministic polynomial-time (NP)-hard [16].

Metaheuristics are used to get a satisfactory solution of optimization problem that fulfils the required

objective function. Metaheuristics are strategies that depend on a guide to examine the search space to

get the optimal (or near-optimal) solution, without the need of testing every solution in the search

space [17]. A metaheuristic has two main properties: diversification and intensification [18].

Diversification is the exploration of search space in order to escape from the local optimal.

Intensification refers to the process of exploitation of accumulated search space. Indeed,

Application’s

Specifications

2. Dependence

Analysis
T: Task

P: Processor

3. Task Mapping

and Scheduling

T1

T2

T3

T4

T5

T6

include <….>

void main()

{

……….

……….

……….

……….

……….

……….

}

4. Parallel

Programming

T1

T4

T2
T3

T5 T61. Tasks

Decomposition

T1

T4

T2
T3

T5 T6

P1

P2

P3

19

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

diversification needs a time to be performed, whereas intensification looks deeply and locally for high-

quality solutions. Therefore, dynamic balancing between exploration and exploitation is necessary for

a good metaheuristic [17]. In literature, metaheuristics are classified into single-solution

metaheuristics and population-based metaheuristics. According to the operation form of

metaheuristics, single-solution metaheuristics are of more intensification, while population-based

metaheuristics are of more diversification [18].

This paper introduces λ-Modified Random Bit Climbing (λ-mRBC) optimization method to attempt to

solve the problem of TMS in WSNs. The claim of this research is to improve the traditional RBC

optimization method. The main contributions of the proposed λ-mRBC optimization method are: (1) a

novel modification in RBC method is developed to improve the convergence speed and fitness value

of the final solution. (2) The researcher thinks that this research might be the first one to apply the

RBC method and its proposed modified version (λ-mRBC) in TMS problem. (3) Lifetime Awareness

Sensor Node Selection Algorithm (LA-SNSA) is incorporated to select the sensor nodes so that the

lifetime of the network is improved. (4) Heterogeneous sensor nodes with different processing, energy

level and energy consumption are used in the proposed algorithms.

The paper contains seven sections as follows: Section (2) explores work related to task allocation in

WSNs. In Section (3), the network framework for TMS is introduced. Then, Section (4) defines and

formalizes the research problems. After that, the proposed λ-mRBC and LA-SNSA schemes are

introduced in Section (5). Simulation results are shown and discussed in Section (6). Finally, the paper

is concluded in Section (7).

2. RELATED WORK

Task mapping and scheduling problems have been deeply discussed in WSNs. In [19]-[20], Genetic

Algorithm (GA) is used to provide well-performing task allocation. A Modified Binary Particle

Swarm Optimization (MBPSO) algorithm is presented in [21] to find the optimal task allocation

solution. In [22], logic gate-based evolutionary algorithm is used to solve the problem of task

allocation in WSNs. However, the population-based metaheuristics used in the above research require

high processing power, energy consumption and execution time. Furthermore, high complexity

optimization algorithms are not appropriate for limited resource WSNs.

Integer linear programming is used in [23] to optimally assign complex tasks to sensor nodes to

minimize total energy consumption. In [24], task allocation is introduced so that energy consumption

and network lifetime are improved. However, the execution time (i.e., make-span) has not been taken

into account [23]-[24], which leads the application to take long time to be executed.

In [25], a distributed task allocation is introduced. The task is made to move from a sensor node to

another. The suitable sensor node with enough capacity to execute the task is found. In [26],

Topology-Aware Task Allocation and Scheduling (TATAS) is introduced to map and schedule the

tasks to the sensor nodes. However, the task allocation presented in [25]-[26] assumes independent

tasks which are not practical for complex application, such as visual surveillance [27].

In [28], a real-time task mapping and scheduling (RT-MapS) algorithm is developed for collaborative

in-network processing in single-hop cluster WSN using Dynamic Voltage Scaling (DVS) feature. In

[27], Multi-hop Task Mapping and Scheduling (MTMS) solution is developed for TMS in multi-hop

cluster WSN. Nevertheless, MTMS and RT-MapS prevent task mapping to sensor nodes that execute

the immediate predecessors of the task. As a result, this leads to using more sensor nodes for TMS and

including all sensor nodes in the task mapping decision-making.

In [29], Biological Task Mapping and Scheduling (BTMS) approach is introduced, where the

application is executed by a group of sensor nodes so that the execution time and energy consumption

are improved. However, the network lifetime related to sensor neighbour count is not considered. In

[30], Light Allocation of Tasks (LAT) algorithm is presented to enhance energy efficiency, network

lifetime and application execution time. However, LAT algorithm includes all sensor nodes in

decision-making for TMS.

Task Level Parallelism (TLP) in WSN is introduced in [31] to parallelize the execution of smart health

care applications so that the processing time is reduced. Nevertheless, scheduling of the task execution

20

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

is not considered. An energy-efficient Complicated Task Solution scheme for real-time task

processing based on node Cooperation (CTSC) is tackled in [32] to allocate more tasks to sensor nodes

with a higher energy-level. However, CTSC maps all dependent tasks to the same sensor nodes which

could cause exhaustion for the energy level of sensor node.

In [33], Machine-to-Machine (M2M) architecture with sensor devices and limited resources is

considered. Tasks are allocated to the nodes of M2N so that the lifetime is maximized. However, the

task allocation algorithm proposed in [33] finds all possible task allocation possibilities which need

high processing and time. In addition, the execution time is not considered in [33]. In [34], complex

application is allocated for different clustered wireless sensors. Firstly, tasks are distributed to clusters

so that the energy consumption is minimized. Then, tasks allocated to each cluster are assigned to the

nodes within the cluster so that energy cost and load balancing are improved. In [35], the problem of

task allocation in IoT applications is considered, where the embedded devices of IoT are assumed to

have limited resources. The tasks are allocated so that the energy consumption is minimized. In [36],

tasks are allocated locally to the slave sensor nodes or globally to the master sensor node, so that the

network life time is maximized. However, the execution time is not considered in [34]-[36].

In this paper, λ-Modified Random Bit Climbing (λ-mRBC) optimization method is developed to solve

the problem of TMS in WSNs. The proposed method supports heterogeneous sensor nodes. Actually,

the proposed λ-mRBC method is different from the previous one through the use of a modified version

of RBC method with faster conversion speed and better final solution. Moreover, the proposed λ-

mRBC is a single-solution metaheuristic with single algorithm parameter. Therefore, it needs less

processing capabilities to be executed and in turn it is suitable for the sensor nodes with limited

resources. Finally, Lifetime Awareness Sensor Node Selection Algorithm (LA-SNSA) is developed to

select the sensor nodes to enhance network lifetime.

3. NETWORK FRAMEWORK

As shown in Figure 2, the sensor nodes are randomly distributed in the monitoring area. The sensor

nodes are connected with each other wirelessly. The sink node aims to pass on the data from the

monitoring area to the main controller via Internet, satellite or cellular networks. Sensor node knows

its location using Global Positioning System (GPS) [37]. Nonetheless, only few sensor nodes use GPS

to know their locations and other sensor nodes can calculate their locations using triangulation [38]. At

time step (𝑘), the neighbours of a target sensor node (𝑠𝑇𝑆𝑁) are a set 𝑁𝑠𝑇𝑆𝑁
(𝑘). The neighbours with

remaining energy level above a predefined threshold value (𝐸𝑡ℎ) can participate to execute an

application DAG (𝐴𝑑). These particular neighbours are saved in an 𝑆𝑠(𝑘, 𝐴𝑑) set of 𝑛𝑠(𝑘, 𝐴𝑑) sensor

nodes. After that, a set (𝑆𝑔(𝑘, 𝐴𝑑)) of 𝑛𝑔(𝑘, 𝐴𝑑) nodes is selected from 𝑆𝑠(𝑘, 𝐴𝑑) to execute the

application DAG (𝐴𝑑). The selection of 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes is performed to improve the network

lifetime. The application DAG (𝐴𝑑) is assumed to be decomposed into interdependent tasks. Then,

TMS is incorporated to cooperatively execute the application tasks using the selected sensor nodes, so

that the time and energy required to execute the application DAG are reduced.

Figure 2. Network framework.

Sink

(BS)

Internet/Satellite/

Cellular

User

Sensor Node

TSNTSN Neighbor

Selected Node

Main Controller
Monitoring Area

21

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

4. PROBLEM DEFINITION AND FORMALIZATION

4.1 Application Model

In this paper, the application is modelled using Direct Acyclic Graphs (DAG) [21]. So, the application

is divided into smaller tasks. DAG can also model the interdependencies among tasks [39]. Figure 3

shows as example of application DAG.

Figure 3. Application DAG.

The application DAG is modelled as 𝐴𝑑 = (𝑉, 𝐸). The set 𝑉 represents “𝑛” application tasks, where

𝑉 = {𝑣𝑖: 𝑖 = 1,2, . . 𝑛} . Similarly, the set E represents “𝑞” communication interdependencies, where

𝐸 = {𝑒𝑘: 𝑘 = 1,2, . . 𝑞}. The edge 𝑒𝑘 ∈ 𝐸 between the tasks 𝑣𝑖 and 𝑣𝑗 is denoted as 𝑒𝑖𝑗, where 𝑣𝑗 is

called the immediate successor of 𝑣𝑖 and 𝑣𝑗 is called the immediate predecessor of 𝑣𝑖. Accordingly,

the task is executed when it receives all of its immediate predecessor’s output. The entry-tasks or

source-task do not have immediate predecessors. In addition, a task without immediate successors is

called an exit-task or a sink-task. In WSNs, the entry-tasks are used for sensing or gathering the raw

data to detect physical phenomena. Therefore, task placement constraints can be defined as an only

one source task that can be assigned to the sensor node. In Figure 3, 𝑣1 and 𝑣2 are source-tasks, 𝑣9 is

the sink-task, 𝑣1 and 𝑣2 are the immediate predecessors of 𝑣4 and 𝑣9 is the immediate successor of 𝑣8.

The task 𝑣6 cannot be executed until it receives the communication interdependencies (e36, e46 and

e56) from its immediate predecessors (𝑣3 , 𝑣4 and 𝑣5).

Each task, 𝑣𝑖 ∈ 𝑉 is modelled as a tuple of the form: {𝑁𝑣𝑖
, 𝑡𝑣𝑖

, 𝐸𝑣𝑖
}, where 𝑁𝑣𝑖

 is the number of the

computational cycles of the task, 𝐸𝑣𝑖
 is computational energy consumption of the task and 𝑡𝑣𝑖

 is

computational time of the task. Each edge (𝑒𝑖𝑗) between the tasks vi and 𝑣𝑗 is modelled as a tuple of

the form: {𝑙𝑒𝑖𝑗
, 𝑡𝑒𝑖𝑗

, 𝐸𝑒𝑖𝑗
}. 𝑙𝑒𝑖𝑗

 is the data size generated from 𝑣𝑖 and is required to execute 𝑣𝑗. 𝐸𝑒𝑖𝑗
 and

𝑡𝑒𝑖𝑗
 are the communication energy consumption and communication time required to send 𝑒𝑖𝑗 from the

sensor node that executes the task 𝑣𝑖 to the sensor node that executes the task 𝑣𝑗.

4.2 The Wireless Sensor Network Model

The WSN is composed of a number of heterogeneous sensor nodes distributed randomly in the area of

interest. The sensor nodes have different specifications, such as processing speed, power consumption

and transmission distances. WSN is modelled as a graph 𝑊 = (𝑆, 𝐷), where 𝑆 = {𝑠𝑥: 𝑥 = 1,2, . . 𝑚} is

the set of heterogeneous sensor nodes and 𝐷 = {𝑑𝑘: 𝑘 = 1,2, . . 𝑝} is a set of communication links

among sensor nodes. The edge 𝑑𝑘 ∈ 𝐷 between the sensor nodes 𝑠𝑥 and 𝑠𝑦 is denoted as 𝑑𝑥𝑦 and is

the physical distance between sensor nodes 𝑠𝑥 and 𝑠𝑦.

Sensor node, 𝑠𝑥 is modelled as a tuple of several properties and states as follows: 𝑠𝑥 = {𝐼𝐷𝑠𝑥
, 𝑥𝑠𝑥

, 𝑦𝑠𝑥
,

𝐸𝑟(𝑘, 𝑠𝑥), 𝑓𝑠𝑥
 , 𝑒𝑠𝑥

, 𝑎𝑠𝑥
}, where 𝐼𝐷𝑠𝑥

 is the sensor node identification, 𝑥𝑠𝑥
, 𝑦𝑠𝑥

 are the xy coordination

of sensor node, 𝐸𝑟(𝑘, 𝑠𝑥) is the battery remaining energy of sensor node at time 𝑘, 𝑒𝑠𝑥
 is the average

power consumption for the processor of node (𝑠𝑥), 𝑎𝑠𝑥
 is the time at which the sensor node is available

to execute a task and 𝑓𝑠𝑥
 is the processing speed of sensor node. Sensor nodes 𝑠𝑥 and 𝑠𝑦 can directly

communicate if the distance between them, 𝑑𝑖𝑗 is less than or equal to the radio range, 𝑅𝑟. The

distance between sensor nodes (𝑠𝑥 and 𝑠𝑦) is calculated using Euclidean distance according to the

following equation:

9

7

5

6

3

21Source

Tasks

Normal

Tasks

Sink

Tasks

8

e56

e36

4

e46

22

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

𝑑𝑥𝑦 = √(𝑥𝑥 − 𝑥𝑦)2 + (𝑦𝑥 − 𝑦𝑦)2. (1)

Therefore, at time 𝑘, the sensor node, 𝑠𝑥 has a set of 𝑚𝑠𝑥
(𝑘) neighbours, 𝑁𝑠𝑥

(𝑘), where: 𝑁𝑠𝑥
(𝑘) =

{𝑠𝑙: ∀𝑘 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑑𝑥𝑙 ≤ 𝑅𝑟}.

4.3 Cost Functions

4.3.1 Execution Time

The CPU clock frequency is defined as the number of computational cycles that can be executed per

second. Therefore, the computational time (𝑡𝑣𝑖
) required to execute the task (𝑣𝑖) is computed using the

following formula:

𝑡𝑣𝑖
=

𝑁𝑣𝑖

𝑓𝑠𝑥

 (2)

where 𝑓𝑠𝑥
 is the CPU clock frequency of sensor node (𝑠𝑥) which executes the task (𝑣𝑖). The total

computational time (called serial execution time) required to computationally execute the application

tasks is the sum of computational times for all tasks and is calculated as follows:

𝑡𝑇
𝑝

= ∑ 𝑡𝑣𝑘

𝑛
𝑘=1 (3)

The communication time (𝑡𝑒𝑖𝑗
) required to send the 𝑒𝑖𝑗 from the sensor node that executes the task 𝑣𝑖

to the sensor node that executes the task 𝑣𝑗 is made up of transmission time, queue time and

propagation time. The queue time is the latency caused by media access to avoid interference and

collision. Therefore, the communication time (𝑡𝑒𝑖𝑗
) is computed as follows:

𝑡𝑒𝑖𝑗
= 𝑡𝑒𝑖𝑗

𝑡 + 𝑡𝑒𝑖𝑗

𝑝
+ 𝑡𝑒𝑖𝑗

𝑞
=

𝑙𝑒𝑖𝑗

𝑅𝑏
+

𝑑

𝑐
+ 𝑡𝑒𝑖𝑗

𝑞
 (4)

where 𝑡𝑒𝑖𝑗
𝑡 is the transmission time which is the data size (𝑙𝑒𝑖𝑗

) divided by the data rate or

communication bandwidth (𝑅𝑏), 𝑡𝑒𝑖𝑗

𝑝
 is the propagation time which is the distance between the sensor

nodes that exchange the edge (𝑑) divided by the speed of light (𝑐 = 3 × 108𝑚/𝑠) and 𝑡𝑒𝑖𝑗

𝑞
 is the queue

time. The total communication time required to exchange all the interdependences of the application

tasks is the sum of all communication times required to send all dependencies and is determined as

follows:

𝑡𝑇
𝑐 = ∑ 𝑡𝑒𝑖𝑗

𝑞
𝑘=1 (5)

The node/task pairs are modelled as 𝑃(𝑣, 𝑠), where 𝑃(𝑣, 𝑠) shows the “𝑛” mapped tasks of

application DAG (the set) with its corresponding “𝑛𝑔(𝑘, 𝐴𝑑)” assigning sensor nodes which are the set

𝑆𝑔(𝑘, 𝐴𝑑). Hence, the overall time required to execute the application tasks using node/task pair

(𝑃(𝑣, 𝑠)) is the sum of the serial execution time and total communication time and is calculated as:

𝑡𝑇[𝑃(𝑣, 𝑠)] = 𝑡𝑇
𝑝

+𝑡𝑇
𝑐 (6)

Each task (𝑣𝑖) mapped to sensor node (𝑠𝑥) is starting to be executed at a time called starting executing

time of the task (𝑡𝑠(𝑣𝑖 , 𝑠𝑥)). The task is executed when the sensor node is available after it receives all

the task dependencies. It is assumed that 𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)] is the time at which the last dependency

(i.e., predecessor) of task (𝑣𝑘) is received by the node (𝑠𝑥). Therefore, after receiving the last

dependency, the task (𝑣𝑘) can be executed if the CPU of sensor node (𝑠𝑥) is available. The time to

which the sensor node (𝑠𝑥) is available is referred as (𝑎𝑠𝑥
). Thus, 𝑡𝑠(𝑣𝑖, 𝑠𝑥) is the maximum of one of

the two: (𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)]) or (𝑎𝑠𝑥
). 𝑡𝑠(𝑣𝑖 , 𝑠𝑥) and is calculated as:

𝑡𝑠(𝑣𝑖 , 𝑠𝑥) = 𝑚𝑎𝑥 {𝑎𝑠𝑥
, 𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)] } (7)

When the sensor node (𝑠𝑥) starts to execute the tasks, it finishes after a time equal to the task

execution time. The time at which the task is completely executed is called the finishing execution

time of the task (𝑡𝑓(𝑣𝑖, 𝑠𝑥)), which is the time at which the task is started to be executed (𝑡𝑠(𝑣𝑖, 𝑠𝑥))

23

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

plus the task execution time (𝑡𝑣𝑖

) and is given by:

𝑡𝑓(𝑣𝑖, 𝑠𝑥) = 𝑡𝑠(𝑣𝑖 , 𝑠𝑥) + 𝑡𝑣𝑖
 (8)

The make-span of the application DAG is the time at which the application execution completely

finishes. Due to parallelism, the make-span will be less than (𝑡𝑇[𝑃(𝑣, 𝑠)]). The execution of

application is completed after finishing of execution of last task. Thus, the finishing execution time of

the last task will be the biggest finishing execution time. Hence, the biggest finishing execution time is

the make-span and is calculated as follows:

𝑚𝑠[𝐴𝑑 , 𝑃(𝑣, 𝑠)] = 𝑚𝑎𝑥∀𝑠𝑥∈𝑆𝑔(𝑘,𝐴𝑑){ 𝑡𝑓(𝑣𝑖, 𝑠𝑥) } (9)

4.3.2 Energy Consumption

The computational energy consumption (𝐸𝑣𝑖
) required to execute the task (𝑣𝑖) is computed using the

following formula:

𝐸𝑣𝑖
= 𝑒𝑠𝑥

. 𝑡𝑣𝑖
 (10)

where 𝑒𝑠𝑥
 is the average power consumption for the processor of node (𝑠𝑥). The energy consumption

(𝐸𝑒𝑖𝑗
) required to send the 𝑒𝑖𝑗 from the sensor node that executes the task 𝑣𝑖 to the sensor node that

executes the task 𝑣𝑗 is calculated as:

𝐸𝑒𝑖𝑗
= 𝐸𝑒𝑖𝑗

𝑇𝑋 + 𝐸𝑒𝑖𝑗
𝑅𝑋 (11)

where 𝐸𝑒𝑖𝑗
𝑇𝑋 is the transmitted energy consumption dissipated from the source node and 𝐸𝑒𝑖𝑗

𝑅𝑋 is the

received energy consumption dissipated from the destination node. 𝐸𝑒𝑖𝑗
 is equal to zero if the tasks 𝑣𝑖

and 𝑣𝑗 are mapped to the same sensor node. 𝐸𝑒𝑖𝑗
𝑇𝑋 and 𝐸𝑒𝑖𝑗

𝑅𝑋 are calculated as follows [40]-[41]:

𝐸𝑒𝑖𝑗
𝑇𝑋 = (𝑒𝑒𝑙𝑒𝑐 + 𝜀𝑎𝑚𝑝. 𝑑2). 𝑙𝑒𝑖𝑗

 (12)

𝐸𝑒𝑖𝑗
𝑅𝑋 = 𝑒𝑒𝑙𝑒𝑐 . 𝑙𝑒𝑖𝑗

 (13)

where 𝑒𝑒𝑙𝑒𝑐 is the electronic energy required to transmit a bit that depends on coding, modulation and

filtering and 𝜀𝑎𝑚𝑝 is related to the radio energy. The total processing energy consumption (called

serial energy consumption) required to computationally execute the application tasks is determined as

follows:

𝐸𝑇
𝑝

= ∑ 𝐸𝑣𝑘

𝑛
𝑘=1 (14)

The total communication energy consumption required to exchange the interdependences of the

application tasks is calculated as follows:

𝐸𝑇
𝑐 = ∑ 𝐸𝑒𝑖𝑗

𝑞
𝑘=1 (15)

The overall energy consumption required to execute the application tasks using node/task pair, 𝑃(𝑣, 𝑠)

is calculated as:

𝐸𝑇[𝑃(𝑣, 𝑠)] = 𝐸𝑇
𝑝

+𝐸𝑇
𝑐 (16)

4.4 Problem Definition

At time step 𝑘, a target sensor node (𝑠𝑇𝑆𝑁) triggers a request to collaboratively execute an application

DAG (𝐴𝑑). The number of neighbours of 𝑠𝑇𝑆𝑁 at time step 𝑘 is 𝑛𝑠(𝑘, 𝐴𝑑) and is contained in a set

𝑆𝑠(𝑘, 𝐴𝑑). 𝑆𝑠(𝑘, 𝐴𝑑) participates to execute the application. However, only 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes are

selected from 𝑆𝑠(𝑘, 𝐴𝑑) to execute the application DAG (𝐴𝑑). The set 𝑆𝑔(𝑘, 𝐴𝑑) includes the selected

𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes. The objective function is defined as the weighted sum of the total energy

consumption and the make-span. It is calculated as follows:

𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝑃(𝑣, 𝑠)] = 𝛼 ∗
𝑚𝑠[𝐴𝑑,𝑃(𝑣,𝑠)]

𝑡𝑇
𝑝

[𝐴𝑑,𝑃(𝑣,𝑠)]
+ (1 − 𝛼) ∗

𝐸𝑇[𝐴𝑑,𝑃(𝑣,𝑠)]

𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑,𝑃(𝑣,𝑠)]
 (17)

where 0 ≤ α ≤ 1 is a weighted controlled parameter, 𝑚𝑠[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the make-span to execute the

24

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)), 𝑡𝑇
𝑝

[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the serial execution

time of application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)), 𝐸𝑇[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the total

energy consumption to execute the application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)) and

𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the maximum energy consumption to execute the application DAG 𝐴𝑑 using

the mapped task/sensor (𝑃(𝑣, 𝑠)). The make-span in Equation (17) is normalized by dividing it by the

serial execution time (𝑡𝑇
𝑝

[𝐴𝑑 , 𝑃(𝑣, 𝑠)]) which is the maximum time required to execute the application.

Similarly, the total energy consumption in Equation (17) is normalized by dividing it by the maximum

total energy consumption (𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑 , 𝑃(𝑣, 𝑠)]). The main goal is to get the task/node pair (𝑃∗(𝑣, 𝑠))

which is used to execute the application. 𝑃∗(𝑣, 𝑠) is obtained so that the objective function defined in

Equation (17) is minimized according to the following objective function:

𝑃∗(𝑣, 𝑠) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑃(𝑣,𝑠) {𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝑃(𝑣, 𝑠)]} (18)

5. THE MODIFIED RANDOM BIT CLIMBING

5.1 Lifetime Awareness Sensor Node Selection Algorithm (LA-SNSA)

Awareness Sensor Node Selection Algorithm (LA-SNSA) aims to select a number of 𝑛𝑔(𝑘, 𝐴𝑑) sensor

nodes from the 𝑆𝑠(𝑘, 𝐴𝑑) set. The selected nodes are then kept in the 𝑆𝑔(𝑘, 𝐴𝑑) set. In addition, the

selected sensor nodes (𝑆𝑔(𝑘, 𝐴𝑑)) are used to execute the application DAG (𝐴𝑑). The LA-SNSA takes

into account the network lifetime. Since reducing the gaps which appear because of node death in the

network increases the network lifetime, the sensor nodes with higher number of neighbours are

preferred to be selected. Furthermore, LA-SNSA also takes into account the current remaining energy

of the sensor nodes. Thus, sensor nodes with higher remaining energy are favoured to be selected to

increase the network lifetime. Therefore, the objective function of the LA-SNSA is the weighted sum

of the ratio of energy of sensor node with respect to the sum of remaining energy for all nodes in

𝑆𝑠(𝑘, 𝐴𝑑) and the ratio of the number of neighbours of the sensor node with respect to the sum of the

number of neighbours for all nodes in 𝑆𝑠(𝑘, 𝐴𝑑). It is computed as follows:

𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥, 𝐴𝑑) = 𝛽 ∗
𝐸𝑟(𝑘,𝑠𝑥)

∑ 𝐸𝑟(𝑘,𝑠𝑙)∀𝑠𝑙∈𝑆𝑠(𝑘,𝐴𝑑)
+ (1 − 𝛽) ∗

𝑁𝑐(𝑘,𝑠𝑥)

∑ 𝑁𝑐(𝑘,𝑠𝑙)∀𝑠𝑙∈𝑆𝑠(𝑘,𝐴𝑑)
 (19)

As seen in the above formula, 𝛽 is a weighting parameter and varies in the interval [0, 1]; and

𝑁𝑐(𝑘, 𝑠𝑥) is the number of neighbours of sensor node 𝑠𝑥 at time 𝑘 . Algorithm 1 shows the LA-SNSA.

The weighting parameter (𝛽) is firstly selected. Then, the objective function for sensor nodes in

𝑆𝑔(𝑘, 𝐴𝑑) set is calculated based on Equation (19). After that, a number of 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes,

with the highest objective function, are selected and added to 𝑆𝑔(𝑘, 𝐴𝑑) set.

Algorithm 1: Lifetime Awareness Sensor Node

Selection Algorithm (LA-SNSA)

1: select 𝛽;

2: set ℓ = 0;

1: while ℓ ≤ 𝑛𝑔(𝑘, 𝐴𝑑) do:

3: for each sensor node 𝑠𝑥 ∈ 𝐒𝑠(𝑘, 𝐴𝑑) do:

4: calculate 𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥 , 𝐴𝑑) based on Equation (19);

5: end for;

6: find the sensor 𝑠𝑥
∗ with maximum

 𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥 , 𝐴𝑑);

7: add 𝑠𝑥
∗ to 𝐒𝑔(𝑘, 𝐴𝑑);

8: remove 𝑠𝑥
∗ from next search;

9: increment ℓ: ℓ = ℓ + 1;

10: end while;

5.2 Random Bit Climbing (RBC)

Random Bit Climbing (RBC) optimization [42]-[43] is a metaheuristic local search-based algorithm

that employs a trajectory-based approach to guide the search and obtain a (near) optimal solution.

25

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

RBC is a single-solution metaheuristic, which adopts the exploitation in its operation through

memorizing the best current solution. In RBC, single stochastic solution is used for each round.

Firstly, an initial single-parent (𝑝) is randomly generated and set as the current solution. After that, the

objective function of the initial parent is evaluated. Then, a random arrangement of the index positions

for the current solution is created and kept in the 𝜋 vector. Next, a child is produced by mutating a

single dimension of the current solution at a time. The child replaces the current solution if it fulfils

the objective function. The evaluation of children either continues for all possible children or is

terminated when the first better child is found. Then, a new random permutation is generated for the

current solution. The process continues until a predefined number of iterations have been exhausted.

However, the main limitation of RBC is the trap of local optimal solution because of its deficiency for

exploration ability.

5.3 λ-Modified Random Bit Climbing (λ-mRBC)

Algorithm 2 shows the proposed λ-Modified Random Bit Climbing (λ-mRBC). Because the

exploration is tied up to randomness [17], the λ-mRBC adopts a random parameter (λ) to use

exploration in RBC operation. The solution is represented as a vector of n elements. The vector index

represents the task number (from 1 to 𝑛). On the other hand, the vector value represents one of the

selected sensor node numbers. In Step (1), an initial parent solution (𝑃(𝑣, 𝑠)) is generated randomly.

This initial parent solution is then set as the current best solution and is stored in 𝐶𝑠(𝑣, 𝑠). The

evaluation is performed in Step (2) to calculate the fitness value of the current best solution. In Step

(3), the random permutation for the current best solution is achieved to produce the permutation vector

(𝜋). In Step (4), a new operator named random transposition operator (trans) is added into the RBC

method to escape from local optima and to increase the exploration of the search space. The random

transposition operator is performed on the current solution according to the following rule:

𝐶𝑠(𝑣, 𝑠) = {
𝑡𝑟𝑎𝑛𝑠 (𝐶𝑠(𝑣, 𝑠)) 𝑟 < 𝜆

𝐶𝑠(𝑣, 𝑠) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20)

where 𝑟 is a random number which uniformly distributes between [0, 1], λ an algorithm parameter

number which ranges between 0 and 1 and trans is the transposition operation that randomly

exchanges the places of the current best solution. The children are generated in Step (5) by cloning

𝐶𝑠(𝑣, 𝑠) and flipping the position 𝜋𝑙. After that, the child is evaluated in Step (6). In Step (7), the child

replaces the current best solution if it has a better fitness value. In Step (8), the children are generated

and evaluated. The algorithm flow continues to the next iteration in Step (9). The operations are

repeated until the maximum iterations are exhausted in Step (10). After termination, the current best

solution is returned as the suboptimal solution of the problem.

Algorithm 2: λ-Modified Random Bit Climbing (λ-mRBC)

Step (1) Compute the initial parent task/node pairs 𝑃(𝑣, 𝑠); set the current best

solution 𝐶𝑠(𝑣, 𝑠) = 𝑃(𝑣, 𝑠); and set 𝑖𝑡𝑒𝑟 = 1.

Step (2) Calculate the fitness value 𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝐶𝑠(𝑣, 𝑠)] of 𝐶𝑠(𝑣, 𝑠).

Step (3) Generate the random permutation 𝝅 = (𝜋1, 𝜋2 … 𝜋𝑚) of the position of

Cs(𝑣, 𝑠); and set 𝑙 = 1.

Step (4) if (r < λ): execute transposition operation of 𝐶𝑠(𝑣, 𝑠) positions.

Step (5) Generate the child (offspring) 𝑂𝑙(𝑣, 𝑠) by cloning 𝐶𝑠(𝑣, 𝑠) and flipping

the position 𝜋𝑙;

Step (6) Calculate the objective function 𝐹𝑜𝑏𝑗[𝐴𝑗 , 𝑂𝑙(𝑣, 𝑠)] of 𝑂𝑙(𝑣, 𝑠).

Step (7) If (𝑭𝒐𝒃𝒋[𝑨𝒅, 𝑶𝒍(𝒗, 𝒔)] < 𝑭𝒐𝒃𝒋[𝑨𝒅, 𝑪𝒔(𝒗, 𝒔)]): replace 𝐶𝑠(𝑣, 𝑠) =

𝑂𝑙(𝑣, 𝑠); and go to Step (9).

Step (8) If (𝒍 > 𝒎): Go to Step (9)

 else: Increment 𝑙: 𝑙 = 𝑙 + 1; and go to step (5);

Step (9) Increment 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1.

Step (10) If (𝒊𝒕𝒆𝒓 > 𝒎𝒂𝒙 𝒊𝒕𝒆𝒓): go to step (11)

 else: go to Step (3)

Step (11) Return 𝐶𝑠 as the suboptimal solution and finish.

26

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

5.4 The Complete TMS Approach

Figure 4 explains the proposed TMS approach. First of all, heterogeneous sensor nodes are created and

WSN is randomly distributed. Then, the algorithm parameters for λ-mRBC and LA-SNSA are set and

defined. When a target sensor node requests execution of an application, a DAG of the requested

application is created. LA-SNSA is performed based on Algorithm 1 to select the sensor nodes that

will cooperatively execute the application so that the network lifetime is improved. λ-mRBC is

achieved based on Algorithm 2 to optimally get the best task/node pairs with minimum execution time

and energy consumption. After that, λ-mRBC method is repeated until termination condition is met.

Finally, the final solution of task/node pair is obtained and simulation statistics are recorded.

Figure 4. The proposed TMS approach.

6. SIMULATION RESULTS

This section evaluates the proposed λ-mRBC method. C++ is used to build the simulation environment

using core i5 of 2.5 GHz processor and 4 GB memory.

6.1 Simulation Setting

6.1.1 The Parameters for Application DAG

Unless it is clearly stated, the application DAG consists of fifteen tasks (𝑛 = 15) as follows: four tasks

are used as entry tasks, ten tasks are used as normal tasks and one task is used as an exit task. The

immediate successors for each entry and normal tasks are selected to be uniformly distributed in the

range of [1, 3]. The computation load of each task (𝑁𝑣𝑖
) is initialized to be uniformly distributed in the

range of [300, 600] Kilo Clock Cycles (KCC). The communication load for edges among tasks (𝑒𝑖𝑗) is

initialized to be uniformly distributed in the range of [500, 800] bytes of data.

6.1.2 The Parameters for WSN

WSN is implemented using 224 heterogeneous sensor nodes which are deployed randomly in a

monitoring region of 200 m × 200 m. The transmission radio is set to 𝑅𝑟 = 100 m. The radio channel

with bandwidth (i.e., bit rate) of 250 Kbps is used in the simulation environment. The processing

speed for sensor nodes (𝑓𝑠𝑥
) stands for the total number of clock cycles which can be executed within

start

Schedule the target arrival

Create the application DAG

Perform the LA-SNSA

Perform the λ-mRBC algorithm

Simulation

terminated?

end

No

Deploy WSN, and set the λ-

mRBC and LA-SNSA

parameters

Print the simulation statistics

Yes

27

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

one second. It is set to be uniformly distributed in the range of [30, 100] Million Cycles per Second

(MCPS).The power consumption of the processors for sensor nodes (𝑒𝑠𝑥
) is set to be uniformly

distributed in the range of [4, 10] mJ. The initialized energy level (𝐸𝑟(0, 𝑠𝑖)) of each sensor is set to be

uniformly distributed in the range of [0, 1] J.

6.1.3 The Parameters for the λ-mRBC

The weighting parameters are set as follows: 𝛽=0.5 and 𝛼=0.5. The number of iterations for λ-mRBC

is assumed to be 100. Unless it is clearly stated, the number of selected nodes to execute the

application is 𝑛𝑔(𝑘, 𝐴𝑑) = 3 sensor nodes. The λ-mRBC algorithm parameter λ is set to 0.5.

6.2 Results and Analysis

6.2.1 Impact of Number of Iterations

The fitness value of the best solution is plotted in Figure 5 (a) for the RBC and λ-mRBC methods. It

becomes clear that the RBC method has a lower convergence speed, compared with the proposed λ-

mRBC method. Additionally, the RBC is trapped in local minima. On the other hand, the proposed λ-

mRBC method converges to better fitness value by 19.1%, compared with RBC method. This is

because of using the transposition operator (trans), where the positions of current best solution

elements are randomly swapped. The transposition operator (trans) which is controlled by adjusting

the λ parameter occurs in some selected iterations. When the elements of the current best solution are

randomly swapped, more exploration in the search space occurs. Hence, the λ-mRBC method tries to

escape from the trap of local minima. Consequently, better solution can be found. Figure 5 (b) and

Figure 5 (c) show the make-span and total energy consumption versus iteration for both RBC and λ-

mRBC methods. Compared with RBC method, the proposed λ-mRBC method converges to better

make-span and total energy consumption by 19.6% and 22.3%, respectively. Since the fitness value of

λ-mRBC method has better convergence speed and lower values, the performance of the proposed λ-

mRBC method, in terms of make-span and total energy consumption, is improved, compared with the

RBC method.

(a) Fitness value (b) Make-span (c) Energy consumption

Figure 5. The effect of iterations for the RBC and proposed λ-mRBC methods.

6.2.2 Impact of Varying Number of Sensor Nodes

This section evaluates the effects of selected sensor node size (𝑛𝑔(𝑘, 𝐴𝑑)). The proposed λ-mRBC

method supports different sizes of the sensor nodes. The size of the sensor nodes is changed from 1 to

5 with one sensor node for each step. Figure 6 shows the performance of the RBC and proposed λ-

mRBC methods with the sensor node size. As shown in Figure 6 (a), the fitness value is getting better

whenever the size of the selected sensor nodes increases. This is because the computational load of

tasks is parallelized in more powerful fashion whenever the size of the selected sensor nodes rises.

However, the proposed λ-mRBC method gives lower fitness values, compared with traditional RBC

method. In addition, the fitness value of RBC method at a sensor node size of 3 does not improve,

compared with its value at a sensor node size of 3. This is due to the trapping in the local minima. The

make-span shown in Figure 6 (b) is reduced whenever the sensor node size goes up, because the

computational load is distributed to more sensor nodes. As shown in Figure 6 (c), the communication

activities used to exchange the communication edges increase whenever the sensor node size rises up,

because tasks can be distributed to more sensor nodes. Therefore, according to Equation (15), the total

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iterations

F
it

n
e
s
s
 v

a
lu

e

mRBC

RBC

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

Iterations

M
a
k
e
s
p

a
n

 (
m

s
)

mRBC

RBC

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

Iterations

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

mRBC

RBC

28

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

energy consumption rises with increasing the sensor node size. Ultimately, the proposed λ-mRBC

method improves the energy consumption. Additionally, compared with RBC method, the proposed λ-

mRBC method has better fitness value, make-span and total energy consumption by 11.8% , 10.3%

and 12.6%, respectively.

(a) Fitness value (b) Make-span (c) Energy consumption

Figure 6. The effect of node size for the RBC and proposed λ-mRBC methods.

6.2.3 Impact of Number of Tasks

The proposed λ-mRBC method supports different numbers of tasks. In Figure 7, the number of tasks

varies from 5 to 40 with five tasks for each step. The fitness value, make-span and energy

consumption for each step are plotted. In fact, according to Equation (14) and Equation (15),

increasing the number of tasks leads to the increasing of the computational and communicational

loads. Therefore, make-span and energy consumption increase with increasing the number of tasks.

This is shown in Figure 7 (b) and Figure 7 (c). The aim of the objective function of Equation (17) is to

reduce the energy consumption and the make-span as well. Thus, some solutions give better

improvement in terms of energy consumption and other solutions give improvement in terms of make-

span. Therefore, the fitness values shown in Figure 7 (a) fluctuate with increasing the number of tasks.

It is worth mentioning that the proposed λ-mRBC method can cope with different numbers of tasks

due to the small fluctuation of fitness values, compared with the RBC method. Besides, λ-mRBC

method gives better performance in terms of make-span and energy consumption. Furthermore,

compared with RBC method, the proposed λ-mRBC method has better fitness value, make-span and

total energy consumption by 3.6%, 2.4% and 8.8%, respectively.

(a) Fitness value (b) Make-span (c) Energy consumption

Figure 7. The effect of varying number of tasks for the RBC and proposed λ-mRBC methods.

6.2.4 LA-SNSA Evaluation

This section evaluates the performance of LA-SNSA. The performance metrics used to evaluate the

proposed LA-SNSA are the Remaining Energy Performance (REP) and the Neighbour Count

Performance (NCP). REP is defined as the normalized sum of normalized remaining energy of all

sensor nodes and NCP is defined as the normalized sum of the number of neighbours of all sensor

nodes. Therefore, REP and NCP are calculated as follows:

𝑅𝐸𝑃(𝑘) =
∑ [𝐸𝑟(𝑘,𝑠𝑙)/𝐸𝑟(𝑚𝑎𝑥)(𝑘,𝑠𝑙)]𝑚

𝑙=1

𝑅𝐸𝑃𝑚𝑎𝑥
 (21)

𝑁𝐶𝑃(𝑘) =
∑ [𝑁𝑐(𝑘,𝑠𝑙)]𝑚

𝑙=1

𝑁𝐶𝑃𝑚𝑎𝑥
 (22)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of nodes

F
it

n
e
s
s
 v

a
lu

e

mRBC

RBC

1 1.5 2 2.5 3 3.5 4 4.5 5
140

150

160

170

180

190

200

Number of nodes

M
a
k
e
s
p

a
n

 (
m

s
)

mRBC

RBC

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

Number of nodes

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

mRBC

RBC

5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of tasks

F
it

n
e
s
s
 v

a
lu

e

mRBC

RBC

5 10 15 20 25 30 35 40
50

100

150

200

250

300

350

400

450

500

Number of tasks

M
a
k
e
s
p

a
n

 (
m

s
)

mRBC

RBC

5 10 15 20 25 30 35 40

2

4

6

8

10

12

14

16

18

20

Number of tasks

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

mRBC

RBC

29

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Where 𝑅𝐸𝑃𝑚𝑎𝑥 and 𝑁𝐶𝑃𝑚𝑎𝑥 are the maximum values of REP and NCP which are calculated at the

beginning of the simulation. Therefore, 𝑅𝐸𝑃(𝑘) and 𝑁𝐶𝑃(𝑘) values are in the range of [0, 1]. In

Figure 8 and Figure 9, the proposed LA-SNSA and random selection schemes are compared by

calculating these performance metrics. In random selection scheme, however, the sensor nodes

(𝑛𝑔(𝑘, 𝐴𝑑)) are chosen randomly from the neighbouring target sensor node (𝑠𝑇𝑆𝑁).

As shown in Figure 8, the 𝑅𝐸𝑃(𝑘) is decreasing with time. This is due to the increasing energy

consumption of communication and processing activities, which are caused by the application

executions. It is observed from Figure 8 that the rate of 𝑅𝐸𝑃(𝑘) reduction with time using the

proposed LA-SNSA is smaller than those in the random selection scheme. The reason behind this is

that LA-SNSA aims to select the nodes with higher remaining energy, while the random selection

scheme selects the sensor nodes randomly without any knowledge of the node remaining energy. The

proposed LA-SNSA enhances the 𝑅𝐸𝑃(𝑘) about three times, compared with the random selection

scheme.

Figure 8. REP for the RBC and proposed λ-mRBC methods.

The value of 𝑁𝐶𝑃(𝑘) remains 1 until the first node death takes place. Thus, 𝑅𝐸𝑃(𝑘) and number of

dead nodes are calculated and plotted in Figure 9 after the death of the first node. Application

executions lead to energy consumption, caused by processing and communicating. Therefore, sensor

node energy level decreases. When the energy level of sensor node is exhausted, the sensor node dies

and all activities stop. After the first death, 𝑁𝐶𝑃(𝑘) is decreased due to the increasing of death nodes.

As shown in Figure 9, 𝑁𝐶𝑃(𝑘) is decreased sharply in case of random selection scheme, because there

are no directional guides to select sensor nodes. Additionally, the rate of increased dead nodes is

higher in case of random selection scheme. Another advantage of the proposed LA-SNSA is that it

takes a long time for first node to die. Furthermore, compared with random selection, the 𝑁𝐶𝑃(𝑘) is

improved by 20.1% using the proposed LA-SNSA.

Figure 9. NCP and number of dead nodes for the RBC and proposed λ-mRBC methods.

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (hours)

R
E

P
 (

k
)

LA-SNSA

Random Selection

324 326 328 330
0

0.5

1

Simulation time (hours)

N
C

P
 (

k
)

LA-SNSA

324 326 328 330
0

50

100

150

Simulation time (hours)

N
u

m
b

e
r

o
f

d
e

a
d

 n
o

d
e

s

LA-SNSA

0 50 100 150 200
0

0.5

1

Simulation time (hours)

N
C

P
 (

k
)

Random Selection

0 50 100 150 200
0

50

100

150

Simulation time (hours)

N
u

m
b

e
r

o
f

d
e

a
d

 n
o

d
e

s

Random Selection

30

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

Table 1 shows the Remaining Energy Performance (REP), Neighbour Count Performance (NCP) and

first node death time for the proposed LA-SNSA and random selection schemes. The proposed LA-

SNSA ends with better REP which implies that the remaining energy of the sensor nodes is better

distributed in the network. In addition, there is an improvement in NCP in case of using the proposed

LA-SNSA. This improvement leads to less gaps without sensor nodes in the network. The network

lifetime can be defined as the time when the first node dies [44]-[45]. First node death time is bigger in

case of the proposed LA-SNSA. Since REP, NCP and first node death time are improved in the

proposed LA-SNSA scheme, the network lifetime is also enhanced in case of using the proposed LA-

SNSA.

Table 1. REP, NCP and first node death time for random and LA-SNSA schemes.

Method
Remaining Energy

Performance (REP)

Neighbour Count

Performance (NCP)

First Node Death

time (Hours)

LA-SNSA 0.51 0.19 324.79

Random 0.12 0.16 0.03

6.2.5 The Effect of λ-mRBC Parameter

Figure 10 shows the fitness values versus the iteration using λ parameter values of 0.1, 0.3, 0.5, 0.7

and 0.9. According to Equation (20), the probability of running the transposition operation is

increasing with increasing the λ parameter. Therefore, the convergence speed for λ parameter of 0.1

and 0.3 is the slowest, compared with other λ parameter values. Furthermore, when using λ parameters

of 0.1 and 0.3, the λ-mRBC method converges to the highest fitness value. On the other hand, when

using λ parameters of 0.5 and 0.7, the λ-mRBC method converges to the lowest fitness value. The

fastest convergence speed occurs when using λ parameter of 0.9. However, λ-mRBC method

converges to larger fitness value than the fitness value when using λ parameters of 0.5 and 0.7. It is

worth mentioning that the number of optimization algorithm parameters increases the complexity of

the algorithm [17]. λ-mRBC uses only one parameter (λ) which indicates its low complexity.

Figure 10. The effect of λ parameter.

7. CONCLUSION

In this paper, a Task Mapping and Scheduling (TMS) approach for WSN is introduced to look for the

best tasks/nodes mapping solution. The proposed λ-mRBC, which is a modified version of RBC

optimization method, is proposed to improve the performance of the search. To escape from local

optima and to increase the exploration of the search space, the λ-mRBC method employs a new

operator, which is named random transposition. The transposition operator changes the elements’

positions of current best solution. The λ-mRBC method is controlled by using only one parameter (λ).

Energy consumption and application execution time (make-span) are taken into consideration in the

fitness objective to get the best performance of TMS. In addition, LA-SNSA is proposed to select a

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

F
it

e
s
s
 v

a
lu

e

Lambda = 0.1

Lambda = 0.3

Lambda = 0.5

Lambda = 0.7

Lambda = 0.9

31

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

number of sensor nodes needed to execute the applications, so that the network lifetime is improved.

The simulation results show that the proposed λ-mRBC method improves the energy consumption,

make-span and fitness value, compared with traditional RBC method. Furthermore, using LA-SNSA

enhances the network lifetime, compared with random selection approaches. Although the proposed

λ-mRBC uses a new operator called transposition operator to escape from local optima, it is still a

single-solution metaheuristic. Unlike population-based metaheuristics, the proposed λ-mRBC is of less

exploration of search space. The future work aims to add a new operator that employs more than one

solution to increase the exploration of search space.

REFERENCES

[1] B. Sharma and T. C. Aseri, "A Comparative Analysis of Reliable and Congestion-aware Transport

Layer Protocols for Wireless Sensor Networks," International Scholarly Research Network (ISRN),

Sensor Networks, 2012.

[2] M. Katiyar, H. P. Sinha and D. Gupta, "On Reliability Modeling in Wireless Sensor Networks-A

Review," IJCSI International Journal of Computer Science, vol. 9, no. 6, pp. 134–146, 2012.

[3] H. Yetgin, K. T. K. Cheung, M. El-Hajjar and L.H. Hanzo, "A Survey of Network Lifetime

Maximization Techniques in Wireless Sensor Networks," IEEE Communication Surveys &

Tutorials, vol. 19, no. 2, pp. 828-854, 2017.

[4] P. R. Pereira, A. Grilo, F. Rocha, M. S. Nunes, A. Casaca, C. Chaudet, P. Almstrom and M. Johansson,

"End to End Reliability in Wireless Sensor Networks: Survey and Research Challenges," Proceedings

of the EuroFGI Workshop on IP QoS and Traffic Control, 2007.

[5] M. A. Kafi, J. B. Othman, M. Bagaa and N. Badache, "CCS_WHMS: A Congestion Control Scheme

for Wearable Health Management System," Journal of Medical Systems, vol. 39, no. 12, 2015.

[6] Y. E. Hamouda and M. M. Msallam, "Smart Heterogeneous Precision Agriculture Using Wireless

Sensor Network Based on Extended Kalman Filter," Neural Computing and Applications, pp.1-17,

2018.

[7] P. R. C. Araújo, R. H. Filho, J. J. Rodrigues, J. P. Oliveira and S. A. Braga, "Middleware for Integration

of Legacy Electrical Equipment into Smart Grid Infrastructure Using Wireless Sensor Networks," Inter.

 Journal of Communication Systems, vol. 31, no. 1, pp. e3380, 2018.

[8] B. L. R. Stojkoska and K. V. Trivodaliev, "A Review of Internet of Things for Smart Home: Challenges

and Solutions," Journal of Cleaner Production, vol. 140, no. 3, pp.1454-1464, 2017.

[9] Y. E. Hamouda and C. Phillips, "Adaptive Sampling for Energy-efficient Collaborative Multi-Target

Tracking in Wireless Sensor Networks," IET Wireless Sensor Systems, vol. 1, no. 1, pp.15-25, 2011.

[10] J. Luo and S. Zou, "Strong k-barrier Coverage for One-way Intruders Detection in Wireless Sensor

Networks," International Journal of Distributed Sensor Networks, vol. 12, no. 6, 2016.

[11] J. Manikannu and V. Nagarajan, "A Survey of Energy Efficient Routing and Optimization Techniques

in Wireless Sensor Networks," IEEE International Conference on Communication and Signal

Processing (ICCSP), 2018.

[12] M. Wolf, Smart Camera Design, Springer, 2018.

[13] M. Karakaya and H. Qi, "Coverage Estimation in Heterogeneous Visual Sensor Networks,"

Proceedings of the 8th IEEE International Conference on Distributed Computing in Sensor Systems

(DCOSS), pp. 41-49, 2012.

[14] C. A. Navarro, N. Hitschfeld-Kahler and L. Mateu, "A Survey on Parallel Computing and Its

Applications in Data-parallel Problems Using GPU Architectures," Communications in Computational

Physics, vol. 15, no. 2, pp. 285-329, 2014.

[15] L. Dai, H. Xu, T. Chen, Q. Chao and L. Xie, "A Multi-Objective Optimization Algorithm of Task

Scheduling in WSN," International Journal of Computers, Communications & Control, vol. 9, no. 2, pp.

160-171, 2014.

[16] Y. Yang, X. Qiu, L. Meng and K. Long, "Task Coalition Formation and Self-adjustment in the Wireless

Sensor Networks,". Int J. Commun. Syst., vol. 27, no. 10, pp. 2241–2254, 2014.

[17] C. Blum and A. Roli,"Metaheuristics in Combinatorial Optimization: Overview and Conceptual

Comparison," ACM Computing Surveys (CSUR), vol. 35, no. 3, pp. 268-308, 2003.

32

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

[18] I. Boussaïd, J. Lepagnot and P. Siarry, "A Survey on Optimization Metaheuristics," Information

Sciences, vol. 237, pp. 82-117, 2013.

[19] Y. Jin, J. Jin, A. Gluhak, K. Moessner and M. Palaniswami, "An Intelligent Task Allocation Scheme for

Multihop Wireless Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 3,

pp. 444-451, 2012.

[20] R. Shams and F. Khan, "Solving Wireless Network Scheduling Problem by Genetic

Algorithm," IAMURE International Journal of Mathematics Engineering & Technology, vol. 2, no. 11,

pp. 63-70, 2012.

[21] J. Yang, H. Zhang, Y. Ling, C. Pan and W. Sun, "Task Allocation for Wireless Sensor Network Using

Modified Binary Particle Swarm Optimization," IEEE Sensors Journal, vol. 14, no. 13, pp. 882-892,

2014.

[22] A. A. Ferjani, N. Liouane and I. Kacem, "Task Allocation for Wireless Sensor Network Using Logic

Gate-based Evolutionary Algorithm," International Conference on Control, Decision and Information

Technologies (CoDIT), pp. 654-658, 2016.

[23] V. Papataxiarhis, "Optimal Task Assignment in Sensor Networks," Proc. of the 17th IEEE International

Conference on Mobile Data Management (MDM), pp. 26-31, 2016.

[24] S. Abdelhak, C. S. Gurram, S. Ghosh and M. Bayoumi, "Energy-balancing Task allocation on Wireless

Sensor Networks for Extending the Lifetime," Proceedings in the 53rd IEEE Int. MWSCAS, pp. 781-

784, 2010.

[25] X. Yin, W. Dai, B. Li, L. Chang and C. Li, "Cooperative Task Allocation in Heterogeneous Wireless

Sensor Networks", Inter. Journal of Distributed Sensor Networks, vol. 13, no. 10, pp. 1-12, 2017.

[26] D. R. Bolla, J. J. Jijesh and M. S. Pramod, "Real-Time Data Fusion Applications in Embedded Sensor

Network Using TATAS," Indian Journal of Science and Technology, vol. 10, no. 13, pp. 1-7, 2017.

[27] Y. Tian and E. Ekici, "Cross-Layer Collaborative in Network Processing in Multihop Wireless Sensor

Networks," IEEE Trans. Mobile Comput., vol. 6, no. 3, pp. 297-310, 2007.

[28] Y. Tian, B. Jarupan, E. Ekici and F. Ozguner, "Real-Time Task Mapping and Scheduling for

Collaborative in Network Processing in DVS-Enabled Wireless Sensor Networks," Proceedings of the

IEEE International Parallel and Distributed Processing Symposium (IPDPS 2006), pp. 1-10, 2006.

[29] Y. E. M. Hamouda and C. Phillips, "Biological Task Mapping and Scheduling

in Wireless Sensor Network," Proc. of the IEEE International Conference on Communications

Technology and Applications, pp. 914 – 919, 2009.

[30] Y. E. M. Hamouda, "Light Allocation of Tasks in Clustered-based Wireless Sensor Networks", Al-Aqsa

University Journal (Natural Sciences Series), vol. 21, pp. 90-119, 2017.

[31] K. N. Devi and R. Muthuselvi, "Parallel Processing of IoT Health Care Applications," Proc. of the 10th

IEEE International Conference on Intelligent Systems and Control (ISCO), pp. 1-6, 2016

[32] J. Jiang, G. Han and C. Zhu, "A Complicated Task Solution Scheme Based on Node Cooperation for

Wireless Sensor Networks," Proc. of the 22nd IEEE International Conference on Parallel and Distributed

Systems (ICPADS), pp. 264-269, 2016.

[33] P. Skocir, M. Kusek and G. Jezic, "Energy-efficient Task Allocation for Service Provisioning in

Machine-to-Machine Systems," Concurrency and Computation: Practice and Experience, vol. 29, no.

23, pp. e4269, 2017.

 [34] X. Yin, K. Zhang, B. Li, A. K. Sangaiah and J. Wang, "A Task Allocation Strategy for Complex

Applications in Heterogeneous Cluster–based Wireless Sensor Networks," International Journal of

Distributed Sensor Networks, vol. 14, no. 8, 2018.

 [35] E. A. Khalil, S. Ozdemir and S. Tosun, "Evolutionary Task Allocation in Internet of Things-based

Application Domains," Future Generation Computer Systems, vol. 86, pp.121-133, 2018.

[36] W. Yu, Y. Huang, E. Ding and A. Garcia-Ortiz, "Joint Task Allocation Approaches for Hierarchical

Wireless Sensor Networks," Proc. of the IEEE 7th International Conference on Modern Circuits and

Systems Technologies (MOCAST), pp. 1-4, 2018.

[37] N. Bulusu, J. Heidemann and D. Estrin, "GPS-less Low-Cost Outdoor Localization for Very Small

Devices," IEEE Personal Communications, vol. 7, no. 5, pp. 28-34, 2000.

[38] T. C. Karalar, S. Yamashita, M. Sheets and J. Rabaey, "A Low-Power Localization Architecture and

33

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

System for Wireless Sensor Networks," IEEE Workshop on Signal Processing Systems, USA: Signal

Processing Society, pp. 89-94, 2004.

[39] O. Sinnen, Task Scheduling for Parallel Systems, New Jersey: John Wiley & Sons, Inc., Hoboken,

2007.

[40] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-efficient Communication Protocol

for Wireless Microsensor Networks," Proceedings of the IEEE 33rd Annual Hawaii International

Conference on System Sciences (HICSS '00), pp. 1-10, 2000.

[41] A. Wang and A. Chandrakasan, "Energy-efficient DSPs for Wireless Sensor Networks," IEEE Trans.

Signal Process. Mag., pp. 68-78, 2002.

[42] L. Davis, "Bit-Climbing, Representational Bias and Test Suite Design," Proc. of the 4th International

Conference on Genetic Algorithms, pp. 18-23, 1991.

[43] H. Aguirre and K. Tanaka, "Random Bit Climbers on Multiobjective MNK-Landscapes: Effects of 49

and Population Climbing," IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, vol. 88, pp. 334-345, 2005.

 [44] M. A. Abd, S. F. M. Al-Rubeaai, B. K. Singh, K. E. Tepe and R. Benlamri, "Extending Wireless Sensor

Network Lifetime with Global Energy Balance," IEEE Sensors Journal, vol. 15, no. 9, pp. 5053–5063,

2015.

[45] I. Dietrich and F. Dressler, "On the Lifetime of Wireless Sensor Networks," ACM Trans. Sen. Netw.,

vol. 5, no. 1, 2009.

 ملخص البحث:

اااااذ اله ااااالو اال.الاااااملتعاااااذه الااااامشاله تخااااالاهااااااوللات فااااااتالهمجاااااذلاسلااااا سه جذا ااااا ا ااااا وذ الهم

ااااااذ اله اااااالوالاامواااااا ات ااااااام الهاااااا ا جااااااذلاهله ف اااااااتالهمن اااااافياشبااتناااااااما اااااا ا اااااا وذ الهم

ااع ماااااا اععىااااااجذاملاااااا اععاااااا .است م اااااا الدلاااااا ل الد ذ ااااااالاه فاااااااتالهمجااااااذلاسلاااااا سه جذا اااااا

ت اااااا لااتااااااراتفاااااا افا فا اااااالاهع اهااااااللاسمُماااااافالهااااااا ول.اتح ااااااا اتهاااااا اله تناااااااماسل اااااا ج الهفذخاااااا

ملااااا اله ااااالتالهعاااااا لل اهااااا اشلااااا الهحكااااا لاملااااا ا لااااا لاش ىااااا اسش اااااف اتوااااا باه ذهاااااالاشسا

اخفا لاه الهم ذهال.

ا اااااا الهففا اااااالالهمع هاااااالالهم ف اااااالاااىُااااااذ امذهاااااا ال ااااااا اا اااااام امذهاااااا ال تل اااااالاهاااااا اشلاااااا

هاااا حورا الهمحلااااال.اسااااا رالتح ااااا ال واااااذ ا ىااااذثاله حااااماسهاااا الاااارالهجاااافس اهاااا اله ااااارالهم لاااا

 اااااا ا(.ا اااااا اله اااااا ثااااااااا رال اااااااذتاماااااا اهاااااا اماλُععمااااااتالف واااااااذ اعذ اااااا للاه ااااااافاسل اااااا ا

اااااذ اهااااا اشلااااا اله تنااااااماله عاااااذسر اهل ف ااااااتاعجااااا اتح اااااا امُمااااافالهاااااا ول.اععااااا ا اهاااااماااااااا رلهم

الده ااااا اشساله فاااااا اهااااا ال اماااااذاده ااااا ا تتناااااامالهففا ااااالالهمع هااااالالهم ف ااااالاهلحكااااا لاملااااا الهحااااا

اااااذ ااعحاااااامااااااا راله لاااااا الهااااا الهحااااا الد رااااا الهمما هااااا اوااااا اهااااا ات علاااااتاعااااااتسل/الهمجاااااذل اثالهم

اله تناماسل ج الهفذخل.

ااااااا اش لثات فاااااااات الهمجاااااااذلاسخااااااا اعاتااااااااار اااااااذل الهمحذلاااااااذحاشبالهففا ااااااالالهمع هااااااالالهم ف ااااااالاتحُ

اااااا سلاااااا سه جذ.اسه ذتراااااالاعذهففا اااااالاله لا ااااااالاا ااااااحبالهففا اااااالالهم ف اااااالاتاااااا الهاااااا اتح ماااااالاخاا ُّ

ا%19.6%اسا19.1اعل اااااااااالهم ثهاااااااالاس اااااااافحالهنلعاااااااا اسلف اااااااا ج الهولاااااااا اهلفذخاااااااالاعت اااااااا ا

%املاااااا اله فتااااااا .اهاااااا الذراااااا اك اااااافااتماااااااا ذهاااااالامُماااااافالهااااااا ولام اااااافال ااااااا للا22.3س

اااااا ات تااااااا الهفذخاااااالالهم ااااااالاعااااااا امُ اااااا ال ااااااذ لتتهااااااالالف اااااااذتالهم ف اااااال.اسخاااااا اتح اهم

طاه ذترااااالاعففا اااااا3عم ااااا لتا ه ذترااااالاسلالف ااااااذتالهعاااااا لل .امااااا سحاملااااا ا هااااامااهااااافل ات فا اااااذ

ااااااذ اعت اااااا لا اااااا اماااااا اله ااااااافلباهعُ اااااا الهم ذ اااااا للا%اع20.1عذف اااااااذتالهعااااااا لل اا اااااا اتح

 لتتهالالف اذتالهم ف ل.

34

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

1. I. I. Sinam is with Department of Computer Science, Bayero University, Kano, Nigeria.
2. A. Lawan is with Department of Information Technology, Bayero University, Kano, Nigeria. Email: abd_wahhb@yahoo.com

AN IMPROVED C4.5 MODEL CLASSIFICATION

ALGORITHM BASED ON TAYLOR’S SERIES

I. I. Sinam1 and Abdulwahab Lawan2

(Received: 3-Jan.-2019, Revised: 25-Feb.-2019, Accepted: 11-Mar.-2019)

ABSTRACT

C4.5 is one of the most popular algorithms for rule base classification. Many empirical features in the algorithm

exist, such as continuous number categorization, missing value handling and over-fitting. However, despite its

promising advantage over the Iterative Dichotomiser 3 (ID3), C4.5 has the major setback of presenting the

equivalent result as the ID3, especially when the same number of attributes is used. This paper proposes a

technique that will handle the setback reported in C4.5. The performance of the proposed technique is measured

based on better accuracy. The Entropy of Information Theory is measured to identify the central attribute for the

dataset. The researchers apply exponential splitting information (EC4.5) in utilizing the central attribute of the

same dataset. The result obtained on introducing Taylor series suggested a far better result than when the C4.5

(gain ratio) was introduced.

KEYWORDS

ID3 Algorithm, C4.5 Algorithm, Information gain, Entropy, Gain ratio.

1. INTRODUCTION

Decision tree, as the name implies, is a predictive model that can be viewed as a tree structure, where

specifically each branch of the tree is a classification question and the leaves of the tree are partitions of

the dataset with their classification [1]-[2]. It is a logical model represented as a binary or multiclass tree

that shows how the value of a target variable can be predicted by using the values of a set of predictor

variables. Decision tree classifiers are considered “white box” classification models, as they can provide

the explanation for their classification models and can be used directly for decision -making [3]. Many

decision tree algorithms exist and these include: Alternating Decision Tree (LAD), C4.5 or J48 Pruned

Tree, Classification and Regression Tree (CART), Chi-squared Automatic Interaction Detection

(CHAID), Quest, …etc. Decision tree algorithms such as C4.5 had been developed earlier and continue

to be regularly used in solving everyday classification tasks. However, despite its promising advantage

over the ID3 algorithm, C4.5 has the major setback of presenting the equivalent result as the ID3,

especially when the same number of attributes is used. In this paper, the predictive performance of this

algorithm is enhanced by proposing another technique that will handle the noticeable setback and even

present a more promising result than the C4.5 using (gain ratio). It is on this background that the

exponential modification of the gain ratio is being proposed.

2. RELATED WORK

ID3 tree algorithm was introduced in 1986 by Quinlan Ross. It is based on Hunt’s algorithm and the

algorithm is serially implemented. The ID3 uses an information gain measure in choosing the splitting

attribute [4]. The basic strategy in ID3 is the selection of splitting attributes with the highest information

gain. That is; the amount of information associated with an attribute value that is related to the

probability of occurrence [2]. Once the attribute has been chosen, the amount of information is

measured, which is known as entropy [5]. Entropy is used to measure the amount of uncertainty, surprise

or randomness in a dataset. The entropy will be zero when all the data in the set belong to the single

class. One of the challenges with this approach is when ID3 selects the attribute having more number of

values, which may necessarily not be the best attribute [5]. When testing a small sample, data may be

over-fitted or over-classified. At a time, only one attribute is used for the testing purpose. As specified

35

" An Improved C4.5 Model Classification Algorithm Based on Taylor’s Series" , I. I. Sinam and A. Lawan.

above, continuous data is difficult to analyze, as many trees need to be generated to find the perfect

place to split the data, which makes the algorithm computationally expensive. The mathematical model

of C4.5 is given by Equation (1).

𝐺𝑎𝑖𝑛(𝑃, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − ∑((𝑝𝑗)𝐸𝑛𝑡𝑟𝑜𝑝𝑦(

𝑣

𝑗=1

𝑝𝑗)) (1)

On the other hand, C4.5 algorithm is an extension of ID3 algorithm. It has an enhanced method of tree

pruning that reduces miss-classification errors due to noise or too much detail in the training dataset

found in ID3. It uses the gain ratio impurity method to evaluate the splitting attribute [2], [6]. Quinlan

Ross introduced split information to information gain of ID3 as an improvement to overcome the

limitations of ID3, which are latency and over-fitting and it becomes computationally expensive in

handling continuous data. The gain ratio is given by Equation (2).

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐷,𝐴) =
𝐸𝑛𝑟𝑜𝑝𝑦(𝐷) ∑ (𝑝𝑗∗𝐸𝑛𝑟𝑜𝑝𝑦(𝑝𝑗))𝑖

𝑗=1

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐼𝑛𝑓𝑜
 (2)

i. It will increase the performance when the number of attributes differs.

ii. It will increase the performance when the number of attributes is the same.

iii. And it will decrease the percentage of uncertainty in C4.5 algorithm.

3. METHODOLOGY

To overcome the limitations of C4.5, the researchers used Taylor’s Series to modify the splitting

information of C4.5.

3.1 Data Collection

The study uses an existing instructor’s performance dataset from Abubakar Tafawa Balewa University

Bauchi, Nigeria. The data collected was cleaned, normalized and organized in a form suitable for data

mining process using WEKA platform. Table 1 shows the data format used for the research.

Table 1. Data format.

S/N Variable Name Variable Format Variable Type

1. Gender Male, Female Categorical

2. Appointment Status (Appt.

Status)

Permanent, Temporary, Contract Categorical

3. Employment

Status (Emp. Status)

Old, New Categorical

4. Rank Professor, Reader, SL,L1,AL, GA Categorical

5. Age 25, 30,… Numerical

6. University Working

Experience (Univ. Exp.)

Year Numerical

7. Academic Qualification (Aca.

Qual)

PhD, Master, Bachelor Categorical

8. Year of the Last Qualification 1996,1997 Numerical

9. Professional Qualification

(Prof. Qual.)

Yes, No Categorical

10. Average Unit Load 10, 15, 20, 24…. Numerical

11. Formative Assessment Points 1, 2, 3…. Numerical

12. Summative Assessment Point

(SAP)

1, 2, 3…. Numerical

13. Weighted Max Point

(WmaxP)

20, 30, 40, 50…… Numerical

14. Performance Satisfactory, Average, Poor Categorical

The data consists of both categorical and numerical data making it suitable to perform this experiment.

36

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

3.2 The Existing Model (C4.5)

The C4.5 algorithm is an improvement of the ID3 algorithm, developed by Quinlan Ross in 1993. It

uses gain ratio as an extension of gain information of ID3.

3.2.1 Mathematical Model (C4.5)

Let’s consider the following probability distribution (𝑃 = 𝑝1, 𝑝2, 𝑝3, 𝑝4, … , 𝑝𝑣) and a dataset D and

define the information carried by the distribution otherwise known as the entropy of 𝑃, proposed by

[14]-[15], [18] given as:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) = − ∑ 𝑝𝑗
𝑣
𝑗=1 log2(𝑝𝑗) (3)

And the gain information for a test A is given by:

𝐺𝑎𝑖𝑛(𝑃, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − ∑((𝑝𝑗)𝐸𝑛𝑡𝑟𝑜𝑝𝑦(

𝑣

𝑗=1

𝑝𝑗)) (4)

We can define the splitting information in the form:

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − ∑
⃒𝐷𝑗⃒

⃒𝐷⃒
log2 (

⃒𝐷𝑗⃒

⃒𝐷⃒
)𝑣

𝑗=1 (5)

Let us consider a dataset D of some certain attributes with element 𝑎1,𝑎2,𝑎3, … 𝑎𝑛, where the gain ratio

of such data set is given by:

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐷,𝐴) =
𝐸𝑛𝑟𝑜𝑝𝑦(𝐷) ∑ (𝑝𝑗∗𝐸𝑛𝑟𝑜𝑝𝑦(𝑝𝑗))𝑖

𝑗=1

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐼𝑛𝑓𝑜
 (6)

The two limitations associated with ID3; i.e., latency and over-fitting error are being improved by the

gain ratio. The algorithm of C4.5 is shown below.

3.2.2 Algorithm of C4.5

Input: an attribute-valued dataset D

 1. Tree = {}

 2. If D is “pure” OR other stopping criteria met then

 3. terminate

 4. end if

 5. for all attribute a ∈ D do

 6. Compute the gain ratio if we split on a
 7. end for

8. 𝑎𝑏𝑒𝑠𝑡 = Best attribute according to the above-computed criteria

9. Tree = Create a decision node that tests 𝑎𝑏𝑒𝑠𝑡 in the root

10. 𝐷𝑣 = Induced Sub-dataset from D based on 𝑎𝑏𝑒𝑠𝑡

11. for all 𝐷𝑣do

12. 𝑇𝑟𝑒𝑒𝑣 = C4.5 (𝐷𝑣)

13. Attach 𝑇𝑟𝑒𝑒𝑣 to the corresponding branch of the Tree

14. end for

15. return Tree

3.3 The Proposed Model (EC4.5)

Suppose that we replace the split inform; i.e., denominator in Equation (6) with β

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐷,𝐴) =
𝐸𝑛𝑟𝑜𝑝𝑦(𝐷) ∑ (𝑝𝑗∗𝐸𝑛𝑟𝑜𝑝𝑦(𝑝𝑗))𝑖

𝑗=1

β
 (7)

The gain ratio is known to present a better result than the information gain if the set of element 𝑎𝑖 ≠
𝑎𝑗, but if 𝑎𝑖 = 𝑎𝑗, the result of the gain ratio and information gain is the same. We can see that from

(4) if 𝛽 = 1:

37

" An Improved C4.5 Model Classification Algorithm Based on Taylor’s Series" , I. I. Sinam and A. Lawan.

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐷, 𝐴) = 𝐸𝑛𝑟𝑜𝑝𝑦(𝐷) ∑ (𝑝𝑗 𝐸𝑛𝑟𝑜𝑝𝑦(𝑝𝑗)) (8)

𝑖

𝑗=1

Equation (7) shows that when split info (β) =1, then ID3 = C4.5.

To overcome this:

If we let β be the subject, we can rewrite (7) as:

β =
𝐸𝑛𝑟𝑜𝑝𝑦(𝐷) ∑ (𝑝𝑗 ∗ 𝐸𝑛𝑟𝑜𝑝𝑦(𝑝𝑗))𝑖

𝑗=1

𝐺𝑎𝑖𝑛_𝑅𝑎𝑡𝑖𝑜(𝐷, 𝐴)
 (9)

Now, from (7), for β =1

Consider a Taylor’s series

1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯

𝑥𝑛

𝑛!
 (10)

For 1x , the series can be rewritten as:

𝛽

1!
+

𝛽

2!
+

𝛽

3!
+ ⋯

𝛽

𝑛!
 (11)

By taking the limit at n ,

𝛽

1!
+

𝛽

2!
+

𝛽

3!
+ ⋯

𝛽

𝑛!
 𝑛 → ∞ = 𝑒𝛽 (12)

e is called optimal split information; therefore, it optimizes the splitting information by splitting the

value away from (1). It works for both cases: when 𝑎𝑖 = 𝑎𝑗 𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝑎𝑖 ≠ 𝑎𝑗. The new technique

suggests the introduction of a new parameter to the splitting information. We denote this 𝐸 − 𝑠𝑝𝑙𝑖𝑡 and

it is defined in the form:

𝐸 − 𝑠𝑝𝑙𝑖𝑡 = 𝑒[𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷)] (13)

This is equivalently defined as:

𝐸 − 𝑠𝑝𝑙𝑖𝑡 = 𝐸𝑥𝑝 (∑
⃒𝐷𝑗⃒

⃒𝐷⃒
log2 (

⃒𝐷𝑗⃒

⃒𝐷⃒
)

𝑣

𝑗=1

) (14)

The introduction of the new parameter suggests that the splitting values are spread around the value 1.

This helps in obtaining a better result. The division of Equation (2) by Equation (5) leads to the new

method 𝐸. 𝐶4.5 which it is defined as:

𝐸. 𝐶4.5 = (
𝐺𝑎𝑖𝑛(𝑃, 𝐴)

𝐸 − 𝑠𝑝𝑙𝑖𝑡
) (15)

3.3.1 Algorithm of the Proposed EC4.5

Input: an attribute-valued dataset D

 1. Tree = {}

 2. If D is “pure” OR other stopping criteria met then

 3. terminate

 4. end if

 5. for all attribute a ∈ D do

 6. Compute the gain ratio using exponential split if we split on a

 7. end for

 8 .𝑎𝑏𝑒𝑠𝑡 = Best attribute according to the above computed criteria

 9. Tree = Create a decision node that tests 𝑎𝑏𝑒𝑠𝑡 in the root

10.𝐷𝑣 = Induced Sub-dataset from D based on 𝑎𝑏𝑒𝑠𝑡

11. for all 𝐷𝑣do

12. 𝑇𝑟𝑒𝑒𝑣 = EC4.5 (𝐷𝑣)

38

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

13. Attach 𝑇𝑟𝑒𝑒𝑣 to the corresponding branch of the Tree

14. end for

15. return Tree

3.4 Evaluation

We consider the following terms in evaluating the performance of the proposed EC4.5.
(a) TN (True Negative) is the number of correct predictions that an instance is invalid.

(b) FP (False Positive) is the number of incorrect predictions that an instance is valid.

(c) FN (False Negative) is the number of incorrect prediction that an instance is invalid.

(d) TP (True Positive) is the number of correct predictions that an instance is valid.

Also, the following performance measure was used to test the performance of the proposed EC4.5.

Accuracy is the proportion of the total number of predictions that were correct:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
(𝑇𝑁+𝑇𝑃)

(𝑇𝑁+𝐹𝑁+𝐹𝑃+𝑇𝑃)
 (16)

Precision is the proportion of the predicted valid instances that were correct:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(%) =
𝑇𝑃

(𝐹𝑃 + 𝑇𝑃)
 (17)

Recall is the proportion of the valid instances that were correctly identified:

𝑅𝑒𝑐𝑎𝑙𝑙(%) =
𝑇𝑃

(𝐹𝑁 + 𝑇𝑃)
 (18)

F-Measure is derived from precision and recall values:

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(%) =
(2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (19)

The F-Measure is used because despite the Precision and Recall values are valid metrics in their own

right, one of them can be optimized at the expense of the other. The F-Measure only produces a high

result when Precision and Recall are both balanced and significant.

4. IMPLEMENTATION OF THE PROPOSED MODEL (EC4.5)

To see how the new model works, we consider the following example. Suppose that we want to compare

the performances of ID3, C4.5 and EC4.5 to decide whether the time will be good to play basketball. A

two-week data collection was used.

Table 2. Experimental dataset [19].

Day Outlook Temperature Humidity Play

1 Sun Hot High No

2 Sun Hot High No

3 Overcast Hot High Yes

4 Rain Sweet High Yes

5 Rain Cold Normal Yes

6 Rain Cold Normal No

7 Overcast Cold Normal Yes

8 Sun Sweet High No

9 Sun Cold Normal Yes

10 Rain Sweet Normal Yes

11 Sun Sweet Normal Yes

12 Overcast Sweet High Yes

13 Overcast Hot Normal Yes

14 Rain Sweet High No

39

" An Improved C4.5 Model Classification Algorithm Based on Taylor’s Series" , I. I. Sinam and A. Lawan.

The classification of the target is "Should we play basketball?" The answer can be either yes or no. The

weather attributes which include outlook, temperature and humidity take the following values:

Outlook = {Sun, Overcast, Rain}

Temperature = {Hot, Sweet, Cold}

Humidity = {High, Normal}

So, using the three now sets: the information gain (ID3), the gain ratio (C4.5) and the E-gain ratio

(EC4.5) are calculated for the outlook based on temperature and humidity as shown in the appendix.

Figure 1. Outcome of the 3 classification algorithms.

From Figure 1, the three classification algorithms ID3, C4.5 and EC4 have the following outcome:

outlook with 5,4,5 attributes shows that ID3 has a value of 0.247, C4.5 has a value of 0.157 and EC4.5

has a value of 0.112. Subsequently, temperature with 6,4,6 attributes shows that ID3 has a value of

0.029, C4.5 has a value of 0.019 and EC4.5 has a value of 0.013. However, humidity which has the same

number of attributes of 7,7 leads to ID3 and C4.5 having the same value of 0.152. EC4.5 shows an

improvement by having the value 0.092 which reduces the number of uncertainties in C4.5.

5. RESULTS AND DISCUSSION

In the experiment, the values of the gain ratio (C4.5) and E-gain ratio (EC4.5) were first used to calculate

the probability of uncertainty of some selected attributes with the highest instances. The outcome is

shown in detail in Table 3. Figure 2 displays that EC4.5 is the optimal algorithm which has the lowest

probability of uncertainty on all attributes and C4.5 has the highest probability of uncertainty.

Table 3. Probability of uncertainty outcome of gain ratio and E-gain ratio.

 Selected Attribute C4.5 (Gain Ratio) EC4.5 (E-Gain Ratio)

SAP 0.931464 0.335235

Aca. Qual. 0.639899 0.227053

Rank 0.429688 0.114575

Univ. Exp. 0.148147 0.082564

Age 0.090222 0.030221

Prof. Qual. 0.310135 0.110069

Appt. Status 0.105773 0.02568

Gender 0.002881 0.001252

Emp. Status 0.000418 0.000313

Furthermore, C4.5 and EC4.5 classification algorithm, were trained and tested on the same dataset; the

measures used for the algorithm performance evaluation were accuracy, precision, recall and F1

measure.

Table 4 illustrates the detailed results of the two classification algorithms.

0

0.05

0.1

0.15

0.2

0.25

Outlook (5,4,5) Temperature (6,4,6) Humidity (7,7)

40

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Figure 2. Probability of uncertainty outcome of gain ratio and E-gain ratio.

Table 4. Detailed classification accuracy results of C4.5 and EC4.5.

Performance Metrics C4.5 EC4.5

Accuracy 51.27% 99.40%

Error Rate 48.73% 0.60%

Precision 0.513 0.994

Recall 0.513 0.994

F1 Measure 0.678 0.994

The detailed classification accuracies suggest that EC4.5 outperformed C4.5, because it has a lower FP

rate of 0.003 and a TP rate of 0.994 which was used to calculate the accuracy using the performance

metrics. Thus, EC4.5 is the optimal model of classification algorithm in this paper.

Figure 3. Accuracy and error rate of C4.5 and EC4.5.

Figure 3 shows that EC4.5 has the highest accuracy of 99.40% with an error rate of 0.60%, while C4.5

has an accuracy of 51.27% with an error rate of 48.73%.

Figure 4. Precision, recall and F1 measure of C4.5 and EC4.5.

Figure 4 shows the detailed results of the compared algorithms, with C4.5 having the highest value over

0

0.2

0.4

0.6

0.8

1

C4.5 (Gain Ratio)

EC4.5 (E-Gain Ratio)

51.2666 48.7333

99.4

0.6
0

20

40

60

80

100

120

Accuracy Error Rate

C4.5 EC4.5

0

0.5

1

1.5

Precision Recall F1 Measure

C4.5 EC4.5

41

" An Improved C4.5 Model Classification Algorithm Based on Taylor’s Series" , I. I. Sinam and A. Lawan.

EC4.5; under precision C4.5 has 0.513 and EC4.5 has 0.994; under recall C4.5 has 0.513 and EC4.5 has

0.994; and lastly under F1 measure C4.5 has 0.678 and EC4.5 has 0.994. The overall result suggested

that EC4.5 is the optimal algorithm compared to C4.5.

6. CONCLUSIONS

This paper proposed a modified model (EC4.5). The proposed modification offers solutions to the

limitations associated with C4.5 in terms of presenting an equivalent result with ID3 when the same

number of attributes is used. After testing the two classifiers (C4.5 and EC4.5), the result of the

experiment shows that EC4.5 outperformed, with an accuracy of 99.40%, whereas C4.5 has an accuracy

of 51.27%. Based on the result of this research, EC4.5 was selected as the optimal algorithm. Future

work should consider a hybrid approach to handle multi-dimensional data with large intervals using

EC4.5 algorithm.

ACKNOWLEDGEMENTS

The authors would like to thank the management of Bayero University, Kano, Nigeria for their moral

encouragement and financial support.

REFERENCES

[1] D. Clayson and M. J. Sheffet, "Personality and the Student Evaluation of Teaching, " Journal of Marketing

Education, vol. 2, no. 28, pp. 149-160, 2006.

[2] B. Hussina, A. Merbouha and H. Ezzikouri, "A Comparative Study of Decision Tree ID3 and C4.5, "

International Journal of Advanced Computer Science, vol. 3, no. 1, pp. 13-19, 2014.

[3] C. Romero, L. O. Juan and V. Sebastian, "A Meta-learning Approach for Recommending a Subset of

White-box Classification Algorithms for Moodle Datasets, " Journal of Theoretical and Applied

Information Technology, vol. 6, no. 5, pp. 268-271, 2013.

[4] K. Gaganjot and C. Amit, "Improved J48 Classification Algorithm for the Prediction of Diabetes, "

International Journal of Computer Application, vol. 98, no. 5, pp. 13-17, 2014.

[5] M. M. Mazid and A. Shawkat, "Improved C4.5 Algorithm for Rule-based Classification," Proceedings

of the 9th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data

Bases, pp. 296-301, 2010.

[6] A. Moustafa, E. Shahira and M. Essam, "Defining Difficult Laryngoscpy Findings by Using Multiple

Parameters, A Machine Learning Approach," Egyptian Journal of Anaesthesia, vol. 33, no. 2, pp. 153-

158, 2017.

[7] Y. Yuan and M. Shaw, "Fuzzy Sets and Systems, " Elservier, vol. 69, no. 2, pp. 125-139, 1995.

[8] A. B. Adeyemo and O. Oriola, "Personal Audit Using a Forensic Mining Technique, " International

Journal of Computer Science, vol. 7, no.7, pp. 222-231, 2010.

[9] K. Asha, A. M. Gowda and M. Jayaram, "Comparative Study of Attribute Selection Using Gain Ratio

and Correlation-based Feature Selection," International Journal of Information Technology and

Knowledge Management, vol. 2, no. 2, pp. 271-277, 2010.

[10] G. Chaitn, "Algorithmic Information Theory, " Journal of Research and Development, vol. 8, no. 4, pp.

350-359, 2000.

[11] S. Hardikar, A. Shrivastava and V. Choudary, "Comparison between ID3 and C4.5," International Journal

of Computer Science, vol. 2, no. 7, pp. 34-39, 2012.

[12] L. Gaurav and G. Hiaesh, "Optimization of C4.5 Decision Tree Algorithm for Data Mining Application,"

International Journal of Information Technology and Knowledge Management, vol. 3, no. 3, pp. 2250-

2459, 2013.

[13] R. Hartley, "The Function of Phase Difference in the Binaural Location of Pure Tones, " Journal of

Advanced and Applied Sciences, vol. 13, no. 6, pp. 373-385, 2000.

[14] S. Kumar and E. Ramaraj, "Modified C4.5 Algorithm with Improved Information Entropy and Gain

Ratio," International Journal of Engineering Research and Technology, vol. 2, no. 9, pp. 2768-2773, 2013.

[15] K. Santhosh, "Modified C4.5 Algorithm with Improved Information Entropy, " International Journal of

42

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Engineering Research & Technology, vol. 2, no. 14, pp. 485-512, 2013.

[16] W. Yisen, S. Chaobing and X. Shu-Tao, "Improving Decision Trees by Tsallis Entropy Information

Metric Method, " Proc. International Joint Conference on Neural Networks, Vancouver, BC, Canada,

IEEE Xplore, 24 – 27, July, 2018.

[17] M. M. Mazid, "Improved C.4.5 Algorithm for Rule-based Classification, " in Mastorakis Nikos (ed.),

Artificial Intelligence Knowledge Engineering and Database, vol. 7, no. 5, pp. 296-301, 2017.

[18] A. Neeraj, G. Bhargava and M. Manish, "Decision Tree Analysis on J48 Algorithm for Data Mining, "

International Journal of Advanced Research in Computer Science, vol. 3, no. 6, pp. 22-45, 2013.

[19] M. Dragon and G. Lujbisa, "The Use of Data Mining for Basketball Matches Outcome Prediction, " Proc.

of the 8th IEEE International Symposium on Intelligent Systems and Informatics, pp. 309-312, Serbia,

2010.

[20] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes and S. J. Cunningham, "Weka: Practical Machine

Learning Tools and Techniques with Java Implementations," (Working Paper 99/11), Department of

Computer Science, University of Waikato, Hamilton, New Zealand, vol. 31, pp. 76-81, 2000.

[21] I. Al-Turaiki, M. Alshahrani and T. Almutairi, "Building Predictive Models for MERS-COV Infectionss

Using Data Mining Techniques, " Journal of Infection and Public Health, vol. 9, no. 6, pp. 744-748, 2016.

[22] L. Yi-bin, W. Ying-ying and R. Xue-wen, "Improvement of ID3 Algorithm Based on Simplified

Information Entropy and Coordination Degree," Proc. of Chinese Automation Conference , IEEE Xplore,

Jinan, China , vol. 1, no. 3, pp. 88-92, 2017.

[23] G. Attilio and N. Filipo, "Search-Intensive Concept Induction, " International Journal of Computer

Science, vol. 7, no. 6, pp. 137-145, 2000.

[24] T. G. Kumar, "Advanced Applications of Neural Networks and Artificial Intelligence, " International

Journal of Information Technology, vol. 2, no. 6, pp. 57-68, 2012.

[25] S. Mardikyan and B. Badur, "Analyzing Teaching Performance of Instructors Using Data Mining,"

Journal of Informatics in Education, vol. 10, no. 2, pp. 245-257, 2011.

APPENDIX

Result of the three classification algorithms

Outlook Temperature Humidity

Algorithms Attributes Calculated

Values

Algorithms Attributes Calculated

Values

Algorithms Attributes Calculated

Values

ID3

5,4,5

0.247 ID3

6,4,6

0.029 ID3

7,7

0.152

C4.5 0.157 C4.5 0.019 C4.5 0.152

EC4.5 0.112 EC4.5 0.013 EC4.5 0.092

 ملخص البحث:

زمددددددا دددددد (دددددد وارددددددا تةز) دددددد و زم دددددد دددددد ة دددددد C4.5تعددددددا زميةز) دددددد

(، فىدددددي تعيدددددي ل لددددد ت ددددد م ددددد زم دددددي ددددد زم دددددة ID3زميةز) ددددد وفضددددد ى ددددد

(، بي صدددددد ددددددا زسدددددد يازا زمعددددددا ل دددددد دددددد زم دددددد و ID3سدددددد يازا زميةز) دددددد ب ىدددددد

(عدددددا تددددد تق ددددد C4.5 تق دددددا لدددددتق زمة)عددددد تق ددددد تعددددد مة لدددددتز زمق دددددة) فدددددي زميةز) ددددد

 و زء زم ق زم ق اح ب ء زماع

(ملاسددددددد س ددددددد زم ددددددد زم اا ددددددد EC4.5زمب حرددددددد ا ع ة ددددددد و زم ددددددد ز سدددددددي ددددددد ياا

دددددد ميةز) دددددد زم دددددد (ب دددددد ء C4.5م ل ة دددددد زمب لدددددد و ل ددددددى ، قددددددا ا ل ةلتدددددد

ددددد زم ق دددددا ل لددددد وفضددددد ب ر دددددا ق)لددددد ددددد س ددددد تددددد ة) عدددددا و يددددد زم دددددةلث زم ر

تددددددددا ر ىدددددددد زماعدددددددد ز دددددددد م ددددددددةلث زم ق ددددددددا (C4.5ب دددددددد رة زميةز) دددددددد زم ق ا دددددددد

 % 27 51(زمب مغ C4.5% ق)ل باع زميةز) ز ص 4 99 زمب مغ

43

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

S. Kumar1, V. Koolwal2 and K. K. Mohbey3 are with Department of Computer Science, Central University of Rajasthan, Ajmer, India.

Emails: 1sunil.cs@gmail.com, 2vartikakoolwal14@gmail.com and 3kmobhbey@gmail.com

SENTIMENT ANALYSIS OF ELECTRONIC PRODUCT

TWEETS USING BIG DATA FRAMEWORK

Sunil Kumar, Vartika Koolwal and Krishna Kumar Mohbey

(Received: 8-Jan.-2019, Revised: 27-Feb.-2019, Accepted: 13-Mar.-2019)

ABSTRACT

Nowadays, social media has become more popular due to the advancement of Internet technologies and

smartphone devices. Such platforms have generated interest among users to give their opinion. Social media-like

Twitter- also plays an important role for business companies. Based on customer opinion about any product,

business companies came to know more about customer choices. In the current scenario, millions of tweets are

generated by people every year. But handling these huge unstructured tweets is not possible through the

traditional platform. Therefore, big data framework, such as Hadoop and Spark, is used to handle such kind of

large data.

In this paper, different sale tweets are used to analyze the sentiments of customers regarding electronic

products. The experimental results of the proposed work will be useful for various business companies to take

business decisions, which will further enhance the product sales.

KEYWORDS

Twitter, Spark, Big data, Flume, Sentiment analysis.

1. INTRODUCTION

Social media platforms, such as Twitter, Facebook and Instagram, have become vital constituents of

daily life. People use these media to express their feelings, opinions, expressions, views and

experiences about places or things [1]. Sentiment analysis is used to classify public opinion towards a

particular topic or product. Various prominent categories of sentiment analysis, such as machine-

learning [2], lexicon-based [3] and hybrid [4] categories, are worked upon. A progressive practice has

grown to draw out the information from data available on social networks. This data has huge

potential and can be harnessed for business-driven application [5], such as movie review [6], product

advertisement, public election [9], brand endorsement and many more.

For real-time data analysis, Twitter is the rational choice due to a large amount of relevant data,

compact and concise tweets up to 280 characters and simplicity to post an opinion. Real-time tweets

are collected using hashtags (like #iphone, #OppoF9Pro). Opinion mining [7] approach was used to

find polarity of tweets such as positive, negative and neutral. Knowing the collective sentimental

affinity could help companies transform their strategies [5].

For many years, the problem of sentiment analysis has been studied and proposed solutions suffer

from certain disadvantages. Constant problems with these approaches were centralized environment

and time-consuming techniques, which scare many computational resources [8]. Furthermore, these

standard approaches work on limited tweets and are not able to handle large size of tweets. Dubey et

al. [9] proposed opinion-lexical approach in R platform to get insight about public opinion on political

diplomats. However, the proposed approach works on a small dataset of approx. 3000 tweets. So, for

enhancing the capability to handle a large number of tweets, we require distributed or parallel

processing techniques, such as Spark.

Al-Saqqa et al. [10] collected 4 million Amazon customers’ review dataset for large-scale sentiment

analysis under Apache Spark framework. The dataset was tested for supervised machine-learning

algorithm, where the model was trained using labeled training set. It applied classification techniques,

where support vector outperforms Naïve Bayes and logistic regression, attaining an accuracy of 86%.

44

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

In the age of Internet with such massive data, there is a need for faster computing and distributed

storage, leading to a framework like Apache Spark, Apache Hadoop and Map Reduce techniques.

Spark has emerged as the most popular big data processing engine. It improves over its predecessor,

i.e., Hadoop MapReduce. MapReduce provides a simple model for writing programs that could

execute in parallel in cluster. Spark improves MapReduce in three ways. Firstly, Spark engine can

execute more general Directed Acyclic Graph (DAG) of operators than the rigid map-then-reduce

format of MapReduce. Secondly, it has a rich set of transformation, which enables the output of one

operation directly fed into another operation. Lastly, Spark extends with in-memory processing.

Developers can instruct to cache any point in a processing pipeline, so future operations that need

same data don’t require to reload or recompute. It can be launched as a stand-alone or on cluster

modes like Hadoop YARN, Apache Mesos and Kubernetes. It can integrate with distributed storage,

such as HDFS, HBase and Cassandra. It is fast, much easy to use because of its high-level APIs in

Java, Scala, Python and R. It has libraries, like MLlib for machine learning in Big data, GraphX for

graph processing, Spark SQL and Spark Streaming [11].

In this paper, we do not propose any sentiment-prediction technique, but our aim is to analyze the

eminent techniques regarding electronic products. We aim to perform sentiment analysis of data

collected from Twitter using flume. These tweets are classified based on supervised learning

approaches, such as Naive Bayes, SVM, Decision Tree, Random Forest and Logistic Regression

classifier.

The remainder of the paper is arranged in the following manner. Section 2 represents related work.

Section 3 is regarding big data processing using MapReduce, Spark and MLlib. Classification

techniques are shown in section 4. In section 5, we present the sentiment analysis framework.

Moreover, section 6 demonstrates the comprehensive experimental results. Conclusion and future

work are presented in section 7.

2. RELATED WORK

Semantic analysis is the investigation of people’s opinions, beliefs, attitudes and emotions towards an

entity, such as products, services, events, issues and topics [1]. It is the field of machine learning

which has gained the attention of researchers since the beginning of the century. Miller et al. [12]

introduces WordNet, an online database for English language semantic processing using synonym sets

(synsets) relationship. SentiWordNet [13] is an advancement of WordNet as a tool for knowledge-

based word level processing via building a dictionary to find a score of each word.

Kim and Hovy [16] operated on a word granularity by using initially some seed words and using them

to create a net; they proceeded further to sentence level by combining the strengths of the words, as

they classify people’s opinions. Moreover, Wilson et al. [17] operated on a phrase level, by running a

supervised learning approach to determine the polarity or neutrality of phrases. Furthermore,

document granularity [18] used word frequency and part of speech approach on Amazon reviews in

categories, like books, DVDs, electronic and kitchen appliances to evaluate the response of people

about the products.

Twitter streaming API1 was used to gather data for product sentiment analysis [3]. The aim of using

twitter data is to understand public opinion. Around 60,000 tweets were collected using Twitter API to

analyze customer opinions on widely used smartphones in Korea [21]. Kumar et al. excavated

opinions of the people about the quality of services provided by Airtel company [22]. For this purpose,

they collected 80,000 tweets using the hashtag “#Airtel”. They assessed them using Naïve Bayes

approach with an accuracy of 80.9% on Mahout installed over Hadoop to classify them into different

classes. They used term frequency and inverse document frequency for internal processing.

Various techniques, such as machine learning [2], entropy-based [24] and tree-kernel [25] techniques,

are used for Twitter sentiment analysis. The hybrid algorithms presented in [26] for Twitter feed

classification improve accuracy when compared with similar techniques. To increase accuracy, word

sequence disambiguation [15] and negation handling [16] could be used. In [27], the authors mined

tweets with emoticons and punctuations. They concluded that Naïve Bayes performance and accuracy

1Twitter Apps. Available online: http://www.tweepy.org/

http://www.tweepy.org/

45

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

are higher than those of SVM. Emoticons and hashtags [28] are employed as sentiment labels to carry

out KNN classification of diverse sentiment types. Kaur et al. [28] have used Spark for processing

large data. They have also used Bloom filter for inspecting element membership in any proposed set

and space compaction.

Agarwal et al. [25] used unigram model to classify Twitter data into 4 classes: positive, negative,

neutral and junk, where junk included tweets not understood by a human annotator. They investigated

on tree kernel and feature-based models and reported that these models outperform the unigram

baseline. They highlighted that for feature analysis, prominent features were a combination of the prior

polarity of words and their parts-of-speech-tags. However, they used manually annotated Twitter data

for the test.

Kaptein [29] studied what influence the tweets have on the reputation of the company. They explored

the sentimental-bearing text (i.e. subjective text) for factual information to derive reputational polarity.

For example, Nokia Smartphone blasted while charging has a negative reputation for Nokia Company.

They suggested that developing a polarity lexicon for the specific domain will be cost-beneficial.

In [10], the authors retrieved 4 million tweets, which required bulk processing speed and distributed

storage, signifying the need for Big Data frameworks, like Hadoop and Spark. These frameworks are

required to meet up the shooting data generation demand. Many researchers are using similar

frameworks for tweet analysis [30]. Baltas et al. [31] has used Twitter data with Spark platform. In the

proposed approach, they have used binary and ternary classification. The result of F-measure of

feature vector of logistic regression indicated 62.8% positive, 59.2% negative and 54.2% neutral. Chan

and Thein [32] used sentiment analysis on 60k real-time tweets using Apache Flume on iphone mobile

product. The results show that linear SVM performs better than NB by 10 % and better than logistic

regression by 2%.

Earlier studies have shown that the traditional approach is suitable for limited data only. But, if we

have a large amount of real-time tweets, we can’t process them with normal architecture and

traditional approaches. Therefore, it is high time to develop a framework with distributed processing to

improve accuracy and performance of the models. So, in this paper, we are working with Spark

framework and have used Flume for fast data retrieval. We have demonstrated the results of semantic

analyzers and their machine learning validation is shown in tabular formats and graphs to render a

complete picture about accuracy gained. We have not formulated any semantic prediction technique,

but have analyzed SVM, NB, logistic regression, decision tree and random forest techniques on

unstructured real-time electronic product tweets using Big Data framework. We have attained the

average accuracy of 91% in logistic regression that is outperforming all the competing techniques.

3. BIG DATA PROCESSING

Big data deals with large datasets which require complex processing and need huge storage. Big data

frameworks are listed below.

3.1 Hadoop

Hadoop software library is an open source implementation of the MapReduce framework. It enables

distributed and parallel processing of large datasets. It also provides distributed storage on cluster of

computers [33]. Hadoop core contains MapReduce and Hadoop Distributed File System (HDFS).

HDFS is responsible for storing large datasets on the cluster, which are partitioned into blocks and

distributed into nodes.

3.2 MapReduce

MapReduce model allows distributed processing across multiple nodes in a cluster. It contains a map

and a reduce function procedure, called mapper and reducer, respectively [34]. Input data is

partitioned into the mapper phase and transferred to workers to execute the map function; each worker

output is in key-value pairs after processing the data. Shuffle phase sorts the output and groups it by

key. Reducer calls for every unique key and gets a set of values associated with key. MapReduce

framework deals with the underlying parallelization, adjustment to internal failure, information

46

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

distribution between nodes and load adjustment. Data is replicated and distributed across nodes to

improve both accessibility and reliability.

3.3 Spark Framework

Apache Spark2 is a fast and general framework for large-scale data processing. It is the improvement

of Hadoop framework. Hadoop is ideal for large batch processing when we require to go through all

data. However, its performance drops quickly for certain scenarios, e.g. when we have to deal with

graph-based or iterative algorithms. Hadoop does not cache intermediate results but instead, it flushes

the data to the dish in between each step. In contrast, Spark has a Directed Acyclic Graph (DAG)

execution engine that allows cyclic data flow and in-memory computing. So, it can execute programs

up to 100x times faster than Hadoop. It contains a set of libraries which combines streaming, SQL,

graph processing and machine learning in a single engine. It provides many high-level APIs in Python,

Scala, java and R and can run on Hadoop or standalone while using different data sources, such as,

HDFS, Cassandra or HBase. It provides a programming model that hides the partitioning of dataset in

cluster, using a new data structure called Resilient Distributed Dataset (RDD) [35]. RDD is an

immutable distributed collection of records partitioned into different nodes of the cluster. Data-sharing

abstraction property of RDD allows to run a wide range of APIs provided by Spark: MLlib, Spark

streaming, Spark SQL and GraphX (graph processing). By default, RDDs are short-lived, so if they

are used in an action, they need to be recomputed. However, they can persist in memory for frequent

reuse.

3.4 MLlib

MLlib is Spark’s largest distributed learning library. It includes fast, scalable and easy implementation

of common learning algorithms of machine learning, including classification, regression, clustering

and collaborative filtering [36]. The library also has low-level primitives for convex optimization,

statistical analysis tools, distributed linear algebra and feature extraction and provides various I/O

formats, such as LIBSVM format, Spark SQL data integration3 and MLlib’s internal format. It shows

excellent performance and scalability to handle larger problems.

4. CLASSIFICATION TECHNIQUES

This section describes sentiment analysis phases. The complete process of sentiment analysis is shown

in Figure 1. The following supervised classification approaches are used to predict the polarity of a

tweet.

4.1 Naïve Bayes

Naïve Bayes is an easy probabilistic classifier, which uses Bayes Theorem with an assumption of high

(naïve) independence between features. It had proven effective in many application domains, like

system performance management [37], text classification, medical diagnosis and many more. It

assigns the most favourable class to a given instance according to its feature vector which is given by:

P (CL | X) =
P(CL) * P (X | CL)

 (1)
 P(X)

where, X= (x1, x2, …, xn), indicating some independent feature vectors.

CL : L possible outcomes (classes).

X : Tweet needing to be classified.

P (CL | X): Posterior probability.

P(CL) and P(X) : Prior probabilities.

4.2 Support Vector Machine

Support Vector Machine carries out classification by searching for the hyperplane (boundary dividing

2 Spark https://spark.apache.org
3 Spark SQL https://spark.apache.org/sql/

https://spark.apache.org/
https://spark.apache.org/sql/

47

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Figure 1. Sentiment analysis of tweet dataset.

one entity set from another) that maximizes the margin between two classes. Hyperplanes are explored

using “important training tuples” (support vectors) along with margins [38]. SVM can be implemented

on both linear and non-linear datasets. SVM as a supervised learning classifier is popular due to its

high reliability, varied application usage and less vulnerability to overfitted model [39].

We traverse linearly separable class using two-class problems. We are given a dataset S as (P1, Q1),

(P2, Q2),………..(P|S|, Q|S|), where Qj is the class label whose value is from +1 to -1(Qj ∈ (-1, +1)).

Qj is associated with Pj set of training tuples.

Any hyperplane can be defined as P set of points satisfying

 𝑊. 𝑃 − 𝐵 = 0 (2)

where, W is normal vector to the hyperplane.
𝐵

||𝑊||
 is the offset of the plane from the origin and normal

vector W.

Figure 2. Support vector machine classifier.

48

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

Test 1

Test

2

Positive Tweet Negative Tweet

Neutral Tweet

Positive Tweet

Polarity

YES

YES

YES

NO

NO

NO

We can plot multiple separating lines. We have to find the “best” line (least classification error), in

general, best “hyperplane” by the maximum distance of the hyperplane to the closest negative instance

and positive instance. Figure 2 shows SVM optimal hyperplane in training with sample tweets to

classify positive tweets (star-shaped) and negative tweets (disk-shaped).

4.3 Decision Tree

Decision Tree is a flow-chart like structure, where each non-leaf node signifies test condition on the

attribute; branches indicate the result of test and leaf node represents class label of entity set. First and

topmost node is root node [25]. Tree is explored from top to bottom indicating classification rules. It is

a decision support tool which is used to display the outcome of test condition, resource cost, utility

along with an algorithm that contains a statement of conditional control.

Decision tree can be converted into decision rules by association rules with target variable on right-

hand side. A decision tree can be used in temporal or causal relations [40]. Figure 3 shows decision

tree classification processing based on test condition.

Figure 3. Decision tree classifier.

4.4 Random Forest

Random forest classifier is a tree classifier which is generated using independently selected random

vector from input dataset. Each tree for most favourable class casts one vote to classify input vector

[41]. It uses one or more combinations of features at every node to expand a tree. Bagging is a method

to make training set via randomly drawing N replacement examples (N is the size of original training

set used for feature selection). Every input instance can be classified by exploring most desirable voted

class by all forest trees. We can use GINI index as a measure of attribute selection, which weights

attribute impurity of all classes. For a given training dataset D, choosing one cast and ascertaining that

it belongs to a class Ci, could be written as:

 ∑ ∑ (
𝑓(𝑐𝑖 , 𝐷)

|𝐷|
) (

𝑓(𝑐𝑗 , 𝐷)

|𝐷|
)

𝑗 ≠ 𝑖

 (3)

where,
𝑓(𝑐𝑖,𝐷)

|𝐷|
 is the probability of that labelled class belongs to class Ci.

4.5 Logistic Regression

Logistic regression is a predictive classifier that is used to a model-dependent variable using logistic

function. Dependent variable is a categorical value having two categories labelled as “0” and “1” like

(loose or win, sick or not sick, true or false, tea or coffee). Independent variable is numerical or

categorical value. It is used to classify observations, in terms of whether an observation belongs to a

particular category or not (positive tweet or negative tweet in our problem).

49

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

 Types of Logistic Regression:

 Binary Logistic Regression: models binary outcome (yes/no).

 Ordinal Logistic Regression: models an ordered response (completely disagree, disagree,

somewhat agree, agree).

 Nominal Logistic Regression: models a multilevel outcome which is insensitive to ordering

(choice of a transport mode such as bus, car, train).

Logit (log-odds) is a function which is equivalent to log odds of variables. If p is a probability of

occurrence of an event (E= 1), then
𝑝

1−𝑝
 represents the corresponding odds. Logit (E) is given by:

 𝑙𝑜𝑔𝑖𝑡(𝐸) = 𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) (4)

A logistic curve is obtained by a logistic function. Logistic curve is just like a sigmoid curve the

input of which is as any real value k (k € R), while the output value falls between (0, 1). Logistic

curve is shown in Figure 4. Logistic function (k) is given by:

 𝑝(𝑘) =
1

1 + 𝑒−(𝛽0+𝛽1𝑘)
 (5)

where, p (k) is the probability of dependent variable.

𝛽0 : intercept from the linear regression equation.

𝛽1𝑘 : Regression coefficient multiplied by some predictor value.

𝑒 : Base e indicates the exponential function.

 Figure 4. Logistic regression.

 5. SENTIMENT ANALYSIS FRAMEWORK

We present a framework for sentiment analysis which includes data collection, pre-processing,

sentiment score calculation for tweets, classification and polarity prediction.

5.1 Data Collection Using Twitter API by Flume

Twitter is a corpus of 500 million published tweets by 321 million active monthly users4. This real-

time data provides immense opportunities to study social trends. Crawling data from Twitter was

collected using Flume. Flume links Flume agent with web servers. This is done with API keys

extracted from Twitter developer’s account. Twitter delivers Rest API and Streaming API to different

client systems to absorb tweets. Figure 5 shows the process of data retrieval using Flume agent.

Tweets are collected from source to channel and then from channel to HDFS sink. Different hashtags

are used to collect live-stream data from Twitter. Description of used hashtags and collected tweets is

shown in Table 1.

4 Statista 2019, February 2019, Number of monthly active Twitter users worldwide from 1st quarter 2010 to 4th

quarter 2018 (in millions). Available: https://www.statista.com/statistics/282087/number-of-monthly-active-

twitter-users/

https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

50

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

Figure 5. Twitter data collection.

Table 1. Hashtag description.

CATEGORY HASHTAGS/KEYWORDS # TWEETS

TWEETS FOR

MOBILE PHONES

#Samsung

vivo #iPhone #htc #OppoF9Pro

#Samsung # GooglePixel3XL #iPhone #htc #MiNote4

#motoG

1,00,000

TWEETS FOR

LAPTOPS

#MacBookPro

iMac #HpEliteBook #ThinkPadLenovo #MSIGaming

#chromebook # DellXPS #HPEnvy #AcerSwitch

70,000

TWEETS FOR

TELEVISION

#SonyBraviaKLV

AndriodTv #SamsungQLED #TCL #LGLED

#PanasonicSmartTv # VizioLcd #rokuTv #OLEDTV

50,000

Data extracted from Twitter using Twitter API comes in JSON format. Figure 6 is a snapshot of raw

tweets in JSON format. However, JSON structure is not understood by user completely. Therefore,

JSON Validator was used to validate data into a particular structure. Figure 7 shows the refined

structural tweets after processing raw tweets in JSON format.

Figure 6. Sample of raw tweets in JSON format collected from Twitter.

5.2 Pre-processing of Tweets

One of the major tasks of semantic analysis is data filtering. It helps improve the efficiency of the

classifier. Following are the pre-processing steps:

51

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Figure 7. Sample of tweets in structured format.

 Filtering – we eliminate useless parts of tweets, such as URL links, Twitter usernames,

punctuations, hashtags, Twitter special words (such as “RT”), special characters and symbols.

 Stop words removal –some words, such as pronouns (he, she, it), articles (a, an, the), don’t

give any information for classification. Moreover, having these bags of words can lead to less

accurate prediction. So, it’s better to eliminate these stop words [43].

 Stemming – it is a process of conversion of words in different forms into their single root

word like “amuse”, “amused”, “amusement” and “amusing” have same root: “amus”. Result

of stemming is less intuitive to humans, but more comparable across observations. Stemming

decreases entropy and increases relevance of root words like “amus” [43].

Figure 8. Pre-processing of Tweets.

 Feature extraction - Tokenization is a process of segmenting text by spaces and punctuation

marks into tokens to form bags of words. Feature transformation function, like StringIndexer,

OneHotEncoder and VectorIndexer, is used to transform categorical terms into vectors. TF-

IDF is used to generate feature vectors from tweets. In TF-IDF, we compute TF (term

52

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

frequency), which is the occurrence frequency of a term in that document and IDF (inverse

document frequency) measuring how infrequent a word is present across all the document.

TF-IDF shows relevancy of a word into a specific document. Spark MLlib library has

HashingTF and IDF algorithms to calculate TF-IDF [44]. Figure 8 shows the execution of pre-

processing steps. After completion of data filtering steps, we get refined tweets with their

labels. A sample of tweets with their polarity is shown in Figure 9.

Figure 9. Sample of tweets with labels.

5.3 Tweet Score Calculation

This approach uses a standard list of positive and negative words to detect the polarity of a tweet.

Based on availability of positive or negative words within tweets, a sentiment score is generated.

Polarity of a tweet, such as p(t) can be represented as {-1,0,1} referring to a negative, neutral and

positive tweet, respectively [45].

A score of a tweet S(t) can be calculated as:

 𝑆(𝑡) = ∑ 𝑝(𝑖)

𝑛

𝑖∈𝑡

 (7)

where, p(i) is the polarity of term i in tweet. Polarity of a tweet can be determined as follows:

 1, if St > 0 (positive)

P(t) = -1, if St < 0 (negative)

 0, otherwise (neutral)

After score calculation for each tweet, we have training datasets with their polarities, such as positive,

negative and neutral.

5.4 Model Implementation

ML is a dataframe package API, introduced in Spark 2.0. From start, spark framework has MLlib as

an RDD-based API. To carry out the implementation in Spark, we need to follow some steps.

Firstly, import data into DataFrames. these are a distributed collection of data organized into named

columns, which makes Spark programming easier and simpler to develop.

Secondly, transforms, such as Tokenizer (), StopWordRemover (), HashingTF (), Tf-Idf, are used.

Transformer is an algorithm which can change one dataframe to another.

Thirdly, estimators are used to implement method fit(), which accept dataframe and make a model,

such as logistic regression, Naïve Bayes, random forest, linear SVM and decision tree.

 val Estimator = new LinearSVC()

 val Estimator = new NaiveBayes().setLabelCol("label").setFeaturesCol("features")

 val Estimator = new LogisticRegression()

Lastly, to combine ML algorithms into a single pipeline, we use Spark ML standardize APIs. Pipeline

chains multiple transformers and estimators together in order to specify an ML workflow.

53

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

 val pipeline = new Pipeline().setStages(Array(labelIndexer, tokenizer, remover, hashingTF, idf,

Estimator))

 val model = pipeline.fit(training)

In this classification step, to train the model, 70% of the dataset is randomly selected for training and

30% for testing.

 val predictions = model.transform(test)

6. RESULTS AND DISCUSSION

This section describes the details of experiments conducted on the Spark framework.

6.1 Environment Description

We conducted experimental tests on Spark framework using a single node configuration. To achieve

the desired performance, we have operated on Intel quad-core 3.0 GHz processor with a RAM of 8 GB

and a storage capacity of 1 TB on Ubuntu 18.0.1 operating system. We configured Spark version

2.3.0, Scala version 2.11.6, Hadoop version 2.8.4, Flume 1.7.0, Hive 2.1.1 and Java-8.

We have used three different types of dataset related to electronic products; i.e., mobile phones,

laptops and televisions, corresponding to 100 K, 70K and 50K tweets.

6.2 Polarity of Datasets

In this section, we have a pictorial representation of polarity in relation with phone,

laptop and television tweets. Figures 10, 11 and 12 show the polarity of datasets indicating the ratio of

positive, neutral and negative tweets, respectively.

Figure 10. Polarity of phone dataset.

Figure 11. Polarity of Laptop Datasets.

54

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

Figure 12. Polarity of television dataset.

6.3 Performance Evaluation

Before the model can be used to classify new data, evaluation of model on test dataset is important. To

measure the effectiveness or quality of models, different metrics are being used.

The simplest model of evaluation metric is precision. It measures the exactness of the model. It

calculates what fraction of positive classified data is actually positive. Recall is another simple

measurement. It measures the completeness of the model. It calculates what percentage of positive

data is classified as positive. Accuracy measures what fraction of data is accurately classified. F-

measure and AUC are commonly used metrics for model evaluation. F-measure is the weighted

harmonic mean of precision and recall. It is the trade-off between precision and recall, whose score

lies between 0 and 1. F-measure with score 1 states the best model whereas 0 states the worst model.

AUC (area under ROC): It is a binary classifier generally evaluated using AUC evaluation metric. It

measures the aggregate performance with every classification parameter. It plots true positive rate and

false positive rate at random positive or negative observations. Table 3 shows the confusion matrix,

which is a specific table layout that allows visualization of the effectiveness of a model.

Table 3. Confusion matrix.

Precision =
 TP

 (7)
TP+FP

Recall =
 TP

 (8)
TP+FN

Accuracy =
 TP+FN

 (9)
TP+FP+FP+TN

 F1 =
2.Precision.Recall

 (10)
Precision + Recall

55

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Furthermore, the performance of different machine learning classification approaches is shown in

Table 4, Table 5 and Table 6, respectively.

Table 4. Performance comparison (phone dataset).

Classification Approach Accuracy Recall F1-measure Precision

Naïve Bayes 0.82277 0.82277 0.82639 0.83386

SVM 0.85200 0.85200 0.84441 0.85011

Logistic Regression 0.86358 0.86358 0.86006 0.86054

Decision Tree 0.74882 0.74882 0.67685 0.79132

Random Forest 0.73647 0.73647 0.64792 0.79835

Table 5. Performance comparison (television dataset).

Classification Approach Accuracy Recall F1-measure Precision

Naïve Bayes 0.81973 0.81973 0.83528 0.87702

SVM 0.89777 0.89771 0.89098 0.89178

Logistic Regression 0.91084 0.91084 0.90813 0.90724

Decision Tree 0.81713 0.81713 0.73632 0.75132

Random Forest 0.81713 0.81713 0.73632 0.75132

Table 6. Performance comparison (laptop dataset).

Classification Approach Accuracy Recall F1-measure Precision

Naïve Bayes 0.81027 0.81027 0.81552 0.83448

SVM 0.86609 0.86609 0.86328 0.86434

Logistic Regression 0.91084 0.91084 0.90813 0.90724

Decision Tree 0.70493 0.70493 0.60479 0.76341

Random Forest 0.68892 0.68892 0.57204 0.77147

6.4 Comparison of Different Machine Learning Approaches

In this subsection, we have performed a series of tests using different machine learning classification

approaches under the big data framework on our dataset. This comparison is carried out under

different parameters. Figures 13 and 14 show the comparison of varied approaches in relation to

training and prediction time on different datasets.

Figure 13 shows that for training the model, Naïve Bayes classifier takes less time related to all three

categories. Similarly, to prepare the model, random forest classifier takes more time. It also informs

that there is a direct relation between tweet size and training time; i.e., as tweet size increases, training

time also increases.

Prediction time comparison using all approaches is shown in Figure 14. We can further conclude that

logistic regression takes more prediction time in all three cases, while all the remaining approaches

take approximately the same prediction time. Figure 15 shows accuracy comparison of all the

approaches. This figure illustrates that logistic regression performs better for larger data sizes with an

accuracy of 86% in the phone, 91% in the laptop and 91% in the television classes.

56

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

Another comparison measure is AUC (Area under the curve). The comparative result set value is

shown in Table 7. It determines which approach best predicts the classes. Based on this view, Figure

16 shows that both SVM and logistic regression classification approaches perform good, compared to

the other approaches.

Figure 13. Training time comparison.

Figure 14. Prediction time comparison.

Figure 15. Accuracy comparison.

7. CONCLUSION AND FUTURE WORK

In this paper, we analyze sentiments of different electronic product tweets. For this, real-time tweets

are collected from the Twitter platform using different hashtags. Additionally, Flume was used to

consume real-time tweets in big data framework. After pre-processing of collected tweets, sentimental

57

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Table 7. AUC results.

Classification Approach Laptop TV Phone

Naïve Bayes 0.5028828 0.3904879 0.5012804

SVM 0.9277823 0.9281304 0.9100904

Logistic Regression 0.9357323 0.9475399 0.9200218

Decision Tree Classifier 0.6800121 0.7552956 0.5545057

Random Forest Classifier 0.8290897 0.8136763 0.8095101

Figure 16. AUC comparison.

analysis has been performed by different supervised classification approaches. The experimental

results show that the logistic regression approach has higher accuracy for all used datasets.

Sentimental analysis comparison was carried out on the basis of Accuracy, F-measure and AUC.

Due to enhancement and popularity of social media platforms, such comparative results are more

useful for business companies. They can easily help identify people’s sentiment towards any specific

electronic product or item. Based on sentiments, various decisions can be made.

In our future work, we intend to work on multiclass approaches to identify the exact polarity of tweets

instead of positive, negative and neutral. In addition, we will work to enhance the accuracy of the

approaches under big data technologies.

REFERENCES

[1] B. Liu, "Sentiment Analysis and Opinion Mining, " Synthesis Lectures on Human Language

Technologies, vol. 5, no. 1, pp. 1–167, 2012.

[2] A. Hasan, S. Moin, A. Karim and S. Shamshirband, "Machine Learning-based Sentiment Analysis for

Twitter Accounts, " Mathematical and Computational Applications, vol. 23, no. 1, p. 11, 2018.

[3] C. S. Khoo and S. B. Johnkhan, "Lexicon-based Sentiment Analysis: Comparative Evaluation of Six

Sentiment Lexicons, " Journal of Information Science, vol. 44, no. 4, pp. 491–511, 2017.

[4] F. Iqbal, J. Maqbool, B. C. M. Fung, R. Batool, A. M. Khattak, S. Aleem and P. C. K. Hung, "A Hybrid

Framework for Sentiment Analysis Using Genetic Algorithm-based Feature Reduction, " IEEE Access,

pp. 1–1, 2019.

[5] F. Atefeh and D. Inkpen, Proceedings of the Workshop on Semantic Analysis in Social Media,

Association for Computational Linguistics, France, 2012.

[6] A. Tyagi and S. Naresh, "Sentiments Analysis of Twitter Data Using K-Nearest Neighbour

Classifier," International Journal of Engineering Science, vol. 17258, 2018.

[7] T. White, Hadoop: The Definitive Guide, 3rd Edition, O'Reilly Media, Inc., May 2012.

[8] M. V. Banerveld, N.-A. Le-Khac and M.-T. Kechadi, "Performance Evaluation of a Natural Language

Processing Approach Applied in White Collar Crime Investigation, " Future Data and Security

Engineering Lecture Notes in Computer Science, pp. 29–43, 2014.

58

"Sentiment Analysis of Electronic Product Tweets Using Big Data Framework", S. Kumar, V. Koolwal and K. K. Mohbey.

[9] G. Dubey, S. Chawla and K. Kaur, "Social Media Opinion Analysis for Indian Political Diplomats, "

Proc. of the IEEE 7th International Conference on Cloud Computing, Data Science and Engineering-

Confluence, pp. 681-686, 2017.

[10] S. Al-Saqqa, G. Al-Naymat and A. Awajan, "A Large-Scale Sentiment Data Classification for Online

Reviews Under Apache Spark," Procedia Computer Science, vol. 141, pp. 183–189, 2018.

[11] R. Sandy, U. Laserson, S. Owen and J. Wills, Advanced Analytics with Spark: Patterns for Learning

from Data at Scale, O'Reilly Media, Inc., 2017.

[12] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross and K. J. Miller, "Introduction to WordNet: An On-

line Lexical Database," International Journal of Lexicography, vol. 3, no. 4, pp. 235–244, 1990.

[13] A. Esuli and F. Sebastiani, "SentiWordNet: A Publicly Available Lexical Resource for Opinion

Mining," [Online], Available: http://nmis.isti.cnr.it/sebastiani/Publications/LREC06.pdf, 2006.

[14] S. Seifollahi and M. Shajari, "Word Sense Disambiguation Application in Sentiment Analysis of News

Headlines: An Applied Approach to FOREX Market Prediction," Journal of Intelligent Information

Systems, vol. 52, no. 1, pp. 57–83, 2018.

[15] M. Bhuiyan, A. Misra, S. Tripathy, J. Mahmud and R. Akkiraju, "Don't Get Lost in Negation: An

Effective Negation Handled Dialogue Acts Prediction Algorithm for Twitter Customer Service

Conversations," arXiv preprint arXiv:1807.06107, 2018.

[16] S. -M. Kim and E. Hovy, "Determining the Sentiment of Opinions," Proceedings of the 20th

International Conference on Computational Linguistics (COLING 04), [Online], Available:

http://aclweb.org/anthology/C04-1200, 2004.

[17] T. Wilson, J. Wiebe and P. Hoffmann, "Recognizing Contextual Polarity in Phrase-level Sentiment

Analysis," Proceedings of the Conference on Human Language Technology and Empirical Methods in

Natural Language Processing (HLT 05), [Online], Available:

https://people.cs.pitt.edu/~wiebe/pubs/papers/emnlp05polarity.pdf, 2005.

[18] J. Blitzez, M. Dredze and F. Pereira, "Biographies, Bollywood, Boom-boxes and Blenders: Domain

Adaptation for Sentiment Classification," Proc. of the 45th Annual Meeting of the Association of

Computational Linguistics, pp. 440–447, 2007.

[21] J. Kim, M. Yang, Y. Hwang, S. Jeon, K. Kim, I. Jung, C. Choi, W. Cho and J. Na, "Customer

Preference Analysis Based on SNS Data," Proc. of the IEEE 2nd International Conference on Cloud and

Green Computing, pp. 609-613, 2012.

[22] M. Kumar and A. Bala, "Analyzing Twitter Sentiments through Big Data," Proc. of the IEEE 3rd

International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi,

pp. 2628-2631, 2016.

[24] A. L. Berger, V. J. D. Pietra and S. A. D. Pietra, "A Maximum Entropy Approach to Natural Language

Processing," Computational Linguist, vol. 22, no. 1, pp. 39–71, 1996.

[25] A. Agarwal, B. Xie, I. Vovsha, O. Rambow and R. Passonneau. "Sentiment Analysis of Twitter Data,"

Proceedings of the Workshop on Languages in Social Media, pp. 30-38, 2011.

[26] F. H. Khan, S. Bashir and U. Qamar, "TOM: Twitter Opinion Mining Framework Using Hybrid

Classification Scheme," Decision Support Systems, vol. 57, pp. 245–257, 2014.

[27] S. Geetha and K. V. Kumar, "Tweet Analysis Based on Distinct Opinion of Social Media Users,"

Advances in Intelligent Systems and Computing Advances in Big Data and Cloud Computing, pp. 251–

261, 2018.

[28] A. Kaur, D. Khaneja, K. Vyas and R. S. Saini, Sentiment Analysis on Twitter Using Apache Spark,

[Online], Available: https://www.researchgate.net/profile/Deepesh_Khaneja/publication/320625064

_project_report_sentiment_analysis_on_twitter_using_apache_spark/links/59f24420aca272cdc7d0169a

/project-report-sentiment-analysis-on-twitter-using-apache-spark.pdf, 2016.

[29] R. Kaptein, "Learning to Analyze Relevancy and Polarity of Tweets," CLEF (Online Working

Notes/Labs/Workshop), [Online], Available: http://ceur-ws.org/Vol-1178/CLEF2012wn-RepLab-

Kaptein2012.pdf, 2012.

[30] A. Kanavos, N. Nodarakis, S. Sioutas, A. Tsakalidis, D. Tsolis and G. Tzimas, "Large Scale

Implementations for Twitter Sentiment Classification," Algorithms, vol. 10, no. 1, p. 33, 2017.

[31] A. Baltas, A. Kanavos and A. K. Tsakalidis, "An Apache Spark Implementation for Sentiment Analysis

59

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

on Twitter Data," Algorithmic Aspects of Cloud Computing Lecture Notes in Computer Science, pp.

15–25, 2017.

[32] W. N. Chan and T. Thein, "A Comparative Study of Machine Learning Techniques for Real-time

Multi-tier Sentiment Analysis," Proc. of the IEEE 1st International Conference on Knowledge,

Innovation and Invention (ICKII), 2018.

[33] N. Deshai, S. Venkataramana and G. P. S. Varma, "Performance and Cost Evolution of Dynamic

Increase Hadoop Workloads of Various Data Centers," Smart Intelligent Computing and Applications

Smart Innovation, Systems and Technologies, pp. 505–516, 2018.

[34] J. Dean and S. Ghemawat, "MapReduce," Communications of the ACM, vol. 51, no. 1, p. 107, 2008.

[35] M. Zaharia et al., "Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster

Computing, " Proc. of the 9th USENIX Conference on Networked Systems Design and Implementation,

pp. 2-2, 2012.

[36] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu and D. Xin, "MLlib: Machine

Learning in Apache Spark," The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1235-1241,

2016.

[37] J. Hellerstein, J. Thathachar and I. Rish, "Recognizing End-user Transactions in Performance

Management," Proc. AAAI-2000, pp. 596–602, 2000.

[38] J. Han, M. Kamber and J. Pei, "Data Mining: Concepts and Techniques," Elsevier, pp. 279–325, 2012.

[39] V. Vapnik, Estimation of Dependencies Based on Empirical Data, ISBN 978-0-387-34239-9, Springer,

1995.

[40] K. Karimi and J. H. Howard, "Generation and Interpretation of Temporal Decision Rules," arXiv

preprint arXiv:1004.3334, 2010.

[41] L. Breiman, "Random Forests," UC Berkeley TR567, 1999.

[43] G. Angiani, L. Ferrari, T. Fontanini, P. Fornacciari, E. Iotti, F. Magliani and S. Manicardi, "A

Comparison between Pre-processing Techniques for Sentiment Analysis in Twitter," In: KDWeb, 2016.

[44] H. Karau, A. Konwinski, P. Wendell and M. Zaharia, Learning Spark: Lightning-fast Big Data

Analysis, O'Reilly Media, Inc., Jan 2015.

[45] A. Giachanou, J. Gonzalo, I. Mele and F. Crestani, "Sentiment Propagation for Predicting Reputation

Polarity," Lecture Notes in Computer Science Advances in Information Retrieval, pp. 226–238, 2017.

 ملخص البحث:

م ، أصيييييس ئ وايييييا ا تا صيييييا جدتًيييييا تيييييا دييييي فييييي يييييا ت ييييي روقتنيييييا ا يييييفييييي

 يييييييعل يييييييرأ ريييييييز نهييييييياي جوترويييييييئ وأد ييييييي يييييييا ع هييييييي وقييييييي أ ييييييي ئ ن ييييييياي

 ا ر ييييي وايييييا تا صيييييا جدتًيييييا تتًا يييييا جفتيييييا يييييه. ًكيييييت ه. ييييي ييييي يييييع

 ًييييييييا عيييييييير اي ى ًييييييييا و نييييييييا رييييييييز تا صييييييييا جدتًييييييييا ، ييييييييا ييييييييا تر، و

 ييييييا . ييييييا نييييييت ييييييا، ييييييست عيييييير اي رييييييز يييييي رييييييز تهييييييا ي ييييييا . وفيييييي

ع ييييا يييي تيييي اقييييئ يييير ت.، تا يييي ييييه. تنر يييي ي يييي. قسييييا نييييا ييييا ايييين ج أ ت ا

 ع ، فييييي ييييي كييييي ا يييييا ييييي. تنر ييييي ي نهييييير ً هكرييييي يييييه ًكنيييييا سييييير ًن ييييي ت ره ييييي

. كيييييت م ييييي –تيييييا وا وايييييسا يييييا –اوييييياي ييييي ً هأ ييييي ىل ييييير اصييييي ً ا ييييي س

 أدا ت ا ا تع نا . سهاواي ً

 عيييييي فيييييي تييييييعم ا قيييييي ، ييييييت اييييييت م نر يييييي ي ت ريييييي ا ًسه يييييياي ت رهييييييا ييييييا .

كا تييييير اييييييت ت ر سهييييي ر ًييييييا ً ًنت ييييياي ج كترووهييييي و يييييي تيييييا ييييييز أ نتيييييا

ر يييييي ذ ي فا يييييي ر يييييي يييييي. تيييييير اي ى ًييييييا هيييييي كييييييا تا فيييييي يييييياذ يييييير ي ًت

 ًا ا، ى ر عل . ت وه أ ًا رز كه. سه ا ا . ًنت اي

JJCIT

	0.0-JJCIT-Vol.05-No.01- English coverpage
	0.1-JJCIT-General Information
	1-DOI 10.5455-jjcit.71-1539688899
	2-DOI 10.5455-jjcit.71-1541688581
	3-DOI 10.5455-jjcit.71-1546551963
	4-DOI 10.5455-jjcit.71-1546924503
	5-Empty page
	6-JJCIT-Vol.05-No.01- Arabic coverpage

