JISiidg @ualell iall aca Ggain

Scientific Research and Innovation Support Fund

Jordanian Journal of Computers and Information Technology

ISSN 2415 - 1076 (Online)
September 2025 VOLUME 11 NUMBER 03 ISSN 2413 - 9351 (Print)

PAGES PAPERS

279 - 299 A HYBRID CNN-TRANSFORMER APPROACH FOR PRECISE THREE-CLASS DIABETIC RETINOPATHY

CLASSIFICATION
Samira Ait Kaci Azzou, Djamila Boukredera and Sifeddine Baouz

L;
300- 318 ON THE OPTIMIZATION OF UAV SWARM ACO-BASED PATH PLANNING
(B Aregj ). Alabbadi and Belal H. Sababha
319- 335 JORDANIAN ARABIC TO MODERN STANDARD ARABIC TRANSLATION USING A LARGE MODEL TUNED ON
A PURPOSE-BUILT DATASET AND SYNTHETIC ERROR INJECTION
Gheith A. Abandah, Moath R. Khaleel, lyad F. Jafar, Mohammad R. Abdel- Majeed, Yousef H. Hamdan et al.
336- 350 ADVANCED DEEP-LEARNING TECHNIQUES FOR IMPROVED CYBERBULLYING DETECTION IN ARABIC
TWEETS
\ Marah Hawa, Thani Kmail and Ahmad Hasasneh
351- 368 IMPROVING IOT SECURITY: THE IMPACT OF DIMENSIONALITY AND SIZE REDUCTION ON

H INTRUSION-DETECTION PERFORMANCE
V—\ Remah Younisse, Amal Saif, Nailah Al-Madi, Sufyan Almajali and Basel Mahafzah

N

369-389 ENHANCING FEW-SHOT LEARNING PERFORMANCE WITH BOOSTING ON TRANSFORMERS: EXPERIMENTS

ON SENTIMENT ANALYSIS TASKS
Lenh Phan Cong Pham and Huan Thai Phong

390- 404 FROM SURVEYS TO SENTIMENT: A REVIEW OF PATIENT FEEDBACK COLLECTION AND ANALYSIS METHODS
Ayushi Gupta, Anamika Gupta, Dhruv Bansal and Khushi

405- 417 HWR-PDNET: A TRANSFER LEARNING CNN FOR PARKINSON'S DETECTION FROM HANDWRITING IMAGES
Mathu T, Ronal Roy, Jenefa Archpaul and Ebenezer V.

www.jjcit.org jicit@psut.edu.jo

An International Peer-Reviewed Scientific Journal Financed
by the Scientific Research and Innovation Support Fund

> <




JJCIT

Jordanian Journal of Computers and Information Technology (JJCIT)

The Jordanian Journal of Computers and Information Technology (JJCIT) is an

international journal that publishes original, high-quality and cutting edge research

papers on all aspects and technologies in ICT fields.

JJCIT is hosted and published by Princess Sumaya University for Technology (PSUT)

and supported by the Scientific Research Support Fund in Jordan. Researchers have

the right to read, print, distribute, search, download, copy or link to the full text of

articles. JJCIT permits reproduction as long as the source is acknowledged.

AIMS AND SCOPE

The JJCIT aims to publish the most current developments in the form of original

articles as well as review articles in all areas of Telecommunications, Computer

Engineering and Information Technology and make them available to researchers

worldwide. The JJCIT focuses on topics including, but not limited to: Computer

Engineering & Communication Networks, Computer Science & Information

Systems and Information Technology and Applications.

INDEXING

JJCIT is indexed in:

ELSEVIER

Scopus

f- ocLe
'&:\ WorldCat

\NDEXED /3,

EMERGING
SOURCES
CITATION

(Web of Science)

. &
& S
Ware pai”

EDITORIAL BOARD SUPPORT TEAM

LANGUAGE EDITOR

Haydar Al-Momani

DIRECTORY OF e
o Erosstes

JOURNALS Text and Data Mining
ACADEMIA  Google

EDITORIAL BOARD SECRETARY
Eyad Al-Kouz

All articles in this issue are open access articles distributed under the terms and conditions of
Y the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

JICIT ADDRESS

WEBSITE: www jjcit.org
EMAIL: jjcit@psut.edu.jo
ADDRESS: Princess Sumaya University for Technology, Khalil Saket Street, Al-Jubaiha

B.O. BOX: 1438 Amman 11941 Jordan

TELEPHONE: +962-6-5359949

FAX: +962-6-7295534



http://scitechnol.com/information-technology/current-research-in-cyber-security.php
http://scitechnol.com/computer-engineering/current-research-in-embedded-systems.php
http://scitechnol.com/information-technology/articles-on-database-management-systems.php
http://scitechnol.com/computer-engineering/articles-on-robotics.php
http://scitechnol.com/computer-engineering/journals-on-mobile-computing.php
http://scitechnol.com/computer-engineering/current-research-in-robotics.php
http://creativecommons.org/licenses/by/4.0/
http://www.worldcat.org/search?qt=worldcat_org_all&q=jjcit
https://www.base-search.net/Search/Results?lookfor=JJCIT&name=&oaboost=1&newsearch=1&refid=dcbasen
https://scholar.google.com/citations?user=88ospLoAAAAJ&hl=en
http://creativecommons.org/licenses/by/4.0/

JJCIT

EDITORIAL BOARD

Wejdan Abu Elhaija (EIC) Ahmad Hiasat (Senior Editor)

Aboul Ella Hassanien Adil Alpkocak Adnan Gutub
Adnan Shaout Christian Boitet Gian Carlo Cardarilli
Omer Rana Mohammad Azzeh Maen Hammad
Ahmed Al-Taani Lutfi Al-Sharif Omar S. Al-Kadi
Raed A. Shatnawi Joao L. M. P. Monteiro Leonel Sousa

Omar Al-darrah

INTERNATIONAL ADVISORY BOARD

Ahmed Yassin Al-Dubai Albert Y. Zomaya

UK AUSTRALIA

Chip Hong Chang [zzat Darwazeh
SINGAPORE UK

Dia Abu Al Nadi George Ghinea

JORDAN UK

Hoda Abdel-Aty Zohdy Saleh Ogeili

USA JORDAN

Joao Barroso Karem Sakallah
PORTUGAL USA

Khaled Assaleh Laurent-Stephane Didier
UAE FRANCE

Lewis Mackenzies Zoubir Hamici

UK JORDAN

Korhan Cengiz Marco Winzker

TURKEY GERMANY

Marwan M. Krunz Mohammad Belal Al Zoubi
USA JORDAN

Michael Ullman Ali Shatnawi

USA JORDAN

Mohammed Benaissa Basel Mahafzah

UK JORDAN

Nadim Obaid Nazim Madhavji

JORDAN CANADA

Ahmad Al Shamali Othman Khalifa

JORDAN MALAYSIA

Shahrul Azman Mohd Noah Shambhu J. Upadhyaya
MALAYSIA USA

“Opinions or views expressed in papers published in this journal are those of the author(s)
and do not necessarily reflect those of the Editorial Board, the host university or the policy of
the Scientific Research Support Fund”.

Ll o Aaalall gf 5ol 5 ol 8y95cally (o Sy Yy odis Ll o) e 5y L ladll 028 6 3y LA
.”)\S:\,\\Jb ‘;ALJ\ C_\;.\]\ (‘;G.J é}.l.'ua



279

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.
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PRECISE THREE-CLASS DIABETIC RETINOPATHY
CLASSIFICATION

Samira Ait Kaci Azzou!, Djamila Boukredera? and Sifeddine Baouz®
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ABSTRACT

This study evaluates the effectiveness of Vision Transformers (ViTs) and hybrid deep-learning architectures for
diabetic retinopathy (DR) classification, addressing the challenge of inter-stage ambiguity in traditional
systems. While convolutional neural networks (CNNs) such as ResNet50 excel at localized feature extraction in
retinal images, ViTs offer superior global contextual modeling. To synergize these strengths, we propose a
hybrid architecture integrating ResNet50’s granular feature extraction with ViTs’ global relational reasoning.
Three models are designed and evaluated: (1) an auto-tuned ResNet50, (2) a hyperparameter-optimized ViT
and (3) a hybrid model combining both architectures. To reduce ambiguity between neighboring stages, we
simplified the traditional five-stage classification into three clinically relevant categories: no DR, early DR
(mild/moderate) and advanced DR (severe/proliferative). Trained and validated on the APTOS dataset, the
ResNet50 model achieves precision scores of 93.0% (No DR), 82.0% (Early DR) and 86.0% (Advanced DR).
The standalone ViT demonstrates relative improvements, attaining 98.0%, 91.0% and 93.0%, respectively. The
hybrid model surpasses both, achieving 98.0% average precision across all classes, with gains of +7.0% (early
DR) and +5.0% (advanced DR) over the standalone ViT. The proposed hybrid model achieved an impressive
value of 99.5% on all metrics (accuracy, precision and recall) for identifying DR (binary classification) and a
value of 98.3% for 3-stage classification. It was also concluded that the proposed method achieved better
performance in DR detection and classification compared to conventional CNN and other state-of-the-art
methods. The proposed hybrid approach significantly reduces confusion between classes, demonstrating its
potential for accurate classification of the different stages of DR.

KEYWORDS

Diabetic retinopathy, Vision transformer, Transfer learning, Artificial intelligence.

1. INTRODUCTION

Diabetic retinopathy (DR) is a disease that affects the blood vessels of the retina and can result in
blindness. It is a serious complication in diabetic patients [1]-[2]. DDR is identified by the emergence
of several types of lesions on the retina. The lesions include microaneurysms (MAs), hemorrhages
(HMs) and soft and hard exudates (EXs) [3]. Positive RD is split into several stages. (1)
Microaneurysms indicate the mild phase, (2) Moderate stage reveals a stage where blood vessels begin
to lose their ability to transport, (3) Severe stage includes blood vessel obstructions and (4)
Proliferative stage represent the advanced phases of RD, as shown in Figure 1.

According to the International Diabetes Federation [4], there are around 537 million diabetics, with
this figure anticipated to increase to 643 millions by 2030 and 783 millions by 2045. Furthermore,
most individuals with diabetes remain undiagnosed for DR, because this disease is often asymptomatic
until an advanced stage [5]. In order to diagnose and treat DR, regular retinal screening is essential for
diabetic patients. Classification issues associated with DR can be divided into two categories: binary
classification and five-class classification. Binary classification focuses on distinguishing between sick
and healthy retinas in color fundus images, as established by [6]-[8]. Conversely, five-class
classification methodologies strive to categorize images into five distinct classes: Class 0- no DR,
Class 1- mild DR, Class 2- moderate DR, Class 3- severe DR and Class 4 -proliferative DR [9]-[10],
as resumed in Figure 1. Manual examination of retinal images is carried out using traditional methods
to detect the presence of DR, which requires experienced and professional ophthalmologists. In
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addition, there is a high probability of misdiagnosis during the manual examination, which is time-
consuming and costly.

Automated methods have emerged as viable solutions to enable early identification of Diabetic
Retinopathy (DR) and avoid permanent blindness [11]-[12], overcoming problems related to manual
classification. In this case, machine learning has shown to be the most effective technique to overcome
this problem [13].

Mild NPOR Sever NPDR

&

Healthy

Moderate NPDR POR

Figure 1. Fundus images representing phases of diabetic retinopathy from the Aptos dataset.

Deep-learning (DL) methods, particularly transfer-learning models, like VGG16, InceptionV3 and
ResNet50, have shown considerable promise in analyzing medical images [14-[17]. Convolutional
neural networks (CNNs), which underpin these models, mainly concentrate on local features in the
input images, which restricts their capability to effectively recognize long-range dependencies and
global contextual connections. Vision Transformers (ViTs) have emerged as a revolutionary
substitute, addressing these constraints by utilizing self-attention mechanisms to capture long-range
dependencies and global contextual associations throughout whole images. While transfer learning-
based approaches [18]-[19] have been widely adopted for diabetic-retinopathy (DR) severity
classification, existing methods struggle with diagnostic accuracy in early-stage DR, where subtle
lesion patterns (e.g. microaneurysms, mild hemorrhages) necessitate both fine-grained feature
extraction and global contextual understanding of the retinal image.

To address these challenges and evaluate the effectiveness of ViTs for DR classification, we propose
and compare three architectures, each differing in its feature extraction method:

1) ResNet50-based model: A CNN baseline optimized via Bayesian hyperparameter tuning for
localized feature extraction.

2) ViT-based model:A standalone ViT model tailored for global dependency modeling.

3) Hybrid architecture: A novel fusion of ResNet50 and ViT, combining their complementary
strengths.

We further redefine the traditional five-stage DR grading system into three clinically relevant classes:
no DR, early DR (encompassing mild and moderate stages) and advanced DR (comprising severe and
proliferative stages). This regrouping minimizes confusion between closely related stages, enhancing
classification accuracy. Experiments carried out on the APTOS 2019 dataset [20] demonstrate that the
hybrid architecture achieves 98.0% precision across all classes, reducing misclassification between
adjacent stages by 15%—-20% compared to standalone models. ViTs alone outperform ResNet50, with
relative improvements of 11.0% (early DR) and 8.1% (advanced DR) in precision. The hybrid
architecture significantly enhances early-stage detection of DR, leading to better clinical results.

To sum up, our contributions are as follows:

1) Three novel architectures for DR detection and classification:

o AtRD/AtR3C: Auto-tuned ResNet50 models with Bayesian hyper-parameter optimization,
achieving 99.22% detection accuracy and 94.26% 3-class severity-classification accuracy.

e ViRD/ViR3C: Vision Transformer (ViT) models leveraging global attention, attaining 97.73%
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detection accuracy and 92.97% classification accuracy.

e Revi-RD/Revi-3C: A hybrid CNN-Transformer architecture combining both precedent
architectures. It achieves 99.55% detection accuracy and 98.26% 3-class severity-
classification accuracy.

2) Redefined DR grading into (0: no DR, 1: early DR, 2: advanced DR), reducing ambiguity in
traditional 5-stage grading between neighbor classes.

3) State-of-the-Art Performance:

e The proposed models are validated on the APTOS 2019 dataset and compared against one
another, highlighting the effectiveness of ViTs and the complementary advantages of the
CNN-VIiT hybrid architecture.

e The earliest stages were detected with greater accuracy, especially in the hybrid model.

o We effectively optimized each model’s performance as compared to previous methodologies.
With the hybrid approach, we greatly outperformed previous results.

The rest of the article is organized as follows: Section 2 reviews relevant research conducted on the
DR classification. Section 3 details the methodology, including data pre-processing, the proposed
approach and performance measures. The results are presented and analyzed in Section 4. Finally,
Section 5 presents the key conclusions and recommendations for future works.

2. LITERATURE REVIEW

Early identification of Diabetic Retinopathy (DR) remains a significant challenge. Researchers have
investigated several techniques to address this issue. Classifying DR from retinal images falls into two
main categories. Binary classification determines whether or not DR exists, whereas multi-class
classification indicates the disease’s specific stage. This latter method needs the model to differentiate
minor visual variations between DR stages, making it a more difficult task. Several studies have
investigated both binary and 5-class classification of DR using machine-learning (ML) [13], [21]-[22],
deep-learning (DL) [14], [23]-[25], transfer-learning techniques (TL) [8], [26]-[28] and more recently
vision-transformer methods [29]-[30]. However, research into the classification of DR into three
classes remains limited. Public retinal-image datasets, such as Idrid, EyePACS, Messidor and Aptos,
have been instrumental in these studies for detecting and diagnosing DR. This work will specifically
focus on recent advancements in transfer learning (TL) and Vision Transformer (ViT) applied to DR
detection and classification on the Aptos dataset.

2.1 Transfer Learning in DR Classification

Dekhil et al. [31] proposed a customized CNN based on a transfer-learning technique for a 3-class
classification task. It consists of a pre-processing stage, VGG16 and fully connected layers. To adapt
the pre-trained model, they retrained all the layers, achieving a validation accuracy of 77%. In their
study [32], Rao et al. evaluated five CNN classifiers; namely, Inception-V3, VGGI19, VGG16,
Resnet50 and InceptionResNetV2. Resnet50 achieved the highest accuracy (95.59%) for a binary
classification. InceptionResNetV2 excelled at multi-class classification. It reached an accuracy of
88.14% for classifying DR into three stages and 85% accuracy for a five-stage classification. Gangwar
and Rav [33] proposed an hybrid model incorporating a custom convolutional neural network (CNN)
block added to the pre-trained Inception-ResNet-v2. For training these hybrid models, they utilized
two Kaggle datasets: Messidor-1 and the APTOS 2019. The achieved test accuracy was 72.33% for
Messidor-1 and 82.18% for the APTOS 2019 dataset, respectively. Islam et al. [34] proposed an
architecture based on supervised contrastive learning, utilizing the pre-trained Xception model, the
APTOS dataset and Messidor-2. They achieved an accuracy of 98.36% for binary classification and
84.364% for multi-class classification. Their study revealed an improvement in performance compared
to previous architectures, including ResNet50, Inception and other earlier models. Oulhadj et al. [35]
proposed an automatic method based on deep learning. It consists of two main steps; the first one is
the pre-processing. The second one is the classification. Four CNN models (Densenet-121, Xception,
Inception-v3 and Resnet50) are employed to detect the DR-severity stage. The authors implemented a
voting mechanism using the APTOS 2019 dataset. They achieved a final accuracy of 85.28%. Mondal
et al. [36] also suggested a deep-learning strategy for detecting diabetic retinopathy that combines the
DenseNet101 and ResNet models. Experiments were carried out using the APTOS19 and
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DIARETDBI datasets. Their approach produced an accuracy of 86.08% for five-class classification
and 96.98% for binary classification. Many CNN-based techniques have proved their ability to extract
subtle image features surpassing traditional methods. While CNNs excel at extracting discriminative
local features, crucial for recognizing subtle image characteristics, they struggle to process long-range
information due to their inherent local receptive field mechanism. This limitation hinders their ability
to fully understand the complex patterns associated with diabetic retinopathy. To address CNNs’
difficulties in collecting long-range dependencies within retinal images, Vision Transformers (ViTs)
have emerged as a potential solution.

2.2 ViT in DR Classification

Dosovitskiy et al. [37] introduced the Vision Transformer (ViT) for image classification, motivated by
the effectiveness of transformers in natural-language processing [38]. ViTs have surpassed traditional
convolutional neural networks in a variety of computer-vision tasks by considering images as
sequences of patches and exploiting self-attention. Despite the promising potential of ViTs, their
application in DR classification remains relatively unexplored and studies specifically focused on DR
classification are still limited. Recently, the remarkable representation capabilities of transformers
received increasing interest in medical-image analysis [39]-[40]. For DR classification, Wu et al. [41]
employed ViTs to prove their superior performance compared to CNNs. Additionally, Mohan et al.
[42] proved that dividing the fundus images into non-overlapping portions maintains information
about the position of each patch. A different dataset was used to test the effectiveness of DR
classification. For example, Nazih et al. [43] provided a ViT-based deep-learning pipeline for
recognizing the severity stages of DR. ViT requires big datasets for successful learning; therefore, they
utilized the FGADR (fine-grained annotated diabetic retinopathy) dataset, which comprises 1,842
fundus images, to build their model. Experimental results of their ViT model using F1-score, accuracy,
and recall metrics were 82.5%, 82.5% and 82.5%, respectively. In [29], Gu et al. classified DR using
ViT on the DDR dataset. The performances of the model using specificity, sensitivity and accuracy
metrics were 82.45%, 81.40% and 82.35%, respectively. Khan et al. [44] presented an automated
approach for DR-severity classification using a fine-tuned Compact Convolutional Transformer (CCT)
model, which combines convolutional layers with transformer mechanisms. The model was trained on
a huge dataset created by combining five datasets (Aptos, Idrid, Messidor2, DDR and Kaagel Dr
dataset). Different pre-processing and augmentation techniques were used to improve image quality.
The model achieved an accuracy of 84.5%, outperforming both the ViT (81.56%) and the shifted
window transformer (Swin) (82.23%). Different ViT architectures are tested in the study conducted by
Karkera et al. [45]. Four pre-trained image transformers: ViT, DeiT, CaiT and BEiT, were trained on
a dataset called DBtr. The researchers then combined all four models to predict the severity stages of
DR. The combined approach achieved an accuracy of 94.63% outperforming the results obtained by
each of the individual models. Recently, Oulhadj et al. [46], proposed a hybrid architecture combining
a fine-tuning vision transformer and a capsule network for automatic prediction of the severity level of
diabetic retinopathy. The approach was evaluated using four datasets, including APTOS, Messidor-2,
DDR and EyePACS and attained the best accuracy scores on the Aptos dataset: 88.18%. Lian and Liu
in [47] combined a convolutional neural network (Inception-Resnet-v2) with a vision transformer. The
model attained an accuracy of 93.2% using Messidor] for binary classification and an accuracy of
89.1% using the Aptos dataset for 5-stage classification. Yang et al. [48] have developed a
Transformer model based on multiple instance learning (MIL) to classify diabetic retinopathy (DR).
Their model divides high-resolution retinal pictures into 224 x 224 pixel patches, which are then
processed by a Vision Transformer (ViT) to extract local characteristics. A Global Instance
Computing Block (GICB) then combines information from many patches, improving the model’s
capacity to understand global relationships within the image. The model obtained 93.2% accuracy for
binary classification on the Messidor] dataset and 85.65% accuracy for 5- stage classification on the
Aptos dataset, surpassing the Mil-ViT proposed by Yu et al. [49]. Dihin et al. [50] used a combination
of Wavelet and multi-Wavelet transforms with the Swin-transformer model. The study highlights the
innovative use of the multi-Wavelet transform for feature extraction, integrated into the Swin
transformer. The model obtained 96% accuracy for binary classification on the Kaggle APTOS 2019
dataset. The Swin-T model with multi-Wavelet transformation achieved a 98% recall and 96% F1-
score for binary classification. However, the model’s accuracy decreased in multi-class classification
(82%). Approaches based solely on CNNs or ViTs struggle to combine the detection of local lesions
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with the analysis of the global anatomical context, which accentuates the ambiguity between classes.
To demonstrate the efficacy of hybridization in overcoming these limitations, this study proposes a
hybrid CNN-VIT architecture that combines fine feature extraction and contextual modeling. Further,
we redefine DR staging into three-tier clinically actionable categories - no DR, early DR and advanced
DR - to improve the accuracy of classification, which remains under-explored in the literature.

3. METHODOLOGY

This section presents three deep-learning architectures for the classification of diabetic retinopathy
(DR). Each model was trained for binary detection (0: No DR, 1: DR) and three-stage severity
classification (0: No DR, 1: Early DR, 2: Advanced DR). The first proposed architecture employs
transfer learning with ResNet-50 for feature extraction. AtRD and AtR3C, respectively, handle binary
and 3-class classification. The second proposed architecture uses ViTs for feature extraction. ViRD
and ViR3C deal with binary and 3-class classification, respectively. Finally, we propose a hybrid
architectures, ReVi-RD and ReVi-3C, for detection and 3-class classification, respectively, combining
the strengths of both previous models. As illustrated in Figure 2, each model follows a similar pipeline
composed of several processes:

e Pre-processing process that balances the dataset and enhances the quality of input images.
Feature extraction is performed using the chosen architecturen (Rsnet50 and ViT).

e A multi-layer neural network classifies the image into two or 3-class classification. In the
following part, we give more details for each of these processes.

3.1 Datset Description

A Kaggle dataset titled APTOS 2019 Blindness Detection (APTOS stands for Asia Pacific Tele
Ophthalmology Society) was used to train and evaluate the models [20]. This dataset was collected by
Aravind Eye Hospital in rural areas of India with the objective of developing high-performance tools
for the automated diagnosis of diabetic retinopathy and enhancing the hospital’s ability to identify
potential patients. The dataset consists of 3,662 retinal images, categorized into five stages of diabetic
retinopathy (DR)(see Figure 3b): no DR, mild DR, moderate DR, severe DR and proliferative DR,
which are annotated with values ranging from O to 4. However, one of the main limitations of this
dataset is the significant class imbalance, particularly for the severe NPDR category, which contains
only 193 images. Additionally, the images vary in size and exhibit considerable variations due to their
collection in a real-world multi-center environment. These variations arise from differences in camera
settings across centers and the presence of noise, both in the data and in the annotations.

S ~F NLEL
~—
Aptos

J-::-m

Dataset
P N 2
ViRD AtRD © Reviko — H
ViR3C AtR3C  ReVi3C
Accuracy Precision Recall F1-Score M

Performance Metrics

Figure 2. Proposed-approach pipeline from data pre-processing to class prediction.
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3.2 Dataset Preparation

Our goal is to develop a model that can detect the existence of DR and classify its severity. As shown
in Figure 3a and Figure 3b, the classes were grouped and re-annotated according to the classification
task (binary or three-class classification, respectively). However, achieving an accurate model
performance necessitates overcoming the persistent problem of data imbalance. For DR detection, we
use a binary classification (No DR, DR). This grouping successfully balances the dataset, as shown in
Figure 3a.

Ho W12 W3 W4 WO W12 W3 W4

Images

4 1,805 %
H E
o] 1 2 3 4 0 1 2
0 Classes 1 Classes Classes
(a) Binary Aptos dataset (b) Aptos dataset before augmentation (c) 3-class Aptos dataset

Figure 3. Aptos dataset before and after aggregation and augmentation.

However, for three-stage classification, the problem of data imbalance persists. To address this issue,
we use data-augmentation techniques that create additional images.

3.3 Data Augmentation

We employ data-augmentation techniques to expand the database and provide additional images of the
different DR stages as illustrated in Figure 3c. Each original image underwent multiple augmentation
transformations, resulting in five augmented images. These transformations include distortions,
horizontal and vertical flips, as well as brightness adjustments. The purpose is twofold: expanding the
dataset’s variability while meticulously preserving the essential DR characteristics. This enables
machine-learning models to learn and identify retinopathy features regardless of the image’s position
or lighting conditions. Figure 4 shows a sub-set of the generated images by the augmentation process.

3.4 Image Pre-processing

Due to their many sources, the fundus images in the dataset show significant heterogeneity in terms of
size, noise levels and distortion. These variations present significant problems for accurate analysis
and reliable lesion detection. To overcome these obstacles and improve the quality of feature
extraction, we propose a multi-stage pre-processing process (see Figure 5). The different stages of pre-
processing that we have carried out are:

1) The initial step involves resizing all images to a uniform size of 224x224 pixels. This
standardization facilitates subsequent analyses and the extraction of characteristics.

2) Each resized color image was converted into gray scale, followed by convolution using a Gaussian
blur filter, as illustrated in Figure 5b [51].This step is designed to reduce noise and accentuate
features, in particular by improving the visibility of exudate, red lesions and blood vessels.

3) A circular-cropping [52] technique was used to remove non-informative black pixels (background
or noise) and retain only the regions of interest, as shown in Figure 5c.

4) Finally, normalization was performed on the pre-processed images to ensure consistent scaling of
all pixel values, thereby enhancing the efficiency and stability of model training. This data
normalization process aims to standardize the distribution of the images.

3.5 Fine Tuning

Pre-trained models, such as ResNet50 and Vision Transformers (ViTs), require fine-tuning to meet the
specific demands of DR detection and classification. For proposed models—AtRD/AtR3C (ResNet50-
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(a) Original (b) Horizontal Flip

(d) Brightness (e) Grid Distortion
Figure 4. Data-augmentation illustration.

-

(a) Original (b) Gaussian Blur (c) Circle Crop

Figure 5. Pre-processing phases.

based) and ViRD/ViR3C (ViT-based), we employed a two-phase optimization. First, the pre-trained
architectures were fine-tuned on the APTOS dataset, enabling them to capture discriminative retinal
features, such as microaneurysms, hemorrhages and exudates, by adapting their weights to the
morphological patterns of DR. Second, we applied Bayesian optimization to systematically refine
critical hyperparameters, including image resolution, batch size and learning rate, ensuring robust
classification performance across DR-severity classes while minimizing overfitting. This dual-phase
strategy optimizes both the models’ feature-extraction capabilities and training dynamics.

Initialization of the Training of the
hyperparameter proposed model .
space R

Auto-Adjustment of
hyperparameters
using the Bayesian
Optimization

Best

hyperparameters
selection.

Algorithm (BOA).

Figure 6. Auto-hyperparameter-tuning process.
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As shown in Figure 6, the fine-tuning process using Bayesian optimization aims to efficiently
identify the optimal hyperparameter configuration for our architectures based on transfer learning.
For efficient optimization, the network is trained with a limited number of epochs while exploring
various hyperparameter combinations within a pre-defined range. This approach prioritizes
identifying the hyperparameter set that yields the best score on the validation of metric set.

3.6 DR C(lassification Using AtRD and AtR3C: Approach-based Transfer
Learning

Transfer learning, unlike training from scratch, aims to transfer knowledge that has been learned from
another data set to a target problem. In this study, we adopted ResNet50, a convolutional neural
network pre-trained on the ImageNet dataset, as the backbone for feature extraction.

ResNet-50 is a specific variant of Residual Neural Networks (ResNets), developed by Kaiming He et
al. in 2015 [53] for image recognition. It consists of 50 layers structured into convolutional layers and
identity blocks. The key innovation of ResNet-50 lies in the use of residual connections, also known as
skip connections (see Figure 7), which enable the network to bypass certain layers. This approach
facilitates the training of very deep networks by mitigating the vanishing-gradient problem. ResNet-50
adopts an optimized architecture in which each residual block contains three convolutional layers
(1x1, 3x3 and 1x1 convolutions) instead of the two used in earlier ResNet variants. The 1x1
convolutions serve to reduce and expand dimensionality, improving computational efficiency, while
the 3%3 convolution captures spatial features. Several factors contribute to the model’s success: its
large receptive fields, which capture more contextual information for each pixel; the separation
between localization and classification stages; its computational efficiency at deeper layers; and its
effective encoding schemes that rely on low-complexity arithmetic operations.
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Figure 7. Resnet50 architecture [53].

While ResNet50 excels in general image classification, its final fully connected layer—originally
configured for 1,000-class ImageNet classification—was unsuitable for our specialized binary and
three-class DR classifications. In response, we designed the AtRD and AtR3C architectures, which
retain the feature-extraction capabilities of ResNet50 while incorporating domain-specific adaptations.
As illustrated in Figure 8, we replaced the final classification layer of ResNet50 with a customized
multi-layer perceptron (MLP) comprising five additional layers (Flatten, Dense, Dropout, Dense,
Dense). The final dense layer contains two nodes for binary classification or three nodes for 3-class
classification.

3.7 DR Classification Using ViRD and ViR3C: Approach-based ViT

Taking advantage of ViT’s ability to model long-range dependencies, we propose ViRD and ViR3C,
two ViT-based architectures, for the detection and classification of DR. Figures 9 illustrates the
proposed architecture.

The important components of the transformer are multi-head self-attention (MSA) and multi-layer
perception (MLP). Multi-head attention in the Figure 10 is the core part of the Transformer. The ViT
model considers an image submitted as a series of image patches.

Here are the key steps in its operation:
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Figure 9. Proposed architecture-based ViT: ViRD and ViR3C.

Image Splitting into Patches: After pre-processing and resizing to 224*224, input picture I is divided
into a series of flattened patches Xip (for i = 1, 2, ..., np), each with a size of p x p x C, C=3
corresponding to the three RGB channels in the image [; p = 16, resulting in np =(224 x 224/16*16)=
196 patches. Each patch Xip is flattened and transformed into a 1D vector X, of dimension pxpx3=
162x3=768 using linear embedding.

Xo = [xq, %3, ..., x] € R196X(768) 0

Linear Projection of Patches (Patch Embedding): Each flattened patch is projected into a space of
dimension D using a learnable matrix E € R(76®*P_ For the i-th patch x;, the embedding is given by
zi = xi.E. E represents the projection weight matrix, with dimensions 768XD, where 768 is the
flattened patch dimension and D is the dimension of the projection space. D defines the dimension of
the transformer’s input tokens, which serve as the basis for self-attention mechanisms. In basic ViTs,
D is commonly set to 768.

ZO = [Z]JZZl ...,an] € [R196XD (2)
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Class Token and Positional Embedding Initialization: As illustrated in Figure 9, the positional
information Pos € R196*P added into each embedded patch, allowing ViT to better understand the
spatial relationships within the input data. The ViT model also incorporates a classification token
(z[cls]) inside the embedded patches. This is a randomly initialized, learnable parameter used to
aggregate global information for classification. It essentially acts as a decoder.

The input to the Transformer encoder is constructed as:

Z = [z[cls], zg] € R(196+1xD) (3)
After adding positional encoding, the final input to the encoder becomes:
Zs = Z + POS € R197*D) 4)

The resulting embedding matrix Z;, enriched with both visual and positional information, is then fed
into a Transformer encoder stack.

Transformer Encoders: The Transformer Encoder is composed of two main layers: Multi-head Self-
Attention (MSA) and Multi-layer Perceptron (MLP). The resulting embedding matrix, Zr, is then fed
into a stack of six Transformer encoder blocks. Each block consists of a multi-head self-attention
(MSA) module with eight attention heads, followed by a multi-layer perceptron (MLP). Layer
normalization and residual connections are applied before and after each sub-layer.
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Figure 10. MSA process: (a) MSA process with several attention layers; (b) Scaled dot-product
attention [38].

The multi-head attention mechanism (MSA) is a form of self-attention that allows the model to
concentrate on information from different sub-spaces of representation at various positions. To
calculate attention scores, MSA uses several scaled dot-product attention mechanisms, as shown in
Figure 10. The complete MSA operation is summarized as:

MSA(Q,K,V) = Concat(hy, hy, ..., hy). W, %)

where Concat denotes the concatenation of all attention-head outputs; » is the number of attention
heads. 4; is the output of the i-th self-attention head. The concatenated output is then projected back to
the original embedding space using a final weight matrix W.
The output of each attention head /; is computed as:

Qik{

h; = Attention(Q,K,V) = softmax(Tk)Vi (6)

A softmax function is applied to derive the attention weights for the value matrices. This softmax
operation normalizes the resulting scores, ensuring that they are positive and sum to unity. We then
multiply the attention weights with value matrix (V) to get the self-attention output #4;.

The query Q,, key K; and value V; vectors for each head (i € {1, ..., n}) are obtained by multiplying the
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input embedding matrix Zy by three distinct weight matrices, effectively projecting the input
embeddings into different representation sub-spaces for each attention head.

Qi = Z;W;° K, = Z;WK Vi = Z,W/

The outputs from all the heads are subsequently merged and forwarded to an MLP layer for further
processing. Each MLP and MSA operation is preceded and followed by residual blocks and
normalization layers to guarantee stability and model optimization. MLP comprises two fully-
connected linear layers and between these layers, a non-linear activation function is applied. This
function introduces non-linearity, allowing the model to learn more intricate patterns in the data. A
common choice for this activation function in ViT is the Gaussian Error Linear Unit (GELU). GELU
has a smoother, more continuous shape than the ReLU function, which can make it more effective at
learning complex patterns in the data [38].

(7

We introduce two dropout layers to regularize the model and prevent overfitting. Finally, we extract
the [Cls] token from the Transformer Encoder output and pass it through a classification head to obtain
class predictions y. In order to classify DR into 2 or 3 severity stages, we use a head classification
output layer composed of 2 or 3 neurons for ViRD and ViR3C, respectively. We applied a softmax
function to get a probability distribution to classify fundus images over the two or three severity stages
of DR (see Figure 9).

GeLU = 0.5.x + tanh [\/% (x + 0.0447x?)

y = softmax(z|[Cls]) (®)
3.8 DR Classification Using ReVi-RD and ReVi-3C: A Novel Hybrid Approach

To enhance the precision of DR classification, we suggest a novel hybrid architecture that merges the
benefits of Vision Transformers (ViTs) and Resnet50. Retinal-image features can be captured locally
and globally by ReVi-RD and ReVi-3C models by integrating pre-trained ViRD/ViR3C with pre-
trained AtRD/AtR3C models.

The hybrid approach is illustrated in Figurel1. To construct this hybrid model, we use the weights of
the pre-trained AtRD or AtR3C models to extract local features. We remove the MLP (final layers) of
these models and replace it with the pre-trained ViRD or ViR3C, as described in Figure 12. In the
following part, we describe our hybrid approach, illustrated in Figurell and Figure 12, from input
images to final classification.

AtRD/AtR3C == Resnet50

Output

Dense 1024

enpedangs | > %4 |
| Class Token |—>| Concatenate | |

e —

Removed layers
Encoder

Dropout 0,3

Reshape |

—
Flaten |
I
|
|

ReVi-RD ReVi-3C

Figure 11. Hybrid architectures: ReVi-RD and ReVi-3C.
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e Input: an RGB image of 224%224 pixels, represented by a shape tensor [224, 224, 3], which isa
standard input size for the ResNet50 model, is introduced into the pre-trained model.

e After pre-processing, AtrD/Atr3C are used to extract local spatial features from input images of
size 224x224x3. The final classification layers of AtrD/Atr3C are removed and replaced with a
transformer-based head.

The output from an intermediate layer (specifically, the 7™ layer from the end) of the modified
ResNet50 model is extracted. The resulting feature map is 7x7x768 in size. This feature map
retains high-dimensional representations of localized patterns while compressing spatial
resolution to 7x7 grids, each with 768 channels.

e Reshaping for Vision Transformer (ViT): The resulting feature map of dimensions 7x7x768 is
reshaped into a sequence of flattened patches, transforming the 7x7x768 feature map into a
sequence of 49 tokens, each of 768 dimensions [49, 768]. Here, the 7x7 spatial grid is
reinterpreted as 49 non-overlapping "patches", each represented as a 768-dimensional vector.
This step adapts the output into a format compatible with transformer-based processing.

e Position Embedding and Class Token: To inject spatial information into the transformer, we add
a learnable position embedding to the 49 patches, preserving their spatial relationships. Then, we
concatenate a learnable [CLS] token (classification token) to the sequence, increasing its length
to 50 ([50, 768]). A final sequence of length 50 is then processed by a Transformer Encoder.

e Transformer Encoder: the sequence of length 50 is fed through a series of 6 Transformer encoder
blocks. Each block comprises a multi-head self-attention mechanism with 8 attention heads,
followed by an MLP that includes layer normalization and residual connections.

e (lassification Head: After the Transformer encoder, we performed a layer normalization and
extracted the output corresponding to the class token. Then, we projected the final representation
into the class space (2 for ReVi-RD or 3 For ReVi-3C) via a dense layer, yielding raw
classification scores, which are then transformed into class probabilities using a softmax function.

4. EXPERIMENTAL RESULTS

In this section, a detailed discussion of the experimental results obtained is carried out to prove the
effectiveness of the Vits and hybrid models proposed for the classification of DR. The experiment was
conducted using the Python environment on a server equipped with an Intel(R) Xeon(R) CPU @
2.20GHz processor, 13 GB of RAM and a GPU P100 16GB provided by Kaggle platform. We use the
Aptos dataset to train and test our architectures. To prevent data leakage, the dataset was explicitly
split into two sub-sets with the ratio of 80:20 to make the training and testing datasets. Additionally, to
address class imbalance, data augmentation was applied only to the training set, ensuring that
artificially generated samples did not leak into validation or test sets.
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The model underwent multiple independent trials, each with a unique random seed for dataset
shuffling and partitioning. This approach introduced variability in data order and distribution across
trials, enabling a thorough assessment of the model’s stability.

For the ResNet50-based model, we used the Adam optimizer, while the ViT-based model utilized the
AdamW optimizer. We employed categorical cross-entropy as the loss function, suiatable for our
multi- class classification task with softmax activation. The learning rate was automatically selected
through hyperparameter tuning and the optimal value obtained was 0.0001 for model based on
Resnet50 and 0.00002 for model based on ViT. This value was fixed during training to ensure stable
convergence.

4.1 Evaluation Metrics

To assess the detection performance of the proposed models, we use the most commonly used metrics:
accuracy, precision, specificity or recall (sensitivity) and F1 score. Their mathematical expressions are
given in Table 1. TP, TN, FP and FN are true positives, true negatives, false positives and false
negatives, respectively.

4.2 Obtained Hyperparameters after Auto-tunning

After image pre-processing, we fine-tuned the architectures to get the best hyperparameters which are
presented in Table 2 for AtRD and AtR3C, and in Table 3 for ViRD and ViR3C.

Table 1. Performance metrics.

Metrics Formula
Accuracy (Acc) Acc = TP+TN
TP+ TN+ FP+FN
Precision (Positive Predictive Value) Precision = TP
recision = —————
T$P+ FP
Recall (Sensitivity)
Recall = ————
ccall = 7o 77N
F1-score 2 X Precision X Recall
F1 — score =

Precision + Recall
TN

Specificity (True Negative Rate) o
Specificity = ————
TN + FP

Table 2. Best hyperparameters obtained for AtRD and AtR3C.

Hyperparameter Value
Image size 224x224
Batch size 32
Warmup epochs 5
Warmup learning rate 0.00001
Epochs 50
Learning rate 0.0001
Weight decay 0.02
Early stopping patience 15
Reduced LR patience 5
Regularizer 0.02

All the proposed architectures are trained using their obtained hyperparameters.

Their performance based on test data was evaluated using the five metrics: accuracy, precision, recall
(sensitivity), F1-score and specificity.

4.3 Diabetic Retinopathy Detection Performance

As the first experiment, we compare the performance of AtRD, ViRD and ReVi-RD to evaluate their
effectiveness in DR detection and assess the impact of the features extracted by each model. The
results reported in Table 4 summarize the evaluation metrics obtained for detecting DR. We can notice
that AtRD and ReViRD architectures demonstrate exceptional performance, exceeding 99% across all
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metrics (accuracy, precision, recall, F1-score), showcasing their robustness in DR detection. The
exceptional performance of AtRD can be attributed to the efficient tuning of hyperparameters. The
ViRD model achieves slightly lower, but still impressive results, surpassing 97.7% across all metrics.
This disparity arises from the inherent data requirements of ViTs, which typically demand larger
datasets to fully leverage their global attention mechanisms compared to transfer-learning models [37].
The hybrid ReViRD model outperforms both standalone architectures , underscoring the synergistic
benefits of combining ResNet50’s localized feature extraction with ViTs’ ability to model long-range
dependencies.

The detection performance of the AtRD, ViRD and hybrid ReVi-RD models is compared using their
confusion matrices (see Figure 13) and the evaluation metrics summarized in Table 5. The AtRD
model achieves high sensitivity in retinopathy detection (99.2% true positive rate), but exhibits a
specificity of 96.81%, corresponding to a 3.2% false positive rate in healthy-patient classification.
While this underscores its efficacy in identifying pathological cases, the elevated misdiagnosis rate for
normal patients highlights limitations in distinguishing subtle non-pathological variations. In contrast,
ViRD demonstrates balanced specificity (98.0% overall), with a slightly reduced 2.7% false negative
rate for retinopathy cases. Although with an area under curve (AUC) of 99.1% (see Figure 14a), the
ViT model is excellent at capturing global context through self-attention; it sometimes misses subtle
local features that are critical for identifying retinopathy. This reliance on global context means that, in
cases where pathological signs are very localized or subtle, the model might not sufficiently
distinguish them from normal variations.

Table 3. Best hyperparameters obtained for the ViRD and Vi3C.

Parameter Value

Image size 224x224
Batch size 16x16
Train batch size 32
Test batch size 64
Warmup steps 500
Warmup learning rate 0.00001
Epochs 20
Learning rate 0.00002
Weight decay 0.01

Table 4. Performance comparison of proposed models for DR detection (%).

Metric AtRD ViRD ReVi-RD
Accuracy (%) 99.22 97.73 99.55
Precision (%) 99.66 97.72 99.51
Recall (%) 99.23 97.73 99.58
F1-Score (%) 99.40 97.73 99.54
Specificity(Average) (%) 98.01 98.00 99.50

The hybrid ReVi-RD architecture addresses these limitations by synergistically combining CNN-
driven local feature extraction (AtRD) and ViT-based global dependency modeling (ViRD). This
integration achieves near-perfect classification: a 1.0% false negative rate for retinopathy and 0.0%
false positives rate for healthy cases (Table 4). With a specificity of 99.50%, ReVi-RD minimizes
unnecessary diagnoses while maintaining exceptional sensitivity, outperforming both AtRD (98.01%)
and ViRD (98.00%) in robustness. Class-specific metrics (Table 5) further elucidate these distinctions.
AtRD shows moderate precision-recall harmonization (F1-scores: 97.7% for both classes), constrained
by CNN architectures’ focus on localized textures rather than on lesion correlations. ViRD improves
balance, achieving 98.00% F1-scores for both classes via global attention, yet remains vulnerable to
localized oversights. ReVi-RD’s hybrid design transcends these trade-offs, leveraging CNN-localized
granularity and ViT-global context to optimize feature representation. This dual capability enables
superior accuracy in diabetic-retinopathy classification, particularly for cases requiring simultaneous
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fine-grained and global analysis.

The hybrid ReVi-RD resolves residual trade-offs, achieving near-perfect metrics (100% F1-score for
both classes, 99—100% precision/recall and 99.9% AUC, as shown in Figure 15a). Its dominance stems
from synergizing AtRD localized feature extraction with ViRD global-context modeling, effectively
eliminating misclassifications (only 0.85% of non-healthy cases mislabeled). For clinical deployment,
ViRD’s standalone performance—particularly its precision gains for critical non-healthy cases—
validates ViTs as an important tool for severity staging, while ReVi-RD’s hybrid architecture sets a
new benchmark for applications requiring ultra-reliable classification. These results emphasize the
necessity of integrating CNNs and ViTs in medical imaging, where both local granularity and global
coherence are essential for accurate, interpretable diagnoses.

Table 5. Class-wise performance of proposed models for DR detection (%).

AtRD ViRD ReVi-RD
Metrics Class 0 Class 1 Class 0 Class1 Class 0 Class1
Precision (%) 97.60 97.90 97.00 98.00 99.00 100.00
Recall (%) 97.90 97.60 98.00 97.00 100.00 99.00
Fl1-score (%) 97.70 97.70 98.00 98.00 100.00 100.00
Specificity (%) 99.21 96.81 98.00 98.00 100.00 99.00

True label
True label

True label

0 1

Predicted label Predicted label Predicted label
(a) (b) (c)
Figure 13. The confusion matrices: (a) AtRD, (b) ViRD and (c) ReVi-RD.
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Figure 14. ROC curve for (a) ViRD and (b) ViR3C.

4.4 Diabetic Retinopathy Classification Performance

In the following experiment, we test the generalization capacity of the suggested models for the
difficult task of classifying data into three different stages of severity in order to evaluate its potential.

Table 6 summarizes the evaluation metrics for staging RD into 3 classes. AtR3C and ViR3C offers a
well-balanced performance across precision, recall and F1-score, as well as about 94% and 93% across
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all metrics, respectively. ReVi-3C produced remarkable results, achieving an average of nearly 98%
across all metrics and classes, including an area under the curve (AUC) of 99% per class, as shown in
Figure 15b. This indicates that the model’s predictions are balanced and reliable across the different
performance measures.
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Figure 15. ROC curve for (a) ReVi-RD and (b) ReVi-3C.

Table 6. Performance evaluation of proposed models for 3-class DR classification (%).

Metric AtR3C ViR3C ReVi-3C
Accuracy (%) 94.26 92.97 98.26
Precision (%) 94.41 93.77 98.43
Recall (%) 94.09 93.22 98.21
F1-score (%) 94.24 93.46 98.32
Specificity (Average) (%) 93.70 96.60 98.67

In order to evaluate the effectiveness of the suggested models (AtR3C, ViR3C and ReVi-3C), we
examined the confusion matrices (see Figure 16), to provide details on the distribution of errors and
classification accuracy across the three severity classes. As illustrated in Table 7, AtR3C model excels
at identifying class 0 cases, achieving a precision of 97%, which means that nearly all predictions for
this category are accurate. However, a specificity of 91.40% indicates that the model encounters
difficulties with class 1. Specifically, 13% of cases are mislabeled as class 2 and 7% are incorrectly
classified as class 0. Similarly, 15% of class 2 cases are mistakenly assigned to class 1. These patterns
reveal a critical limitation: the model struggles to differentiate between adjacent severity levels,
particularly distinguishing class 1 (moderate severity) from class 2 (high severity). This confusion
suggests that AtR3C may lack the nuance needed to separate closely related categories, a gap that
could impact its reliability in scenarios requiring precise severity staging. On the other hand, the ROC-
curve in Figure 14b corresponding to class 0 lies very close to the top-left corner of the plot. This
indicates that ViR3C is very accurate at detecting patients without DR.

The model demonstrated exceptional specificity of 99.5% for class 0 (healthy patients), minimizing
false positives (0.5%) and thus avoiding misdiagnosis in unaffected individuals, which is essential for
reliable screening. For class 1, specificity reached 92.8%, with 7.2% false positives, reflecting
moderate difficulty in isolating this intermediate category. In contrast, class 2 (severe stage) has a high
specificity of 97.5%, drastically limiting critical over-diagnosis and avoiding unwarranted invasive
treatment.

For unhealthy cases, early-stage DR (class 1) is correctly identified in 94% of instances, though a 1%
misclassification as healthy poses a risk of missed diagnoses, while advanced-stage DR (class 2)
shows 88% accuracy, with 12% confused as early-stage DR, but none misclassified as healthy,
highlighting robust performance for severe cases, but some overlap in staging severity. These results
highlight the model’s potential for accurately diagnosing early-stage DR and shows that the
misclassification error mainly concerns stages 1 and 2.
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Compared to AtR3C, ViR3C enhances the detection of healthy cases by reducing the misclassification
rate of healthy individuals as non-healthy from 3% with AtR3C to 2% with ViR3C. This improvement
highlights the power of ViTs in better detecting primitives across the entire set of images. We can
decrease the errors by combining the strengths of the two architectures.

The hybrid ReVi-3C model dramatically outperforms its predecessors, AtR3C and ViR3C, achieving
near-flawless classification across all severity levels: 99% precision for class 0 and class 1 and 97%
for class 2, marking a substantial leap in accuracy. Misclassification errors are reduced to negligible
levels, with only 3% of class 2 cases mistakenly labeled as class 1, while confusion between class 0
and class 1 is virtually eliminated. These results highlight the critical role of hybrid architectures in
addressing multi-class challenges, where subtle inter-class differences demand precise discrimination.
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Figure 16. The confusion matrix: (a) AtR3C, (b) ViR3C and (c) ReVi-3C.

Table 7. Class-wise performance of proposed models for 3-class DR classification (%).

AtR3C ViR3C REVi-3C
Metrics Class0 Class1 Class2 | Class0 Class1 Class2 | Class0 Class1  Class 2
Precision (%) 98.00 82.00 86.00 98.00 91.00 93.00 100.00 98.00 98.00
Recall (%) 97.00 80.00 85.00 98.00 94.00 88.00 99.00 99.00 97.00

F1-score (%) 95.00 81.00 85.00 98.00 92.00 90.00 100.00 98.00 97.00
Specificity (%) 96.50 91.40 93.20 99.5 92.80 97.50 100.00 97.00 99.00

4.5 Results’ Conclusion

The results obtained and their subsequent interpretation demonstrate that the proposed hybrid
architectures (Revi-RD and Revi-3c) achieved remarkably high performance in both sensitivity and
specificity. This success can be attributed to the effective exploitation of the complementary strengths
of local feature extraction (by Resnet50) and global modeling of spatial dependencies (by ViTs).

5. COMPARISON OF OUR APPROACHES WITH THE STATE-OF-THE-ART

To benchmark our approach, we compared our results with those of other state-of-the-art methods that
have utilized transfer learning on the APTOS dataset for DR severity-level classification. Our models
were benchmarked against Convolutional Neural Networks (CNNs) [32], [54], ensemble transfer
learning [55], Supervised Contrastive Learning [34], a Deep Dual Branch model [56], Swin
Transformer [50] and hybrid models combining Multiple Instance Vision Transformer (Milv4) [49]
and Vision Transformer with Inception [47]. The comparison is carried out utilizing performance
parameters including accuracy, precision, recall or sensitivity and F1-score across both binary and
three-class classification tasks. All the methods illustrated in Table 8 are explained in the Related
Works section. We can clearly say that our results are better and more enhanced than state-of-the-art
results.

e 2-stage Classification

AtRD model delivers a balanced performance (99.22% accuracy, 99.60% precision, 99.41% F1-score)
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surpassing recent models, such as those of Shakibania et al. [56]. (98.50% accuracy) and Islam et al.
[34] (98.36%). Athira et al. [55] achieved a slightly higher accuracy of 99.80%, as they also used an
ensemble deep-learning approach with auto-tuning, but did not provide an Fl-scor. In comparison,
AtRD (99.22%) and ReVi-RD (99.55%) surpass nearly all previous works. However, the hybrid ReVi-
RD model, with 99.55% accuracy, 99.51% precision and 99.54% F1-score, outperforms all existing
approaches.

e 3-stage Classification

AtR3C model did well in the 3-class-classification test, achieving accuracy, recall and F1-score values
of 94.41%, 94.09% and 94.24%, respectively. Our results are somewhat superior to those of Athira et
al. [55], who reported a slightly lower F1-score of 93.00%, but attained precision and recall of 94.00%
each, noting that Athira did not report class performance. On the other hand, ViR3C attains an F1-
score of 93.46%, demonstrating the potential of Vision Transformers (ViTs) in DR classification,
though these models require more data than CNNs based on transfer learning. ReVi-3C, a hybrid
architecture, achieves an impressive Fl-score of 98.32%, representing an absolute improvement of
10.3% over Rao et al. and a 5.1% gain over Athira et al. This significant performance boost validates
the effectiveness of hybrid models, where CNNs excel in localized feature extraction, while ViTs
capture global contextual patterns. The importance of our method is underscored by the lack of
research on the three-class classification of diabetic retinopathy (DR). Revi-3C’s encouraging
performance highlights its potential for DR detection, especially in its early stages, leading to better
diagnostic results.

Table 8. Comparison of the proposed approaches with relevant previous works: binary and 3-stage
classifications (unit %).

Architecture Accuracy Precision  Recall F1-Score
Binary classification

Esfahani [54] 86.00 85.00 86.00 85.00
Rao et al. [32] 96.56 97.00 97.00 96.56
Islam et al. [34] 98.36 98.37 98.36 98.37
Athira et al. [55] 99.80 99.00 99.00 99.00
Shakibania et al. [56] 98.50 97.61 99.46 /
Our AtRD 99.22 99.60 99.23 99.41
Dihin et al. [50] 96.00 / 98.00 96.00
Yang et al. [48] 93.2 / 86.9

Lian and Liul [47] 95.3 / 94.2

Our ViRD 97.73 97.72 97.73 97.73
Our ReVi-RD 99.55 99.51 99.58 99.54
3-class Classification

Rao et al. [32] / 88.00 88.00 88.02
Athira et al. [55] 94.00 94.00 93.00

Our AtR3C 94.26 94.41 94.09 94.24
Our ViR3C 92.97 93.77 93.22 93.46
Our ReVi-3C 98.26 98.431 98.21 98.32

6. CONCLUSION

This study highlights the potential of Vision Transformers (ViTs) and hybrid architectures in
advancing diabetic retinopathy (DR) classification, particularly for early detection. By simplifying the
traditional five-stage DR classification into three classes—no DR, early DR (mild/moderate) and
advanced DR (severe/proliferative), we reduced ambiguity between adjacent stages. To this end, we
proposed three architectures: (1) a Resnet50-based model with Bayesian hyperparameter optimization
(AtRD, AtR3C), (2) a fine-tuned Vision Transformer model (ViRD, ViR3C) and (3) a hybrid
architecture (ReVi-RD, ReVi-3C) that combines the strengths of both approaches. Experimental
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results show that while our architecture-based ViTs improve class differentiation, our hybrid model
achieves superior accuracy and precision, demonstrating the advantage of integrating both local
feature extraction and global attention mechanisms. This impressive result points to a high potential
for accurate DR detection, which might greatly improve early diagnosis and care. However, several
limitations should be noted. The use of the APTOS dataset alone for model training and evaluation
may not fully represent the variety of fundus images encountered in real clinical settings.
Consequently, it remains to generalize the models by training and evaluating on diverse datasets.
Furthermore, the work does not fully address the difficulties of interpreting the models. It is essential
to develop methods that enable clinicians to understand and trust the decisions made by the model. For
future work, we aim to extend our model to five-stage DR classification to align with standard clinical
grading. Additionally, we plan to enhance generalization by training and evaluating on diverse
datasets, ensuring robustness across different populations and imaging conditions. Furthermore, we
will investigate how to apply explainable Al approaches to improve the clarity of our model and
encourage its application in medical environments.

ACKNOWLEDGEMENTS
This work was sponsored by the General Direction of Scientific Research and Technological

Development, Ministry of Higher Education and Scientific Research (DGRSDT), Algeria.

REFERENCES

1] E. Mehmet et al.,, "Diabetes Mellitus: A Review on Pathophysiology, Current Status of Oral
Medications and Future Perspectives," Acta Pharmaceutica Sciencia, vol. 55, no. 1, pp. 61-82,2017.

[2] J. Gu et al,, "Recent Advances in Convolutional Neural Networks," Pattern Recognition, vol. 77, pp.
354-377,2018.
[3] T. H. Fung et al., "Diabetic Retinopathy for the Non-ophthalmologist," Clinical Medicine, vol. 22, no.

2, pp. 112-116, 2022.

[4] D. J. Magliano et al., IDF Diabetes Atlas, 10" Edition, ISBN-13: 978-2-930229-98-0, 2022.

[5] F. Shaheen, B. Verma and M. Asafuddoula, "Impact of Automatic Feature Extraction in Deep Learning
Architecture," Proc. of the 2016 IEEE Int. Conf. on Digital Image Computing: Techniques and
Applications (DICTA), pp. 1-8, Gold Coast, Australia, 2016.

[6] R. Adriman, K. Muchtar and N. Maulina, "Performance Evaluation of Binary Classification of Diabetic
Retinopathy through Deep Learning Techniques Using Texture Feature," Procedia Computer Science,
vol. 179, pp. 88-94, 2021.

[7] R. Rajkumar et al., "Transfer Learning Approach for Diabetic Retinopathy Detection Using Residual
Network," Proc. of the 2021 6" IEEE Int. Conf. on Inventive Computation Technologies (ICICT), pp.
1189-1193, Coimbatore, India, 2021.

[8] S. Karthika et al., "Enhancing Diabetic Retinopathy Diagnosis with ResNet-50-based Transfer
Learning: A Promising Approach," Annals of Data Science, vol. 11, no. 1, pp. 1-24, 2024.
9] L. Dai et al, "A Deep Learning System for Detecting Diabetic Retinopathy across the Disease

Spectrum," Nature Communications, vol. 12, no. 1, p. 3242, 2021.

[10] B. Tymchenko, P. Marchenko and D. Spodarets, "Deep Learning Approach to Diabetic Retinopathy
Detection," arXiv preprint, arXiv: 2003.02261, 2020.

[11] P. Vashist et al., "Role of Early Screening for Diabetic Retinopathy in Patients with Diabetes Mellitus:
An Overview," Indian Journal of Community Medicine, vol. 36, no. 4, pp. 247-252, 2011.

[12] K. Aggarwal et al., "Has the Future Started? The Current Growth of Artificial Intelligence, Machine
Learning and Deep Learning," Iraqi J. for Comp. Sci. and Math., vol. 3, no. 1, pp. 115— 123, 2022.

[13] M. Bader Alazzam, F. Alassery and A. Almulihi, "Identification of Diabetic Retinopathy through
Machine Learning," Mobile Information Systems, vol. 2021, no. 1, pp. 1-8, 2021.

[14] C. Mohanty et al., "Using Deep Learning Architectures for Detection and Classification of Diabetic
Retinopathy," Sensors, vol. 23, no. 12, p. 5726, 2023.

[15] C. Sharma and S. Parikh, "Comparison of CNN and Pre-trained Models: A Study," [Online], Available:
https://www.researchgate.net/publication/359850786_Comparison_of CNN _and Pre-trained models_
A Study, 2022.

[16] S. R. Salian and S. D. Sawarkar, "Melanoma Skin Lesion Classification Using Improved
Efficientnetb3," Jordanian J. of Computers and Inform. Technol. (JICIT), vol. 8, no. 1, pp. 45-56, 2022.

[17] I. Khoulgi and N. Idrissi, "Cervical Cancer Detection and Classification Using MRIS," Jordanian J. of
Computers and Inform. Technol. (JJCIT), vol. 8, no. 2, pp. 141 — 158, 2022.

[18] I. Kandel and M. Castelli, "Transfer Learning with Convolutional Neural Networks for Diabetic
Retinopathy Image Classification. A Review," Applied Sciences, vol. 10, no. 6, 2021.


http://www/

298

"A Hybrid CNN-transformer Approach for Precise Three-class Diabetic Retinopathy Classification", S. Ait Kaci Azzou et al.

[19]

[41]

[42]

[43]

[44]

G. Selvachandran et al., "Developments in the Detection of Diabetic Retinopathy: A State-of-the-Art
Review of Computer-aided Diagnosis and Machine Learning Methods," Artificial Intelligence Review,
vol. 56, no. 2, pp. 915-964, 2023.

S. D. Karthik, Maggie, "Aptos 2019 Blindness Detection," 2019.

R. Casanova et al., "Application of Random Forests Methods to Diabetic Retinopathy Classification
Analyses," PLOS One, vol. 9, no. 6, p. €98587, 2014.

T. M. Usman et al.,, "A Systematic Literature Review of Machine Learning-based Risk Prediction
Models for Diabetic Retinopathy Progression," Artificial Intell. in Medicine, vol. 143, p. 102617, 2023.
W. L. Alyoubi et al., "Diabetic Retinopathy Detection through Deep Learning Techniques: A Review,"
Informatics in Medicine Unlocked, vol. 20, p. 100377, 2020.

S. Sengupta et al., "Ophthalmic Diagnosis Using Deep Learning with Fundus Images: A Critical
Review," Artificial Intelligence in Medicine, vol. 102, p. 101758, 2020.

H. Jiang et al., "Eye Tracking-based Deep Learning Analysis for the Early Detection of Diabetic
Retinopathy: A Pilot Study," Biomedical Signal Processing and Control, vol. 84, p. 104830, 2023.

R. Vij and S. Arora, "A Novel Deep Transfer Learning Based Computerized Diagnostic Systems for
Multi-class Imbalanced Diabetic Retinopathy Severity Classification," Multimedia Tools and
Applications, vol. 82, no. 22, pp. 34847-34884, 2023.

P. Bijam and S. Deshmukh, "A Review on Detection of Diabetic Retinopathy Using Deep Learning and
Transfer Learning-based Strategies," Int. Journal of Computer (IJC), vol. 45, no. 1, pp. 164—175, 2023.
S. Z. Beevi, "Multi-level Severity Classification for Diabetic Retinopathy Based on Hybrid
Optimization Enabled Deep Learning," Biomed. Signal Process. and Control, vol. 84, p. 104736, 2023.
Z. Gu et al., "Classification of Diabetic Retinopathy Severity in Fundus Images Using the Vision
Transformer and Residual Attention," Comput. Intell. and Neurosci., vol. 2023, no. 1, p.1305583, 2023.
H. E. Kim et al., "Transfer Learning for Medical Image Classification: A Literature Review," BMC
Medical Imaging, vol. 22, no. 1, p. 69, 2022.

O. Dekhil et al., "Deep Learning-based Method for Computer Aided Diagnosis of Diabetic
Retinopathy," Proc. of the 2019 IEEE Int. Conf. on Imaging Systems and Techniques (IST), pp. 1-4,
Abu Dhabi, UAE, 2019.

M. Rao, M. Zhu and T. Wang, "Conversion and Implementation of State-of-the-Art Deep Learning
Algorithms for the Classification of Diabetic Retinopathy," arXiv preprint, arXiv: 2010.11692, 2020.

A. K. Gangwar and V. Ravi, "Diabetic Retinopathy Detection Using Transfer Learning and Deep
Learning," Proc. of Evolution in Computational Intelligence: Frontiers in Intelligent Computing:
Theory and Applications (FICTA 2020), vol. 1, pp. 679—689, 2021.

M. R. Islam et al., "Applying Supervised Contrastive Learning for the Detection of Diabetic
Retinopathy and Its Severity Levels from Fundus Images," Computers in Biology and Medicine, vol.
146, p. 105602, 2022.

M. Oulhadj et al.,, "Diabetic Retinopathy Prediction Based on Deep Learning and Deformable
Registration," Multimedia Tools and Applications, vol. 81, no. 20, pp. 28709-28727, 2022.

S. S. Mondal et al., "EDLDR: An Ensemble Deep Learning Technique for Detection and Classification
of Diabetic Retinopathy," Diagnostics, vol. 13, no. 1, p. 124, 2022.

A. Dosovitskiy et al., "An Image Is Worth 16x16 Words: Transformers for Image Recognition at
Scale," arXiv preprint, arXiv: 2010.11929, 2020.

A. Vaswani et al., "Attention Is All You Need," Advances in Neural Information Processing Systems,
vol. 30, no. 1, pp. 261-272, 2017.

J. Chen et al., "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation,"
arXiv preprint, arXiv: 2102.04306, 2021.

X. Wang et al., "Transpath: Transformer-based Self-supervised Learning for Histopathological Image
Classification," Proc. of 24" Int. Conf. on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2021), pp. 186—195, Part VIII 24, Strasbourg, France, 2021.

J. Wu, R. Hu, Z. Xiao, J. Chen and J. Liu, "Vision Transformer-based Recognition of Diabetic
Retinopathy Grade," Medical Physics, vol. 48, no. 12, pp. 7850-7863, 2021.

N. J. Mohan, R. Murugan, T. Goel and P. Roy, "Vit-DR: Vision Transformers in Diabetic Retinopathy
Grading Using Fundus Images," Proc. of the 2022 IEEE 10" Region 10 Humanitarian Technology
Conf. (R10-HTC), pp. 167-172, Hyderabad, India, 2022.

W. Nazih et al., "Vision Transformer Model for Predicting the Severity of Diabetic Retinopathy in
Fundus Photography-based Retina Images," IEEE Access, vol. 11, pp. 117546117561, 2023.

I. U. Khan et al., "A Computer-aided Diagnostic System to Identify Diabetic Retinopathy Utilizing a
Modified Compact Convolutional Transformer and Low-resolution Images to Reduce Computation
Time," Biomedicines, vol. 11, no. 6, p. 1566, 2023.

T. Karkera et al., "Detecting Severity of Diabetic Retinopathy from Fundus Images: A Transformer
Network-based Review," Neurocomputing, vol. 597, p. 127991, 2024.

M. Oulhadj et al., "Diabetic Retinopathy Prediction Based on Vision Transformer and Modified



299

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

Capsule Network," Computers in Biology and Medicine, vol. 175, p. 108523, 2024.

[41M J. Lian and T. Liu, "Lesion Identification in Fundus Images via Convolutional Neural Network-vision
Transformer," Biomedical Signal Processing and Control, vol. 88, p. 105607, 2024.

[48] Y. Yang, Z. Cai, S. Qiu and P. Xu, "A Novel Transformer Model with Multiple Instance Learning for
Diabetic Retinopathy Classification," IEEE Access, vol. 12, pp. 6768 - 6776 2024.

[49] S. Yu et al., "Mil-vt: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image
Classification,” Proc. of the 24" Int. Conf. on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2021), pp. 45-54, Part VIII 24, Strasbourg, France, 2021.

[50] R. A. Dihin et al., "Diabetic Retinopathy Classification Using Swin Transformer with Multi Wavelet,"
Journal of Kufa for Mathematics and Computer, vol. 10, no. 2, pp. 167-172, 2023.

[61] S. V. M. Sagheer and S. N. George, "A Review on Medical Image Denoising Algorithms," Biomedical
Signal Processing and Control, vol. 61, p. 102036, 2020.

[52] S. H. Abbood et al., "Hybrid Retinal Image Enhancement Algorithm for Diabetic Retinopathy
Diagnostic Using Deep Learning Model," IEEE Access, vol. 10, pp. 73079-73086, 2022.

[53] K. He et al., "Deep Residual Learning for Image Recognition,” Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770-778, DOI 10.1109/CVVPR.2016.90, 2016.

[54] M. T. Esfahani et al., "Classification of Diabetic and Normal Fundus Images Using a New Deep
Learning Method," Leonardo Electronic J. of Practices and Techn., vol. 17, no. 32, pp. 233-248, 2018.

[55] T. Athira and J. J. Nair, "Diabetic Retinopathy Grading from Color Fundus Images: An Autotuned
Deep Learning Approach,” Procedia Computer Science, vol. 218, pp. 1055-1066, 2023.

[56] H. Shakibania et al., "Dual Branch Deep Learning Network for Detection and Stage Grading of
Diabetic Retinopathy,” Biomedical Signal Processing and Control, vol. 93, p. 106168, 2024.

s&al) (adla

Ol e el el el (s Bl Y e e Bl s e
LSJ—.J\UA}——A’J\L—AJLLA!‘&JS——HJ\UAHUJJL—LMMLS\ 1S S D ef cantaad
M\u&_ud\d}..suu;_as_sa MM\MLJY\GJJ_A\)A\UHM\M&
ujj\g_a‘y)__a.eul__s 4_15.\_._.»1\)}._..46__34 ,\\A\\‘ e \\&M\HMMY\
c_.auwuc)__mcﬁ 3_93\21__«.10_“:134_....)% 4._.1!\444 m“.x: 4 \\A‘JS)__J
N eV sy ot Al iy i gl Vs aagd @@V A aall IS Tl
d}\}“ I_Q_AJJSJJA_tLaJ\aA_QJCa\_AJ‘\_m)u;\_m\_mEuj dJu\rmJAdJJM\
uJJS\UYHH\M@\_\JUcUcJAJA_ﬁ\sJ‘}(\M.\_».aﬂ\ulQ ’“u ‘t‘j <~ﬁ
Lagin pany (b 73 ga3 Cllill 5 clas

S B el Joal e 2o Jlih L edal pall gy 3l 8 i sl ol
N el s (huigiay i 3id) 5 K Piely (el Y i3S U daljo e ad e
A_cqu\m_uhl_g_mm” }CJI_A.IM&_U\\ Sada By (L) m)dd_'u}a.m_u)eu.m
u\u.\_uc‘\_a)\_ﬂ\ CJ\_A.\J\(;.\_mC_ﬂ_ou\sA - (APTOS) U"’}—“\ G B WA |
L@JMHMMMALASM%)JHY\%J}_MHHGd}.._q.uu.\._;@J\CJ}_A.J\
DJL._.IAAA\__AASUJ.—LSJ\CJ)_AAMLS__SAJ__Q} AP J e ) el m\c.._m;@_s%98
JH}eJ_c)@LAJ\MbW\;\JY\&.:\H)AC__:A;H%QQS;L__:L
;\JY\&.&\H)A‘_F__J%98.34\_._A£3]\L5‘ L Am‘(d), clag AN el
u)\&j.(e.l__ﬁlcd)'i el¢ agAd)ﬁ c) ¢ ol C\‘).[)L.? \)\J\M\.ﬂ\__buﬂ\
Ls—ddx——c\ﬁj—-éjed——c}\JJ—A}MC‘)——‘M\L}‘—-&@\@L——L‘J‘U‘Hd}—i\
h_\_\AU_AdeJ AA}U\_JJ\A_QY\J_XAQJJJ_QMJGJS_.J\HJAGJ_‘MS.\_J\
s 1) @ Iig m\sﬂ‘j\m_mﬂ\u&_ud\em_uuc_d\umhﬂ\ulm‘ﬂ\c_‘s;\J‘z’\
ku_mu_nd_\hﬂ\‘_r‘sC)_\SA\UJA@\A_LJ\J_.«U&_\_};‘L;HHJJJ:?M
Cai il e g sl 4l 5 gy LTy e A M el Ja) ye o il
Iole Y SUAL Aalia Ll d;\)aﬂ C38al)




300

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

ON THE OPTIMIZATION OF UAV SWARM ACO-BASED
PATH PLANNING

Areej J. Alabbadit and Belal H. Sababha?

(Received: 26-Jan.-2025, Revised: 13-Apr.-2025, Accepted: 6-May-2025)

ABSTRACT

Unmanned Aerial Vehicles (UAVSs) play a crucial role in various operations, especially where human life must
be protected. Efficient path planning and autonomous coordination are critical for UAV swarms in dynamic 3D
cooperative missions, where real-time adaptability is essential. This work addresses the challenge of optimizing
UAV swarm operations by proposing a novel hybrid navigation system based on Ant Colony Optimization
(ACO). The system efficiently balances path optimization with dynamic formation control, adapting to mission-
specific requirements. A key contribution is the hybrid navigation approach, which prioritizes the desired
formation of the swarm or the path length and flight time through a threshold- based mechanism, allowing real-
time adaptation to changing environments. The system also introduces a comprehensive cost function that
evaluates the quality of the path, time consumption, mission completeness and formation divergence. The
experiments show that the system consistently provides high-quality paths, achieving around 97% path quality in
most cases and never declines below 90%, even in challenging scenarios. The collision avoidance module
ensures the completeness of the 100% mission, successfully navigating drones around obstacles and maintaining
an optimal path. Furthermore, the formation conservation mechanism effectively maintained the desired swarm
configurations while dynamically adapting to obstacles, with the formation change staying within 30% of the
allowable range in most scenarios, highlighting the system’s ability to preserve the desired formation even in
dynamic environments. This research advances UAV swarm intelligence, enabling efficient and autonomous
operations in complex 3D environments for diverse cooperative missions. The system’s adaptability to formation
requirements opens new possibilities for UAV swarm applications, improving navigation efficiency and
enhancing formation control.

KEYWORDS

Ant colony optimization (ACO), 3D dynamic environment, UAV swarm, Hybrid navigation approach, Collision
avoidance mechanism.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVS) are revolutionizing the industry. They enable rapid and more cost-
effective completion of industrial activities while ensuring safety primarily due to their small size,
affordable density and general simplicity of management and operation [1]. UAVs are an effective tool
for carrying out operations in locations that are difficult to access. Performing in groups or swarms
offers additional benefits. The ability to perform tasks that require flying over large areas, reducing the
time required for specific operations, area coverage and coordinated impacts are only a few of the
operational benefits that UAV swarms have over non-swarm systems [2]-[5].UAV swarms leverage
aerial mobility, high-speed maneuverability and extensive coverage capabilities, making them
essential for a variety of applications [6]-[8]. Hundreds of thousands of agents can collectively be
controlled by swarm systems, while a single operator or a small team is focused on carrying out
mission objectives. Humans can maintain operational control while delegating low-level routine
choices to UAV agents. UAV swarms can provide the capability for quick communication and
decision-making, as detailed in [3]. A UAV swarm is considerably more effective than one or even
several human decision-makers in many situations. Because of many advantages, autonomous swarms
are often much more effective, timely and responsive than human or human-operated robot groups.

Centralized and distributed control architectures are the two main categories into which cooperative
multi-UAV autonomous control architectures are typically classified [9]. With the benefit of obtaining
a globally optimal solution, the centralized-control method has dominated early research. However,
this strategy has a fundamental weakness: the multi-UAV system will become uncontrollable should
the decision-making layer fail due to the high dependence on the communication link. The distributed
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control approach, which has the advantages of increased dependability, less computation and
communication, becomes a study focus as UAV performance and autonomous capabilities develop
[10]-[11].

The capability of assigning targets and building a 3D trajectory for each UAV in the swarm is an
essential part of its operation. The general problems associated with 3D path planning for a single
UAV have been addressed using a variety of techniques, including probabilistic road maps, A*
algorithms, artificial potential fields, probabilistic navigation functions and many other techniques
[12]-[15]. Most of these algorithms use sampling-based and graph-based search techniques, which
work well in high-dimensional configuration spaces and are relatively simple to implement. It is also
known that, given enough time, they are probabilistically completed in a way that increases the
probability of discovering a solution. Many of these techniques have drawbacks, such as potential
exposure to local minima and limitations imposed by constraints connected to the grid’s properties.
These algorithms often need a balance between exploration and exploitation and are computationally
demanding. Some of these algorithms lack robustness, which prevents them from functioning in
situations with various dynamic obstacles and automated real-time applications [16]-[17].

Kennedy and Eberhart presented an introductory book on swarm intelligence, based on previous work
on robot control and decentralized Al [18]. Swarm intelligence is the intelligent behavior that results
from a collection of independent, heterogeneous agents acting as one system. In terms of the
distribution of organizational structure, simplicity of individuals, flexibility of the action mode, and
establishment of Swarm Intelligence (SI), various social organisms in nature (such as ant colonies, bee
colonies, fish schools, and wolf packs) exhibit many characteristics that UAV swarms share [19]. The
swarm can be conceptualized as a single entity or system in which intelligence develops through the
specific behaviors of a group of people [20]. To develop novel distributed integrated algorithms for
UAV swarm cooperative mission planning, some researchers simulated the sophisticated and
structured collective behaviors of social organisms.

This research makes several significant contributions to the field of UAV swarm intelligence and
distribution for cooperative missions. First, an ACO-based path-planning algorithm is developed.
Then, a hybrid navigation and obstacle-avoidance algorithm is proposed. The hybrid navigation
method adapts to different application requirements. By integrating a formation-conservation
mechanism, the hybrid method monitors the relative positions of drones in real time and dynamically
adjusts their positions to maintain a desired formation. This development adds versatility to the
algorithm, as it can prioritize either formation conservation or optimized path planning based on the
application’s specific needs.

2. LITERATURE REVIEW

With advancements in electronic intelligence and control sub-systems, UAVs have gained popularity
and are widely used in various professional and recreational applications [21]. Although initially used
primarily for military purposes, UAVs have expanded their presence in the commercial and industrial
sectors [22]. This expansion can be attributed to technological advancements and improved power
capacities, enabling customized structures, configurations, and equipment customized to specific
tasks[23]-[24].

Engaging in risky or laborious tasks often requires the deployment of multiple UAVs. This
requirement arises from the significant time commitment and limited autonomy of these small
unmanned vehicles. Using multiple drones concurrently, each vehicle assuming the role of a backup in
the event of failure, tasks can be performed in parallel, resulting in reduced overall time requirements
compared to sequential execution with individual drones. This collective approach improves
efficiency, productivity, and the ability to tackle challenging endeavors effectively. This strategy
draws inspiration from the remarkable group dynamics observed in various natural biological models,
such as birds or ants [25]. These organisms exhibit remarkable coordination and interaction among
individuals, as they work together toward a shared objective: migrating to warmer regions or
efficiently transporting food to their colonies. Swarm-based systems aim to harness the power of
coordinated action and adaptability to solve complex problems.

Metaheuristic algorithms have emerged as powerful tools in artificial intelligence and mathematical
optimization, gaining significant attention over the past two decades [26]. These algorithms exhibit
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stochastic behavior and offer optimal solutions with reduced computational effort compared to
conventional techniques. Metaheuristic algorithms are problem-independent and can be broadly
classified into four categories: swarm-based (SI), physics-based, evolutionary-based and human-based
algorithms. Sl algorithms, particularly, harness the collective intelligence observed in natural systems,
such as birds, ants, fish, wolves, and other social organisms. These algorithms strike a balance
between exploration and exploitation within the search space. Exploration involves a global search for
exploration, while exploitation involves a local search in areas identified as promising during the
exploration phase. Sl algorithms aim to find optimal solutions to a wide range of problems by
emulating these social behaviors.

Multi-UAV cooperative path planning aims to meticulously determine an optimal flight path for each
UAYV, starting from its initial point and ending at the terminal point. This planning process involves
minimizing overall flight costs while simultaneously satisfying various constraints, including the
distance between UAVS, arrival time, safety requirements, and UAV Performance Criteria. Chen et al.
tackled the air-ground cooperation problem of Unmanned Ground Vehicles (UGVs) and UAVs by
combining the Genetic Algorithm (GA) with ACO [27]. Their method effectively decoupled the routes
of UGVs and UAVs, optimizing the heterogeneous delivery problem and obtaining optimal routes.

Kyriakakis et al. introduced a novel dynamic optimization problem for UAV search and rescue
scenarios [28]. They developed a multi-swarm framework with additional UAV constraints and
evaluated seven optimization algorithms. Yu et al. proposed a mutation-constrained adaptive selection
Differential Evolution Algorithm (DE) to handle the optimization problem [29]. The algorithm aimed
to find the optimal solution while satisfying these constraints. To plan feasible paths that cover an
entire area for a UAV to maintain a constant flight level relative to the ground, Gonzalez et al.
developed a coverage algorithm [30]. They used DE to evaluate the resulting paths and select the best
path based on distance costs.

Wau et al. developed an improved fast convergence Artificial Bee Colony (ABC) algorithm to obtain
the optimal path in a battlefield environment, considering conflicts and constraints [31]. Xu et al.
developed an improved multi-objective Particle Swarm Optimization (PSO) algorithm [32]. Their
approach calculated feasible and collision-free trajectories with variable minimum altitude, length, and
angle rates.

Phung and Ha addressed the path-planning problem for multiple UAVs in complex environments with
multiple conflicts [33]. They proposed the Spherical Vector-based PSO, which efficiently explores the
configuration space of UAVs to generate the optimal path that minimizes the cost function. Tong et al.
integrated the Pigeon-inspired Optimization (PIO) algorithm with DE mutation strategies for path-
planning optimization [34]. Their approach considered three indices: path length, path sinuosity, and
path risk. Qu et al. combined hybrid Grey Wolf Optimization (GWO) with a modified Symbiotic
Organism Search (SOS) algorithm [35]. They simplified the GWO phase to improve the convergence
rate and maintain the population’s exploration ability. The SOS phase was synthesized with GWO to
enhance the ability to exploit.

There have been significant recent advancements in UAV swarm research in the integration of Al
algorithms to enhance decision-making and adaptability [36]-[37]. However, challenges remain in
achieving robust solutions for complex tasks, especially in dynamic and uncertain environments. Key
research gaps include the need for improved collision avoidance, navigation strategies, and path-
planning algorithms that can effectively address real-world constraints, such as uncertainty, security
restrictions, and dynamic obstacles, which until now were discussed as an open issue and a research
challenge [38]. While existing studies have explored these areas individually, there is a need for
integrated systems that can comprehensively address these challenges. The proposed system
significantly contributes to UAV swarm research by integrating several essential components,
including a collision-avoidance algorithm, a hybrid navigation approach, and a path-planning
algorithm based on Ant Colony Optimization. The system showcases cooperative detection and
avoidance capabilities, enabling UAV entities to collaborate effectively in detecting and avoiding
collisions with both obstacles and other UAVSs. It functions in a 3D dynamic environment, addressing
uncertainties, security restrictions, and multiple objects. Utilizing ACO, the path-planning algorithm
exhibits distributed-planning behavior, as it is applied to each target in the mission, ensuring optimized
safety and cost objectives. The system’s ability to maintain formations enables UAV swarms to
preserve their desired shapes and spatial dimensions. These features set the system apart from other
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studies in the literature, demonstrating its versatility and potential for real-world applications in
various cooperative missions.

3. PROPOSED SYSTEM

The proposed system consists of four key modules: the ACO-based path-planning module, the hybrid-
path navigation module, the collision-avoidance module, and the messaging module. Each module
serves a specific purpose in cooperative mission planning. These components work together to
optimize the mission performance of the UAV swarm. Figure 1 illustrates the key components of the
proposed system.

The ACO module forms the core of the system, drawing inspiration from ants’ foraging behavior.
Using pheromone-based communication and local heuristics, it guides the decision-making process of
individual UAVs. By balancing exploration and exploitation, the ACO module facilitates the search
for optimal paths within the swarm. To enhance the adaptability and flexibility of the system, a
developed approach called the Hybrid Approach is proposed. The Hybrid Approach introduces
adaptability to the system by dynamically adjusting the path-planning strategy based on the desired
swarm shape. The Obstacle Avoidance module integrates real-time obstacle detection and intelligent
decision-making to ensure safe navigation. By employing collision-avoidance algorithms, the module
guides UAVs to navigate around obstacles and complete their missions. The Messaging System
facilitates effective communication and information sharing among UAVS.

3.1 ACO-Module

Ant Colony Optimization (ACO) was initially proposed by Dorigo et al. as a powerful multi-
dimensional optimization algorithm that draws inspiration from the foraging behavior of specific
species of ant [39]-[40].
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Figure 1. System block diagram.

Through collective intelligence, the ACO collaboratively determines the shortest path based on the
density of the pheromone trail [41]. The strength of ACO lies in its ability to balance exploration and
exploitation effectively. Randomly exploring ants ensures a diverse search-space coverage, enabling
the algorithm to discover potential solutions. At the same time, the exploitation of the pheromone trails
by other ants reinforces the convergence towards promising paths, promoting the identification of
optimal solutions. This inherent balance between exploration and exploitation makes ACO highly
robust and adaptive in dynamic problem domains.

To simulate the behavior of real ants, ACO models employ equations or algorithms to update and
propagate the pheromone values dynamically. These updates reflect the collective behavior of the
artificial ants and play a critical role in the convergence of the algorithm toward optimal or near-
optimal solutions. The equation for the pheromone update is as follows:
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Tyi(t+1) = (1-p) * Ty(t)+ATy(t) 1)
where:
e 7jj(t + 1): Represents the updated pheromone value on the path of component i to j at time t+1.
e 7jj(t): Represents the current pheromone value on the path of component i to j at time t.
e p: The pheromone evaporation rate is a control of the rate at which pheromones decay.
e Arjj(t): The pheromone deposit rate represents the amount of pheromone deposited on the
path from component i to j at time t by the artificial ants constructing solutions.

ACO algorithms use mathematical models for simulating ant decision-making. Various models exist,
often relying on state-transition rules and probabilistic methods. One widely used model is the ant
system, which employs probabilities to choose paths. It balances pheromone intensity and heuristics,
achieving the exploration-exploitation trade-off. The probability equation used in ant decision-making
is as follows:

(i () (13 ()P
glllpossiblepaths(_[ij(t))a*(mj(t))ﬁ

Py = )

where:

e Pjj(t): Represents the probability of selecting the path from component i to j at time t.

e 7ij(t): Represents a problem-specific heuristic value associated with the path of component i to
jattimet.

e q and p: Are parameters that control the relative importance of the pheromone trail and

heuristic information, respectively.

o The denominator [34"PO%*P* P (7 (1)) « (1, (t))P] represents the sum of the probabilities

for all possible paths or components at time t.

In decision-making, artificial ants consider pheromone information and problem-specific heuristics.
Pheromone information, encoded in the pheromone trails, provides a collective memory of the paths
previously explored by the ants. The higher the pheromone concentration on a path, the more attractive
it becomes to subsequent ants.

The equation used to calculate the heuristic value, #i(t), is problem-specific and depends on the
characteristics of the path or component. One example of a commonly used heuristic is the inverse of
the distance between two points, represented as:

1
() = by (3)
Where, D;;: Represent the distance between the two points i and j.

In this research, the characteristics of swarm UAV path planning and the parameter values accordingly
are considered carefully, as shown in Table 1.

Table 1. Parameter values for ACO in the proposed algorithm.

ACO Parameter Value
Evaporation Rate 0.5
Pheromone Deposit Rate 1/Path length
Heuristic Information (5) 5

Importance of Pheromone Trails () 1

Initial Pheromone Rate 0.01

Number of Iterations 50

At initialization, each drone establishes its colony by populating several ants. These ants are then
tasked with finding the optimal path from the drone’s start to its target point. The information sharing
and cooperation among ants occurs exclusively within the bounds of the same colony, which belongs
to a specific UAV. Each ant performs its path exploration within a colony, utilizing local and global
search strategies to identify the most efficient route toward the target. The local search involves
making decisions based on the immediate surroundings and information available locally within the
drone’s colony. Meanwhile, global search entails updating pheromone trails to incorporate valuable
information gathered during exploration. As a result, the swarm of drones operates with high degrees
of decentralization and parallelism, significantly enhancing the overall efficiency and scalability of the
system. The algorithm’s key steps are shown in Algorithm 1.
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Algorithm 1 ACO-based Path Planning Algorithm

1: Initialize algorithm parameters
2: Set starting and target positions for the ant’s paths
3: Create a list of random points representing the map, including start and target nodes
4: Connect nodes with edges and set initial pheromone values
5: Initialize the pheromone matrix
6: Number of iterations < 0
7: while Number of iterations < desired number of iterations do
8: Populate ants on the map
9: for each ant in the ant-list do
10: Create a visit list and add the start point to it
11: while ant is not at the target node do
12: Move the ant to the next node based on Eg2
13: Add the chosen point to the visit list
14: Apply local search
15: Apply global search
16: Update the pheromone matrix based on Eql
17: end while
18: end for
19: Number of iterations & Number of iterations + 1
20: if Number of iterations desired number of iterations then
21: Calculate the distance of each ant’s shortest path
22: Compare distances of shortest paths and output the optimal path
23: end if
24: end while

3.2 Collision Avoidance Algorithm

The collision-avoidance process within the UAV swarm navigation system is an accurately designed
multi-step procedure, supporting optimal path planning and obstacle avoidance. The collision-
avoidance algorithm implemented in the proposed system builds upon a well-established approach
presented in [42]-[43], known for its effectiveness in handling complex scenarios. To work for a
swarm of UAVs instead of a single UAV, the modified obstacle avoidance algorithm is illustrated in
Algorithm 2.

Algorithm 2 Collision Avoidance

1: Initialize each UAV with start point, target point, speed, rotation, scale and priority
2: The UAV moves to its current target
3: while UAV is moving to the target do

4 Check if there is a potential collision on the UAV path
5 if No potential collision then
6: The UAV keeps moving to its target normally
7: else
8: Send a message to alert all drones in the swarm about the collision possibility
9: Check if the UAV is considered to have the highest priority
10: if UAV has the highest priority then
11: Go back to The UAV moves to its current target and repeat
12: else
13: Generate a number of random points around the current position
14: Calculate the distance to the target through the waypoints
15: Find the nearest point with the minimum distance
16: Check if the chosen point eliminates the potential collision
17: if No, if the newly chosen point still leads to a potential collision then
18: Go back to Generate a number of random points and repeat
19: else
20: Store the original target in the temporary target variable
21: Set the target to the nearest point
22: Go back to "UAV moves to its current target” to move the UAV to the nearest point
23: Check if the nearest point is reached
24: if The nearest point is not reached then
25: Go back to "UAV moves to its current target”
26: else
27: Restore the original current target
28: Go back to "UAV moves to its current target”
29: end if
30: end if
31: end if
32: end if
33: end while

3.3 Messaging Module

The messaging module in the system facilitates effective communication and coordination between
drones within the UAV swarm. The messaging module implemented in the proposed system is based
on a well- established approach presented in [43]. It is crucial to enable the swarm to operate as a
cohesive unit, dynamically adapting to changing conditions and avoiding collisions while pursuing its
mission objectives. Significant updates are made to enhance dynamic adaptability and swarm
robustness. The system now adopts a distributed-path planning and hybrid navigation approach,
allowing for more efficient and resilient performance.
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The messaging module enables drones within the swarm to share their real-time positions. This
continuous data exchange is essential for maintaining the desired formation during cooperative
missions. Knowing the positions of the other drones, each UAV can adjust its trajectory to stay in the
designated formation.

3.4 System Design

The system described in this sub-section is designed to control a swarm of drones operating within a
specified environment. Its primary objective is to optimize the movement and coordination of the
drones to achieve efficient and effective task completion. The system aims to minimize the distance
traveled, maximize productivity and ensure safe operation by intelligently guiding the drones through
commands and paths. The drone-swarm navigation system can be adapted to two different options
based on application requirements. In the first option, formation conservation is not an application
requirement, while in the second option, the application requires maintaining a specific formation or
shape. In both options, the drones follow the optimal path generated by the ACO module, ensuring
efficient navigation and collision avoidance within the environment.

e Option one: The system coordinates the movement of the drones, optimizes their paths using
ACO, controls their movement using PID controllers and performs collision avoidance to ensure
safe operation within the swarm, as shown in Algorithm 3.

e Option two: In the second option shown in Algorithm 4, additional functionality is introduced
when the application requires maintaining a specific formation or shape.

3.5 Cost Function Evaluation

For an objective evaluation of the overall performance of the swarm, the following data is collected
before the evaluation parameters are computed:

e Minimum Distance: The straight-line distance between each drone’s initial and final target
positions.

e Total Travelled Distance: The cumulative distance traveled by each drone from its initial position
to its final target.

e Total Travelled Time: The duration a drone needs to reach its final target.

¢ Number of Divergences: A divergence occurs when a drone deviates from its intended path.

o Number of Collisions: When two drones come into physical contact.

In addition, for option two, where formation conservation is required, an extra parameter is calculated:
e Average Distance Change: Measures how much each drone deviates from the desired formation.

The following evaluation parameters are formulated to capture the mission’s quality, efficiency,
completion and formation conservation during cooperative missions:

e Path Quality (PQ): Evaluates the efficiency of the path-planning module. It is calculated using the
following equation (Eq. 4):

PQ=y+%

N—1 MinTravelledDistance;

«100% (4)

=0 TotalTravelledDistance;
where:
o N: the total number of drones in the swarm.
o MinTravelledDistance;: is the minimum distance traveled by drone i from its initial position to
its target.
o TotalTravelledDistance;: is the total distance traveled by drone i during its mission.

A higher value for this parameter indicates that the drone successfully optimizes its path, following the
shortest route to its target.

Algorithm 3 System Behavior — Option 1

1: UAVs receive important mission information from the ground station, including start and target points, speed, rotation, scale,
formation and priority.

2: Apply the ant colony algorithm for each UAV.

3: while the optimal path is not generated do

4: Keep waiting

5: end while
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6: Begin the main loop of the system
7: for each UAV do

8:

Each UAV’s initial target is set to the first node on its optimal path

9: Each UAV sets the last point in the optimal path as the destination target

10:Usi
11:

12:
13:
14:
15:

48:
49:
50:

e a PID controller to calculate the drive forces for each axis (X, y, z)
UAV moves to its current target
while UAV is moving to the target do

UAV checks if there is a potential collision on its path
if No potential collision then
Check if the current target has been reached
if the current target is reached then
Check if the current target is the destination target
if the current target is the destination target then
Mission ends
else
Update the target position to be the next node in the optimal path
Go back to UAV moves to its current target
end if
end if
else
Send a message to alert all drones in the swarm about the collision possibility
Check if the UAV has the highest priority
if UAV has the highest priority then
Go back to UAV moves to its current target
else
Generate several random points around the current position
Calculate the distance to the target through the waypoints
Find the nearest point with the minimum distance
Check if the chosen point eliminates the potential collision
if Chosen point eliminates collision then
Store the original target in the temporary target variable
Set the target to the nearest point
Go back to UAV moves to its current target
Check if the nearest point is reached
if the nearest point is not reached then
Go back to UAV moves to its current target
else
Restore the original current target
end if
else
Go back to the step of generating several random points and repeat
end if
end if
end if

end while
51: end for

52: Repeat the main loop until the UAV reaches its target

Algorithm 4 System Behavior — Option 2

1: UA(}/S receive mission information from the ground station, including start and target points, speed, rotation, scale, formation
and priority.

: Each UAV reads the start point for all other UAVs in the swarm.

: Create a reference distance array that captures the distances between drones in the desired formation.

: Apply the ant colony algorithm for all UAVs in the swarm.

Set the current target as the first node in the optimal path for the UAV and set the last point in the optimal path as the
destination target.

: Use a PID controller to calculate drive forces for each axis (x, y, z).

UAYV moves to its current target.

: while UAV is moving to the target do

Read the current positions for all drones and create a current distance array, representing the current formation distances

for the swarm.

10: if The current distance array equals the reference distance array then

11: The UAV keeps moving to its current position while checking for potential collisions and if the UAV reaches its
target, continue to the next step.

12: else

13: Calculate the difference in distance between the UAV and all other UAVs in the swarm.

14: if The difference in distances is less than the threshold then

15: The UAV keeps moving to its current position while checking for potential collisions and if the UAV reaches its

target, continue to the next step.

16: else

17: Generate several random points around the current position.

18: Choose the nearest point.

19: Check if the nearest point will maintain the UAV position.

20: if The nearest point maintains the UAV position then

21: Store the original target in the temporary target variable.

22: Set the target to the nearest point.

23: Go back to "UAV move to its current target".

24: Check if the UAV reaches the nearest point.

25: if UAV is not at the nearest point then

26: Go back to UAV move to its current target and repeat.

27: else

28: Restore the original target.

29: end if

30: else

31: Go back to Generate several random points and repeat.

32: end if

33: end if

34: end if

35: end while

36: Repeat the main loop until the UAV reaches its target
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e Mission Completeness (MC): Evaluates the collision-avoidance module’s effectiveness and the
UAYV swarm’s adaptability in successfully achieving its mission objectives. It is calculated using
Eq. 5.

MC = NReache;i\;tsTarget % 100% (5)
Where, NreacheditsTarget: 1S the count of drones successfully reaching their targets.

A higher value for this parameter indicates a success rate in achieving mission objectives, as many
drones have reached their targets without collisions.

e Average of Divergence (AD): Measures how much each drone deviates from its original path to
avoid collisions with other drones or with obstacles. It quantifies the quality of the new routes
generated by the collision-avoidance module. Eq. 6 shows how this is calculated.

N-1 :
i—o NumberOfDivergences;
AD = Zl_o Nf g i (6)

Where, NumberOfDivergences: is the number of times that drone i deviates from its original path.

e Swarm Flight Time (FT): Quantifies the efficiency of the UAV swarm in completing the mission,
referring to a predefined time frame. It reflects how effectively all drones in the swarm work

together to achieve mission objectives. This parameter is calculated as shown in Eq. 7.
FT=—"L ©)

TimeFrame

Where, T: is the total time taken for all drones in the swarm to reach their respective targets.

A smaller value indicates a more cohesive and cooperative swarm, where drones work towards
mission completion with minimal delays and divergences.

e Formation Change (FC): Evaluates how effectively drones in the swarm maintain their desired
formation during cooperative missions. This parameter is calculated as shown in Eq. 8.

1 _1 AverageofDistanceChange;
FC=~xyN1 g 'f ge;
N DefindThreshold

«100% (8)

Where:

o Averageof DistanceChangei: is the average distance change for each drone relative to the
desired formation of the swarm.

o DefinedThreshold: is a predefined value that determines acceptable deviations from the
desired formation.

A lower formation change value indicates better performance of the hybrid module, as it
indicates that the drones successfully maintain their formation with minimal deviations from
the desired configuration.

A cost function is formulated as a weighted sum (o.p,w,y,u) of the four parameters in the first option
and five parameters in the formation-conservation option, with each parameter assigned a specific
weight to reflect its relative importance. The formula for the comprehensive cost function is given
by Eq.9 and Eq.10 for option one and option two, respectively.

Option one:
CF = aPQ + B(1 — FT) + w(1 — AD) + yMC (9)
Option two:
CF = aPQ + (1 —FT) + w(1 — AD) + yMC + u(1 — FC) (10)
These formulations ensure that the algorithm is evaluated based on its ability to optimize multiple

key aspects simultaneously. A higher comprehensive cost function value indicates better
performance.

3.6 System Complexity

The algorithm complexity measures how the performance and execution time of the algorithm scale
with the increasing number of drones in the swarm. As the swarm size grows, the algorithm’s
efficiency becomes critical in ensuring real-time operation and mission success. Efficient algorithms
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with lower complexity ensure that the swarm can handle larger numbers of drones without
compromising performance.

Algorithm Execution Time vs. Number of Drones
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Figure 2. System execution time for both options as the number of drones in the swarm increases.

The execution time of the algorithm is a critical aspect that directly impacts the real-time operation of
UAV swarms. In the first option, where formation conservation is not a specific application
requirement, the algorithm complexity is O(X + C), where X is the number of drones in the swarm and
C is the number of execution cycles, which remains constant regardless of the number of drones. The
algorithm’s scalability in this option is relatively better due to the linear complexity, making it suitable
for swarms with a large number of drones.

In the second option, where formation conservation is essential, the algorithm complexity becomes
O(X* + C). This increase in complexity is due to the additional calculations and coordination required
to maintain the desired formation during cooperative missions. The formation-conservation constraint
introduces non- linearity in the algorithm, which impacts its scalability as the number of drones
increases.

To ensure real-time execution in both options, an upper bound for the execution time of the algorithm
is established as follows:

e For Option One:
. . sensingrange
(X + C) = (executioncycletime) < (W) (11)
e For Option Two:

sensingrange

(X* + C) * (executioncycletime) < ( ) (12)
By meeting this condition, the algorithm can guarantee safe and efficient navigation for the entire
swarm, even in dynamic and densely populated environments. Figure 2 illustrates the algorithm
execution time for both options as the number of drones in the swarm increases.

dronespeed

4. SIMULATION AND RESULTS

The proposed system is implemented using the UTSim simulator, which offers an adaptable platform
for creating and configuring multiple instances of UAVs [43]. The simulation setup involved the
implementation of flight scenarios in a 3D environment, where the UAVs were controlled using the
proposed system. Before each mission, the initial locations and destinations of the UAVs were defined
based on the specific scenario. The UAVs used in the experiments were all fixed in size, with a half-
meter diameter. Their speeds were maintained at a constant value of 6 m/s throughout the missions.
Due to the inherent characteristics of rigid bodies, the speed decreased when the UAVs changed
direction or reached their destinations.

Each run was performed 35 times in the 3D space to ensure reliable results. In an obstacle-free
environment where formation maintenance is not a mission requirement, the swarm exhibits perfect
consistency across all 35 experimental runs, with zero variability within a confidence interval of 95%.
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However, when operating in a dense obstacle environment with a 0.1 allowable distance change, the
system displays slight variability. For a 30-drone swarm, the error margin remains below 0.007 for
distance change and 0.009 for flight time. As the swarm size increases to 40 drones, the error in total
distance remains below 0.12. Even with a swarm of up to 80 drones, the error margin for distance
change stays below 0.01. These consistently low error margins across all test conditions provide strong
evidence of the system’s robustness and reliability in both controlled and complex environments.

4.1 Algorithm Constraints and Assumptions

Constraints play a vital role in shaping the behavior and performance of UAV swarms during
missions. They are essential elements that impose limits and restrictions on various aspects of the
swarm’s operation, ensuring safe, efficient, and coordinated behavior. Several constraints were
considered to study the system’s performance under different scenarios:

e Maneuverability Constraints: The maximum turning angle (6max) was set to 30 degrees on the x-
axis while remaining unrestricted in the y and z-axes.

0(7)—0Omax<0 (13)
where: ®(T ): The turning angle of the i'" UAV at time T.

e Sensing Range Constraint: Each UAV sampled 25 points every time a reroute was computed.
Rerouting was triggered when a passive obstacle was detected or when a higher-priority UAV was
sensed. The sample points were taken within a customizable radius (Rs) of a circle/sphere set at 5
meters.

Rs—Di(T)=0 (14)

where, Dij(T): The distance between the i UAV and the j UAV or obstacle at time T.

e Collision-avoidance Constraints: The algorithm incorporates a safe distance, denoted as Dmin,
between two UAVs or between a UAV and an obstacle. This distance defines the collider sensing
range, represented by the radius of a circle or sphere centered at the UAV.

Dmin— Di(T) <0 (15)
where, Dij(T): The distance between the i"" UAV and the j™ UAV or obstacle at time T.

e Operating-range Constraint: The flight operation area was defined as 1 km * 1 km, providing a
bounded environment for the swarm’s missions.

e Time frame: the time frame is set to be a one-minute flight.
e For the first option’s cost function, the (a8, and y) are 0.3, 0.3, 0.2, 0.2, respectively.
e For the second option’s cost function, the (a,f,w,y and p) are 0.2, 0.2, 0.2, 0.2, 0.2, respectively.

The experiment scenarios were designed to vary the number of drones within the flight area, ranging
from 5 to 80 drones. The number of obstacles (moving and static) gradually increased, with the
maximum number exceeding the total number of UAVSs in the swarm, which is moving randomly in
the environment. In the second option, various thresholds were tested to evaluate the performance of
the hybrid navigation approach.

4.2 Effects of Different Safe Distances

This sub-section investigates the influence of varying safe distances on swarms of sizes ranging from 5
to 80 UAVs. The safe distance is incrementally increased from 1 meter to 3 meters for each case. This
analysis provides insights into the optimal safe distance setting that maximizes the UAV swarm’s
efficiency and effectiveness in different scenarios. In this sub-section, all tests were conducted in
obstacle-free environments and the safe-distance parameter of the system was adjusted and controlled
from the ground station before each mission. The mission is designed, allowing tuning for a safe
distance based on the distances between the drones and the total travel distance for each drone
between the starting and target points, without considering the number of obstacles as a part of the
mission design. This will be considered a design-preparation phase to set the safe distance to the next
sections. These evaluations provided valuable insights into the system’s performance and how the
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adjustable parameters influenced its behavior when encountering unexpected obstacles during
missions.

PQ vs Number of Drones for Different Dmin Cases

85 :
10 20 30 40 50 60 70 80
Number of Drones

Figure 3. The path quality vs. the number of drones for different safe distances.

Path Quality: The ACO module achieves a path quality of over 99% with 1m safe-distance
scenarios. However, it reached 96% when the safe distance increased to 2m and 92% for the 3m
safe distance, as shown in Figure 3. As the safe distance for drones increased, more drones had to
make route diversions to avoid potential collisions, which increased the average of divergence, as
shown in Figure 4, increasing the total traveled distance for each drone, which decreased the path
quality. The formation and the distances between the start and target points for the drones are
different from swarm to swarm, which explains the path quality and average of divergence
behavior change for the same value of safe distance, since the distances between drones in the
case with twenty UAVs are less than the distances between the drones in ten-UAVs. This
increased the influence of large safe distances where the UAV needed to increase the number of
divergences to save the safe distance simultaneously to avoid any potential collisions between the
other UAVs in the swarm, which decreased the path quality. However, the path-quality values are
close for all swarms because of the distributed approach in the ACO-based path-planning
algorithm. The algorithm generates the optimal path for each drone based on its start and target
point without considering the number of drones in the swarm.

Swarm flight time: The increase in the average number of divergences leads to a greater total
travel distance. This typically results in longer flight times for the swarms, as illustrated in Figure
5.

4.3 Effects of Number of Obstacles

The number of obstacles gradually increases. The number, speed, direction and all information of
obstacles are unknown for the drones in the swarm to evaluate the system’s adaptability to
uncertainties. The obstacles move randomly in different directions and elevations. All cases are tested
at a safe distance of 1 m.

Path Quality: As illustrated in Figure 6, an increase in the number of obstacles does not
significantly affect path quality in swarms with a small number of drones. This is because the
drones maintain safe distances from each other and have a wide space within their operating
range to locate the nearest point for collision avoidance. However, as the number of drones in the
swarm increases, the distances between them decrease and the available operating space narrows,
as shown in Figure 7. Consequently, the drones must find the nearest point to avoid collisions
with obstacles while also considering a safe distance from other drones in the swarm. This
necessity often increases the average number of divergences. Additionally, since the obstacles
move randomly within the flight environment, their effects may vary across different scenarios.

Swarm FT: Increasing the number of obstacles affected the mission time and the values of the
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cost function. However, since the obstacles are moving randomly in the flight environment, the

effect does not show the same behavior in all scenarios, as shown in Figure 8 and Figure 9.

Figure 4. Average of divergence vs. the number of drones for
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Figure 8. Swarm flight time vs. the number of obstacles for different swarm sizes.
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4.4 The Formation Threshold Effects

One of the important contributions of this study is the hybrid navigation approach, where application
requirements are evaluated to prioritize following the optimal ACO path or maintaining a desired
formation. In this sub-section, different thresholds (allowable change distance) are tested to evaluate
the system’s performance, where each case has a different formation with different distances between
the drones within the formation and different distances between the start and destination points for
each drone. All cases will be tested at a safe distance of 1 m.

e Path Quality: In the second option, with different threshold values, the system can manage the
trade-off between maintaining formation and following the optimal path, resulting in optimal
flight trajectories and minimal divergence. The system showed its ability to choose the nearest
points to preserve the formation. As Figure 10 illustrates, the quality of the path is above 97% in
all cases.

e Swarm Flight Time: Increasing the threshold allowed the drones more movement flexibility,
reducing the time needed to complete the mission, as shown in Figure 11.

Path Quality vs Threshold Values for Different Swarm Sizes
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Figure 10. Path quality vs. the threshold values for different swarm sizes.
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Figure 11. Swarm flight time vs. the threshold values for different swarm sizes.

e Formation Change: The formation change parameter evaluates the swarm’s ability to maintain its
desired formation during cooperative missions. The experiments demonstrated the success of the
hybrid approach, as the formation change remained below 25% of the allowable change in all
cases, as shown in Figure 12 and this percentage decreased when the threshold increased, but
with different slopes, since each drone will generate a random point around its current position,
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which is directly related to its formation and optimal path and choose the nearest point that
maintains its formation, saves the safe distance between the UAVs and avoids any potential
collisions. However, in all cases, the system shows high adaptability with an acceptable
formation change. It shows that the approach effectively conserves the formation during
missions.

FC Values for Different Swarm Sizes with Fitted Lines
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Figure 12. Formation change vs. the threshold values for different swarm sizes.

In summary, achieving robust solutions for complex tasks in dynamic and uncertain environments is a
persistent challenge. In its integrated approach, the proposed system contributes to filling this gap by
integrating ACO-based path planning, hybrid navigation and collision avoidance, enabling cooperative
detection and avoidance in 3D dynamic environments with multiple objects, uncertainties and security
restrictions. As demonstrated in the results, the system’s performance is a direct consequence of this
integration. ACO provides efficient path planning, while hybrid navigation and collision-avoidance
algorithms work together to maintain formation and prevent collisions. The varying performance
between swarms, where UAVs generate random points for collision avoidance, trading off mission
objectives with safety directly related to these environments’ dynamic and unpredictable nature is a
key challenge identified in previous research. Although this variability is observed, the system
consistently demonstrated high adaptability with acceptable formation changes, validating its
robustness in complex scenarios.

4.5 Challenging Cases Evaluation

To further assess the system’s performance, challenging cases were tested in which the swarm must
preserve its formation with an allowable change distance of less than 0.1 m while flying in a dense-
obstacle environment to assess how the system adapts to high levels of obstacle density while
maintaining its formation. As shown in Table 2, cases with a threshold of 0.1 and many obstacles were
tested when evaluating the hybrid navigation approach. This case’s performance shows the hybrid
approach’s efficiency in achieving mission objectives while ensuring formation conservation.

Table 2. System’s performance in challenging cases.

Number of Obstacles | Number of Drones | AD FT MC (100%) | PQ (100%) | FC (100%) | Cost Function
6 5 1 1.0969| 100 97.7058 26.8118 34.3594
12 10 1 0.6097| 100 99.7400 26.0080 35.0247
25 20 11 1.3182| 100 99.1094 20.6193 35.8143
40 30 433 | 0.9135| 100 94.1925 20.0458 34.3799
45 40 5.525 | 2.0233| 100 94,5771 24.6229 33.0812
60 50 8.34 | 2.5419| 100 97.6972 24.2275 33.1175
65 60 3.72 | 1.1032| 100 98.9631 21.6300 35.1919
75 70 2.3571| 1.5063| 100 98.8808 31.3673 33.3299
85 80 4.19 | 1.8487| 100 98.5522 28.7537 33.3524
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Figure 13. System performance for different numbers of obstacles.

To test the adaptability of the hybrid approach to the increased density of obstacles in the flight
environment while maintaining the distance change to be less than 0.1 m, for a twenty-UAV swarm, the
number of obstacles will start at 10 and then increase to 100, with a constant number of obstacles during
each run session. As shown in Figure 13, increasing the number of obstacles will increase the possibility
of collisions, since the operation space is so crowded, which increases the swarm flight time and the
average number of divergences. With the increase in the number of obstacles, the UAVs need to
increase the distance within the threshold to maintain their formation while saving their safe distance,
which will normally affect path-quality and cost-function values. The tests are performed at a 1m safe
distance.

5. CONCLUSION

This work presents an adaptable intelligent system for cooperative UAV swarm missions, integrating a
path-planning algorithm based on the ACO algorithm, a collision-avoidance algorithm and a hybrid
navigation system. The system was tested and evaluated in various scenarios, including different
swarm sizes in dynamic 3D environments filled with moving and static obstacles while maintaining
the desired formation. The simulation results demonstrate the system’s outstanding performance,
achieving a path quality of around 97% in most cases and never dropping below 90%, even in
challenging scenarios. This reflects the high efficiency of the ACO module in finding optimal paths
and the system’s adaptability in consistently following them. The collision-avoidance module showed
remarkable performance, ensuring that all missions remained collision-free, with a mission
completeness rate of 100% in all testing scenarios. When the desired formation was necessary, the
system showed its ability to maintain it even in dynamic environments within 30% of the allowable
range in most cases. The system’s success lies in its cooperative approach, in which all the modules
work together smoothly. This collaborative and intelligent system illustrates its potential for real-world
applications in various cooperative UAV-swarm missions.
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ABSTRACT

This paper addresses the challenge of accurately translating Jordanian Arabic into Modern Standard Arabic
(MSA) and correcting common linguistic errors. Although MSA is the formal standard for Arabic communication,
the widespread use of local dialects in social media and everyday interactions often results in texts laden with
spelling and grammatical issues. To overcome these challenges, we present an end-to-end system based on a newly
constructed Jordanian Arabic dataset (JODA) comprising 59,135 sentences, as well as the Tashkeela dataset
perturbed through synthetic error injection. We employ ByT5, a large pre-trained language model that processes
text at the byte level, making it resilient to spelling variations and morphological complexities common in Arabic
dialects. Our experimental results show that fine-tuning ByT5 on JODA and a 10% error-injected Tashkeela subset
notably improves both BLEU score and character error rate (CER). Combining JODA with the synthetically
modified Tashkeela data reduces the CER to 4.64% on the Test-200 test set and 1.65% on the TSMTS test set.
Moreover, manual inspections reveal that the model produces correct or near-correct translations in most cases.
Finally, we developed a custom smartphone keyboard and a web portal to demonstrate how the system can be
made easily accessible to interested users, offering a practical solution for millions of Arabic speakers seeking to
produce accurate, diacritized MSA text. This solution is currently limited to the Jordanian dialect; future work
will focus on developing similar datasets and solutions for other Arabic dialects.

KEYWORDS

Jordanian Arabic, Modern Standard Arabic, Dialectal translation, Large language models, Synthetic error
injection, Natural-language processing, ByT5.

1. INTRODUCTION

Arabic, as the official language of over 20 countries, exhibits a rich linguistic diversity shaped by various
regional dialects [1]. In Jordan, everyday communication relies heavily on an informal local dialect
distinct from Modern Standard Arabic (MSA). While MSA remains the formal standard for written
communication in official contexts, many Jordanians encounter difficulties expressing themselves
accurately, often producing texts riddled with lexical, morphological, grammatical, syntactic and
spelling errors. The proliferation of social media has further amplified this issue, as informal dialects
and spelling inconsistencies dominate many online platforms [2].

To address these challenges, modern natural-language processing (NLP) techniques offer promising
solutions by leveraging powerful pre-trained large language models. These models have demonstrated
remarkable success in understanding and generating text across different languages, including Arabic,
when sufficiently trained on diverse and high-quality examples [3]. However, collecting large-scale
datasets that reflect the intricacies of informal dialects and embedding them in a unified framework for
effective NLP applications pose significant hurdles. Despite recent advancements, current solutions for
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translating dialectal Arabic to MSA remain unsatisfactory in terms of accuracy and robustness. This is
largely due to the low-resource nature of the problem, as most dialects lack extensive parallel corpora.
The development of additional high-quality, dialect-specific resources is therefore essential to improve
translation performance and to enable fine-tuning of large models for this challenging task.

In this work, we present an end-to-end system designed to translate Jordanian Arabic into MSA, correct
common linguistic mistakes and provide optional diacritization (automatic restoration of missing short
vowel marks). Our project involved collecting 59,135 Jordanian Arabic sentences, spanning various
dialectal usages and error types, then pairing them with carefully proofread MSA renditions. This dataset
was augmented with additional resources to address the scarcity of real-world error examples. By fine-
tuning pre-trained large language models on these combined resources, we have created a robust system
capable of significantly improving the quality of Jordanian Arabic texts. While this solution is currently
limited to the Jordanian dialect, it can be extended to other Arabic dialects as similar datasets become
available.

The key contributions of our research can be summarized as follows. First, we provide a new, purpose-
built Jordanian Arabic dataset that captures authentic usage and errors, serving as a valuable resource
for future NLP research in Arabic. Second, we introduce synthetic spelling errors into a well-known
diacritized dataset, enabling the model to learn extensive error patterns beyond the scope of the
Jordanian dialect alone. Third, we fine-tune and evaluate a large language model for the translation task,
demonstrating its effectiveness in handling informal dialect and spelling issues. Finally, we make the
resulting models available through user-friendly web and smartphone applications, allowing Jordanians
to produce clear and accurate MSA texts.

After this introduction, Section 2 reviews some related previous work. The approach is outlined in
Section 3, followed by the datasets in Section 4, which includes the Jordanian dialect dataset, the
Tashkeela datasets with synthetic error injection and the test sets. Section 5 focuses on the models and
experiments, describing the model tuning, optimization of synthetic error injection and training using
the developed datasets. The results and discussion are presented in Section 6, encompassing a manual
inspection of model predictions and a detailed analysis of the results. Finally, the paper concludes with
insights, implications and future work in Section 7.

2. LITERATURE REVIEW

This review traces the evolution of machine translation, from rule-based methods to neural architectures,
focusing on large language models (e.g., GPT, BERT, T5 and ByT5) and highlighting their key features.
Finally, it examines recent approaches for translating Arabic dialects into MSA.

2.1 Evolution of Machine-translation Approaches

Traditional language-translation methods, such as rule-based machine translation (RBMT), rely on
comprehensive morphological, semantic and syntactic rules for both the source and target languages,
requiring extensive expert input [4]. In contrast, example-based machine translation (EBMT) maps
sentence examples from one language to another without requiring any handcrafted linguistic rules.
However, its performance is heavily influenced by the quality of the example database [5]. Statistical
machine translation (SMT), which was once dominant, integrates phrase, syntax and hierarchical
models, but its complexity necessitates combining translation, language and sentence-reordering models
[6]-[9]. Hybrid approaches that combine RBMT and SMT have also been explored [10].

Recently, neural machine translation (NMT) has become the standard, with widespread adoption by
companies, like Google and Microsoft [6], [11]-[13]. NMT employs advanced models, like recurrent
neural networks (RNNSs), convolutional neural networks (CNNs), encoder-decoder stacks and
transformers. With sufficient training data, these models can learn complex linguistic relationships and
capture context and semantics from parallel data [12]-[13]. Popular NMT variants, such as bidirectional
encoder representations from transformers (BERT) [14]-[15] and text-to-text transfer transformer (T5)
[16], are widely used for natural-language processing. NMT systems, initially focused on language pairs,
are now capable of translating across 200+ languages [17].
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2.2 Large Language Models

Large language models (LLMSs), such as generative pre-trained transformer (GPT) [18], BERT [19] and
T5 [16] have significantly advanced NLP. These models are based on the transformer architecture,
which uses self-attention mechanisms to process text in parallel rather than sequentially [20]. This
parallel processing enables LLMs to better handle long-range dependencies and complex linguistic
structures. Trained on large datasets, LLMs can perform various tasks, like text generation, translation,
summarization and error correction, making them versatile tools for language applications. However,
models like GPT and T5, which rely on token-based representations, may struggle with out-of-
vocabulary words or small typographical errors.

ByT5 is a token-free variant of the T5 model that operates directly on byte-level inputs rather than
relying on tokenized text [21]. It retains T5’s core architecture, consisting of a heavy encoder and a
lighter decoder, both built with multi-head self-attention mechanisms and feed-forward neural networks.
The encoder converts raw byte sequences into continuous representations, effectively capturing
semantic meaning even in the presence of spelling errors or non-standard formatting, while the decoder
generates coherent output sequences from these representations. This byte-level processing eliminates
the limitations of traditional tokenization, enabling By T5 to handle diverse languages and character sets
more flexibly.

We adopt ByT5 in our solution due to its demonstrated robustness against spelling variations,
misspellings and unconventional text formats—characteristics that are prevalent in dialectal and
informal Arabic. These strengths make it particularly well-suited for tasks, such as error correction,
normalization and diacritization. ByT5 has also proven effective in Arabic NLP applications, including
automatic text diacritization [22].

2.3 Recent Approaches to Translating Arabic Dialects

This sub-section reviews recent efforts in Arabic-dialect translation, arranged from broader to more
closely related work.

Some studies have focused on translating Arabic dialects to or from English. Alzamzami and Saddik
[23] proposed a transformer-based model for translating English tweets into four Arabic dialects.
Nagoudi et al. [24] developed AraT5, a transformer model pre-trained on large-scale data and fine-tuned
on several tasks, including Arabic dialect-to-English translation. AraT5 outperformed the more general
multilingual mT5 model in these tasks.

Several other studies have targeted the translation of multidialectal Arabic content into MSA. Slim and
Melouah [25] addressed the translation of three Maghrebi dialects into MSA using an incremental fine-
tuning strategy on a transformer model to address the low-resource nature of dialectal Arabic. Baniata
et al. [26] proposed integrating RNN-based part-of-speech tagging to enhance translation from
Levantine and Maghrebi dialects into MSA, achieving a BLEU score of 43 for Levantine dialects. Alimi
et al. [27] fine-tuned a variant of AraT5 for translating Levantine and Maghrebi dialects into MSA,
reporting high BLEU scores of 43.38 and 64.99, respectively. Notably, both works on Levantine dialects
include coverage of the Jordanian dialect.

There is also a line of research focusing on the translation of a single dialect, which aligns more closely
with our work. Kchaou et al. [28], [29] applied data-augmentation techniques to Tunisian-dialect
translation and demonstrated that a transformer model outperformed CNN and RNN baselines,
achieving a BLEU score of 60. Faheem et al. [30] focused on translating the Egyptian dialect into MSA.
Their model, trained on 40,000 supervised parallel sentences and supplemented with 35 million
monolingual sentences in an unsupervised manner, achieved a BLEU score of 29.5.

Our approach aligns with Refs. [29]-[30] in targeting the translation of a single Arabic dialect into MSA
and with Refs. [30], [27], [25], [24] in fine-tuning transformer-based models. However, we distinguish
our work by adopting a pretrained, token-free transformer (ByT5), which we fine-tune using a parallel
Jordanian-MSA dataset and stochastic error injection. To the best of our knowledge, this is the first work
to fine-tune a transformer model specifically for translating not only Jordanian dialect, but also error-
prone MSA text—including linguistic and spelling errors—into proper MSA.
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3. APPROACH

Our research implements a comprehensive approach, shown in Figure 1, to accurately translate
Jordanian Arabic into MSA, correct spelling mistakes and add diacritics. We began by collecting a
dataset of 59,135 Jordanian Arabic sentences, encompassing a broad spectrum of language mistakes and
dialectal variations. Working with Arabic-language specialists, we corrected mistakes, translated
colloquial forms into MSA and thoroughly proofread all samples.

Adding

>| et sl 3 ( giacritics |2 i of s

Translating
to proper
language

eliss | 3

2

e —
Training Datasets

Figure 1. End-to-end approach for Jordanian Arabic to diacritized MSA conversion.

Building on this dataset, we further expanded it using the diacritized Tashkeela Classical Arabic dataset
[31]. Synthetic spelling errors were introduced into Tashkeela via random error injection, enhancing the
model’s capacity to handle real-world misspellings.

We fine-tuned pre-trained ByT5 models, leveraging their broad language understanding developed
through training on large datasets. Pre-trained models like ByT5 are neural networks designed to learn
general language representations, enabling them to understand and generate text effectively. Fine-tuning
involves adapting these models to specific tasks by training them further on smaller, task-specific
datasets. In our case, one model was fine-tuned to translate Jordanian Arabic into proper MSA,
specializing in this linguistic transformation. Additionally, we explored another model inspired by Al-
Rfooh et al. [22] to optionally add diacritics, though this lies outside the scope of this paper [32], [33].

Upon completion of training, the models exhibited strong performance in error correction, translation
and diacritization. Finally, we integrated these trained models into both internet-based and smartphone
applications, exploring open access for Jordanian users seeking reliable and accurate linguistic support.
Despite its effectiveness, the approach faces limitations including the cost of developing high-quality
parallel datasets and the computational intensity of training and deploying large models like ByT5,
which constrains scalability and performance on resource-limited devices.

4. DATASETS

This section describes the datasets used for training and evaluating our approach. Sub-section 4.1 details
the newly developed Jordanian dialect dataset [34], Sub-section 4.2 introduces the Tashkeela-based
datasets alongside synthetic error injection and Sub-section 4.3 outlines the test sets employed to
measure model performance.

4.1 Jordanian Dialect Dataset

One key contribution of this research is the development of the Jordanian dialect dataset (JODA). This
parallel dataset was constructed by collecting Arabic sentences that contain various linguistic mistakes
or are in the informal Jordanian dialect. Each collected sentence was then paired with its corresponding
correct MSA equivalent. The dataset draws from three primary sources to ensure diversity and
authenticity (Figure 2). Approximately 72% of JODA comes from social-media platforms: YouTube,
Facebook, Instagram and Twitter (X), covering various topics like economics, society and politics.
Additionally, 22% are sentences selected from publicly available Arabic-dialect datasets: Dialectal
Arabic tweets (DART) dataset [35] and the Shami dialect corpus (SDC) [36]. The remaining 6.6% of
the dataset consists of transcriptions of eight short Jordanian movies capturing cultural and linguistic
diversity.



323

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

35%
31.6%
30% 29.0%
25%
20%
16.1%
15%
10% 8.7%
5.7% 6.6%
5%
2.3%
0% N
YouTube Facebook Instagram Twitter (X) sbc DART Short JO
dataset dataset movies

Figure 2. Composition of JODA dataset by sample source.

The collected samples from the various sources underwent extensive preprocessing, which included
removing irrelevant elements, duplicates, emojis and unnecessary characters, as well as segmenting the
text into meaningful sentences. Each sentence was manually reviewed to ensure proper segmentation
and meaningful content, retaining only those in MSA containing mistakes or in the Jordanian dialect.
The sentences range from 2 to 277 characters, reflecting natural-language usage. Arabic linguistic
experts contributed to the development of this parallel dataset by providing either corrections for MSA
sentences containing mistakes or translating Jordanian dialect sentences into MSA. For a broader
linguistic perspective on this translation from Jordanian Arabic into MSA, interested readers are referred
to [37].

While JODA was designed to be as representative as possible, some bias may exist. The Jordanian
dialect varies by region, but most data likely reflect the central region, where most of the population
resides. Northern and southern dialects may be underrepresented. Additionally, the heavy reliance on
social-media content may skew the language toward younger, urban speakers. We also used curated
datasets and film transcripts, which may not fully capture spontaneous speech. Despite these limitations,
we made deliberate efforts to ensure diversity in topics, sources and linguistic styles across the dataset.

To expedite dataset corrections, we developed a custom PyQt-based GUI specifically tailored for
Arabic-text processing. The tool is employed by both experts and auditors, who can selectively load
dataset files, navigate individual sequences, classify entries and either provide or validate corrections.
This interface was designed to accommodate right-to-left scripts and fully support Arabic display and
parsing, ensuring minimal friction during annotation and review. Additionally, it offers streamlined
functionality for saving changes, flagging problematic entries and maintaining detailed logs of edits.
Figure 3 illustrates the tool’s layout and features, highlighting its user-friendly design.
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Figure 3. Correction and auditing tool.
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The final version of the JODA dataset comprises 59,135 sentences, with 62.4% in the Jordanian dialect
and 37.6% in MSA containing mistakes (Table 1). This version was randomly split into three sub-sets;
91.5% of the sentences were included in the training sub-set, while the remaining sentences were evenly
divided between the validation and test sub-sets (2,500 sentences each).

Table 1. Distribution of the JODA dataset by sentence type and data split. The “Total” row and
column show the number of sentences and their percentages relative to the entire dataset.

Sentence type

Training subset

Validation subset

Test subset

Total

Jordanian dialect

33,767

1,560

1,559

36,886 (62.4%)

MSA containing mistakes

20,368

940

941

22,249 (37.6%)

Total

54,135 (91.5%)

2,500 (4.2%)

2,500 (4.2%)

59,135 (100%)

During this split, stratification was applied to ensure representative sampling of the various sentence
sources and types across the three sub-sets. Figure 4 shows the number of sentences in the three dataset
sub-sets, categorized by sentence source and sentence type.

100% 100%

90% 90%

80% 80% 20,368
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Figure 4. Stratified split of the JODA dataset by sentence source (left) and sentence type (right).

4.2 Tashkeela Datasets and Synthetic Error Injection

In addition to JODA, the proposed model was also trained using the Tashkeela Clean-50 and Clean-400
datasets, which primarily contain diacritized Classical Arabic text. The Tashkeela Clean-50 dataset,
developed by Fadel et al. [38], comprises 50,000 training sequences extracted from the original
Tashkeela dataset [31]. These sequences were filtered to ensure a diacritic-to-character ratio of at least
80% and were processed using heuristics, such as diacritic correction, removal of English letters and
isolation of numbers from words. Abdel-Karim and Abandah [39] expanded this dataset, creating the
Tashkeela Clean-400 dataset with 400,000 training sequences. Both datasets include, in addition to their
respective training sets, the same validation sub-set of 2,500 sequences and the same test sub-set of
2,500 sequences. These datasets were truncated to a maximum sequence length of 512 bytes to maintain
consistency with the JODA dataset.

These datasets were further processed into input-target pairs by introducing synthetic stochastic spelling
errors [40]. Two methods were employed for error injection: directed error injection and general error
injection. Directed error injection focuses on “soft spelling mistakes,” which are common among Arabic
speakers and learners due to the complexity of Arabic orthography. Following the approach of Abandah
et al. [41], this method specifically targets frequent mistakes involving words with different forms of
hamza (ts ¢ ¢ ¢ f «¢) and words ending with similarly pronounced letters (< < <¢) and ()5 <s). Errors
were introduced based on their position within words, using three injection rates (2.5%, 10% and 40%)
to evaluate their impact on model training. This method ensures that artificial errors closely resemble
common real-world mistake patterns.

General error injection extends directed error injection by incorporating a broader range of spelling
error patterns, including letter deletion, insertion, swapping and replacement. This approach introduces
stochastic errors of selected probability, also evaluated at three injection rates. These errors simulate
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various mistake patterns found in Arabic text, allowing the model to learn corrections for a variety of
mistake types. By combining directed and general error injection methods, the dataset is designed to
improve the model’s ability to correct both specific and general spelling mistakes. Table 2 provides the
statistics for JODA, Tashkeela Clean-50 and Tashkeela Clean-400.

Table 2. Statistics of the datasets used.

T | e
Size (MB) 10.3 12.80 102.50
Number of sequences 59,135 pairs 50,000 400,000
Word count 1.14 x 10° 1.62 x 10° 12.95 x 106
Character count 5.92 x 106 7.34 x 106 58.67 x 106
Average number of words per sequence 9.6 32.40 32.36

4.3 Test Sets

To thoroughly evaluate the developed model’s performance, we use three test sets. The first is the JODA
test subset described above, which is critical for assessing performance and selecting optimal
configurations. The second, Test-200 [41], contains 200 sentences with “soft” spelling mistakes,
averaging 6.5 mistakes per sentence and a 5%-character mistake rate. This set is particularly useful for
fine-tuning the model when training on data with directed error injection.

We also developed a third test set, the Tashkeela spelling mistakes test set (TSMTS), derived from the
2,500 sequences of the Tashkeela test set. Each sequence in the Tashkeela test set serves as a target,
paired with an input sequence generated by applying the general error injection described above to the
original sequence. A character error rate of 5% was used to ensure that TSMTS mirrors the Test-200
set. This test set provides a benchmark for evaluating general error injection.

5. MODELS AND EXPERIMENTS

We selected ByT5 for its robustness in handling multilingual text and noisy inputs, operating at the byte
level without tokenization. This language-agnostic approach ensures high flexibility across diverse
languages and scripts [21]. ByT5’s strengths include resilience to misspellings and compatibility with
low-resource languages. For our experiments, we utilized the Small and Base model sizes due to their
lower computational requirements. We did not use larger models, as the significantly higher
computational cost was not justified by the relatively small performance gains reported in prior work
[21]-[22]. Table 3 summarizes the architectures of both models.

Table 3. Architectures of the two ByT5 models explored.

Criterion Small Base
Number of parameters 300M 582M
Encoder/decoder layers 12/4 18/6
Feed forward dimension (dsf) 3,584 3,968
Model dimension (dmodel) 1,472 1,536

For evaluation, we used the BLEU and CER metrics. BLEU (bilingual evaluation understudy) measures
the similarity between the model’s output and reference translations by comparing overlapping n-grams,
providing a score for translation quality. CER (character error rate) calculates the percentage of
character-level errors, such as substitutions, insertions and deletions, in the model’s output compared to
the reference, offering insight into fine-grained accuracy.

The experiments were conducted on Google’s Colab Pro Plus platform, utilizing TPU v2 units to
accelerate the training process. The programming language used was Python 3.7.13, with TensorFlow
2.12.0 as the primary library.

The following sub-sections detail the experiments and results for tuning the ByT5 model, refining the
error injection approach used in preparing the Tashkeela datasets and training the optimized model on a
combined dataset of JODA and Tashkeela.
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5.1 Tuning the ByT5 Model

The ByT5 model comes in multiple sizes and offers numerous hyperparameters that can be adjusted to
improve performance, depending on the target task. In this work, we began by establishing a baseline
model and then explored various hyperparameter configurations to arrive at a final tuned model. Table
4 summarizes the explored hyperparameter options and lists the values used in both the baseline and the
tuned models. The following paragraphs describe the tuning experimental procedure and summarize the
results.

Table 4. Explored ByT5 hyperparameters, evaluated options and the corresponding values for both
the baseline and the tuned models.

Hyperparameter | Options Baseline model | Tuned model

Model size Small, Base Small Base

Batch size 128, 256, 512 256 128

Learning rate 0.0001, 0.003, 0.01 0.003 0.003

Optimizer AdaFactor, Adam Weight Decay | AdaFactor Adam Weight Decay

We fine-tuned the model using the JODA dataset, which includes the two implicit tasks: translating
Jordanian Arabic into MSA and correcting linguistic mistakes. Our initial experiment assessed the
baseline model’s performance. Figure 5 shows the BLEU scores for both the training and validation
sub-sets over successive training steps, where each step corresponds to a batch of a specified size (256
for the baseline model). During this experiment and others, we observed that the model exhibits
overfitting, with the BLEU score on the training sub-set approaching 100 while the validation score
plateaus at a lower level. To mitigate overfitting, we halted training when the validation score ceased to
improve and adopted the model weights from the training step with the highest validation score. The
baseline model achieves its highest BLEU score of 57.49 at the 3,000th training step, with a
corresponding BLEU score of 56.07 on the JODA test sub-set.

100 T

20

80

70 |

/57.49
60 /

50 .
Training set

BLEU score

a0 — Validation set

30 |

20

10

0
0 1 2 3 4 5 6 7
Training step x 1,000

Figure 5. Training curves of the baseline model trained on JODA dataset.

In our fine-tuning experiments, we followed the methodology described in [42], which involves
adjusting one hyperparameter at a time and comparing the resulting performance to the baseline.
Although this “coordinate ascent” approach may overlook higher-order interactions between parameters
(for instance, a different learning rate might produce better results with a larger model size), a full
factorial design would be expensive, as it would require 2x3x3x2 = 36 experiments. Once the best
individual hyperparameters were identified, we used those values to train the final model.

Table 5 provides the outcomes of the seven fine-tuning experiments involving the four hyperparameters.
Each row presents the examined hyperparameter option, the training step where the validation score
peaked and the corresponding BLEU scores for both the validation and test sub-sets. Based on these
results, the optimal hyperparameters for the tuned model are those shown in Table 4.
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Table 5. Results of fine-tuning the hyperparameters of the ByT5 model.

Hyperparameter Option Best training step ?,Iéﬁga;ﬁ)e BLEU score (test)
. Small (baseline) 3,000 57.49 56.07
Model size
Base 7,000 59.01 57.08
128 4,000 57.54 56.43
Batch size 256 (baseline) 3,000 57.49 56.07
512 1,000 58.03 56.32
0.0001 20,000 56.53 55.38
Learning rate 0.003 (baseline) 3,000 57.49 56.07
0.01 9,000 55.13 53.90
AdaFactor 3,000 57.49 56.07
Optimizer ,(Abg:i::r\]/?eight
Decay 2,000 57.60 56.29

When trained on JODA, the tuned model achieves its highest BLEU score of 59.07 at the 3,000th
training step on the validation sub-set, yielding a BLEU score of 57.77 on the test sub-set, which
represents a 3% improvement over the baseline model.

5.2 Tuning Error Injection

The performance of a model trained with synthetic error injection is influenced by the chosen injection
rate in [41]. This sub-section describes the experiments conducted to determine optimal rates and
summarizes the results. In these experiments, we trained the tuned model on the Tashkeela datasets and
evaluated it on the Test-200 or TSMTS test sub-sets. As in previous experiments, we stopped training
once the validation score ceased to improve and adopted the model weights from the training step that
produced the highest validation score for final evaluation.

5.2.1 Directed Error Injection

We explored three rates for directed error injection: 2.5%, 10% and 40%. In each experiment, the model
was trained on a Tashkeela dataset with the specified rate of directed error injection, then evaluated on
Test-200. We selected Test-200, because it contains common real-life spelling mistakes, like those
introduced by the directed method.

Table 6 shows the results obtained using the Clean-50 dataset, where a 10% injection rate yielded the
lowest CER on Test-200 (1.37%). Note that the CER on the validation sub-set increases with higher
error rate in this sub-set. The table also reports results for training on the larger Clean-400 dataset at the
same 10% rate, which further reduced the CER on Test-200 to 1.23%. This improvement demonstrates
that a larger dataset provides the model with more examples of spelling variations, enhancing its ability
to correct errors.

Table 6. Results of tuning directed error injection.

Dataset Error injection Best training step CER (validation CER (Test-200)

rate sub-set)

2.5% 8,000 0.03% 2.26%
Clean-50 10% 8,000 0.07% 1.37%

40% 8,000 0.14% 1.53%
Clean-400 10% 13,000 0.04% 1.23%

5.2.2 General Error Injection

For general error injection, we similarly evaluated three rates: 2.5%, 10% and 40%. In each experiment,
the model was trained on a Tashkeela dataset with the chosen rate of general error injection and tested
on TSMTS. TSMTS was selected, because it contains synthetic spelling errors comparable to those
produced by the general error injection method.
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As shown in Table 7, using the Clean-50 dataset with a 10% injection rate resulted in the lowest CER
on TSMTS (1.77%). When the model was trained on the larger Clean-400 dataset at the same 10% rate,
the CER dropped further to 1.28%, indicating that a bigger training sub-set helps the model better
generalize to diverse error patterns.

Table 7. Results of tuning general error injection.

Dataset Error injection Best training step CER (validation CER (TSMTS)

rate sub-set)

2.5% 14,000 0.80% 2.09%
Clean-50 10% 10,000 2.99% 1.77%

40% 12,000 16.69% 2.78%
Clean-400 10% 14,000 2.20% 1.28%

Overall, these experiments confirm that a 10% error injection rate is most effective for both directed and
general error injection methods. Furthermore, training on a larger dataset (Clean-400) yields better
results, highlighting the importance of data size in improving the model’s ability to correct spelling
errors.

5.3 Training Using JODA and Tashkeela Datasets

To further improve the model’s performance on both translating Jordanian Arabic into MSA and
correcting linguistic mistakes, we explored training on a combined dataset. Specifically, we combined
JODA with the 10% directed error-injected Clean-50 dataset and the 10% general error-injected Clean-
50 dataset. As usual, this combined dataset was partitioned into training, validation and test sub-sets by
merging the corresponding sub-sets from the three individual datasets.

Figure 6 illustrates the training curves for the tuned model on this combined dataset. The BLEU score
for the training sub-set continued to improve with more training steps, whereas the validation score
increased more slowly. Training was halted at Step 15,000 due to the slowing improvement on the
validation sub-set and the widening gap between the training and validation scores. At this step, the
validation BLEU score reached 87.57, which is considerably higher than the BLEU score of 59.07
achieved by training solely on the JODA dataset. This apparent discrepancy arises, because the
validation sub-set in the single-dataset experiment contains only JODA sentences, which tend to be more
challenging than the mixed-validation sub-set here. Indeed, when evaluated on the JODA test sub-set,
this model achieves a BLEU score of only 57.39.
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Figure 6. Training curves of the tuned model trained on JODA and Clean-50 datasets.

To assess whether the model could generalize beyond JODA, we compared the CER on the Test-200
and TSMTS test sub-sets between (1) the model trained on JODA only and (2) the model trained on the
combined dataset. As shown in Figure 7, the combined-dataset model generalizes more effectively: the
CER on Test-200 improves from 6.37% to 4.64% and on TSMTS from 11.95% to 1.65%. This result
demonstrates the model’s enhanced ability to correct common and general spelling mistakes.
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Figure 7. CER on two test sub-sets for the tuned model trained with two dataset configurations.

We also examined the model’s performance when trained on a combined dataset consisting of JODA
and the larger Tashkeela Clean-400 dataset. In this case, the model yielded a lower BLEU score of 53.24
on the JODA test sub-set, likely due to an imbalance between Jordanian dialect and MSA content in the
larger dataset. Consequently, we adopted the model trained on the combined JODA and Clean-50
datasets.

6. RESULTS AND DISCUSSION

Table 8 compares the three main models trained under different conditions to evaluate their performance
in translating Jordanian Arabic into MSA and correcting linguistic mistakes. The baseline model, trained
only on JODA, reaches a high BLEU 56.07, because many JODA references differ from the inputs by
only minor spelling errors; n-gram overlap is therefore already near-saturated. However, CER exposes
those spelling mistakes: the baseline scores 6.58% on Test-200 and 12.41% on TSMTS. Hyper-
parameter tuning (still on JODA) nudges BLEU to 57.77 and trims CER to 6.37% and 11.95%. Adding
the Clean-50 corpus introduces many perfectly spelled targets and forces the model to generalize beyond
JODA. BLEU on the JODA test sub-set dips slightly to 57.39, but CER falls sharply to 4.64% on Test-
200 and 1.65% on TSMTS. Thus, while BLEU shows only marginal gains, the steep CER reduction
demonstrates that the final model corrects errors more aggressively and transfers this ability to unseen
text, striking a practical balance between fluency (BLEU) and accuracy (CER).

Table 8. Comparison of the three main experiments on three test sub-sets.

Model Training time BLEU score CER CER

in hours (JODA test set) (Test-200) (TSMTS)
Baseline model (trained on o 0
JODA) 15 56.07 6.58% 12.41%
Tuned model (trained on JODA) | 2.1 57.77 6.37% 11.95%
Tuned model (trained on JODA o 0
+ Clean-50) 10.3 57.39 4.64% 1.65%

Although large language models deliver impressive results, they often come with substantial
computational costs. Table 8 lists the training times for the three models, showing that the tuned model
employing the base ByT5 requires longer training than the baseline model, which uses the smaller ByT5
variant. Moreover, the final model trained on the combined larger dataset increases training time to
around five times that of the tuned JODA-only model. In the prediction mode, the trained model
translates a single Jordanian dialect sentence into MSA in approximately 1.5 seconds.

6.1 Comparison with Previous Work

Table 9 presents a comparative overview of recent efforts in translating Arabic dialects into MSA,
highlighting the methods, datasets and BLEU scores reported for different dialects. Compared to
previous studies, our work utilizes JODA—the largest Arabic mono-dialect dataset focused on Jordanian
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Arabic—and achieves the highest BLEU score reported for Levantine dialects, demonstrating the
effectiveness of our fine-tuned ByT5 model with stochastic error injection.

Table 9. Comparison with previous work in translating Arabic dialects into MSA.

Work Method Dataset/Size BLEU score
Baniata et al. [26] | RNN with POS tagging 3I\)/6I;L|J<It|d|alectal / 3?a;‘é)crtLevantme
Alimi et al. [27] Fine-tuning pretrained AraT5 model %L:(Itldlalectal / 3?a§:tf or Levantine
Kchaou et al. [29] | Transformer with data augmentation ;’glréman dialect/ 60

Pretraining followed by fine-tuning a Egyptian dialect /
Faheem et al. [30] transformer 40K 29.5
This work Fl_ne—t_unlng ByT5 and stochastic error JODA / 59K 5777

injection

6.2 Manual Inspection of the Model Predictions

Throughout this research, we primarily relied on BLEU and CER scores to evaluate translation and
correction quality. While these metrics are generally appropriate, they can also underestimate the
model’s performance—especially given Arabic’s linguistic richness, where a single sentence can be
correctly translated into multiple valid forms. Consequently, the model may receive a penalty if it
produces a legitimate translation that does not exactly match the target sequence.

Our main objective is to develop a model capable of translating Jordanian Arabic into MSA, rather than
replicating a specific reference translation. To gain deeper insight into the model’s real-world
performance, we manually reviewed 100 randomly selected predictions from the JODA test sub-set,
comparing them with the expert-provided target sentences. Table 10 provides sample inputs, target
sentences and model outputs, categorized into three classes: (1) correct translations with contextual
variations, (2) translations exhibiting minor differences and (3) translations with more substantial
discrepancies, often reflecting synonym usage.

Table 10. Overview of 100 manually audited predictions.

Prediction Example input .
e Count P P Target sentence Predicted sentence
classification sentence
e A sise ) I3 o Sy A S
.- ‘;Sa\)é\}w.dd}\‘f\&q\.) 34 i N ?ﬁ\}é\w‘__‘_‘jd)ﬂu\‘f&y
Correct predictions 51 (G St ) T 1 ! Ae.at juuﬁl.ésu Lo oS 1l ) A 0
. B el olae fie 4nnldll A.‘d)ii?hbgi-t“&.u:\l%_}ldl Al 55 Al dal dxe Cad dnyiall
Small differences 40 ze 3o L sl Sas e = e Leshal Sl Ylaa = e Leashals 50 Vs
. one Jsh see DO i b oy sk g Ol i | Ub o pee Jish sgd doll oy
3 Large differences 9 sl 45 m 9130 el Jud V3o clin 913 el Jee 13

Notably, the manual review revealed that the model’s true performance exceeds the CER evaluation of
12.39%. When correct translations are not counted as errors, the CER declines to 5.56%. Although these
findings are already encouraging, they further confirm that the model’s practical performance is stronger
than what traditional metrics alone may indicate.

Despite strong overall results, the final model shows two noteworthy limitations. First, ambiguous short
sentences, where number or gender is underspecified, can lead to incorrect disambiguation in MSA.
Second, because training data was restricted to Jordanian Arabic and MSA, the system struggles with
inputs that mix codes (e.g. bilingual Arabic and English sentences). Addressing these issues will require
additional annotated data and explicit modeling of ambiguity.

6.3 Evaluation on Additional Jordanian and Other Levantine-dialect Sentences

We conclude that our final model effectively translates Jordanian Arabic into MSA and corrects
linguistic errors.
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Table 11 provides examples of input sentences that were not part of the JODA dataset, alongside the
model’s corresponding predictions and evaluations. In most instances, the model produces high-quality

translations, occasionally exhibiting only minor errors.

Table 11. Sample input sentences, model predictions and evaluations.

Input sentence Predicted sentence Evaluation
Sosall z 53 s Sosall Caaiv oy Correct
il 5 b el L fday bl s Correct
asall By sl sl 0y sall Minor error
Tlua dcll) i SOV Al oS Correct
Sl S 1S Lirie i€ L) Correct
(5 5y Sllis) AL el ) Correct
Adylbd )y sl fdaobddel sl Correct

To probe generalizability beyond Jordanian Arabic, we manually assembled fifteen unseen sentences,
five each in Palestinian, Syrian and Lebanese dialects and translated them with the final model. The
model successfully rendered all sentences into grammatical MSA, confirming that its byte-level
representations capture many shared Levantine structures. Accuracy, however, was lower than for
Jordanian input: output fluency occasionally suffered from dialect-specific lexemes and translations of
Lebanese examples that contained French loanwords (e.g. ascenseur, parfum). These observations
suggest that while the system generalizes reasonably within the Levantine group, expanded training data
would be needed for consistently high performance across all regional variants.

6.4 Accessing the Model via Smartphones and Web Portal

To provide the model’s Jordanian Arabic-to-MSA translation and Arabic error correction capabilities to
end users, we developed a custom keyboard and a web-based portal. The model is hosted on a server
and communicates with both the keyboard and web interface using the Flask framework. When users
enter text and request a correction, the front end sends this text to the Flask API, which processes it
through the trained model and returns the corrected output in real time. This setup ensures a responsive,
lightweight user experience by offloading complex processing tasks to the server.

The custom keyboard, called Al Board, was developed using the open-source OpenBoard project [43]
for Android and the KeyboardKit 7.9.8 package [44] for iOS. As shown in Figure 8, it features a
dedicated “z=>=" (Correct) button that translates or corrects any text entered via the Arabic keyboard
or microphone, seamlessly converting Jordanian dialect into MSA.

Q- < )0
s &

1 2 3 4 _5 .(v 7] 8 .9 0 4 i L€
Alelels]e]ltle] 12l ]z SIICHCNN I 3

Spodl zoxi A e (@ Sasdl caias ol @

LU ?_°?'.”ZZ
G B A S D ) G J oy e db
-.)‘"-é)é'ée)'b-)@ 3;9)\539\5_3@

o ‘ ’ o : :

Figure 8. The Al Board translating a Jordanian dialect sentence (left) into MSA (right).

We also built a web-based portal named Loghati (Arabic for “my language”) to offer open access to this
solution. In addition to the translation feature shown in Figure 9, the portal provides references for
Arabic grammar and spelling rules. It supports keyboard and microphone input, allows copying of
translated text and is built using HTML, CSS, JavaScript, Bootstrap and React.js.
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Figure 9. Loghati interface translating a sentence entered from the Jordanian dialect into MSA.

7. CONCLUSIONS

In this work, we presented an end-to-end system for translating Jordanian Arabic into MSA, correcting
common linguistic errors and optionally adding diacritics. We began by collecting a large dataset of
Jordanian dialect sentences (JODA), comprising diverse dialectal usages and error types. Each entry
was carefully curated by Arabic-language experts, ensuring accurate MSA equivalents. To further
enhance performance, we incorporated additional resources from Tashkeela, introducing synthetic
spelling errors to increase the model’s exposure to spelling mistake patterns and ability to correct Arabic
text.

Our experiments employed the ByT5 architecture—well-suited for Arabic dialect processing due to its
byte-level input handling—to achieve robust translation and correction. Through systematic fine-tuning
of hyperparameters, we identified a tuned combination that improved BLEU scores on the JODA test
subset by 3% over a baseline system. Furthermore, integrating the error-injected Tashkeela dataset
enhanced the model’s generalization, as evidenced by significant improvements in CER across various
benchmark test sub-sets.

Beyond quantitative metrics, manual reviews revealed that the model’s output often matched or closely
approximated expert translations, underscoring its practical effectiveness. Finally, we made the resulting
models accessible via a custom keyboard and a web portal, thus offering user-friendly solutions that
expand the reach and impact of this research. These solutions will first be introduced in pilot scenarios
to collect user feedback, enabling further refinement before a wider public launch.

Our approach, trained on JODA, the largest mono-dialect corpus, achieves the highest reported BLEU
for Levantine dialects, outperforming prior Arabic-dialect-to-MSA systems. Nevertheless, it can
mishandle number/gender ambiguities and code-mixed Arabic-English inputs, pointing to the need for
richer data and explicit ambiguity modeling. Tests on other Levantine samples show reasonable cross-
dialect transfer, but reduced accuracy with dialect-specific or French-derived terms, underscoring the
need for further adaptation to other Levantine varieties.

One avenue for future research is to explore larger, more advanced ByT5 or similar transformer-based
models. Increasing model parameters could enhance their capacity to capture a broader range of
linguistic nuances, especially when trained on significantly expanded datasets.

While large models often produce superior results, they may be too resource-intensive for deployment
on mobile devices with limited computational capabilities. A natural extension is to investigate smaller,
more efficient architectures, employing techniques, like model distillation or quantization, to reduce size
and inference time. This would facilitate on-device processing, ensuring offline usability and faster,
more personalized performance.

Currently, we rely on two separate models whenever the corrected text also needs diacritization.
However, modern-language models are powerful enough to handle multiple tasks within a single
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architecture—one task for correction only and another task for both correction and diacritization. This
approach eliminates the need to chain two distinct models, which will reduce latency. Future work could
integrate the developed translation capabilities into Arabic chatbots [45] to enable them to automatically
understand and translate user inputs from dialectal Arabic into MSA, thereby enhancing their generality
and linguistic accuracy.
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ABSTRACT

Cyberbullying has emerged as a pressing issue in the digital era, particularly within Arabic-speaking communities,
where research remains limited. This study investigates the detection of Arabic cyberbullying on social media
using both traditional machine learning (ML) and deep learning (DL) techniques. A publicly available dataset of
Arabic tweets was used to train and evaluate several ML models (SVM, NB, LR and XGBoost), alongside a
recurrent neural network (RNN). The results demonstrate that the RNN significantly outperforms classical ML
models, highlighting the efficacy of DL in accurately identifying abusive content in Arabic text. These results
emphasize the necessity of incorporating linguistically rich data and advanced neural architectures to improve
cyberbullying-detection systems in low-resource languages such as Arabic.

KEYWORDS

Machine learning algorithms, Arabic tweets, Deep-learning techniques, Recurrent neural network, Cyberbullying.

1. INTRODUCTION

Cyberbullying involves the use of digital platforms—such as smartphones and social media—to inflict
harm through behaviors like verbal abuse, offensive language and harassment. Its psychological impact
can be profound, especially among teenagers, leading to issues, such as low self-esteem, anxiety and
identity-related concerns. The problem has intensified globally with the growing popularity of
platforms, like Twitter (now X), where anonymity enables harmful behavior without accountability [1].

Recent reports highlighted the scale of the issue: in 2024, 28% of adolescents experienced cyberbullying
and over 42% of youth aged 13-24 years in the MENA region reported exposure to online abuse via
popular apps like Instagram, TikTok and Twitter [2]-[5]. The ITU and Arab Social Media Observatory
have similarly flagged cyberbullying as a major digital threat to the mental health of children and
adolescents [6]-[7]. These findings point to an urgent need for scalable, data-driven solutions that go
beyond manual moderation.

Despite growing efforts in English-language research, Arabic cyberbullying detection remains
underexplored. The increasing use of Arabic on social media—especially Twitter—demands more
targeted approaches, but the language’s rich morphology, diverse dialects and limited annotated
resources present ongoing challenges [8]. The situation was further exacerbated by the COVID-19
pandemic, which saw young users spending more time online and becoming more vulnerable to digital
abuse [9].

To address these gaps, this study proposes a deep learning-based model for detecting cyberbullying in
Arabic text. By combining three datasets representing different Arabic dialects into a single corpus and
applying a Recurrent Neural Network (RNN)—a relatively underutilized method in this context—we
achieve significant improvements in detection performance. Our work contributes to the development
of more robust and linguistically aware systems for identifying abusive content in Arabic-language
social media.

The rest of this paper is organized as follows: Section 2 reviews related work and the datasets used;
Section 3 outlines the proposed methodology; Section 4 presents and analyzes the results; Section 5
offers a comprehensive discussion; and Section 6 concludes the paper.

M. Hawa, T. Kmail and A. Hasasneh (Corresponding Author) are with Department of Natural, Engineering and Technology Sciences, Faculty
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2. LITERATURE REVIEW

Natural-language processing (NLP) technologies have evolved substantially over the decades, becoming
vital for enabling effective human-computer interaction [11]. Fundamentally, NLP transforms natural-
language texts into machine-processable digital formats, enabling sophisticated tasks, such as machine
translation and sentiment analysis [12]-[13]. The roots of NLP trace back to the 1950s with early
systems, like the Georgetown-IBM translation experiment, which laid the groundwork for subsequent
advances in Al-driven text understanding.

A critical initial step in NLP pipelines is text pre-processing, which ensures high-quality input data for
improved model performance. Tokenization breaks text into meaningful units, such as sentences or
words, facilitating downstream analysis. Techniques, like stemming, which reduce words to their root
forms and stop-word removal, which excludes frequent, but semantically light words, are essential for
reducing noise and dimensionality [14], [16]. Kanaan et al. [15] demonstrated that combining stemming
with truncation, normalization and stop-word removal significantly boosts classification accuracy and
F1-scores in document-classification tasks.

In the realm of machine learning (ML), classical algorithms such as Support Vector Machines (SVMs),
Naive Bayes (NB), Logistic Regression (LR) and Extreme Gradient Boosting (XGBoost), have
remained popular due to their efficiency and interpretability. These models have been applied
extensively for Arabic-cyberbullying detection, yielding solid baseline results. For example, Hani et al.
[23] reported over 89% accuracy using linear SVM with TF-IDF features on a small Arabic dataset,
while Rashid et al. [24] and Moheb et al. [21] achieved accuracies up to 95% with NB classifiers.
Logistic regression also performs competitively, with Rashid et al. [24] improving F1-scores through
dataset balancing and feature engineering. XGBoost, a powerful ensemble method, showed promising
results with 85% accuracy [24].

2.1 Classification Methods

Many researchers have collected data from popular social-media platforms, such as Twitter and
Facebook, to study cyberbullying. For instance, Aladdin et al. [17] utilized the Twitter API to gather
their dataset. Similarly, Haidar et al. [18]-[19] developed dedicated tools in Python and PHP to collect
data from both Facebook and Twitter, storing it in a MongoDB database. Al-Harbi and colleagues [20]
compiled a large dataset comprising 100,327 tweets and comments collected from Twitter, YouTube
and Microsoft platforms. Meanwhile, Mohib et al. [21] gathered 25,000 tweets and comments from
Twitter and YouTube using their respective APIs. Other studies employed tools, such as NLTK, for text
analysis or platforms, like RStudio, for extracting tweets [22]-[23]. Although most of these datasets
were primarily in English, some research focused on Arabic data collected from sources, including
Twitter, Facebook and YouTube [22]. Most datasets were processed and manually annotated, while
Arabic-cyberbullying datasets remain comparatively limited.

The literature highlights the significant role of machine-learning algorithms in addressing cyberbullying
challenges by detecting harmful patterns and behaviors through classification and text analysis. Support
Vector Machines (SVMs) have been widely used for text classification in Arabic-cyberbullying
research. For example, Hani et al. [23] achieved over 89% accuracy using a linear SVM on a small
dataset of 1.6K publications after extracting features with the term frequency-inverse document
frequency (TF-IDF) method. The Naive Bayes (NB) classifier has also been extensively applied in
Arabic-text analysis [12], [24]-[25]. Rashid et al. [24] employed NB with the bag of words model,
reaching 87% accuracy and 35% recall, while Moheb et al. [21] reported up to 95% accuracy. Kanaan
et al. [20] further demonstrated that NB attained 91% accuracy following demodulation and stop-word
removal. Logistic regression (LR) is another common classification algorithm used in both binary and
multi-class problems. Rashid et al. [24] used LR as a baseline model and, after balancing the dataset,
improved the F1-score to 84% using TF-IDF features. Alfageh et al. [25] applied LR with TF-IDF,
reporting results slightly lower by 1.8% compared to count vectorization. Lastly, the Extreme Gradient
Boosting (XGBoost) algorithm has shown effectiveness in handling text data for cyberbullying
detection, with Rashid et al. [24] reporting 85% accuracy using this approach.

2.2 Deep-learning Techniques
These methods have demonstrated impressive effectiveness in addressing the challenge of identifying
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cyberbullying in the Arabic language. For example, the researchers in [21], [25] developed a CNN-
based model specifically tailored for this task. Their methodology involved four key steps: converting
textual data into numerical representations, applying convolutional operations to extract significant
features, reducing the convolution output to preserve only the most relevant information and finally
feeding the processed data into a dense layer fully connected to all neurons in the network. This approach
was tested on a dataset of 39,000 Arabic tweets collected via the Twitter API, achieving an impressive
accuracy exceeding 95% without requiring manual intervention. Similarly, Banerjee et al. [26] extended
the use of CNN to a larger dataset of 69,000 Arabic tweets, reporting an accuracy rate above 93%. In
another study, Benaissa et al. [24] compared CNN with other deep-learning architectures, including
Gated Recurrent Units (GRUSs), Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM).
Their analysis, conducted on a dataset of 32,000 Arabic comments from Aljazeera.net, showed that CNN
outperformed the other models by a margin of one percent in the F1-score. Across the balanced dataset,
these models collectively achieved an average F1-score of 84%. Further insights were provided by
Srivastava et al. [27], who explored GRU, LSTM and BLSTM models for detecting objectionable
content in online conversations. Their methodology incorporated rigorous data pre-processing steps,
such as text cleaning, tokenization, stemming, lemmatization and stop-word removal prior to training
the deep-learning algorithms. Among the models tested, BLSTM achieved the highest accuracy of
82.18%, followed closely by GRU (81.46%) and LSTM (80.86%). These results highlight the
transformative potential of deep-learning techniques, particularly CNN, in enhancing the detection of
cyberbullying within Arabic social media posts. Although these findings are promising, they also
emphasize the need for continued research to further refine these models and effectively manage the
growing volume and complexity of Arabic content on social-media platforms.

Building on the promising results of deep-learning techniques, such as CNN and RNN, in Arabic-
cyberbullying detection, recent studies have explored hybrid and transformer-based approaches to
further enhance performance. The study in [35] proposed a hybrid deep-learning model that combines
LSTM networks with CNNs to detect cyberbullying in Arabic tweets. Their study focused on applying
deep learning techniques to social-media data, specifically targeting the challenges of NLP. They
demonstrated that their hybrid model outperformed several traditional ML algorithms, including SVM
and NB, in terms of classification accuracy. While their contribution is significant, the study did not
explicitly address dialectal variations within Arabic, nor did it elaborate on the size and linguistic
diversity of the dataset used, which are important considerations in the context of Arabic social-media
text. Abu Kwaik et al. [36] introduced an advanced methodology for identifying hate speech in Arabic
tweets by integrating Recurrent Neural Network architectures—namely GRU and BiLSTM—with
contextual word embeddings derived from AraBERT. Their experiments on dialectal Arabic-tweet
datasets demonstrated strong discriminatory power, achieving an AUROC of approximately 0.84 in
binary classification, 87.05% accuracy for the 2-class task, 78.99% for the 3-class task and 75.51% for
the 6-class task. This study highlights the effectiveness of combining transformer-based embeddings
with recurrent neural models when handling Arabic social-media content.

Building on these advances, a very recent study in [39] proposed state-of-the-art deep-learning
techniques and provided comparative benchmarks closely aligned with the methodology of this research.
The study applied a combination of CNN, RNN and transformer-based models to large-scale datasets
of Arabic social-media content, emphasizing the importance of handling dialectal diversity and semantic
nuances. Their results surpassed previous benchmarks, achieving improvements in both accuracy and
F1 score metrics, demonstrating significant progress in the field between 2022 and 2024. Including such
up-to-date research enhances the understanding of current capabilities and helps guide future work
toward more robust cyberbullying-detection systems. Based on the previous studies referenced [13],
[26], [23], [27], it has been observed that detecting bullying in the Arabic language remains a critical
topic that requires significant attention in research. There is an urgent need for more studies on this
topic. The existence of new technologies can help reduce the harmful impact of social media to prevent
unwanted occurrences. Obeidat et al. [37] conducted a comparative study evaluating deep-learning
models, such as RNN and CNN, against traditional machine-learning classifiers, like SVM and Random
Forest for Arabic sentiment analysis on Twitter datasets. Their findings demonstrated that deep-learning
approaches outperform traditional machine-learning methods in effectively handling the complexity and
dialectal variations of Arabic social-media text. This is highly relevant to cyberbullying detection, which
shares similar linguistic challenges. Our work extends these findings by applying RNN architectures on
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a larger, multi-dialectal dataset specifically focused on cyberbullying detection, further confirming the
superior performance of deep-learning techniques over traditional models in Arabic NLP tasks. Earlier
work by Al-Hassan and Al-Dossari [38] proposed one of the earliest benchmark datasets for Arabic-
cyberbullying detection, compiling approximately 10,000 tweets labelled for offensive content. They
evaluated both ML (Random Forest) and DL models (CNN, RNN), highlighting the promising
performance of RNNSs. Their dataset, however, is limited in scale and dialectal coverage. In contrast,
our study utilizes a larger and more dialectally diverse dataset and focuses on standard RNN
architectures, allowing for a more detailed exploration of their effectiveness in cyberbullying detection.
Furthermore, other deep-learning models have also demonstrated promising results in Arabic-text
classification tasks outside the cyberbullying domain. For instance, Jamaluddin et al. [43] proposed a
multi-channel deep-learning model for Arabic news classification, emphasizing the importance of
capturing semantic features through parallel architectures. Similarly, Al Qadi et al. [44] introduced a
scalable shallow learning approach for tagging Arabic news articles, highlighting the benefits of
lightweight models for Arabic NLP. These contributions further underline the growing applicability of
both deep and shallow models across diverse Arabic-language NLP tasks.

While previous research demonstrates considerable progress using classical ML and deep learning for
Arabic-cyberbullying detection, several gaps remain. Most studies rely on limited datasets with narrow
dialectal coverage and modest sample sizes. The increasing linguistic complexity of Arabic social-media
content necessitates larger, more diverse datasets and efficient deep-learning models. Our study
addresses these gaps by utilizing extensive, dialect-rich datasets and focusing on RNN architectures that
balance performance and complexity. This approach contributes to advancing robust cyberbullying
detection in Arabic, complementing recent transformer-based innovations.

Therefore, a group of ML and deep-learning algorithms that were observed in the literature was chosen.
Table 1 provides a summary of some of the literature on Arabic cyberbullying.
3. MATERIALS AND METHODS

It is well known that the detection of a cyberbullying attack involves several steps, including data
collection, visualization, pre-processing, feature extraction, model training and then model evaluation,
as illustrated in Figure 1.

Raw Data Data Visualization and Processing Feature extraction

orginal data

Ivd

Improve Model Model Evaluation Model Training
. o
‘ Bullying /C\ jo
. Non : <:| 4—@—0
@ =S ¥
o

Figure 1. A general workflow of the proposed methodology.

3.1 Data Description

The data used in this research consists of public datasets published on Kaggle and divided into three
separate and linguistically varied datasets, as shown in Table 2. The initial dataset, consisting of 5,846
Syrian/Lebanese political tweets, is included in the "Levantine Arab Hate Speech” dataset [42], which
is divided into three groups: abusive tweets, hate-speech tweets and normal tweets. The second set,
known as the "Arabic Sentiment Twitter Dataset Corpus" [43], consists of 56,795 Arabic tweets divided
into two categories: positive and negative. The third group, "Arabic Dataset 1" [44], consists of a
relatively small dataset of 1,100 tweets, divided into two categories using binary classification:
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Table 1. Brief summary of the literature on Arabic cyberbullying.

Ref. | Classifier Year | Dataset (Size) Evaluation matric
[9] XGBoost, NB.SVM, LR 2024 | Twitter 9000 Tweets Accuracy: 88%,78%, 84.4%,
83.95%
[14] | SVM 2021 | Twitter API, (17.748 Accuracy: 85.49%
Tweets)
[15] | SVM, KNN, NB, RF 2020 | X API, (4000 Tweets, N/A
Facebook2138Posts)
[24] | Deep Learning 2020 | Aljazeera.net (32000 Accuracy: 84%
Comments)
[28] | NB 2023 | YouTube Platform Accuracy: 94%
(4760 Comments)
[29] | SVM, NB 2024 | Twitter and YouTube Accuracy: 95%, 70%
(30000 Tweets)
[30] | LSTM 2023 Twitter 10000 Tweets Accuracy: 88%
[31] | MLP 2023 Twitter API 4140 Accuracy: 89%
[32] | LR, voting classifier, SVM 2024 | Twitter 12000 Tweets Accuracy: 65%, 71%, 98%
[33] | Codellama, DeepSeekCoder, Llama2 | 2025 10000Comments Accuracy: 35%, 26%, 16.4%
[34] | AraBERT 2025 | 4240 Comments N/A
[35] | Hybrid (CNN, LSTM) 2022 N/A Accuracy: 97%
[36] | GRU and BiLSTM combined with 2023 N/A Accuracy: 87.05% (2-class),
contextual embeddings (AraBERT) 78.99% (3-class), 75.51% (6-
class)
[39] | CNN, LSTM and BiLSTM 2025 | 50000 comments Accuracy: 91%

negative speech (1) and positive or neutral speech (0). This data is characterized by the diversity of
dialects used, including local dialects and classical Arabic, making it comprehensive and covering
different linguistic styles in the Arab world. Tweets are categorized into two main categories: bullying,
which contains offensive words or phrases and non-bullying, which does not. The final dataset
comprises labels of 0 or 1 depending on whether the comment is bullying or not. Additionally, the data
used is balanced, as shown in Figure 2.

Table 2. Data description.

Ref. | Group Name No. of Tweets | Categories Size - Notes

[42] | Arabic -Levantine Hate Speech 5846 Normal, Abusive, Hate | Syrian—Lebanese Politics

[43] | Arabic Twitter Sentiment Dataset | 56795 Positive, Negative Training 45275, Testing 11920
[44] | Arabic Dataset 1100 Negative, Positive Relatively Small Data Size
Total 63741

25000
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o
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Figure 2. Distribution of positive and negative text, where (0 = Non-bullying, 1 = Bullying).

3.2 Data Visualization and Pre-processing

To know the most frequent words for bullying and non-bullying comments, this is expressed by
displaying the word sizes, where large words are frequently repeated, as shown in Figure 3.
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Figure 4 shows the representation of the most frequent words using the Count Vectorizer technique,
where the frequency of words within texts is counted and converted into a numerical representation.
The graph displays the twenty most frequently used words, ranked by frequency.

,,,,,,,

Figure 4. Count-vectorizer technlque (top-20 most frequent words).

The first word is shown to have the highest frequency, occurring more than 250 times, followed by other
words with decreasing frequencies. This representation is useful for understanding the distribution of
words within the text data and discovering words that may be of high analytical interest in the context
under study. The pre-processing stage is an important step in an ML technique, because it cleans and
prepares the dataset, so that it can be used to train the model. In this study, the tweets are written in
various dialects that differ from traditional Arabic. Therefore, we have used the NLP technique to
address issues presented by comments on Twitter written in Arabic. This was applied in Figure 5.

Drop Duplicate Normalization Remove Stop Words Stemming
i : -\
SeNEIN )

8

Figure 5. Data pre-processing main steps.

3.2.1 Removing Duplicates

There is a duplicate tweet; with bullying the duplicate count is 9896 and without bullying the duplicate
count is 11122. So, by using the Python code, we remove these duplicates and they become zero
duplicates, as shown in Figure 6.

Mumber Of Dupliactes Before Delete: 21218
Mumber Of Dupliactes After Delete: @

Figure 6. Remove duplicate.

3.2.2 Normalization

We applied the normalization to the dataset and converted it into a uniform text. The Python
programming language implemented this process. It significantly contributes to improving the
performance of models in ML tasks by reducing unnecessary linguistic variations. By converting texts
into a standardized format, such as removing diacritics or similar characters, the model becomes better
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at understanding underlying patterns, which reduces noise in the data. This step leads to improved model
accuracy and increased efficiency in handling unstructured and diverse texts, such as those found in
cyberbullying tasks. In our study, we remove the English Letters, URLs, Hashtags, Special Characters
and emojis. After applying the normalization process this led to the text being normalized and the result
is shown here in Figure 7.

B o) bl oo o ol I, 1 BT el bl dholl g iy il Jlold
B A JI:JJJ:J @L’-dhu;u‘;cuﬂﬂdjﬂﬂ:‘l\'ﬁ:ul‘“ | B340 A i gl L il e e dige gl Cafl B, T

(@) (b)

Figure 7. Text; before normalization (a); after normalization (b).

In Figure 7. (a), we see the tweets (“ dud o I ) (oo Ul oy of 1 1), we see (“s,5,1 ) converted
into uniform text, as shown in Figure 7. (b). For example, (“,! ) converted into (').

3.2.3 Removing Stop Words

Stop words are meaningless in our study; we normalize text by removing the stop words. In applications,
omitting standard words is a good way to implement and emphasize the most important words.

3.2.4 Tokenization

The texts were converted into words using natural-language units based on language rules defined by
word boundaries. This step enabled the RNN model to treat each word as an independent unit within a
sentence string, creating innovations in learning and processing context. When tokenization is carried
out accurately, it makes it easier for the model to handle a wide variety of texts, such as those found in
cyberbullying, which can include offensive words and complex phrases. Through good segmentation,
the model can "understand" these offensive elements separately from other words, improving the
accuracy of its predictions.

3.2.5 Stemming

In this step, words are reduced to their original roots by removing good suffixes or additions such as"
o sl "oy sl "l The goal of stemming is to reduce word diversity, helping the model understand that
words derived from the same trigger have the same underlying meaning, such as "<iS" "as! " s
being reduced to "<". If stemming is applied effectively, it can improve the model's accuracy by
reducing the variety of words associated with the same root. However, sometimes it can have a negative
impact if it excessively reduces words, leading to weakened differentiation between important words.
After we applied the pre-processing steps shown in Figure 5, Figure 8 shows a sample of the pre-
processing phase.

Text Label tokenized_text filtered_text stemmed_text processed_text
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wll gz (ol ol pra Oy [T
ey op LS . . [buid jag by »
1 le sl Jbis 1 [Jl'b“&r”'i:” “L‘j e (v [-A;‘me .jﬂs LC-ju] uj :J—-'ﬁ u»-‘B: oy
stz ol jalasll.. Hesllgde il ligalzn U)g 057 ol el U)g sz ol s
12l il o Lop dsli il
s ﬁdﬂ : T A T h.g(_ L35 o0 98l J e 005 oy 155 cul J
)il ypllei 015 0p N ) Eajl gl 025 . . .
3] ! JLg il ollsg 08, 2 s e ) aple] [
eilo giil 16 Lozl gdil j15  [yasle gisl y35 - . P
K 4 o g Jig poe il a5 y15 13 yig pas il git 35
3 cluii liygiy pas 1 clui liygig,pnn S iyt pan [P0 00 209 I-j] F3rac sty
ool 153 § 5. olzbl o -
gl Jlzy 13Sbg Lodl gl Jlzy JiSag Lol gidl Jloy Lo aellgid oy Joc g ool gidd )
4 e ey ol 1 wdes e pegyme dlos guegimepgiint zalyadas b i agi ol ey
8l zolip Jac.. e cuyall zalip.. NE ool s
gazzy ol on = 1 bosegta go ool o] [l gitlo 2] izl irlo il
gusils ks il gils] e Sl

Figure 8. A sample of the pre-processed data.
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As Figure 8 illustrates, there are six columns. The first and second columns represent the dataset before
processing. Column 3 (“Tokenize Text”) shows how the text is tokenized into small words. Column 4
(“Filter Text”) displays the result after removing meaningless data using stop words. Column 5 (“Stem
Text”) shows the text converted into its original form in Arabic and the final column presents the
uniform data after pre-processing. The study then investigates the best model features that yielded the
highest accuracy to identify the most effective ML algorithms for detecting cyberbullying in Arabic
tweets using TF-IDF techniques. In this study, Twitter tweets are categorized into two groups: bullying
and non-bullying. The TF-IDF feature-extraction method was employed to enhance the textual data
representation by measuring the importance of terms within individual tweets relative to the entire
dataset. Additionally, the study utilized n-grams to analyze the sequences of words rather than isolated
terms, allowing the capture of contextual information. This significantly improved the model's
understanding of language patterns associated with bullying behavior. This approach was essential for
classifying tweets in a relevant and accurate manner.

3.3 Machine-learning Classification and Tuning
3.3.1 Support Vector Machine

In this study, the SVM algorithm was used as one of the basic ML techniques for tweet classification
and cyberbullying analysis. SVM is an effective tool for handling high-dimensional text data and finding
the best hyperplane between different categories, such as bullying-free tweets and bullying tweets. SVM
has been applied to text features extracted using NLP techniques, such as converting text into numerical
representation via TF-IDF vectorization. The algorithm has improved classification accuracy thanks to
its ability to handle multi-dimensional text, especially in light of the diversity of dialects and linguistic
patterns within the dataset [9].

3.3.2 Naive Bayes

In this study, Arabic tweets were categorized into cyberbullying-related groups using the NB algorithm.
As a result of its effectiveness and simplicity, NB was an appropriate option when handling huge and
high-dimensional data. The algorithm's output also showed strong performance in rapidly and precisely
gathering data, which aided in the efficient identification of cyberbullying in tweets [9].

3.3.3 Logistic Regression

In this study, Arabic tweets were analyzed using LR as a classification method and they were divided
into two groups: cyberbullying and non-bullying. LR is a good choice for this kind of data, because it
can handle binary problems well and has shown promise in identifying the correlation between textual
characteristics and the degree of bullying in tweets. Obtaining precise and comprehensible classification
models was also beneficial [31].

3.3.4 Extreme Gradient Boosting

XGBoost was employed in this study as a technique to classify Arabic tweets into two groups: those
that involved cyberbullying and those that did not. XGBoost was selected because of its top-ranking
performance and good accuracy in handling data with many different dimensions. Furthermore, the
XGBoost method enhances performance by employing strategies, like regularization to lessen
overfitting and enhance generalization [31].

3.3.5 Deep-learning Approach

In this research, RNNs were used to analyze Arabic tweets related to cyberbullying and categorize them
into two classes: "bullying” and "non-bullying." This technique was selected due to its ability to
recognize sequential patterns in text data, such as understanding context within a series of words. RNNs
are particularly well-suited for tweet analysis, as they account for the chronological order of words and
expressions, helping identify offensive messages influenced by contextual nuances.

The model was trained using Keras’s sequential interface, incorporating an embedding layer, followed

by a simple RNN layer and ending with a dense layer. The embedding layer transformed words into
numerical representations, with an input dimension of 5,000 and an output dimension of 64. The
sequence length was determined based on the maximum length of tweets in the dataset.



344

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

The training process was conducted using a set of pre-defined hyperparameters, with multiple tests
performed to determine the optimal configuration. The model was initialized with random weights and
the number of units in the output layer was tailored for binary classification, as the task requires
categorizing tweets into two classes: "bullying" and "non-bullying."

The learning rate was optimized using the Adam optimizer, chosen for its efficiency in training deep-
learning models. The batch size was set to 64, enabling the model to process a sufficient number of
samples per iteration. The training spanned 27 epochs. The text data was also classified using a
combination of ML and DL algorithms to enhance performance and identify the optimal model. The
ML algorithms included SVC, LR and NB, while RNNSs represented the deep-learning component. Texts
were transformed into numerical representations using the TF-IDF technique and hyperparameters were
fine-tuned using GridSearch to achieve the best possible performance. Below is a summary of the
parameter settings used for each algorithm [24].

3.3.6 Hyper-parameter Fine-tuning and Evaluation Measures

Several algorithms were used with parameter adjustments to enhance performance. In SVC, the
parameter C was set to control regularization, max_iter for the number of iterations, length for defining
stopping criteria and TF-IDF max_features to specify the number of words considered in the TF-IDF
representation. In LR, C and solver were configured to select the solution method, along with
adjustments to TF-IDF max_features and TF-IDF ngram_range to define the range of words considered.
In NB, the alpha parameter was used to regulate the influence of rare words and TF-IDF ngram_range
was used to define the word range considered in the model. In the RNN model, the learning rate was
determined using the Adam optimizer. The parameters input_dim, output_dim and input_length were
set to properly format the text input, while epochs and batch size were selected for the training process.
All models used TF-IDF to convert textual data into a numerical format and GridSearch was employed
to determine the optimal values for each model’s parameters.

3.3.7 Model Generation and Evaluation

In this study, the Python, Sklearn and XGBoost libraries were used to develop four supervised ML
models to classify the data. The results were evaluated using several performance metrics, including
accuracy as given in Equation (1), precision as given in Equation (2), recall as given in Equation (3) and
F1-score as given in Equation (4). These measures were calculated using the following equations [31],
where TP is the true positives, TN is the true negatives, FP is the false positives and FN is the false
negatives.

TP+TN

Accuracy = twvrrren @
Precision = —— 2
TP+FP
Recall = —= 3)
TP+FN
F1 — Score = 2x(precisionxrecall) (4)

(precision+recall)

We also calculated the F1-score computed at the class level (Macro-F1) and at the sample level (Micro-
F1). The Macro-F1 was calculated as the simple average of the F1 scores for each class and the Micro-
F1 was calculated based on the confusion matrix, which takes into account all true positives, false
positives, false negatives and true negatives across all classes, as follows:

F1 classyg+F1 class
Macro — F1 = 02 L (5)
. TP+TN+FP+FN
Mlcro—F1=T (6)

4. RESULTS

Experiments were conducted to analyze the performance of models used in text classification, using ML
and deep-learning algorithms with parameter adjustment to improve accuracy. The aim was to compare
the effectiveness of the models and choose the most appropriate for the available data. The results are
presented below.
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4.1 Experiment Results Using Different Machine-learning Algorithms

The models were built and tested using a dataset collected and processed for this study. The collection
contains 42,723 tweets after initial processing, obtained from Kaggle. This study used four ML
algorithms: SVM, NB, LR and XGBoost. The performance of these models was evaluated using
measures of accuracy, precision, recall and F1-score, as shown in Table 3.

Table 3. Experimental results of various machine learning methods.

ML Feature Extraction |Accuracy Precision [Recall

SYM  TF-IDF 75% o IOk
o o m SEe i
LR TF - IDF 4% o2 TR
XGBoost |TF - IDF T4 0T D TR

Table 3 compares the performance of four models (SVM, NB, LR and XGBoost) in the cyberbullying-
detection task using the TF-IDF feature-extraction method. Each model's performance was evaluated
based on the mentioned metrics. The SVM model performed best, recording 75% accuracy, 76%
precision, 76% recall and 76% F1-score. This makes it the most effective of all models, showing a good
balance across all metrics. The NB model recorded 72% accuracy, 73% precision, 73% recall and 73%
Fl-score. Despite its weaker performance compared to SVM, it still offers acceptable results,
particularly in recall. The LR model achieved 74% accuracy, 76% precision, 72% recall and 75% F1-
score. LR performed close to SVM, but was lower in terms of recall and F1 score. The XGBoost model
showed balanced performance, achieving 74% accuracy, 77% precision, 70% recall and 74% F1-score.
XGBoost outperformed other models in terms of precision, with the highest score (77%), demonstrating
its ability to make more accurate positive predictions. Although the initial results obtained using
traditional ML algorithms were acceptable, they were not sufficient to meet the required objectives.
Therefore, the accuracy and overall performance of the model were enhanced by applying deep-learning
techniques using RNN.

4.2 Experiment Results Using RNN

To improve model performance and achieve better outcomes, we transitioned to using deep learning,
with a focus on RNNs, to process the same large and complex dataset. During our experiments, neural
networks demonstrated their ability to outperform traditional algorithms. In the first experiment, the
model was trained for 20 epochs, resulting in an excellent accuracy of 96%. In the second experiment,
we used 27 epochs and achieved an accuracy of 97%. These findings highlight the high proficiency of
deep-learning techniques in extracting complex patterns from large datasets and underscore their
significance as an effective approach to enhancing performance in this context. Table 4 presents the
results of the experiment using RNNs.

Table 4. Experimental results of the deep-learning approach.

Experiments | Classifier | Accuracy | Precision | Recall | F1- Score
. 0] 97% |0 |94%
0, 0,
Experiment 1 RNN 96% 1 94% |1 97% 96%
. 0] 97% |0 ]96%
0 0
Experiment 2 RNN 97% 1 96% |1 97% 97%

To ensure fair evaluation, we report precision, recall and F1-score separately for each class (0: non-
bullying, 1: bullying). As shown in Experiment 2, Table 5, the model achieved high precision and recall
for both classes (class 0: 97% recall, 96% F1-score; class 1: 96% precision, 97% F1-score), indicating
balanced performance and minimal bias. In addition to per-class metrics, we computed the macro-
averaged F1-score (97%) and micro-averaged F1-score (97%), confirming consistent performance
across classes. We also include the confusion matrix to visualize the distribution of true positives, false
positives, true negatives and false negatives, further supporting the reliability of our results.
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Furthermore, the training process was stable, as evidenced by accuracy and loss curves, which show no
signs of overfitting. These results highlight the model’s robustness and its ability to distinguish between
bullying and non-bullying instances effectively.

The attached diagrams illustrate the performance of the RNN model used in the experiment. Figure 9(a)
shows the confusion matrix, which reflects the model’s prediction accuracy, where the values in the
cells indicate the number of correctly and incorrectly classified cases. For example, the model correctly
classified 20,699 instances of the negative category (0) and 20,633 instances of the positive category
(1), while misclassifications were limited to 795 and 596, respectively. These results indicate strong
performance in data classification.

Figure 9(b) presents the loss and accuracy curve. This curve illustrates the relationship between the
number of epochs and the corresponding values of loss and accuracy. The loss is shown to continuously
decrease as the number of epochs increases, indicating the model’s learning progress and improvement.
Conversely, accuracy steadily increases to high levels, reflecting model stability and the ability to
achieve accurate results over time.

Figure 10 displays the ROC Curve, which is used to evaluate model performance by comparing the True
Positive Rate (TPR) with the False Positive Rate (FPR). The curve indicates that the model achieved an
Area Under the Curve (AUC) of 97%, reflecting high effectiveness in distinguishing between categories.
These results demonstrate the model’s efficiency and its ability to process and classify data with high
accuracy.
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Figure 10. ROC curve for RNN results.

An important aspect of evaluating model performance involves analyzing false positives (FP) and false
negatives (FN), as they directly impact the precision and recall scores, especially in sensitive tasks, like
cyberbullying detection. As shown in the RNN confusion matrix (Figure 9A), the model misclassified
795 non-bullying tweets as bullying (false positives) and 596 bullying tweets as non-bullying (false
negatives). While both types of errors are undesirable, false negatives are particularly critical in this
context, as failing to identify a bullying instance could allow harmful content to persist unflagged.
However, the low number of false negatives relative to the total sample suggests strong recall,
particularly for the bullying class (97%). Similarly, the limited number of false positives supports the
model's high precision (96%) in identifying actual bullying content without over-flagging benign posts.
This balance between FP and FN reinforces the model’s robustness and practical reliability in real-world
applications.



347

"Advanced Deep-learning Techniques for Improved Cyberbullying Detection in Arabic Tweets", M. Hawa, T. Kmail and A. Hasasneh.

5. DISCUSSION

To compare the proposed system with the latest available methods, we used a quantitative comparison
between studies by selecting some recent studies that share three common aspects (language (Arabic),
social media (Twitter) and data-collection source). However, the dataset used in those studies is different
from the proposed one. In this regard, a comparison was made with three recent methods from 2023
[29]-[31], [35]-[36].

Table 5. Comparison between the proposed approach and state-of-the-art.

Approach Feature Classifier Accuracy PrecisionRecall F1-
Extraction Score

[29] TF- IDF, Wob SVM, NB 95%,70% 92% | 84% | 88%
[30] Non LSTM 88% 88% | 88% | 88%
[31] TF- IDF MLP 89% 88% | 90% | 89%
[35] |Automaticfeature o) STM.CNN 87.8% N/A  83.6% 84.1%

extraction
AraBERT GRU and BiLSTM with

Accuracy: 87.05% (2-class),

0, _ 0
[36] embeddings AraBERT embeddings 78.99% ((%-illzssss))’ 75.:51% NIA | NFA | NIA
[39] standard_text CNN, LSTM and BiLSTM 91% NA | N/A | NA
embeddings architectures.
Proposed TF- IDF RNN 97% 97% |97% | 97%

Based on the results shown in Table 5, previous studies utilizing traditional machine-learning
techniques, such as SVM and NB, with feature-extraction methods, like TF-IDF and Bag of Words,
have reported accuracies reaching up to 95%. However, these studies typically relied on smaller datasets,
which may have contributed to inflated performance metrics due to reduced complexity. In contrast, our
approach employed a standard RNN model trained on a large-scale (42,000 samples), multi-dialectal
dataset, achieving an accuracy of 97%. This underscores the capacity of deep-learning models,
particularly RNNSs, to generalize effectively across more diverse and complex data, outperforming
traditional algorithms when evaluated on a broader scale. Our findings are consistent with Obeidat et al.
[37], who demonstrated that deep-learning models, such as RNNs, significantly outperformed traditional
machine-learning approaches (e.g. SVM, Random Forest) in Arabic sentiment analysis on Twitter. This
further supports the superiority of neural architectures in handling complex linguistic features in Arabic
social-media content. The dataset referenced in [29]-[31], [35]-[36], [39] was used to evaluate the
performance of our algorithms. In the broader context of Arabic-cyberbullying detection, our results
extend prior literature by emphasizing the impact of both dataset size and dialectal diversity. For
example, Al-Hassan and Al-Dossari [38] introduced one of the earliest benchmark datasets (~11K
tweets) and reported an F1-score of 73% using CNN-LSTM models. Our study, leveraging a more
comprehensive dataset, achieved significantly higher F1-scores using a simpler RNN architecture,
highlighting the value of rich data over architectural complexity. Similarly, Al-Azani and EI-Alfy [35]
proposed a hybrid CNN-LSTM model that attained an F1-score of 84.1%. Despite their more intricate
design, our RNN-based model achieved comparable or superior accuracy without relying on hybrid or
ensemble methods, affirming that a well-optimized standard RNN can deliver state-of-the-art results
when trained on appropriate data. Furthermore, Abu Kwaik et al. [36] combined GRU/BILSTM models
with AraBERT embeddings, reporting an AUROC of 0.84 and accuracies ranging from 75% to 87%
across various classification tasks. Although their use of transformer-based contextual embeddings
enhanced performance, our model demonstrated that even without such embeddings, classical RNNs
can achieve competitive results, particularly when trained on diverse and large-scale datasets. In
addition, the recent study by Alshahrani et al. [39] employed CNN, LSTM and BiLSTM architectures
on a dataset of approximately 50,000 Arabic tweets, achieving an accuracy above 94%. However, their
work did not focus on dialectal diversity or use RNNs. By contrast, our approach incorporated three
distinct Arabic dialects and applied a standard RNN, achieving superior accuracy. This demonstrates
that simpler architectures, when supported by carefully curated and dialect-diverse data, can outperform
more complex models lacking linguistic variation. Collectively, these comparisons reinforce two critical
conclusions of our study: (1) the effectiveness of deep learning in Arabic-cyberbullying detection is
closely tied to dataset size and dialectal diversity and (2) standard RNN architectures remain a viable
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and efficient alternative to more complex hybrid or transformer-based models.

Although the size of the dataset was limited in the previous studies, applying the RNN algorithm yielded
outstanding results. Regarding reference [29], we used their same dataset and applied our proposed RNN
model to it. Our approach achieved an accuracy of 99.6%, compared to 95% reported in [29] using
SVM. This confirms the superiority of our method, since the improvement was demonstrated on the
same dataset under comparable conditions. Therefore, the performance gain is not only due to the size
or structure of the dataset, but is directly related to the effectiveness of the proposed RNN-based
architecture in capturing sequential patterns in Arabic text better than traditional classifiers, such as
SVM. The comparison of the proposed approach with a closely related study is shown in Table 6.

Table 6. Comparison of the proposed approach with a closely related study [29].

Approach Classifier Accuracy Precision Recall F1- Score
Proposed RNN 99.6% 99% 98% 98%
[29] SVM 95% 92% 84% 88%

While this study has demonstrated the effectiveness of the proposed algorithm in detecting
cyberbullying in Arabic text, several limitations should be addressed in future work. Firstly, one
challenge lies in the imbalance of the dataset, as the amount of cyberbullying content is often
significantly lower than neutral or non-bullying content. This can affect the performance of the model
and lead to a bias towards the majority class. In the future, techniques, such as data augmentation and
oversampling, can be explored to balance the dataset and improve the detection accuracy. Furthermore,
while our model achieved promising results, it may struggle to accurately interpret the context in longer
and more complex sentences. In future studies, hybrid models combining RNNs with Transformers [45]
could be explored to leverage the strengths of both approaches. Transformers, with their ability to
capture long-range dependencies, could complement the sequential learning nature of RNNs, improving
the overall model's understanding of the context. Moreover, challenges related to the diverse use of
language and slang in cyberbullying cases, especially in Arabic, require further attention. Future
research could focus on developing advanced pre-processing techniques and word embeddings to more
effectively handle such linguistic variations. Finally, while this study provides valuable insights into
cyberbullying detection using deep learning, future work should focus on overcoming these limitations
through the integration of advanced techniques, such as hybrid models and better handling of data
imbalance and contextual complexities.

6. CONCLUSIONS

Cyberbullying is becoming increasingly difficult to detect, as users can bully without being identified.
Cyberbullying poses a threat to individuals and can lead to suicide or depression among victims, making
its detection essential. Although there are many studies on this topic, most of them have focused on the
English language, while there are only a few studies in Arabic. In the current study, we proposed and
trained a different ML model to detect cyberbullying in Arabic comments of tweets from different
dialects. This study achieved significant improvements in the performance of the proposed model using
feature-extraction techniques. RNNs produced the best results when utilizing 27 echoes in perfect time.

REFERENCES

[1] W. N. H. Wan Ali, M. Mohd and F. Fauzi, "Cyberbullying Detection: An Overview," Proc. of the 2018
Cyber Resilience Conf. (CRC), pp. 1-6, DOI: 10.1109/CR.2018.8626869, Putrajaya, Malaysia, 2018.

[2] B. Srinandhini and J. |. Sheeba, "Online Social Network Bullying Detection Using Intelligence
Techniques," Procedia Computer Science, vol. 45, pp. 485-492, DOI:10.1016/j.procs.2015.03.085, 2015.

[3] TechJury, "50 Alarming Cyberbullying Statistics to Know in 2024," [Online], Available:
https://techjury.net/blog/cyberbullying-statistics/, Accessed: Jan. 2, 2025.

[4] Cyberbullying Research Center, *2023 Cyberbullying Data - Cyberbullying Research Center," [Online],
Available: https://cyberbullying.org/2023-cyberbullying-data, Accessed: Aug. 27, 2024.

[5] Statista, "COVID-19 Vaccine: Adverse Events by Age and Gender in Spain,” [Online], Available:
https://www.statista.com/statistics/1220543/covid-19-vaccine-number-of-adverse-events-reported-by-
age-and-gender-spain/, Accessed: May 10, 2025.

[6] UNICEF, "Search | UNICEF," [Online], Available: https://www.unicef.org/search?query=Statistic+cybe
Rbullying, Accessed: May 10, 2025.



349

"Advanced Deep-learning Techniques for Improved Cyberbullying Detection in Arabic Tweets", M. Hawa, T. Kmail and A. Hasasneh.

[7] 7amleh, "7amleh - Annual Report 2023, [Online], Available: https://7amleh.org/annual23/eng/,
Accessed: May 10, 2025.

[8] Ditch the Label, "Youth Charity | Mental Health, Bullying & Relationships,” [Online], Available:
https://www.ditchthelabel.org/cyber-bullying-statistics-what-they-tell-us, Accessed: Aug. 27, 2024.

[9] D. Musleh et al., "A Machine Learning Approach to Cyberbullying Detection in Arabic Tweets,"
Computers, Materials and Continua, vol. 80, no. 1, pp. 1033-1054, Jul. 2024.

[10] Statista, "Most Used Languages Online by Share of Websites 2024," [Online], Available:
https://www.statista.com/statistics/262946/most-common-languages-on-the-internet/, Aug., 2024.

[11] A. Algarni and A. Rahman, "Arabic Tweets-based Sentiment Analysis to Investigate the Impact of
COVID-19 in KSA: A Deep Learning Approach,” Big Data and Cognitive Computing, vol. 7, no. 1, p.
16, DOI: 10.3390/bdcc7010016, Jan. 2023.

[12] W. J. Hutchins, "The Georgetown-IBM Experiment Demonstrated in January 1954," Lecture Notes in
Computer Science, vol. 3265, pp. 102-114, DOI: 10.1007/978-3-540-30194-3 12, 2004.

[13] A. Mandal, "Evolution of Machine Translation,” Towards Data Science, [Online], Available:
https://towardsdatascience.com/evolution-of-machine-translation-5524f1c88b25, Aug. 27, 2024.

[14] S. Almutiry, M. Abdel Fattah and S. Arabia-Almadinah Almunawarah, "Arabic CyberBullying Detection
Using Arabic Sentiment Analysis,” Egyptian Journal of Language Eng., vol. 8, no. 1, pp. 39-50, 2021.

[15] T. Kanan, A. Aldaaja and B. Hawashin, "Cyber-Bullying and Cyber-Harassment Detection Using
Supervised Machine Learning Techniques in Arabic Social Media Contents,” Journal of Internet
Technology, vol. 21, no. 5, pp. 1409-1421, DOI: 10.3966/160792642020092105016, Sep. 2020.

[16] I. Abu El-Khair, "Effects of Stop Words Elimination on Arabic Information Retrieval,” International
Journal of Computing & Information Sciences, vol. 4, no. 3, pp. 119-133, 2006.

[17] M. A. Al-Ajlan and M. Ykhlef, "Deep Learning Algorithm for Cyberbullying Detection,” Int. J. of
Advanced Computer Science and Applications, vol. 9, no. 9, pp. 199-205, 2018.

[18] B. Haidar, M. Chamoun and A. Serhrouchni, "Arabic Cyberbullying Detection: Using Deep Learning,"
Proc. of the 2018 7™ Int. Conf. on Computer and Communication Engineering (ICCCE), pp. 284-289,
DOI: 10.1109/ICCCE.2018.8539303, Kuala Lumpur, Malaysia, Nov. 2018.

[19] B. Haidar, M. Chamoun and A. Serhrouchni, "A Multilingual System for Cyberbullying Detection:
Arabic Content Detection Using Machine Learning,” Advances in Science, Technology and Engineering
Systems J., vol. 2, no. 6, pp. 275-284, DOI: 10.25046/AJ020634, 2017.

[20] B. Y. Alharbi et al., "Automatic Cyber Bullying Detection in Arabic Social Media," Int. J. of Engineering
Research & Technology, vol. 12, pp. 2330-2335, 2019.

[21] D. Mouheb et al., "Detection of Arabic Cyberbullying on Social Networks Using Machine

Learning,” Proc. of the 2019 IEEE/ACS 16" Int. Conf. on Computer Systems and Applications
(AICCSA), DOI: 10.1109/AICCSA47632.2019.9035276, Abu Dhabi, UAE, Nov. 2019.

[22] K. Reynolds et al., "Using Machine Learning to Detect Cyberbullying," Proc. of the 10" Int'l Conf. Mach.
Learn. Appl. (ICMLA), vol. 2, pp. 241-244, DOI: 10.1109/ICMLA.2011.152, Honolulu, USA, 2011.

[23] J. Hani et al., "Social Media Cyberbullying Detection Using Machine Learning," Int. J. of Advanced
Computer Science and Applications, vol. 10, no. 5, pp. 703-707, 2019.

[24] B. A. Rachid et al., "Classification of Cyberbullying Text in Arabic,” Proc. of the IEEE Int. Joint Conf.
on Neural Networks (IJCNN), DOI: 10.1109/1JCNN48605.2020.9206643, Glasgow, UK, Jul. 2020.

[25] T. D. Alsubait, "Comparison of Machine Learning Techniques for Cyberbullying Detection on YouTube
Arabic Comments," Int. J. of Computer Science and Network Security, vol. 21, no. 1, pp. 1-5, 2021.

[26] V. Banerjee et al., "Detection of Cyberbullying Using Deep Neural Network," Proc. of the IEEE 2019 5™
Int. Conf. on Advanced Computing & Communication Systems (ICACCS), pp. 604-607, DOI:
10.1109/ICACCS.2019.8728378, Coimbatore, India, Mar. 2019.

[27] C. lwendi et al., "Cyberbullying Detection Solutions Based on Deep Learning Architectures," Multimedia
Systems, vol. 29, no. 3, pp. 1839-1852, DOI: 10.1007/S00530-020-00701-5, Jun. 2023.

[28] D. A. Musleh et al., "Arabic Sentiment Analysis of YouTube Comments: NLP-based Machine Learning
Approaches for Content Evaluation," Big Data and Cognitive Computing, vol. 7, no. 3, p. 127, Jul. 2023.

[29] K. T. Mursi et al., "ArCyb: A Robust Machine-learning Model for Arabic Cyberbullying Tweets in Saudi
Arabia," Int. J. of Advanced Computer Science and Applications, vol. 14, no. 9, pp. 1059-1067, 2023.

[30] M. Alzagebah et al., "Cyberbullying Detection Framework for Short and Imbalanced Arabic Datasets,"
J. of King Saud Uni. - Computer and Information Sciences, vol. 35, no. 8, p. 101652, Sep. 2023.

[31] A. M. Alduailaj and A. Belghith, "Detecting Arabic Cyberbullying Tweets Using Machine Learning,"
Machine Learning and Knowledge Extraction, vol. 5, no. 1, pp. 29-42, Jan. 2023.

[32] M. Khairy et al., "Comparative Performance of Ensemble Machine Learning for Arabic Cyberbullying
and Offensive Language Detection," Language Resources and Evaluation, vol. 58, no. 2, pp. 695-712,
DOI: 10.1007/S10579-023-09683-Y, Jun. 2024.

[33] A. H. Zahid et al., "Evaluation of Hate Speech Detection Using Large Language Models and
Geographical Contextualization," arXiv, arXiv: 2502.19612, Feb. 2025.


https://www.sciencedirect.com/org/journal/computers-materials-and-continua

350

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

[34] A. Charfi et al., "Hate Speech Detection with ADHAR: A Multi-dialectal Hate Speech Corpus in Arabic,"
Frontiers in Artificial Intelligence, vol. 7, p. 1391472, DOI: 10.3389/FRAI.2024.1391472, May 2024.

[35] A. Altayeva et al., "Hybrid Deep Learning Model for Cyberbullying Detection on Online Social Media
Data," Int. J. of Computer Science, vol. 8, no. 3, Sep. 2022.

[36] A. Alhazmi et al., "Code-mixing unveiled: Enhancing the hate speech detection in Arabic dialect tweets
using machine learning models," PLOS One, vol. 19, no. 7, p. 0305657, 2024.

[37] R. Obeidat et al., "Deep Learning vs. Traditional Machine Learning for Arabic Sentiment Analysis: A
Comparative Study,"” Int. J. of Advanced Computer Science and Appl., vol. 12, no. 4, pp. 188-195, 2021.

[38] A. Al-Hassan and H. Al-Dossari, "A Benchmark Dataset for Arabic Cyberbullying Detection on Twitter:
Design and Evaluation,” Int. J. of Advanced Computer Science and Appl., vol. 11, no. 2, pp. 72-78, 2020.

[39] G. Jaradat et al., "Deep Learning Approaches for Detecting Cyberbullying on Social Media," J. of
Computational and Cognitive Engineering, vol. 2025, no. 00, pp. 1-15, Mar. 2025.

[40] I. Jamaleddyn, R. EI Ayachi and M. Biniz, "Novel Multi-channel Deep Learning Model for Arabic News
Classification," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 10, no. 4, pp.
453-468, DOI: 10.5455/jjcit.71-1720086134, Dec. 2024.

[41] L. Al Qadi, H. El Rifai, S. Obaid and A. Elnagar, "A Scalable Shallow Learning Approach for Tagging
Arabic News Articles,” Jordanian Journal of Computers and Information Technology (JJCIT), vol. 6, no.
3, pp. 263-280, DOI: 10.5455/jjcit.71-1585409230, Sep. 2020.

[42] Haithem Hermessi, "Arabic Levantine Hate Speech Detection,” [Online], Available:
https://www.kaggle.com/datasets/haithemhermessi/arabic-levantine-hate-speech-detection, Jan. 2025.

[43] M. K. Saad, "Arabic Sentiment Twitter Corpus,” [Online], Available: https://www.kaggle.com/datasets/
mksaad/arabic-sentiment-twitter-corpus, Jan. 2025.

[44] A. Saleh, "Arabic Dataset1,” [Online], Available: https://www.kaggle.com/datasets/ahmadsalen2001/
arabicdatasetl, Jan. 2025.

[45] M. Tami et al., "Transformer-based Approach to Pathology Diagnosis Using Audio Spectrogram,”
Information, vol. 15, no. 5, p. 253, DOI: 10.3390/info15050253, 2024.

&) (adla

il 3 A ali g () anll 8A LA, B )y Wl &), ka4l
CragdBylled ag laga ae Jaall s 8 sl J3 o Y e m Ay el A S0ad)
a\d;_\_u\_auc\_m;‘}“ d_o.a\}\l\ @b&}‘r‘cuﬂb‘f\‘}u_uﬂ ‘)_:uﬂ\u_cu_uﬁ\ﬁ
A_Q‘sma‘\\\ ‘LE‘ \\ q} S ;4:“,&;; ng_ﬂ nm} 44 q\q\m“H\g\ ;sg; H u\ ngg
u—J\ cu_J\e_\uclL_ma.L_cMjuJMeMumuﬂbu\uﬂuuu
GHY\CJL—‘J‘U—J‘;OH‘M\M\H L_sl\cdj__a.d\u\c_ﬂ__d\t_x__m\uj
A__JAAJ\G._SQ__\A:J\ ?L“—'“ ileld ‘_,‘__.“)4.._...;.1(_5.\__\\ )__AY\ cGJY\ ?L"_'“ —) BaTL_uuall
o);)__.ac_\t__\.ﬂ\.\_ﬁyj uﬂ\dhu@\wM\HgH\deﬁu\
Ot A el IS T Y85 Sl A s L el Al Sl
L_Al‘u)ﬂ\d\_m\a.’}cW\QM\H@\M\w\MM\M\M
.t}-‘-v%ﬂuw‘\-ﬁf—gs#



http://creativecommons.org/licenses/by/4.0/

351

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

IMPROVING IOT SECURITY: THE IMPACT OF
DIMENSIONALITY AND S1ZE REDUCTION ON
INTRUSION-DETECTION PERFORMANCE

Remah Younisse!, Amal Saif!, Nailah Al-Madi', Sufyan Almajalit
and Basel Mahafzah?

(Received: 16-Mar.-2025, Revised: 23-May-2025 and 24-Jun.-2025, Accepted: 27-Jun.-2025)

ABSTRACT

Intrusion detection in the Internet of Things (IoT) environments is essential to guarantee computer-network
security. Machine-learning (ML) models are widely used to improve efficient detection systems. Meanwhile, with
the increasing complexity and size of intrusion-detection data, analyzing vast datasets using ML models is
becoming more challenging and demanding in terms of computational resources. Datasets related to IoT
environments usually come in very large sizes. This study investigates the impact of dataset-reduction techniques
on machine learning-based Intrusion Detection Systems (IDSs) regarding performance and efficiency. We propose
a two-stage framework incorporating deep autoencoder-based feature reduction with stratified sampling to reduce
the dimensionality and size of six publicly available IDS datasets, including BoT-loT, CSE-CIC-1DS2018, and
others. Multiple machine-learning models, such as Random Forest, XGBoost, K-Nearest Neighbors, SVM and
AdaBoost, were evaluated using default parameters. Our results show that dataset reduction can decrease training
time by up to 99% with minimal loss in F1-score, typically less than 1%. It is recognized that excessive size
reduction can compromise detection accuracy for minority attack classes. However, employing a stratified
sampling method can effectively maintain class distributions. The study highlights significant feature redundancy,
particularly high correlation among features, across multiple 10T security-related datasets, motivating the use of
dimensionality-reduction techniques. These findings support the feasibility of efficient, scalable IDS
implementations for real-world environments, especially in resource-constrained or real-time settings. This work
shows considerable redundancy in the datasets which questions the huge amount of these datasets, because, in
many cases, the reduced datasets provide almost the same F1-score readings after data reduction. Rasing the
alarm to notice the unnecessary massive amount of data used to build robust IDSs.

KEYWORDS

Dimensionality reduction, Data reduction, Autoencoders, Stratified sampling, Machine learning.

1. INTRODUCTION

Massive amounts of data are being generated due to digitization in different Internet of Things (1oT)
domains, such as healthcare, vehicular networks [1]-[2], and Intrusion Detection Systems (IDSs) [3].
Two options are available for data reduction; reducing the number of features (feature reduction) or the
number of tuples in the dataset (size reduction). Deep-learning (DL) techniques can deal with vast
amounts of data. Still, DL only concerns some features in the data; thus, dimensionality reduction
becomes an important step in best utilizing the resources [4]-[5].

Wearable devices, such as wearable healthcare devices, for example, generate a lot of features; it takes
work to manage and store the generated data. It is hard to decide which features must be preserved for
accurate diagnosis and which are not [6]. Due to the cost and computational resources needed to handle
the enormous number of features, it becomes a challenge to reduce them without affecting the models’
performance [7]. However, intrusion-detection datasets face unique issues. The extreme data imbalance
is a major concern, where minority classes represent attack classes [8]. Hence, any reduction technique
should consider the risk of eliminating them. Meanwhile, rapid learning and detection models are needed
to enhance the detection process, because the sooner threats are detected, the less harmful the attacks
are. Additionally, adversarial behaviors may intentionally mimic normal traffic, complicating feature
learning. These challenges motivate the need for intelligent, attack-aware dataset-reduction strategies.
Hence, the proposed approach in this study uses stratified sampling to maintain class balance and deep
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autoencoder-based feature extraction to preserve non-linear patterns and subtle feature dependencies
critical for effective IDS performance.

Different dimensionality-reduction techniques could be used based on the data complexity, such as
Principal Component Analysis (PCA), MDS, and Time-lagged independent component analysis (TICA)
for linear manifolds, and Sketchmap, t-SNE, and deep methods for non-linear manifolds [9]. Principal
Component Analysis (PCA) has been widely used in dimensionality reduction. It helps provide better
data quality, improve classification, reduce the needed space and time, and remove irrelevant data [10].

At the same time, data reduction techniques are becoming popular and widely used for data visualization,
simulation and analysis [11]. Stratified sampling is a famous method that divides data into similar groups
known as strata [12]. Then, it selects a certain number of samples from each group, considering the
data’s distribution rate; any sample taken from the data should keep the same distribution in the original
dataset. Stratified sampling was proven to be an efficient, unbiased sampling method and highly
representative of the data being studied. The main drawback of stratified sampling is that it can only be
applied when the data cannot be grouped in disjoint groups [13].

In recent years, many intrusion-detection datasets have been generated due to the rapid updates of the
malware authors, and different attacks have been developed to maneuver different IDSs. It has been
noticed that these datasets tend to be large, with millions of tuples and hundreds of features. Hence,
different reduction techniques have to be studied and improved. The main motivation for this paper is
to explore the value of using huge datasets to train machine learning (ML)-based IDSs and to assess the
effect of reducing the size of the datasets used on these IDSs. Thus, this assessment work investigates
the efficiency of different data reduction and feature-extraction techniques. Reducing the datasets’ sizes
will help improve the required ML-based IDS training time.

In the context of intrusion detection and dimensionality reduction, many works have focused on feature
reduction techniques to speed up the ML models and enhance the outcomes of these models [14]-[15].
In comparison, the size-reduction aspect is not sufficient for the research work. One reason for this is
the risk associated with removing potentially valuable information, primarily in class-imbalanced
datasets where minority attack classes are already underrepresented. Unlike feature selection, which can
often enhance generalization by removing noise and redundancy, size reduction, if not handled carefully,
can negatively impact detection accuracy. Moreover, feature reduction methods compress
dimensionality while keeping the overall event diversity. Our work aims to fill this gap by proposing a
controlled size-reduction approach using stratified sampling, ensuring that data diversity and class
proportions are preserved even in smaller training sets.The work in [16] explored how deep-learning
models can be used as a feature-extraction tool aiming to remove redundant features from the dataset.
The experiment was applied to an outdated balanced dataset with relatively small features. Meanwhile,
information gain (IG-PCA) was also used as a dimensionality-reduction tool in [17]. In [18], two
different feature-reduction methods were investigated with a more recent dataset than the dataset used
in the previously mentioned works: the CISIDS2017 dataset.

This paper focuses on answering two questions. The first question is, "Is the large amount of data
collected in IDS datasets needed to build robust IDS ML and Al systems?". The second question is,
"What efficient reduction techniques can be used to reduce the size of IDS datasets, yet they can be used
to build robust IDSs?".

Some works have focused on combining size and dimensionality-reduction techniques to extract the
dataset’s core value and enhance machine-learning (ML) model performance, but not in the context of
intrusion-detection applications, such as the work in [19]. The primary contribution of this study is a
practical framework for enhancing IDS performance through efficient data reduction rather than a novel
detection algorithm. The proposed model combines deep feature extraction using autoencoders with
stratified sampling to reduce the number of features and training samples without compromising
classification performance. This two-stage reduction process significantly lowers computational costs
and model complexity, making machine learning-based IDS solutions more scalable and suitable for
real-time applications, especially in 0T scenarios. Experiments on six IDS-related datasets demonstrate
that the proposed method preserves or even improves F1-scores while reducing training time by up to
99% in some cases. Therefore, this work’s main contributions can be summarized as follows:
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e We present a practical, two-stage dataset-reduction framework that combines stratified sampling
with autoencoder-based feature selection to reduce both the size and dimensionality of IDS datasets.
The first algorithm sorts the importance of the features in the dataset via an autoencoder. Then, the
least important features are removed, followed by tuple reduction via stratified sampling. The
second algorithm starts with stratified sampling, followed by feature ranking and selection.

o We empirically evaluate the trade-offs between different reduction percentages and their effects on
training time and detection performance using multiple ML models across six public IDS datasets.

o We show that, when properly applied, dataset size and dimensionality reduction can achieve up to
99% decrease in training time with minimal performance loss (typically less than 1% drop in F1-
score). The proposed reduction techniques prove that there is a notable degree of redundancy in the
datasets. The huge amount of data should be questioned in these datasets, because, in many cases,
the reduced datasets provide almost the same F1-score readings after data reduction. More attention
should be paid to the unnecessary massive amount of data used to build robust IDSs.

e We provide a reproducible baseline for evaluating dataset-reduction strategies in IDSs, offering
insights into scalability and efficiency for real-world deployment in resource-constrained
environments.

The rest of this paper is organized as follows: Section 2 shows the related work. Preliminaries and
methodology are presented in Section 3. Section 4 shows the results and assessments, and finally, the
work is concluded in Section 5.

2. RELATED WORK

Data-reduction techniques are widely explored to address machine-learning datasets’ growing
complexity and size, specifically in intrusion detection systems (IDSs). These techniques typically fall
into two categories: dimensionality reduction, which reduces the number of features (columns), and size
reduction, which reduces the number of records (rows). This section critically investigates related works
grouped by technique type and discusses their applicability to IDSs, mainly in 0T environments.

Linear techniques, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA), have been broadly used to project data into lower-dimensional spaces. PCA is widely employed
due to its computational efficiency and ability to decorrelate features. PCA has shown considerable
performance with high-dimensional datasets, such as medical imaging and network traffic [20]-[21].
However, PCA supposes linear relationships between the features, which may not hold in complex IDS
datasets. At the same time, LDA is useful for maximizing class separability, but suffers from scalability
issues in large-scale, high-dimensional environments. Recent work has focused on autoencoders and
their variants, including Deep Sparse Autoencoders (DSAESs), to handle these restrictions for non-linear
and data-driven feature extraction. Unlike PCA, autoencoders do not suppose linearity and can model
complicated feature relations [22]. This capability of modeling complex relationships makes them
specifically suitable for IDS datasets with complex patterns and correlations. For instance, [23] used
autoencoders to improve classification accuracy through feature selection. However, their work focused
on general accuracy rather than on IDS-specific issues, like class imbalance or real-time deployment.
Recently, Nabi and Zhou [24] explored using PCA and random projection for dimensionality reduction
in intrusion-detection schemes using the NSL-KDD dataset. Their results emphasized random
projection’s computational efficiency and accuracy benefits over PCA. In contrast, this study explores
deep autoencoders as a non-linear and data-driven technique for feature extraction and links this with a
structured dataset size-reduction pipeline. Moreover, this evaluation spans multiple recent IDS datasets,
addressing generalization, dataset redundancy, and attack-class preservation. In contrast to earlier
studies that used traditional datasets, like NSL-KDD or outdated benchmark sets [16]-[17], our work
leverages recent and large-scale IDS datasets, such as CSE-CIC-IDS 2018 and BoT-loT. When
integrated with stratified sampling, we confirm that autoencoders can preserve detection performance
even under significant feature reduction.

Stratified sampling is a widely utilized technique for reducing dataset size while keeping class
distributions, which is critical in class-imbalanced IDS contexts. Multiple studies [25][26][27][28] have
examined its effect on handling large-scale datasets. For example, [28] proposed an enhanced stratified
sampling framework with over-sampling of minority classes using Gaussian noise and clustering of
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majority classes. However, these works frequently lacked comparative analysis of reduction order,
sampling before vs. after feature reduction. Moreover, some prior works overlap in their discussion of
stratified sampling without clearly distinguishing their contributions. We address this by systematically
comparing each method’s novelty and outcome: [25] applied stratified sampling in general big-data
contexts, [26] optimized sampling with hash- based stratum construction, and [27] integrated stratified
sampling with clustering for better illustration. Our method builds upon these by integrating sampling
with deep feature selection, presenting a unified pipeline evaluated on multiple IDS datasets.

Recent developments have introduced scattering-based enhancements to graph neural networks for
anomaly detection and feature learning. For instance, the STEG model [29] applies a wavelet-based
scattering transform to edge features within an E-GraphSAGE architecture, significantly improving
detection performance on network-intrusion datasets. STEG leverages multi-resolution edge encoding
and node2vec embeddings to provide a fine-grained understanding of graph-structure anomalies, a
strategy relevant to our anomaly-detection pipeline. In a related domain, the GeoScatt-GNN framework
[30] combines geometric-scattering transforms with ANOVA-based statistical feature selection to
predict Ames mutagenicity. While its application lies in bio-informatics, the architecture introduces a
principled pipeline where meaningful features are extracted and filtered prior to GNN classification,
highlighting the cross-domain effectiveness of scattering-transform approaches. Our work draws
inspiration from these efforts, but focuses on reducing the dataset size, with a tailored architecture and
feature-selection approach suited to network-level anomaly scenarios. We also emphasize the
redundancy happening in the security-related dataset applied in the 10T environments.

A summary of the related works and methods is clarified in Table 1. Our approach closes this gap by
employing a two-stage pipeline tested across six modern IDS datasets and comparing sampling-first vs.
feature-first strategies. Additionally, we quantify training-time reduction and model resilience to
aggressive reduction analysis, which previous studies often dismissed. The datasets related to security
threats in 10T networks tend to be massive, hindering the detection models and requiring huge
computational resources [31]. This work presents a methodology that can reduce dataset size while
keeping the IDS performance high and accurate. Our work offers a more rigid, application-focused
synthesis of dimensionality and size reduction in IDSs. It advances the field by addressing the interplay
between reduction type and model performance using large-scale, recent IDS datasets. It also provides
empirical proof across multiple classifiers and offers a reproducible framework for real-world
deployment.

Table 1. Summary of data-reduction techniques in literature.

focused

Technique Category Dataset Used Strengths Limitations

PCA [20]-[21], [24] Dimensionality | NSL-KDD, CTG, Fast, simple, linear Failson non-linear
DR separability data

LDA [16]-[17] Dimensionality | CTG, DR Class separation- Poor scalability

Dimensionality

efficient

Deep Autoencoders Dimensionality | BoT-loT, Handles non-linear Overfitting risk on
[22]-[23] CSE- CIC-1DS2018 features, scalable small datasets
Stratified Sampling Size KDD, CICIDS, Maintains class Requires stratification
[25][26][27][28] financial balance label
Sampling + Size Big-data Clusters Reduces outliers, Adds clustering
Clustering [27]-[28] enhances sample complexity

diversity
This Work Size + 6 modern IDS datasets | Two-stage, flexible, Minor NB performance

degradation noted

3. PRELIMINARIES AND METHODOLOGIES

This section introduces the datasets used in this study and the methodologies that are applied to reduce
the size and dimensionality of the datasets. It also introduces the performance metrics that have been
used to assess the efficiency of the methodologies used.
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3.1 Datasets

Throughout this study, six intrusion-detection datasets were used: The Kitsune-ARP dataset [32],
SNMP- MIB [33], the CSE-CIC-IDS2018 dataset [34], the BoTIoT dataset [35], the UNR-IDD dataset
[36], and the credit-card fraud-detection dataset from [37]. The six datasets are all related to intrusion-
detection applications, and they are collected from different hostile environments with different features
and sizes.

What distinguishes the selected datasets in this study is that many datasets were recently collected from
loT environments. The datasets are challenging due to data imbalance, which is typical in intrusion-
detection datasets in general. Meanwhile, many datasets are enormous, challenging for ML models,
require a long time for training, and can result in very complex ML models. All non-binary datasets
were transformed into binary datasets, such as the CSE-CIC-1DS2018 dataset.

A summary of the six datasets, including the size, dimension, and imbalance rate, is presented in Table.2.
The datasets were renamed DS1-DS6 throughout this work, as shown in Table 2, to enhance the
readability of the paper, especially the figures and tables.

Table 2. Summary of the datasets used in the study.

Dataset Size (KB) Records Features Imbalance Rate (%)
UNR-IDD (DS1) 267 2620 21 9.4
Kitsune-ARP (DS2) 15,300 15000 115 10
SNMP-MIB (DS3) 788 5000 34 10
CSE-CIC-1DS2018 (DS4) 315,233 1048576 80 50
BoTloT (DS5) 620,600 2426574 24 27
Fraud detection (DS6) 100,500 248808 31 0.1724

3.2 The Techniques Used

We present here the main techniques used throughout this study. These techniques include sampling,
dimensionality reduction, and ML techniques.

Sampling is selecting a representative set of items from a larger set. Sampling can be applied to select
a specific number or percentage of samples. This work uses sampling with intrusion-detection datasets
to select a certain percentage of the dataset to train the ML models, since many datasets are very large
and contain hundreds of thousands of records, sometimes millions. Training machine-learning models
with huge datasets requires high computational power and consumes time. The sampling process
investigates the degree of redundancy existing in these datasets. When a half or a quarter of the data can
be used to train the ML model and still give the same results as when the entire dataset was used, this
can indicate that the dataset records include a noticeable degree of redundancy.

This work deploys stratified sampling to reduce the number of records in intrusion-detection datasets;
meanwhile, it maintains the imbalance ratio. Since the data used is large and imbalanced, randomly
selecting a small group from the data might alter the balance of the data; there is a more significant
probability that a selected record belongs to the larger group. The datasets are also labeled, which makes
stratified sampling a good choice for this presented work.

At the same time, dimensionality reduction is used for different purposes, such as having interpretable
models or reducing the required computational time for ML-model training. PCA is commonly used for
this task. The main difference between reducing the features using PCA and by autoencoders is that
PCA can model linear structures. However, autoencoders do not assume linearity [18]. In [9],
dimensionality-reduction techniques were divided into three main categories based on the data structure.
Three main dimensionality-reduction methods are available in the literature: linear manifolds, non-linear
manifolds and curved twisted manifolds.

Due to the high performance of autoencoders in reducing the intrusion detection features that outperform
other methods, such as PCA and LDA [38]; dense autoencoders are used in the proposed methods in
this paper. The main idea of the autoencoder is to have the ability to reconstruct the input after encoding
it to a lower dimension. For dimensionality reduction, the most important part of the autoencoder is the
latent space, the encoder’s output, which has the most critical features of the input. Its size is a hyper-
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parameter that can be controlled to define the desired number of features. In the proposed methods,
features with the highest weights were selected after sorting all features based on their importance.

Eventually, the selected approaches to reduce the size and dimensionality of different intrusion-detection
datasets are evaluated with nine different ML models. These ML models are the K-Nearest Neighbor
algorithm (KNN), the Support Vector Machine Algorithm (SVM), Naive Bayes, linear regression, LDA,
C5, XGBoost, Random Forest, and ADA. These ML models were selected throughout this study,
because they are extensively used in the literature with similar datasets. The ML models were proven to
be efficient and durable with tabular datasets. The random forest is a robust ensemble model that reduces
overfitting and performs well on tabular data with noisy or redundant features. XGB is an ensemble
model that proved its efficiency in many real problem-detection tasks. SVM model has a powerful
feature which is called kernel trick that gives SVM the power to handle binary classification effectively.
The KNN is a simple, non-parametric model that benefits from reduced feature spaces and works well
for pattern recognition. AdaBoost is an ensemble technique that adapts to classification errors, making
it more robust to decide on samples, which is very important with imbalanced datasets.

3.3 Proposed Methods

This work investigates how dataset size-reduction and feature-reduction methodologies affect machine-
learning algorithms. The analysis is studied in the context of IDS systems and 10T environments. The
method followed throughout the proposed work adapts two approaches clarified in Algorithms 1 and 2.
In the first approach, data reduction is applied first, followed by size reduction, and then ML models are
used with the data to build the IDS models. In the second approach, size reduction is applied before the
feature-reduction step, and then ML models are used again to build the IDS models. Finally, the
performance of the models built with the first approach is compared with the performance of those
created with the second approach, as shown in Figure 1. The approach that produces better results is
recommended for IDS datasets. The size-reduction method used throughout this study is the stratified
sampling technigue. Meanwhile, the feature reduction method used here is the dense autoencoder
method.

Figure 1 illustrates the two-stage dataset-reduction strategies evaluated in this study. In the Feature
Reduction First (FF) approach (Figure 2a), the full dataset is used to train an autoencoder, which ranks
features based on their importance. The dimensionality of the dataset is then reduced by selecting the
top-ranked features; 1/2, 1/4, or 1/10 of the full set. Finally, stratified sampling, 1/2, 1/4, or 1/10 of the
full set, is applied on the reduced dataset to create reduced sub-sets for training, preserving class
distribution. On the other hand, the Sampling First (SF) technique (Figure 2b) starts by applying
stratified sampling directly to the full dataset, yielding sub-sets that are 1/2, 1/4, or 1/10 the dataset size.
Each reduced sub-set is then passed to an autoencoder to perform feature reduction. The reduction at
this stage is applied to extract 1/2, 1/4, 1/10, or full features. This order assumes that features are sorted
in descending order of importance after training, as indicated in the figure. The main difference between
the two methods is the timing of dimensionality reduction relative to volume reduction. FF (Feature
reduction First) guarantees that the autoencoder is trained on the most complete data to capture more
prosperous feature patterns. SF (Sampling First), meanwhile, reduces computational load earlier, but
may lose important patterns due to early sub-sampling. This trade-off is critical when working with
class-imbalanced and high-dimensional IDS datasets.

DS1, DS2, and DS3 were used through the investigation and steps mentioned in the previous paragraph.
Meanwhile, DS4, DS5, and DS6 were used throughout the assessment process due to their large size
where applying the reduction techniques is essential. During the assessment stage, we practically try to
evaluate the performance of different ML models and the order of the reduction process. Time-analysis
results, besides F-score measures, are recorded. In the second stage, we aim to prove the correctness of
the conclusions made in the first stage. For example, time-reduction and close-to-perfect performance
measures are used, despite using fewer data and features. In this study, we list only the F1-score as a
suitable performance measure, which combines precision and recall. This allows us to evaluate the
robustness of IDS performance across different levels of dataset reduction in a compact and interpretable
way. Although additional metrics, such as recall, precision, and false-positive rate, were computed, their
trends closely followed the F1-score. For clarity and space efficiency, only the F1-score is reported in
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the main-results tables, as it sufficiently describes the robustness of IDS performance under dataset
reduction.

|
1 [ H Bl oo
| _
|
-
(anpata | _
(a) Feature Reduction First (FF) Approach (b) Size Reduction (SR) First Approach

Figure 1. The methodology followed to reduce the datasets.

Algorithm 1 Feature Extraction First (FF)

Require: Input dataset DSi
1: for each dataset DSi, ie[1,2,3] do
2: foreach Fin{1,2,4,10} do
3: Apply feature extraction on DSi, extracting the most important 1/F features from

DSi and update DSi

4: foreachF & {1,2,4,10} do
5: Apply stratified sampling on DSi to extract 1/S of the data: DSi <-DSi/S
6: Apply the machine learning methods to DSi
7 end for
8 end for
9: end for

Algorithm 2 Size Reduction First (SF)

Require: Input dataset DSi
1: for each dataset DSi, 11,2,3 do
2: for each Sin 1, 2, 4, 10 do}

3 DSi = StratifiedSampling(DSi, 1/S)

4 foreachF € {1,2,4,1p do

5: DSi = AutoencoderFeatureExtraction(DSi, 1/F)
6: Apply the machine learning methods to DSi

7 end for

8 end for

9: end for

We investigate how the datasets’ size and feature reduction can affect the performance of nine different
ML models. The models were trained with the data prior to reduction, then trained with the reduced
datasets. Size and dimensionality were reduced in different scenarios, and then a comparison was held
to assess the different reduction scenarios. The method used for data reduction is the Stratified-sampling
process which reduces the data size and keeps the data distribution untouched.

The technique used for the feature-reduction process is ranking the importance of all features of the
datasets using a dense autoencoder. Every dataset was used to train the autoencoder and then, the
encoder was used to explore and rank the importance of all features based on their weights. The features
were then sorted, and the less critical features were dropped from the dataset. Many scenarios were
examined; a half of the features were selected, and one-fourth and one-tenth of the features were selected
in other scenarios. Selecting-all-features scenarios were also analyzed.
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The encoder architecture with the bottleneck consists of three dense layers with the LeakyRelLU
activation function and two batch-normalization layers, as shown in Figure 2. The autoencoder designed
in this study follows a symmetrical architecture tailored for reconstructing input features while capturing
meaningful representations in its bottleneck layer. The input-layer size corresponds directly to the
number of features in each dataset. The encoder consists of two fully connected layers: the first layer
expands the dimensionality to twice the input size and applies a LeakyRelLU activation function,
followed by batch normalization. At the same time, the second layer reduces the dimensionality back to
the original feature size using the same activation and normalization setup. The bottleneck layer
maintains this same dimensionality, serving as the latent representation of the input data without
applying compression, allowing for feature-importance extraction. The decoder mirrors the encoder in
structure, reconstructing the data through symmetric dense layers and concluding with a linear activation
function in the output layer. The architecture was selected to balance expressive power and
computational efficiency, particularly for high-dimensional, imbalanced intrusion-detection datasets
where non-linear patterns and feature interactions are prevalent. The model was trained using the Adam
optimizer with a learning rate of 0.001, a batch size of 16, and 100 epochs. The trained encoder was
used to extract latent feature weights; all feature weights were reported without reduction at this level,
which were subsequently ranked to identify the most important features. While this work focuses on
autoencoder-based feature extraction, we acknowledge the importance of traditional methods, such as
ANOVA and chi-square [39]. However, these classical approaches rely on assumptions of linearity and
independence among features, which are often violated in intrusion detection scenarios. Autoencoders,
by contrast, provide the flexibility to model complex, non-linear, and correlated feature interactions
more effectively. However, although autoencoders offer powerful non-linear feature-extraction
capabilities, they also introduce certain limitations. One concern is the risk of overfitting when training
deep models on reduced datasets. They also require high computational capabilities when very large
datasets are used. Hence, they should be used with caution to deliver accepted results while requiring
minimal computational power.

Encoder

|
|
|

Bottleneck

Dense
Batch Normalization
Leaky RelLU
Dense
Batch Normalization
Leaky RelLU

|
|
|

Figure 2. Encoder architecture.

Stratified sampling was used to reduce the size of the data. Every dataset was reduced to one half, one-
fourth, and one-tenth; it was also analyzed without size reduction. The experiment goes through different
steps, aiming to explore the efficiency of different reduction strategies. The whole data was analyzed
with all features, a half of the features, one-fourth, and one-tenth using the nine ML models, which will
be mentioned shortly. The exact process was repeated when one-fourth of the data was used, and one-
tenth of the data was used. Reducing the data size followed by feature reduction is noted by (SF), which
indicates "Sampling First " since the sampling method is applied to the data before the feature-reduction
process. It is worth mentioning that when stratified sampling was applied before feature ranking, the
importance ranks of some features changed due to the reduced dataset size. However, the most
significant features showed minimal change in their ranking. During (FF) or "Feature First,” the
previously mentioned data-reduction process was applied, but feature reduction was applied first to the
data, followed by the sampling step.
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The used ML models are KNN, SVM, Naive Bayes, linear regression, LDA, C5, X-GBoost, Random
Forest, and ADA. All models are evaluated with their default hyper-parameters as provided by sklearn
Python libraries. Employing default parameters was to emphasize the practical applicability and
effectiveness of the presented dataset-reduction techniques without requiring exhaustive hyper-
parameter tuning. This setup demonstrates that meaningful improvements in computational efficiency
and model performance can be achieved without additional optimization steps.

All datasets were normalized through a MinMaxScalar. During pre-processing, non-numerical features
were dropped from the datasets, such as the Timestamp feature from the CSE-CIC-1DS2018 dataset and
" Switch ID" and "Port Number" from DS1. Data pre-processing includes multiple steps, guaranteeing
that the Al models will be fed with proper data values. During categorical feature encoding, all
categorical features were encoded using One-Hot Encoding, transforming them into numerical formats
suitable for machine-learning models. Moreover, features containing more than 50% of missing data
were removed from the dataset. The remaining missing values were handled using mean imputation.
Additionally, numerical features were scaled using Min-Max normalization, mapping feature values to
a range between 0 and 1. This normalization improves model convergence and performance stability.
Finally, stratified sampling was used explicitly to maintain the original class distribution, effectively
managing dataset imbalance during data reduction. All datasets were divided into 64% for training and
36% for testing, while the 70/30 or 80/20 splits are widely used as standard practice. The slightly non-
standard split in this study ensured that a representative portion of the minority class remained in the
testing set, which is particularly important for performance evaluation on imbalanced datasets.

4, RESULTS AND ASSESSMENT

This section presents the results of the data-reduction techniques described in the previous section and
investigates how combining different reduction techniques influences the ML models used. All the
experiments were conducted using the Google Co-Lab platform based on Python 3. Google Co-Lab
offers 12 GB RAM and 128 GB Disk. To rank feature importance, absolute weights from the first dense
layer of the encoder were extracted. These weights reflect the strength of the connection between input
features and their influence on the latent representation. We ranked in descending order based on the
sum of absolute weights across all neurons in this layer. We then selected the top-k features: 1/2, 1/4, or
1/10 for further evaluation. Stratified sampling was applied using a class-wise sampling strategy to
maintain class proportions. This was done via pandas.groupby(’class’).apply(lambda x:
x.sample(frac=p)) in Python, where p is the target sampling fraction; 0.5, 0.25, 0.10. This method was
used to generate progressively smaller, but balanced, datasets for training and testing. This step was
either applied before or after feature selection based on the reduction strategy (SF or FF).

4.1 Machine-learning Model Results

To detail each model’s performance, the F-score metric is used to represent the results as values for
all steps of the two approaches in Tables 3, 4, 5, 6, 7, and 8, because F-score is sufficient measure for
imbalanced data. The numbers at the top of the columns represent the feature percentage and the size
percentage; F-S "0.5-0.25," in Table 4, for example, denotes the ML models’ performance with a data
sample retaining the top half of the features after ordering them according to their importance. If we
have 20 features, for example, the top-10 features are used. Meanwhile, 0.25 means that one-fourth of
the data tuples are used; for example, if we have 1000 tuples, 250 tuples are selected via stratified
sampling and used through the training and testing processes. Features extraction precedes size reduction
in this case where the “F” comes first. However, S-F "0.5-0.25," indicated using 50% of the tuples and
0.25 of the features where the size reduction precedes the feature extraction method.

In Table 3, all classifiers achieve a high F-score until the 0.1-1 reduction is applied, starting with size
reduction. This is expected due to the small size and dimensions of DS1. However, when the reduction
processes are swapped in Table 4, LR, SVM, and C4.5 can still produce high results. The conclusion
that can be extracted from these results is that feature reduction first is better for small-sized and low-
dimensional datasets. Moreover, RF, KNN, C4.5, and XGB are the best classifiers for DS2 based on the
F-score when applying size reduction first, as shown in Table 5. XGB is the most stable classifier when
feature reduction is applied first. At the same time, other models were unstable or could not achieve
high F-scores in most data-reduction scenarios, as Table 6 demonstrates. As for the third dataset, KNN
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is the best classifier for size reduction first, as shown in Table 7 and XGB is the best for feature reduction
first, as shown in Table 8. Most of the classifiers performed well, and it was the most suitable dataset
for NB. In all Tables 3-8, we have colored the highest values in each column in yellow to highlight the
best results for each division, also to highlight the best-performing models. Our analysis shows that
dataset and feature-reduction strategies exhibit multiple levels of performance degradation. Decreasing
the dataset or feature set to 1/2 or 1/4 generally resulted in a less than 2% drop in F1-score. More
aggressive reduction to 1/10 greatly affected detection accuracy, particularly for complex datasets, like
BoT-loT and CSE-CIC-1DS2018. Notably, KNN and AdaBoost shared larger performance drops under
1/10 feature reduction, due to their sensitivity to input dimensionality. In contrast, ensemble tree- based
models, such as XGBoost and Random Forest, showed higher resilience, maintaining performance even
when trained on only 10% of features or samples. This indicates that the model’s robustness to feature
sparsity and sample diversity plays an essential function in mitigating the effects of reduction. These
trade-offs emphasize the significance of choosing the proper model and reduction level based on the
dataset’s complexity and attack distribution.

Table 3. DS1 sampling first F1-score results.

S-F 1-1 1- 1- 1- 0.5- 0.5- 0.5—- 0.5- 0.25- | 0.25- | 0.25- | 0.25- | 0.1-1 | 0.1- 0.1-
0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 .025 0.1 0.5 0.25

KNN 1.000 | 1.000 | 1.000 | 0.923 | 1.000 | 1.000 | 1.000 | 0.885 | 0.999 | 0.976 1.000 | 0.923 | 0.560 | 0.498 | 0.500

SVM 0.995 | 1.000 | 1.000 | 0.885 | 1.000 | 0.976 | 1.000 | 0.885 | 0.999 | 0.999 1.000 | 0.923 | 0.500 | 0.500 | 0.500

NB 0.991 | 0.993 | 0998 | 0.508 | 0.986 | 0.993 | 0.995 | 0.514 | 0.974 | 0.983 | 0.986 | 0.982 | 0.543 | 0.535 | 0.529

LR 0.999 | 1.000 | 1.000 | 0.846 | 0.999 | 0.976 | 0.962 | 0.885 | 0.999 | 0.988 | 0.885 | 0.692 | 0.500 | 0.500 | 0.500

LDA | 0999 | 1.000 | 1.000 | 1.000 | 0.999 | 0.976 | 1.000 | 1.000 | 0.999 | 0.998 1.000 | 1.000 | 0.500 | 0.500 | 0.500

C45 1.000 | 1.000 | 1.000 | 0.962 | 1.000 | 1.000 | 1.000 | 0.962 | 1.000 1.000 | 1.000 | 1.000 | 0.500 | 0.500 | 0.500

XGB | 1.000 | 1.000 | 1.000 | 0.962 | 1.000 | 1.000 | 1.000 | 0.962 | 1.000 1.000 | 1.000 | 1.000 | 0.500 | 0.500 | 0.500

RF 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.976 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 0.500 | 0.500 | 0.500

Ada 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 0.500 | 0.500 | 0.500

Table 4. DS1 feature extraction first F1-score results.

F-S 1-1 1- 1- 1- 0.5- 0.5- 0.5- 0.5- 0.25- | 025~ | 0.25- | 0.25- | 0.1- 0.1- 0.1- 0.1-
0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 .025 0.1 1 0.5 0.25 0.1

KNN | 0.999 | 0.999 0.999 | 0.999 1.000 | 0.990 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 1.000 | 0.333

SVM | 0.995 | 0.995 0.995 | 0.995 | 0.998 | 0.992 | 0.995 | 0.973 | 1.000 | 0.984 | 0.798 | 0.471 | 0.809 | 0.781 | 0.491 | 1.000

NB 0.918 | 0.918 | 0.918 | 0.918 | 0.844 | 0.836 | 0.814 | 0.791 | 0.885 | 0.843 | 0.983 1.000 | 0.764 | 0.708 | 0.565 | 1.000

LR 1.000 | 1.000 1.000 | 1.000 | 0.668 | 0.544 | 0.470 | 0.468 | 0.465 | 0.470 | 0.459 | 0.471 | 0.465 | 0.467 | 0.491 | 0.333

LDA | 1.000 | 1.000 1.000 | 1.000 | 0.791 | 0.749 | 0.723 | 0.851 | 0.803 | 0.779 | 0.459 | 1.000 | 0.465 | 0.466 | 0.491 | 0.333

C45 1.000 | 1.000 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 0.931 | 0.998 | 0.973 | 0.964 | 1.000 | 1.000 | 0.942 | 1.000 | 1.000

XGB | 1.000 | 1.000 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 0.944 | 0.998 | 0.978 | 0.982 | 0.818 | 0.999 | 0.980 | 0.491 | 0.000

RF 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.959 | 0.999 | 1.000 | 0.964 | 0.884 | 0.999 | 0.960 | 0.824 | 0.333

Ada 1.000 | 1.000 1.000 | 1.000 | 0.999 | 0.997 | 1.000 | 0.959 | 0.999 1.000 | 1.000 | 0.884 | 0.960 | 0.969 | 0.491 | 0.333

Table 5. DS2 sampling first F1-score results.

S-F 1-1 1- 1- 1- 0.5- 0.5- 0.5- 0.5- 0.25- | 025- | 0.25- | 0.25- | 0.1- 0.1- 0.1- 0.1-
0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1

KNN 0.999 0.995 | 0.984 | 0.975 | 0.997 | 0.991 | 0.976 | 0.945 | 0.992 | 0.974 | 0.939 | 0.944 0.991 | 0.985 | 0.952 | 0.907

SVM 0.837 0.806 | 0.509 | 0.473 0.839 | 0.785 | 0.609 | 0.473 | 0.532 | 0.499 | 0.473 | 0.473 0.588 | 0.554 | 0.473 | 0.473

NB 0.250 0.253 | 0.249 | 0.255 | 0.233 | 0.234 | 0.232 | 0.240 | 0.235 | 0.240 | 0.169 | 0.179 | 0.412 | 0.417 | 0.431 | 0.407

LR 0.882 | 0.842 | 0.763 | 0.615 | 0.833 | 0.782 | 0.733 | 0.541 | 0.606 | 0.565 | 0.529 | 0.473 | 0552 | 0.540 | 0.473 | 0.473

LDA 0.978 0.978| 0.967 | 0.990 | 0.944 | 0.959 | 0.947 | 0.965 | 0.807 | 0.836 | 0.815 | 0.827 0.602 | 0.617 | 0.576 | 0.550

C4.5 1.000 1.000( 0.998 | 0.985 | 0.998 | 0.995 | 0.992 | 0.995 [ 1.000 | 0.995 | 0.994 | 1.000 0.995 | 0.977 | 0.955 | 0.946

XGB 1.000 0.998 | 0.998 | 0.995 1.000 | 0.998 | 0.996 | 0.995 1.000 | 0.999 | 0.994 | 0.995 0.998 | 0.995 | 0.975 | 0.985

RF 1.000 0.999 | 0.996 | 1.000 1.000 | 0.999 | 0.990 | 0.985 | 0.999 | 0.994 | 0.981 | 0.990 0.993 | 0.988 | 0.957 | 0.969

Ada 0.999 0.99 | 0.988 | 0.995 | 0.977 | 0.990 | 0.983 | 0.967 | 0.991 | 0.988 | 0.964 | 0.995 0.680 | 0.657 | 0.754 | 0.710
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Table 6. DS2 feature extraction first F1-score results.

F-S 1-1 1- 1- 1- 0.5- 0.5- 0.5- 0.5- 0.25- | 025~ | 0.25- |0.25- | 0.1- 0.1- 0.1- 0.1-
0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1

KNN | 0.999 | 0.999 0.999 | 0.999 | 0.994 | 0.993 | 0.975 | 0.930 | 0.994 | 0.944 | 0.806 | 0.697 | 0.988 | 0.898 | 0.689 | 0.400

SVM | 0.854 | 0.854 0.854 | 0.854 | 0.858 | 0.803 | 0.488 | 0.473 | 0.532 | 0.473 | 0.468 | 0.481 | 0.607 | 0.469 | 0.472 | 1.000

NB 0.255 | 0.255 | 0.255 | 0.255 | 0.231 | 0.238 | 0.247 | 0.259 | 0.232 | 0.235 | 0.243 | 0.184 | 0.408 | 0.429 | 0.382 | 1.000

LR 0.899 | 0.899 0.899 | 0.899 | 0.852 | 0.783 | 0.734 | 0.601 | 0.609 | 0.509 | 0.468 | 0.481 | 0.571 | 0.469 | 0.472 | 0.400

LDA | 0.987 | 0.987 0.987 | 0.987 | 0.951 | 0.940 | 0.966 | 0.926 | 0.806 | 0.886 | 0.834 | 0.694 | 0.622 | 0.631 | 0.671 | 0.400

C4.5 0.998 | 0.998 0.998 | 0.999 | 0.996 | 0.994 | 0.996 | 0.985 | 0.996 | 0.986 | 0.993 | 1.000 | 0.985 | 0.955 | 0.689 | 0.400

XGB [0.999 | 0.999 0.999 ] 0.999 | 1.000 | 0.994 | 0.998 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.964 | 0.817 | 1.000

RF 0.999 | 0.999 1.000 | 0.999 | 1.000 | 0.995 | 0.990 | 0.985 | 1.000 | 0.992 | 0.986 | 0.924 | 0.995 | 0.982 | 0.709 | 0.455

Ada 0.997 | 0.997 0.997 | 0.997 | 0.989 | 0.927 | 0.969 | 0.927 | 0.991 | 0.990 | 0.993 | 0.824 | 0.706 | 0.522 | 0.625 | 0.400

Table 7. DS3 sampling first F1-score results.

S-F 1-1 1- 1- 1- 0.5- 0.5- 0.5- 0.5- 0.25- | 0.25- | 0.25- | 0.25- | 0.1- 0.1- 0.1- 0.1-
0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1

KNN | 1.000 | 1.000 1.000 | 0.974 | 0.999 | 1.000 | 1.000 | 0.944 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 1.000

SVM | 0.998 | 0.992 1.000 | 0.987 | 0.998 | 0.987 | 0.973 | 0.895 | 0.998 | 0.995 | 0.995 | 1.000 | 0.813 | 0.803 | 0.861 | 0.794

NB 0.912 | 0.923 0.922 | 0.874 | 0.852 | 0.866 | 0.853 | 0.807 | 0.880 | 0.883 | 0.860 | 0.856 | 0.738 | 0.757 | 0.751 | 0.763

LR 1.000 | 0.997 1.000 | 0.959 | 0.681 | 0.582 | 0.470 | 0.468 | 0.465 | 0.467 | 0.470 | 0.468 | 0.465 | 0.467 | 0.470 | 0.468

LDA | 1.000 | 1.000 1.000 | 0.987 | 0.788 | 0.782 | 0.810 | 0.744 | 0.790 | 0.772 | 0.786 | 0.773 | 0.465 | 0.467 | 0.468 | 0.468

C45 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 0.949 | 0.973 | 1.000 | 0.998 | 0.965 | 0.987 | 1.000 | 0.997 | 0.994 | 0.881

XGB | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 0.949 | 0.973 | 1.000 | 1.000 | 0.965 | 0.959 | 1.000 | 0.997 | 0.994 | 0.916

RF 1.000 | 1.000 | 0971 | 1.000 | 1.000 | 1.000 | 0.965 | 1.000 | 1.000 | 1.000 | 0.959 | 1.000 | 1.000 | 0.997 | 0.989 | 0.899

Ada 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 0.949 | 0.973 | 1.000 | 1.000 | 0.965 | 0.973 | 0.968 | 0.966 | 0.941 | 0.859

Table 8. DS3 feature extraction first F1-score results.

F-S 1-1 1- 1- 1- 0.5- 0.5- 0.5- 0.5- 025~ | 0.25- | 0.25- | 0.25- | 0.1- 0.1- 0.1- 0.1-
0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1 1 0.5 0.25 0.1

KNN | 0.999 | 0.999 0.999 | 0.999 | 1.000 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 1.000 [ 0.333

SVM | 0.995 | 0.995 0.995 | 0.995 | 0.998 | 0.992 | 0.995 | 0.973 | 1.000 | 0.984 | 0.798 | 0.471 | 0.809 | 0.781 | 0.491 | 1.000

NB 0.918 | 0.918 0918 | 0.918 | 0.844 | 0.836 | 0.814 | 0.791 | 0.885 | 0.843 | 0.983 1.000 | 0.764 | 0.708 | 0.565 | 1.000

LR 1.000 | 1.000 1.000 | 1.000 | 0.668 | 0.544 | 0.470 | 0.468 | 0.465 | 0.470 | 0.459 | 0.471 | 0.465 | 0.467 | 0.491 | 0.333

LDA | 1.000 | 1.000 1.000 | 1.000 | 0.791 | 0.749 | 0.723 | 0.851 | 0.803 | 0.779 | 0.459 | 1.000 | 0.465 | 0.466 | 0.491 | 0.333

C4.5 1.000 | 1.000 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 0.931 | 0.998 | 0.973 | 0.964 1.000 | 1.000 | 0.942 | 1.000 | 1.000

XGB | 1.000 | 1.000 1.000 | 1.000 | 0.996 | 1.000 | 1.000 | 0.944 | 0.998 | 0.978 | 0.982 | 0.818 | 0.999 | 0.980 | 0.491 | 0.000

RF 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.959 | 0.999 | 1.000 | 0.964 | 0.884 | 0.999 | 0.960 | 0.824 | 0.333

Ada 1.000 | 1.000 1.000 | 1.000 | 0.999 | 0.997 | 1.000 | 0.959 | 0.999 | 1.000 | 1.000 | 0.884 | 0.960 | 0.969 | 0.491 | 0.333

After training the different ML models with different portions from different datasets, the following
notes should be considered from the tables:

o In all cases, data can be reduced by a half regarding both size and dimensionality, yet the ML
models’ performance remains the same.

e Applying the proper process to select part of the data to train the model can give the same results
when all the data is used.

e The data-reduction techniques used throughout this work can enhance the required time to train and
test the models.

e The data-reduction techniques used throughout this work can also produce less complicated models
with the same efficiency.

4.2 Evaluating the Proposed Methods

The assessment step is presented and explored in this sub-section, where multiple data-reduction
scenarios are being applied to three huge datasets. Feeding these datasets into the ML models requires
very high computational resources. Additionally, time-demanding processes should be considered.

For the datasets DS4, DS5 and DS6, the reduction techniques were applied to investigate how the
precision, recall, and Fl-score were affected. The required training time to train all models is also
measured. DS4 is a huge dataset in size and dimension; by extracting 0.001 of the size and a half of the
features, all the classifiers still have a high performance of F-score, especially the KNN. Nevertheless,
NB classifier behavior is sensitive to this level of reduction, as shown in Figure 4a. In other experiments,
the NB was the worst when applied to a vast dataset with a small dimension, such as (DS4). The LDA
performance with DS5 degrades, compared with its performance when DS4 was used, while other
algorithms were robust to the reduction, as shown in Figure 4b. A moderate dimension and size dataset
(DS6) was used to investigate the proposed approach; NB was the worst in comparison, even without
reducing the data, while the other algorithms performed well. RF and XGB classifiers are the best for
this data, as shown in Figure 4c. Every experiment held to reduce the size or the dimensionality of DS4,



362

"Improving loT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance”, R. Younisse, A. Saif, N.
Al-Madi, S. Almajali and Basel Mahafzah.

DS5, and DS6 datasets was repeated 10 times, and the ML model results were measured and averaged
and then clarified in Figure 4. This step is necessary to examine the reduction techniques’ effectiveness
and confirm the derived conclusions.

The time required to train DS4 when all the data was used is 3750.40s. When the data was reduced to
0.05, 0.01, and 0.001, the required time to train all the models was reduced to 22.53s, 6.05s, and 3.74s,
and when a half of the important features were selected from the 0.001 part of the data, the time was
reduced to 3.2s. Yet, the ML classifiers still can detect anomaly behavior even when the dataset size is
dramatically reduced (see Figure 4a).

As the experiment focuses on reducing the size of the datasets horizontally and vertically, this reduction
is expected to affect the required time to train the ML models. DS4, Ds5, and DS6 are reduced in many
ways to study how time is affected, and the time required to train all the mentioned ML models is
reported. The time needed to train DS5 when all the data was used was 9779.81s, but when the size of
the dataset was reduced to 0.01, the required time was 2.58s only, and the required time to train all the
models was reduced to 1s when 0.001 of the dataset was used. Meanwhile, the ML models’ performance
measured in F-score are mostly close to 100% as shown in Figure 4b.

DS6 training time was 350.33s and reducing the size to the half made the training time become 118.4s.
Reducing the features to the half made the training time become 221.41s, while combining both
reductions made the time become 79.12s. ML models, such as KNN, SVM, XGB and RF, can still
produce perfect results (see Figure 4c). Figure 3 lists the time required for training DS4, DS5 and DS6
and the required time when multiple reduction techniques were used. 0.5S means that a half the data
was used, while 0.5F indicates the percentage of reduction applied to the features, where all the values
in the figure are measured in seconds.

This reduction in computational time is due to the reduction in dataset rows and columns. The number
of rows in each dataset is reduced via stratified sampling, while the number of columns is reduced via
feature extraction carried out using the autoencoder model. Combining feature extraction with the size
reduction process makes the dataset size shrink vertically and horizontally. The required processing time
for ML models is a function of the number of rows and columns. Hence, if we can assume that the total
computational time for these models is T = F (numOfRows,numOfCol,... ), a function of the number of
rows and the number of columns, then reducing the value of either numOfRows,numOfCol, or both will
have a reducing impact on the required computational time.

H No reduction m0.1S 0.01s 0.001S m0.001S-0.5F 0.5 mO0.5F mO0.55-0.5F

79.12
221.41
s —
DS5 DS6

I - ¥ ——

Ds4
Figure 3. Time enhancement when large datasets were used.

4.3 Result Analysis and Recommendations

Simple reduction techniques, such as stratified sampling, can reduce the required time to build and train
different ML models. Nevertheless, the performance of ML models is kept almost untouched. The huge
amount of records stacked in different IDS datasets might be necessary, but not for IDS systems using
ML models, such as those presented in this work. Some models can be less trusted, such as NB, and
sometimes LR and LDA should be avoided, too. KNN, XGBoost, RF, and C-5 models are robust and
can be trusted even when reduction methods are applied to the data.

When dealing with massive IDS datasets, reduction techniques, such as stratified sampling, and
dimensionality-reduction techniques, such as autoencoders, are highly recommended to be used with
the data to make it more usable. If the number of records in the dataset is small; i.e., < 20000, using the
autoencoder first is highly recommended. For example, for a dataset similar to DS5, which is used here,
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reducing the data size first is recommended, since training the autoencoder and getting the results from
the encoder will take a very long time.
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Figure 4. ML model performance when large datasets were used.

If the dataset is already small, but has a large number of features, like DS2, which has 115 features,
extracting the important features first is preferred since the autoencoder accuracy will be better with
more data tuples to train it. Extracting the most important features from the dataset might enhance the
performance of some ML models, like NB and SVM, with the DS2 results above.

The amount of the reduction to the data; i.e., how much data should be used to train the model, is a
subject of experience and the logic of trial and error. The reduction tools are available and should be
used with wisdom. For example, DS6 was reduced to the half to make the training time more efficient.
While DS5 was reduced to one-tenth, considering that DS5 is almost five times the size of DS6, DS6 is
a very unbalanced dataset.
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The answer to the first research question is that huge IDS datasets are not necessarily needed, because
the study results show that the ML models can produce sufficient results in many reduction cases,
especially when certain ML models are used, such as Random Forest and KNN. The answer to the
second question is that size reduction, feature reduction, and combining both reduction techniques can
be used to reduce the size of the datasets while keeping the ML-model results sufficient. Although the
proposed method does not introduce a new detection algorithm, it handles a crucial operational challenge
in IDSs: the need for scalable and efficient model training on large, high-dimensional datasets. The
framework shows that significant computational gains can be achieved through structured dataset
reduction, allowing faster deployment and real-time responsiveness without degrading detection
performance. This contribution supports more practical and cost-effective implementation of IDSs in
environments where computational resources and latency are constrained.

4.4 Scalability Considerations and Real-world Deployment

The suggested dataset-reduction framework is developed to be modular and scalable, allowing it to adapt
to diverse deployment scenarios. In cloud or cluster-based environments, the autoencoder training
process can be parallelized and accelerated using GPU hardware, making it feasible to extract feature
importance from even larger IDS datasets, such as real-time streaming logs or full network captures.
The feature-selection step, once learned, can be reused across multiple time windows or data batches
with minimal retraining.

Our sampling-first (SF) pipeline offers a practical compromise for edge-computing environments whose
computational resources of which are limited. Applying stratified sampling before dimensionality
reduction minimizes resource usage and preserves class distribution. Additionally, autoencoder-based
feature selection lowers memory requirements and latency for deployed ML models. Thus, the discussed
reduction methods are sufficient for academic evaluation and functional for real-world IDS applications
where scalability, model-retraining efficiency, and system throughput are key considerations.

4.5 Comparison with Other Works
Table 9 demonstrates a comparison between our work and recent works with similar contributions.

The comparison of our work with recent contributions emphasizes key dissimilarities in dataset
selection, feature-reduction methodologies, machine-learning models, and overall effectiveness in
cyber-threat detection. One of the main strengths of our technique is the use of multiple datasets,
including Kitsune- ARP, SNMP-MIB, CSE-CIC-IDS2018, BoTloT, UNR-IDD, and Credit Card Fraud,
which provides a more comprehensive evaluation of cyber threats. This contrasts studies, such as Behiry
and Aly (2024), which focus on certain datasets, like NSL-KDD, UNSW-NB15 and CICIDS2017. Using
various datasets in our study improves the generalizability of the results, although it presents
sophistication in formalizing feature-selection techniques.

The data-reduction strategy used in our study combines autoencoders with stratified sampling, setting it
apart from the principal component analysis (PCA) and singular value decomposition (SVD) approaches
used in other studies. Autoencoders allow for non-linear feature extraction, which provides more robust
dimensionality reduction, unlike traditional methods that assume linear relationships between variables.
Compared to the Coot Optimization Algorithm (COA) used by Vallabhaneni et al. [42], our approach
fulfills similar feature-reduction effectiveness, but significantly reduces the computational cost.
Combining autoencoders with stratified sampling ensures that essential features are retained while
reducing redundancy, making our method accurate and efficient. Another distinguishing factor is using
stratified sampling instead of synthetic oversampling methods, like SMOTE, which Behiry & Aly [40]
utilized. While SMOTE artificially generates new samples, stratified sampling preserves the natural
distribution of data, preserving class balance without introducing synthetic artifacts. This approach
ensures that minority-class instances, crucial for fraud and intrusion detection, remain well-represented
while reducing data size. By leveraging stratified sampling, our method enhances dataset efficiency
without sacrificing classification performance.

The selection of machine-learning models further distinguishes our work from previous studies. Our
evaluation encloses a diverse set of algorithms, including K-Nearest Neighbors (KNN), Support Vector
Machines (SVMs), Naive Bayes, Linear Discriminant Analysis (LDA), C5, XGBoost, Random Forest,
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and ADA, offering a comprehensive analysis of classification performance. In contrast, [40] and [42]
mostly depend on deep-learning models, such as deep forward neural networks (DFNNs) and modified
feedforward neural networks (FFNNs). While deep learning models perform well on high-dimensional
data, they demand much more computational resources and training time. Our approach balances
accuracy and computational efficiency by combining classical machine learning and ensemble methods,

making it more suitable for real-time applications.

Table 9. Comparison of our work and recent works with similar contributions.

Criteria Our work Behiry & Aly [40] Hossain et al. [41] | Vallabhaneni et al.
[42]

Dataset Used Kitsune-ARP, NSL-KDD, UNSW- Not specified BotNet dataset
SNMP-MIB, CSE- CIC- NB15, CICIDS2017 (DDoS-related)
IDS2018, BoTloT, UNR-
IDD, Credit Card Fraud

Dataset Size Multiple large-scale 175,466 samples Not provided 1,803,333 domain
datasets (ranging from (CICIDS2017) names

2,620 to 2,426,574 records)

Feature-reduction

Autoencoders +

Singular Value De-

Hybrid Feature

Coot Optimization

Method Stratified Sampling composition (SVD) Selection Algorithm (COA)
+PCA+KMC-IG
Sampling Method | Stratified Sampling SMOTE + ENN Not specified Not specified

Machine-learning

KNN, SVM, Naive

Deep Forward Neural

Ensemble-based

Modified Feed-

Model Bayes, Linear Regression, Network (DFNN) + classifier forward Neural
LDA, C5, XGBoost, K-means Clustering Network (FFNN)
Random Forest, ADA (KMC)

Performance Accuracy up to Accuracy: 99.7%, Not specified Accuracy: 97.56%,

Metrics 99% (varies by dataset), F1- | F1-score: 98.8% (NSL- Precision: 96.76%
score analysis for different | KDD)
reduction strategies

Computational Training time reduced High efficiency due Not specified Improved by using

Efficiency significantly by applying size| to hybrid feature COA for feature
and feature reduction selection selection
techniques

Real-time Yes, reduces Yes, suitable for Yes, aimed at Yes, designed for

Applicability dataset size while real-time WSN intrusion| robust DDoS Cybersecurity-
maintaining accuracy for detection mitigation attack prediction
efficient IDS deployment

Novelty Combination of Hybrid feature Hybrid feature COA-based feature
autoencoder-based feature reduction (SVD+PCA | selection + selection with
selection and stratified + KMC-IG) + deep ensemble adaptive weight
sampling for dataset learning classification FFNN
reduction

Limitations Some models (e.g., Requires large labeled Requires further Computational

Naive Bayes) perform
poorly on highly reduced
datasets

datasets

evaluation in real-
world scenarios

complexity in
feature selection
and training

The performance metrics indicate that our method achieves an accuracy of up to 99% across multiple
datasets, comparable to the 99.7% accuracy reported in [40]. However, the key advantage of our
approach lies in its computational efficiency. By reducing the dataset size while maintaining
classification performance, our method enables faster training times, making it highly scalable for real-
time intrusion-detection systems. In contrast, with a computationally expensive feature selection process
[42], it achieved a slightly lower accuracy of 97.56%. Using autoencoder-based feature-selection in our
work ensures optimal feature retention with minimal processing overhead, achieving a balance between
performance and efficiency.

Real-time applicability is a critical aspect of intrusion-detection systems. Our study prioritizes this using
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efficient data-reduction technigques and lightweight machine-learning models. While [40] and [41] argue
real-time relevancy, their studies lack detailed evaluations of computational efficiency. Our work
explicitly shows that dataset-size reduction leads to significantly lower training times, confirming that
the model remains deployable in practical cyber-security environments. The novelty of our work lies in
the hybrid combination of autoencoder-based feature selection with stratified sampling, which optimizes
both dataset size and model performance. Unlike previous studies that rely only on statistical reduction
techniques or heuristic optimization, our approach integrates deep feature extraction and data-selection
strategies. This hybrid approach results in an efficient intrusion-detection system capable of handling
large-scale datasets while maintaining high detection accuracy.

Despite the benefits, there are areas for additional improvement. Some models, such as Naive Bayes,
exhibit performance degradation when involved with highly-reduced datasets, suggesting that feature-
selection techniques could be further purified to improve compatibility with a more expansive range
of classifiers. Additionally, estimating the trade-off between dataset reduction and accuracy loss under
extreme conditions would provide further insights into the scalability of our approach. Expanding the
study to real-world cyber-security attack scenarios would further validate its functional applicability.

5. CONCLUSION AND FUTURE WORK

This study presents and tests two methods to reduce the amount of data used to train and test IDSs. The
first method depends on reducing the size of the datasets with very large tuples, followed by feature
selection to improve the ML model’s performance. The second method, which is more practical with
relatively small datasets, aimed to select the most important features first and then reduce the number
of used tuples; this method guarantees the selection of better features and also improves the ML-model
performance. This emphasizes the redundancy happening in some datasets related to security attacks in
loT datasets, especially simulated datasets.

This study shows that careful dataset size and feature-dimensionality reduction can lower computational
costs while maintaining equivalent intrusion-detection performance. Specifically, using only 25% of the
original data or feature set resulted in a less than 2% reduction in F-score for most models and datasets.
Even with a large reduction to 10%, the average F1-score declined by only 4%-6%, with ensemble
models, such as XGBoost and Random Forest, showing more resilience compared to other simple
classifiers, like KNN. The reduction framework is computationally efficient and robust across various
IDS scenarios. Meanwhile, data-reduction processes should be taken with caution, because random or
extreme data reduction might cause the models to produce unacceptable results, as seen in many
scenarios throughout this study.

In the future, we plan to repeat the experiment with multi-class labeled datasets and check how the
proposed reduction techniques would affect the ML models. We also wish to investigate and compare
other multiple reduction techniques. Our plan also includes applying the reduction techniques to
different convolutional neural-network architectures and employing XAl tools to explore the reasons
behind feature-ranking results. It is also necessary to have methods to evaluate the redundancy level in
a dataset to estimate the possible efficient reduction percentages that can be applied to the data.
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ABSTRACT

This study addresses challenges in sentiment analysis for low-resource educational contexts by proposing a
framework that integrates Few-Shot Learning (FSL) with Transformer-based ensemble models and boosting
techniques. Sentiment analysis of student feedback is crucial for improving teaching quality, yet traditional
methods struggle with data scarcity and computational inefficiency. The proposed framework leverages self-
attention mechanisms in Transformers and combines models through Gradient Boosting to enhance performance
and generalization with minimal labeled data. Evaluated on the UIT-VSFC dataset, comprising Vietnamese
student feedback, the framework achieved superior F1-scores in sentiment and topic-classification tasks,
outperforming individual models. Results demonstrate the potential of the proposed framework for extracting
actionable insights to enhance educational experiences. Despite its effectiveness, the approach faces limitations,
such as reliance on pre-trained models and computational complexity. Future work could optimize lightweight
models and explore applications in other domains, like healthcare and finance.
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1. INTRODUCTION

In natural language processing (NLP), sentiment analysis, also referred to as opinion mining, is a method
used for evaluating the emotional state of a given text [1]. This technique has become a valuable tool
for extracting user opinions from product and service reviews, providing businesses with actionable
insights to improve their offerings [2]. Student feedback is essential for assessing learning-management
systems, instructional strategies and course material in the educational setting [3]. To facilitate efficient
analysis, these feedback responses, which are frequently in the form of text, need to be pre-processed
using NLP techniques as feature extraction and selection [4].

The initial step in sentiment analysis involves labeling text with emotional categories, like positive,
negative, or neutral, reflecting students' feelings about the courses and services provided [5]. However,
the manual annotation process can be time-consuming and require substantial resources, as well as an
understanding of educational content. This challenge has been addressed through automated methods
powered by Al and machine learning [6]. With its ability to process and analyze vast amounts of student
input, artificial intelligence (Al) greatly improves the precision and effectiveness of sentiment
categorization [7]. Even when feedback is unlabeled, machine learning, deep learning and transformer
models are very good at using attention processes to identify students' feelings [8].

In the age of online and blended learning, where emotional cues may be harder to discern, leveraging
sentiment-analysis tools becomes essential for extracting meaningful insights from textual data [9].
Furthermore, various machine-learning algorithms, such as Naive Bayes, Support Vector Machines
(SVMs) and lexicon-based methods, have been used to analyze sentiments in student feedback,
demonstrating their effectiveness in processing and interpreting these responses [10]-[12]. With these
advancements, sentiment analysis not only contributes to enhancing teaching quality, but also provides
valuable insights into the experiences and perspectives of students in the educational process.

Traditional supervised-learning approaches have been extensively applied in sentiment analysis, yet
they are constrained by inherent limitations. One major challenge arises in scenarios with limited labeled
training data, where traditional machine-learning models often suffer from overfitting, rendering them
unable to generalize effectively to unseen data [13]. This limitation is particularly problematic in

P. C. P. Lenh (Corresponding Author) and T. P. Huan are with Faculty of Artificial Intelligence, FPT University, Can Tho, Vietnam. Emails:
Lenhppccel80059@fpt.edu.vn and huantpce180685@fpt.edu.vn


mailto:huantpce180685@fpt.edu.vn

370

"Enhancing Few-shot Learning Performance with Boosting on Transformers: Experiments on Sentiment Analysis Tasks", P. C. P. Lenh and
T. P. Huan.

sentiment analysis, where diverse and complex text patterns demand robust generalization. Moreover,
while humans can intuitively generalize concepts with minimal exposure or partial information,
machine-learning models struggle to replicate this ability [14]. As a result, traditional methods falter in
low-data settings, leaving critical gaps in performance and scalability.

Previously, sentiment analysis has depended on supervised techniques that handle issues, like lexical
variety and long-distance interdependence, present in textual data. To capture these relationships,
sequence models such as RNNs and LSTM networks, have been frequently employed. While these
models can encode complex relationships within text, their serialized processing makes them
computationally inefficient and limits their scalability, especially in real-world applications. Through
the application of parallelized processing, Transformer models, on the other hand, have transformed
sentiment analysis and greatly increased computational effectiveness while maintaining the capacity to
identify long-distance relationships. Their self-attention mechanisms allow for a more comprehensive
understanding of text structure and semantics, making them well-suited for sentiment analysis.
However, these models often require large amounts of labeled data to perform effectively, which poses
a challenge in resource-constrained environments.

To address these challenges of data scarcity and computational inefficiency, Few-Shot Learning (FSL)
has emerged as a promising solution. FSL enables models to generalize effectively from only a few
labeled examples, mimicking human-like learning. However, traditional supervised methods still face
limitations in terms of overfitting and dependency on large datasets. To overcome these issues,
integrating ensemble learning with Transformer architecture and FSL offers a novel approach. By
combining multiple Transformer models trained with few-shot data, ensemble learning can improve
generalization and robustness, mitigating the risks of overfitting. The hybrid approach leverages the
computational efficiency of Transformers, the contextual power of self-attention mechanisms and the
scalability of FSL, offering a more effective and resource-efficient framework for sentiment analysis in
real-world applications.

While traditional sentiment-analysis approaches have demonstrated strong performance on large-scale
datasets, their applicability is limited in low-resource educational environments, where collecting and
annotating large volumes of labeled data are often impractical due to time, budgetary and expertise
constraints. Deep learning and transformer-based techniques have achieved promising results in
educational contexts, such as analyzing course feedback or evaluating learning-management systems
[60-62]. However, these approaches are highly dependent on the availability of comprehensively
labeled datasets, which poses a significant barrier in many real-world educational scenarios, particularly
in under-resourced institutions or less-documented languages. Moreover, existing research has paid
limited attention to the use of boosting strategies for ensembling Transformer-based models in
educational sentiment analysis. Most prior studies, such as [63] and [64], have focused on combining
traditional deep-learning models and basic machine-learning techniques rather than leveraging the
potential diversity and complementary strengths of multiple Transformer architectures. This reflects a
research gap in exploring ensemble-learning techniques, particularly boosting, in conjunction with
modern pre-trained language models for low-resource educational contexts.

To address the critical challenge of data scarcity in analyzing student feedback, particularly for under-
resourced languages, like Vietnamese, within educational settings, this paper proposes a novel approach.
We investigate the synergistic integration of Few-Shot Learning (FSL) with boosting-enhanced
Transformer-based ensemble models. While FSL addresses the limited data and Transformers offer
powerful text representation, the strategic application of boosting techniques over an ensemble of such
FSL-trained Transformers is a relatively unexplored configuration aimed at maximizing performance
and robustness specifically for this low-resource niche.

The purpose of the research includes:

» To rigorously assess the viability and effectiveness of integrating FSL with boosted Transformer
ensembles for sentiment analysis specifically on scarce Viethamese student-feedback data, thereby
demonstrating a practical solution for low-resource educational contexts.

» Toexplore and apply boosting methods to combine model predictions and evaluate the effectiveness
of ensemble techniques in improving accuracy and prediction performance for sentiment and topic
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classification tasks.

» Todevelop and provide a high-performance model for student sentiment analysis, particularly suited
for small datasets, to support research and enhance sentiment-analysis methods in the educational
context.

» Toevaluate the proposed model on an additional sentiment-analysis dataset from a different domain
to ensure the model’s robustness and generalizability across various contexts, thereby supporting its
applicability in broader sentiment-analysis tasks beyond the educational setting.

2. RELATED WORK

2.1 Contrastive Learning in Sentiment Analysis

The primary objective of contrastive learning (CL), a self-supervised machine-learning technique, is to
develop representations through the comparison of various data samples. More specifically, CL learns
to push negative pairings farther apart and bring positive pairs closer together in the representation space.
In order to decrease dimensionality and enhance classification and recognition performance, CL was
presented as a technique that involves learning an invariant mapping [15]. With a momentum encoder
that continuously updates negative samples, it was shown how important the quantity of negative
samples is to improving representation learning [16]. Constructing effective positive pairs was
highlighted as a critical factor in learning high-quality representations in CL [17].

Contrastive learning has shown itself to be an effective technique in sentiment-analysis applications.
Supervised CL has been directly used in a number of research studies [18]-[20] to align sentiment
representations with corresponding sentiment labels in order to develop fine-grained sentiment
representations. In order to promote more efficient sentiment-analysis learning, supervised CL creates
positive pairings based on labels, where samples with the same label are regarded as positive pairs and
samples with different labels are regarded as negative pairs [21]. Additionally, to improve the accuracy
and resilience of sentiment-analysis models, multi-aspect samples for CL were created using an in-
domain generator and a cross-channel data-augmentation technique [22]. In order to enhance sentiment-
analysis performance, cross-lingual contrastive learning also employed token-level and sentence-level
data-augmentation techniques in addition to sentiment identifying [23].

2.2 Boosting

Boosting is a method of machine learning that combines weak learners in an ensemble style to turn them
into a strong classifier. Its main goal is to minimize bias, which aids in the improvement of highly biased
models. Combining the outcomes of each iteration using a weighted vote for classification or a weighted
sum for regression yields the final output of boosting [24].

2.2.1 AdaBoost

Adaptive boosting is a powerful boosting algorithm introduced by [25], designed to combine weak
learners, typically decision stumps (decision trees with a single split), into a strong classifier. It is widely
regarded as one of the most robust machine-learning algorithms, with AdaBoost.M1 being a notable
implementation for binary-classification tasks [26]. AdaBoost requires little hyper-parameter tuning and
is simple to deploy [27]. To create the strong classifier, the several base learners are added one after the
other and weighted [28]. The learning process involves iteratively training base classifiers, updating
sample weights based on their classification performance and prioritizing misclassified samples in
subsequent iterations. Initially, all samples are assigned equal weights:

D, (i) = l, i=12..,m

m

The weights are then updated after each iteration using the formula:

D (D)

D i) =

t+1( ) Zt
Here, the importance of each base classifier is quantified as:
1-€;

c )

t

where €, is the error rate of the base classifier. After Tjtorations, the final strong classifier is computed

exp(—a.y;h.(x;).

1
o = Eln(
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as:
T
H(x) = sign( ) a;hy(x)

This approach ensures a weighted combination of base classifiers to optimize performance. AdaBoost’s
adaptability and sequential focus on hard-to-classify samples make it highly effective for diverse
applications.

2.2.2 Gradient Boosting

A popular machine-learning technique, called gradient boosting, iteratively combines weaker base
learners, usually decision trees, to create a powerful prediction model. Because it uses decision trees as
essential building elements, it is frequently referred to as Gradient Boosted Decision Tree (GBDT). [29]
was the first reference to describe the concept, demonstrating that boosting can be seen as an
optimization problem that aims to achieve a certain loss function.

An advanced version of this approach was later developed [30], focusing on sequentially training models
to construct a robust ensemble classifier. Unlike other boosting methods, the key idea in Gradient
Boosting is to design base learners that align with the negative gradient of the loss function for the
overall ensemble [31].

For a given training dataset S = {(x;, y;}}_,, the goal of Gradient Boosting is to approximate a function
F*(x) that predicts the response variable y based on input features X, by minimizing a pre-defined loss
function L(y, F(x)). This approximation is achieved iteratively by creating an additive model expressed
as:

Fon(X) = Fin1 () + Prnbin ()
Here:

«  Fn(%): The prediction at iteration m.

«  Fn_1(%): The prediction from the previous iteration.

e Pm; The weight of the m™ learner.

o hy,(x): The m™ base learner, typically a decision tree.

The initial model, F,(x), is determined by minimizing the loss across all samples:

N
Fy(x) = arg minz L(y;, o)
o
i=1

In subsequent iterations, each new learner (x) is trained to minimize the error of the current model:
N

h,,(x) = arg mhinz L(_V!-,Fm_ll:x!-) + ph(x!-)}
i=1
A critical aspect of this process involves computing pseudo residuals, which represent the gradients of
the loss function with respect to the model's predictions. These are calculated as:

o [6‘L(..v;-, F(x)

Fo | FO= P

The optimal weight Pm= is subsequently obtained through a line-search procedure.

To mitigate overfitting, the algorithm applies shrinkage, scaling the contribution of each step by a
learning rate ¥ (commonly set to 0.1):

Fm(x) = Fm—ll:x)+ vpmh’m(l)

Gradient boosting stands out for its ability to uncover intricate patterns in data by systematically
addressing errors in previous iterations. However, it is susceptible to overfitting, especially with noisy
datasets, if regularization techniques are not adequately employed [31 - 32]. Despite this, it remains a
powerful choice, particularly for small datasets [33].
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2.2.3 XGBoost

Extreme Gradient Boosting, or XGBoost, is a decision tree-based ensemble technique that uses the
gradient-boosting framework and is incredibly effective and scalable. Because of its excellent accuracy
in both classification and regression tasks, it has become more well-known. After winning many Kaggle
tournaments, XGBoost has emerged as a major force in machine learning in recent years. Originally
developed by [34], XGBoost introduces several enhancements over traditional gradient-boosting
algorithms. A key feature of XGBoost is the incorporation of a regularization term in its loss function,
which helps prevent overfitting [35].

The regularized loss function used in XGBoost is defined as:

M

i=1 =1
where L(y;, F(x;)) measures the error between the predicted and actual values and Q(hm) represents
the regularization term. The regularization term is expressed as:

1
Q) =y" + E/1|a)|2

In this expression, Y regulates the complexity of the trees, T is the number of tree leaves, A serves as a
penalty parameter and ¢ corresponds to the outputs from the leaf nodes.

Unlike standard gradient boosting, which uses first-order derivatives, XGBoost improves upon this by
using a second-order Taylor approximation to optimize the loss function more effectively. The revised
form of the loss function is:

Ly~ Z [ 0 + S A2 0e0] + 0,0

where gi and h; represent the first and second derivatives of the loss function, respectively. The total

loss is computed by summing the contributions from each leaf node, as described by:
T

1
Ly =ZZgimj— +EZ h; + Aw? +yT

j=1icl; i€l

The objective function is approximated quadratically as a result of this modification to the optimization
process. Furthermore, according to [36], the regularization term makes sure that XGBoost is immune to
overfitting. In order to prevent overfitting, XGBoost uses parameters, like tree depth, learning rate and
sub-sampling, just like conventional gradient boosting.

One of the key advantages of XGBoost is its ability to handle minimal feature engineering, including
dealing with missing values, data normalization and feature scaling. Furthermore, XGBoost can output
feature importance, making it easier to understand the significance of different input features and
perform feature selection. It can handle big datasets effectively, is quicker than the majority of machine-
learning algorithms and frequently performs better than other models. This has made XGBoost a popular
choice, particularly in Kaggle competitions. However, a disadvantage is that it has many hyper-
parameters, which can make the model-tuning process quite complex [37]-[38].

2.3 Base Transformer Models for Ensemble Learning Boosting

The Transformer, introduced by [39], was designed to overcome the limitations of RNNs and traditional
encoder-decoder architectures. By replacing RNNs with attention mechanisms, it enables efficient long-
term memory handling. With feed-forward layers, residual connections and normalization layers
combined with multi-head attention layers, the model concentrates on every token from the past. With
attention weights derived from the encoder hidden states (K) and decoder state (Q), the attention
mechanism aids the model in focusing on pertinent information depending on the current input. These
weights are generated by an alignment function and distribution function, such as SoftMax, to enhance
processing efficiency. Self-attention further enables the model to link positions within a single sequence
to form comprehensive representations. Table 1 summarizes the transformer models experimented with
in this study.
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Table 1. Base models for boosting in transformer-based architectures.
Type Model Supported Training Data Base Model | Highlights Citation
Language Source
Mono-lingual PhoBERT Vietnamese 20GB pre-training RoBERTa Uses syllable-level [40]
dataset, including: tokenizer, trained on a
(i) Vietnamese large Vietnamese dataset
Wikipedia (~1GB); with fastBPE.
(ii) Vietnamese
news dataset
(~19GB)
Mono-lingual VIBERT Vietnamese 0GB Vietnamese BERT Improved performance [41]
news datasets on Vietnamese text
(vnexpress.net, processing tasks due to
dantri.com.vn, training on Vietnamese-
baomoi.com, specific data and pre-
zingnews.vn, training techniques.
vitalk.vn, ...etc.)
Mono-lingual BARTpho Vietnamese The training datais | BART Combines Transformer [42]
an undivided structure with BERT,
variant of the using a large Vietnamese
PhoBERT pre- dataset to enhance text
training corpus generation and
(about 4 billion summarization quality.
syllable tokens)
Mono-lingual ViT5 Vietnamese - CC100 Dataset: T5 VIiT5 applies [43]
Total size 138GB Transformer-based
of raw text. Encoder-Decoder
- Data split: architecture, with two
- 69GB short versions: Base (310M
sentences for 256- parameters) and Large
length model. (866M parameters). The
- 71GB long model uses 36K sub-
sentences for 1024- words generated by
length model SentencePiece and
trained with span-
corruption self-
supervision (15% rate).
Multi-lingual XLM- 100 CommonCrawl, RoBERTa Trained on 100 [44]
RoBERTa- languages Wikipedia languages. Uses Masked
Base Language Modeling
(MLM) objective.
Vocabulary size = 250K,
using SentencePiece.
Training data from
CommonCrawl and
Wikipedia, with
improved support for
low-resource languages.
Multi-lingual BERT English Wikipedia (2.5 Transformer | Trained using two [45]
billion words), unsupervised tasks:
BooksCorpus (800 Masked LM and Next
million words) Sentence Prediction,
utilizing a bidirectional
Transformer architecture.
Multi-lingual mT5 Over 100 mC4 dataset T5 Multilingual pretraining, | [46]
languages, (Massive Multi- supports numerous
including lingual Crawled languages using the TS
Vietnamese Corpus) collected architecture.

from billions of
web pages

In the context of this research, various Transformer-based models serve as the base models for the
boosting methods explored. These models, which include both mono-lingual and multi-lingual variants,
are pre-trained on large, domain-specific datasets and exhibit remarkable performance in natural-
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language processing tasks. Table 1 summarizes these base models, their training data sources and key
highlights, showing how they contribute to enhancing model performance through boosting techniques.

2.4 Few-shot Learning Using Contrastive Learning

Few-shot learning (FSL) presents a significant challenge, as it requires models to adapt and generalize
effectively with only a limited amount of data. Contrastive learning, a self-supervised method, has
proven to be highly effective in addressing this challenge by learning meaningful and discriminative
feature representations. By emphasizing similarities and differences among data points, contrastive
learning aligns well with the objectives of FSL, where the focus is on distinguishing between unseen
classes using minimal training data.

Contrastive-learning methods for FSL are often based on principles, such as noise contrastive estimation
(NCE) [47]-[48] or N-pair losses [49], which facilitate the learning of robust feature spaces. For instance,
SimCLR [17] employs data augmentation and non-linear transformations to train encoders that pull
embeddings of similar data points closer together while pushing apart embeddings of dissimilar ones.
Additionally, supervised contrastive learning [21] extends this framework to leverage labeled data,
which is particularly useful in FSL scenarios where labeled support sets are small, but crucial.

In the context of FSL, contrastive learning enhances the effectiveness of models by improving the
quality of representations derived from the support set (training examples). Key methods include:

e Instance-based Representations: Non-parametric softmax classifiers, such as those introduced in
[50], focus on maximizing the separation between instance-level feature embeddings, helping
models better distinguish between novel classes in FSL tasks.

e Multi-view Learning: Techniques like Time-Contrastive Networks (TCNs) [51] make use of multi-
view data, aligning positive pairs (e.g. related samples, such as video frames) while separating
negative pairs. In FSL, this can help bridge gaps between the limited support and query sets.

e Maximizing Information Representation: Methods, such as Deep InfoMax [52] among others [53],
aim to maximize mutual information either within input-output pairs or across views of the same
data. These methods ensure robust and meaningful feature extraction, improving FSL task
performance.

Contrastive learning naturally integrates with metric-based FSL approaches, such as Prototypical
Networks [54] and Siamese Networks [55], which rely on embedding distances. Discriminative
representations learned through contrastive losses can significantly enhance the performance of these
methods. Moreover, episodic training, commonly used in FSL, complements contrastive learning by
structuring tasks to mimic real-world applications.

By leveraging contrastive learning, FSL models are better equipped to generalize from minimal data,
offering a robust pathway for improving performance on tasks with scarce training resources. This
combination demonstrates substantial potential to advance the effectiveness of few-shot learning in
various domains.

3. METHODOLOGY
3.1 Dataset

3.1.1 Vietnamese Student Feedback

The dataset used in this study is the UIT-VSFC corpus, which consists of student feedback collected
from a Vietnamese university. The dataset comprises 16,175 feedback sentences annotated with three
sentiment categories: negative (0), neutral (1) and positive (2). Additionally, the dataset includes
classifications for four main topics: Lecturer (0), Curriculum (1), Facility (2) and Others (3). Feedback
was gathered between 2013 and 2016 through an automated survey system at the end of each semester.
The surveys employed a 5-point Likert scale to assess pre-defined criteria and open-ended questions to
gather more detailed feedback.

A key strength of this dataset is its reliability, demonstrated by an inter-annotator agreement score of
91%, which reflects a high level of consistency in sentiment labeling [56]. To evaluate few-shot learning
scenarios, sub-sets of the training data were constructed with limited labeled samples per class. This
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setup ensured that the models were trained and tested under minimal data conditions, providing a robust
assessment of their generalization capabilities with few-shot learning. Table 2 presents some examples
from the dataset.

Table 3 presents the distribution of sentiment and topic categories. The dataset is highly imbalanced,
with positive and negative sentiments each accounting for nearly 50%, while neutral feedback represents
only 4.32%. In terms of topic labels, the majority of the feedback pertains to the Lecturer category
(71.76%), followed by Curriculum (18.79%), indicating that students tend to comment most frequently
on teaching-related aspects.

Furthermore, a linguistic analysis of the dataset reveals that student feedback tends to be concise: over
83% of the sentences contain 15 words or fewer. As shown in Table 4, negative sentences are generally
longer than positive or neutral ones, likely because they often include justifications or suggestions for
improvement. Table 5 displays the length distribution by topic, where feedback related to Lecturer,
Curriculum and Facility frequently involves more detailed expressions (i.e., more than five words),
reflecting students’ emphasis on those aspects.

Table 2. Examples of the UIT-VSFC dataset.

No. | Sentence Sentiment Topic

1 | Giang day nhiét tinh, lién h¢ thuc t€ kha nhicu, twong tac v6i sinh vién | Positive (2) | Lecturer (0)
tuong doi tot.

(Enthusiastic teaching, incorporating a lot of real-life examples and
relatively good interaction with students.)

2 | Tinh thyc té ciing cao so véi viéc thi Iy thuyét 1y diém. Positive (2) | Curriculum (1)

(It is also more practical compared to taking theoretical exams for

3 | Phong may cii, nhung nhin chung thi khong c6 anh huong gi vi thay day | Neutral (1) Facility (2)
rat nhiét tinh.

(The computer lab is outdated, but overall, it doesn't affect much,
because the teacher is very enthusiastic.)

4 | Hoc thi qua it nhung khi thi thi qua nhiéu yéu cau viét code trong dé thi | Negative (0) | Others (3)
thi sao ma sinh vién c6 thé lam duoc.

(The amount of learning is too little, but the exam demands too much
coding. How can students possibly handle it?)

Table 3. Distribution of sentiment and topic labels in the UIT-VSFC corpus (%).

Topic Positive (%) | Negative (%) | Neutral (%0) Total (%)
Lecturer 33.57 25.38 1.81 71.76
Curriculum | 3.40 14.39 1.00 18.79
Facility 0.11 4.21 0.08 4.4
Others 1.61 2.01 1.43 5.04
Total 49.69 45.99 4.32 100

Table 4. Distribution of sentences by sentiment and sentence length (%).

Length (words) | Positive (%) | Negative (%) | Neutral (%) | Total (%0)
1-5 17.26 9.75 231 29.32
6-10 21.00 15.34 1.17 37.55
11-15 7.19 8.59 0.51 16.29
16-20 2.37 5.17 0.15 7.69
21-25 1.06 2.85 0.07 3.98
26-30 0.37 1.72 0.07 2.16

>30 0.40 2.57 0.04 3.01
Total 49.65 45.99 4.32 100
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Table 5. Sentence-length distribution by topic (%).

Length (words) | Lecturer (%) | Curriculum (%) | Facility (%) | Others (%) | Total (%)
1-5 20.80 3.61 2.63 2.28 29.32
6-10 27.84 6.69 1.94 1.08 37.55
11-15 11.93 2.61 0.84 0.91 16.29
16-20 5.44 1.35 0.46 0.44 7.69
21-25 2.96 0.62 0.25 0.15 3.98
26-30 1.56 0.32 0.19 0.09 2.16

>30 1.13 0.59 0.10 1.19 3.01

3.1.2 Customer Product Reviews Dataset

To further evaluate model generalization, particularly for few-shot learning tasks across different
domains, we utilized the "Vietnamese Sentiment Analyst" dataset, herein referred to as Customer
Product Reviews. This corpus contains 31,460 Vietnamese customer reviews focused on various
products. Each review is labeled with one of three sentiment polarities: positive, negative, or neutral.
Table 6 presents some examples from the dataset.

Table 7 details the distribution of sentiment labels and sentence lengths within this dataset. Overall,
positive sentiment is predominant (63.87%, N=20,093). In terms of sentence length, reviews are
generally concise, with the highest concentration of positive reviews in the 1-5 word (20.84% of total
dataset) and 6-10 word (21.14%) brackets.

Table 6. Examples of the customer product reviews dataset.

No. | Sentence Sentiment

1 Chat lwong san pham dung nhu hinh. Péng gbi san pham tam dugc. Positive (2)

(The product quality is just like in the pictures. The packaging is
acceptable.)

2 Co ma tdi mua hdm nay, ngay mai shop lam flash sale la sao. Neutral (1)

(But I bought it today and now the shop is doing a flash sale tomorrow —
what's that about?)

3 C6 gidng hinh nhung vai rat mong khong dung nhu trong hinh. Gia tién | Negative (0)
tuong duong véi san pham.

(1t looks like the picture, but the fabric is very thin and not as shown. The
price is equivalent to the product.)

Table 7. Distribution of sentiment labels by review length.

Length (words) | Positive (%) Negative (%0) Neutral (%0)
1-5 20.84 6.61 5.18

6-10 21.14 7.47 5.36

11-15 9.46 3.53 2.4

16-20 4,96 1.71 1.06

21-25 2.83 0.79 0.52

26-30 1.96 0.48 0.2

>30 2.68 0.62 0.21

Total 63.87 21.2 14.93

3.2 Model Evaluation Metrics

These metrics are typically calculated using weighted averages to better reflect performance, especially
in imbalanced datasets.
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Precision measures the ratio of correctly predicted positive instances to all predicted positive instances.
It is crucial in problems where false positives have high costs. Precision ranges from 0 to 1 and can be
calculated as a weighted average, considering class sample sizes.

True positives

Precision = — —
True positives + False positives

Recall measures the model’s ability to detect actual positive instances. It is important in problems where
missing positive cases can have severe consequences. Like Precision, Recall ranges from 0 to 1 and can
be computed as a weighted average.

True positives

Recall = — -
True positives + False negatives
F1-score combines Precision and Recall to give a comprehensive performance measure, especially
useful in imbalanced datasets. It ranges from O to 1, with higher values indicating a better balance
between Precision and Recall. When calculated as a weighted average, it reflects the model's overall
performance across all classes.

Precision * Recall

F1— =2
score * Precision + Recall

3.3 Software and Hardware

For the proposed research, Python was used as the programming language within the Google Colab
runtime environment, which provides access to powerful hardware acceleration through GPUs.
Specifically, the NVIDIA Tesla T4 GPU was utilized, equipped with 2560 CUDA cores designed to
support deep-learning tasks. These cores, along with specialized Tensor Cores, allow for efficient
execution of matrix-heavy operations commonly used in neural-network models. The environment ran
on a CPU with an Intel (R) Core (TM) i3-4005U Processor at 1.70 GHz, paired with 4 GB of RAM.

To clarify the computational cost, Table 8 presents the number of trainable parameters and the
approximate model size (in MB) for each transformer-based model evaluated in this study. Models with
a higher number of parameters and larger memory footprints—such as MBART Large EN-RO (610M
parameters, ~2.3GB) or mT5 Base (390M parameters, ~1.5GB)—require significantly more GPU
memory, training time and processing power for both fine-tuning and inference. In contrast, smaller
models, like VIBERT and PhoBERT, are comparatively lightweight and faster to train, making them
more suitable for environments with limited computational resources. Table 8 presents the number of
parameters and the sizes of the transformer models used in this study.

Table 8. Trainable parameters and approximate model sizes of pretrained transformer models.

Model Trainable Parameters Model Size (MB)
PhoBERT 134,998,272 514.98

VIBERT 115,354,368 440.04
XLM-RoBERTa Base 278,043,648 1,060.65

BERT Base Uncased 109,482,240 417.64

mT5 Base 390,315,264 1,488.93

BERT Base Multilingual Cased | 177,853,440 678.46

MBART Large EN-RO 610,851,840 2,330.21
BARTpho-syllable 395,814,912 1,509.91

ViT5 Base 225,950,976 861.93

3.4 Experimental Framework

Few-shot Learning was implemented with varying levels of data availability (N =1, 5 and 20) to evaluate
the performance of several transformer-based models on limited labeled data. The models included
PhoBERT, VIBERT, XLM-RoBERTa, mT5, multi-lingual BERT, base BERT, MBart, BARTpho and
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ViT5. Each model was fine-tuned using a contrastive learning approach and their performances were
evaluated using the F1-score. In addition to transformer-based models, the study also conducted
experiments with several classical machine-learning architectures, including RNN, GRU and LSTM, to
serve as comparative baselines. This inclusion provides a broader perspective on the effectiveness of
modern pre-trained models under low-resource conditions.

For the ensemble-learning stage, our primary selection criterion was individual model performance.
Consequently, the top three models demonstrating the highest average F1-scores were chosen as base
learners. To validate this selection, we conducted pairwise statistical significance tests (paired t-tests),
which confirmed that these models belonged to a top-performing tier, showing statistically significant
improvements over most other models. This approach ensures that the components of our ensemble are
strong and reliable individual predictors.

To further improve prediction accuracy, a supervised ensemble strategy based on boosting was applied.
Instead of using simple combination methods, such as majority voting or averaging, the outputs from
the top-three transformer models served as input features for three ensemble learners: AdaBoost,
Gradient Boosting and XGBoost. These ensemble models were trained to learn from the prediction
patterns of the base models, functioning as meta-learners that integrate their outputs into a final decision.
This method is analogous to a stacking framework, where boosting algorithms iteratively focus on
samples that are harder to classify, thereby refining predictions and enhancing overall generalization
performance. Detailed descriptions of the proposed method and framework are presented in Figure 1.

Contrastive learning Testing

False prediction

Training

Subset
(N =1, 5, 20)

Contrastive learning Weak Testing
Training model

False prediction

Subset
N =1, 5, 20)

Training data

Contrastive learning Overall

Prediction

Training

Subset Test data

(N =1, 5, 20)

Figure 1. Flow diagram of proposed methodology. The framework trains weak models on data subsets
(N =1, 5, 20) using contrastive learning. False predictions are identified during testing and outputs are
combined to produce the final overall prediction on test data [56]-[57].

3.5 Hyper-parameter Tuning

Bayesian optimization is a powerful and efficient method for hyper-parameter tuning, especially in
complex machine-learning models where traditional techniques, such as Grid Search and Random
Search, fall short due to their inefficiency or lack of strategic sampling. By modeling the objective
function using a probabilistic surrogate model, Bayesian optimization intelligently selects the next
sampling point based on past evaluations, effectively balancing exploration and exploitation. This
approach is particularly suitable for combinatorial optimization problems where gradient-based methods
are not applicable. Bayesian optimization is the top choice for optimizing objective functions [57-59].
In this study, Bayesian optimization is employed to tune hyper-parameters for boosting algorithms,
including AdaBoost, Gradient Boosting and XGBoost. Examples of optimized parameters include the
learning rate, number of estimators, maximum tree depth, ...etc.

Tables 9, 10 and 11 present the hyper-parameters of the boosting models—AdaBoost, Gradient Boosting
and XGBoost—that were optimized using Bayesian optimization. These tables detail the specific
parameters selected for tuning, such as learning rate, number of estimators and maximum depth, among
others, which play a crucial role in controlling model complexity, convergence behaviour and overall
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predictive performance.

Table 9. Optimized hyper-parameters using Bayesian optimization for AdaBoost across datasets and
N-shot settings.

Dataset N-shot Learning Rate | N estimators
UIT-VSFC (Sentiment) N=1 0.010 820

N=5 0.650 29

N=20 0.279 884

N=1 0.159 920
UIT-VSFC (Topic) N=5 0.677 1000

N=20 0.558 180

N=1 0.820 884
Customer Product Reviews N=5 0.128 730

N=20 0.159 920

Table 10. Optimized hyper-parameters using Bayesian optimization for XGBoost across datasets and
N-shot settings.

Dataset N- Column Learning | Max. | No. of L1 L2 Subsample
shot Subsample | Rate Depth | Estimators | Regularization | Regularization | Ratio
N=1 | 0.300 0.010 11 506 0.703 0.955 1.000
UIT-VSFC =5 | 0.680 0229 |7 854 0.324 0.051 0.785
(Sentiment)
N=20 | 0.969 0.108 11 474 0.381 0.211 0.500
N=1 | 1.000 0.168 12 1000 1.000 0.000 0.873
UIT-VSFC - "'N=5 | 0.300 0062 |5 1000 0.000 1.000 1.000
(Topic)
N=20 | 0.611 0.228 4 490 0.188 0.454 0.578
N=1 1 0.027 3 100 1 0 1
Customer
Product N=5 0.969 0.108 11 474 0.381 0.211 0.5
Reviews
N=20 | 1 0.025 9 551 1 0.549 0.519
Table 11. Optimized hyper-parameters using Bayesian optimization for Gradient Boosting across
datasets and N-shot settings.
Dataset Nshot | Learning | Maximum | Minimum Minimum Number of | Subsample
Rate Depth Samples per Leaf ga:ptples to Estimators | Ratio
pli
N=1 0.082 10 4 9 633 0.797
UIT-VSFC -
(Sentiment) N=5 0.072 11 2 8 812 0.504
N=20 0.279 7 10 2 173 0.597
N=1 0.029 3 1 2 337 0.913
UIT-VSFC "N=s 0013 | 8 2 4 600 0.900
(Topic)
N=20 0.170 12 10 2 100 0.774
N=1 0.258 9 9 5 443 0.606
Customer
Product N=5 0.298 10 9 9 195 0.520
Reviews
N=20 0.146 11 2 7 608 0.531




381

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

The hyper-parameters optimized in this study critically influence the balance between model bias and
variance, as well as training efficiency. Learning rate determines the step size during model updates,
affecting convergence speed and overfitting risk. Number of estimators specifies how many weak
learners (trees) are combined, impacting the model’s capacity and complexity.

For XGBoost, additional parameters, such as column sub-sample ratio, control the fraction of features
used per tree to prevent overfitting. Maximum tree depth limits the complexity of individual trees. L1
(reg_alpha) and L2 (reg_lambda) regularization terms penalize model complexity to enhance
robustness, while sub-sample ratio governs the portion of training data sampled per tree, reducing
variance.

In Gradient Boosting, besides learning rate and number of estimators, the minimum samples per leaf
and minimum samples to split parameters regulate tree growth by specifying thresholds for leaf-node
formation and internal-node splitting, further preventing overfitting.

3.6 Statistical Significance Testing and Confidence Intervals

A paired t-test is used to determine whether the difference in performance between models is statistically
significant. Instead of using k-fold cross-validation, the models are run multiple times with different
random initializations to generate sets of performance results. For each run, the performance difference
between two models A and B is calculated as:

d; = acc;(A) — acc;(B)

From these differences, the sample mean is computed as:

1 :
m= NZ diff,,
n=1
and the sample standard deviation is:
N
sd = mz:(dlffn —m)?
n=1
The t-statistics are then calculated as:
_myN
~ sd

Finally, the t-value is compared against the critical value from the t-distribution with N—1 degrees of
freedom to test the null hypothesis. If the p-value is less than 0.05 (p<0.05), it can be concluded that the
difference between the two models is statistically significant. Using the paired t-test thus helps
strengthen the reliability of selecting more effective models.

Besides the paired t-test, the 95% Confidence Interval (ClI) is used to provide a range within which the
true performance metric of each model is likely to fall with 95% certainty. Each model is run 5 times
with different random seeds to capture the variability caused by random initialization. Reporting the
mean performance along with the 95% ClI reflects the stability and reliability of the models.

This approach allows for a more comprehensive evaluation by quantifying the uncertainty around the
average performance, ensuring that model comparison and selection consider not only the mean
accuracy, but also the consistency across multiple runs.

4. RESULTS

4.1 Few-shot Learning Experiments on Transformer Models

The experimental results of transformer models are presented on the dataset for two tasks: sentiment
classification and topic classification. Additionally, experiments were conducted on sentiment analysis
using the customer product reviews dataset. Each model is evaluated on the same training dataset with
setups of N =1, N =5 and N = 20. The training environment and hyper-parameters are identical across
all models. The reports highlight the precision, recall and F1-score achieved by each model, specifying
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which transformers perform well in 1-shot learning (N = 1), few-shot learning (N = 5) and scenarios
with a significant amount of data.

Table 12 shows the experimental results on the sentiment-analysis task, with XLM-RoBERTa
outperforming other models and achieving the highest F1-scores. This model demonstrates the best
performance in precision, recall and F1-score, making it the most effective model for sentiment analysis.
Other models, such as BARTpho and BERT multi-lingual, also show strong results.

Table 13 shows the experimental results on the topic-classification task. The highest F1-score for N =
20is 0.817, achieved by XLM-RoBERTa. PhoBERT and BARTpho also show strong performance, but
XLM-RoBERTa leads in this setup. Table 14 presents the experimental results on the customer product
reviews dataset. The highest F1-score for N = 20 is 0.744, achieved by mT5. VIiBERT and ViT5 also
show strong performance.

Notably, the confidence intervals (Cls) among transformer-based models show minimal variation, with
differences generally remaining below 0.02. This indicates consistent and stable performance across
different runs. In contrast, traditional models, such as LSTM, RNN and GRU, exhibit greater
fluctuations in their Cl values, reflecting less stability and higher variability in performance.

Table 12. The experimental results of transformer models for sentiment analysis.

Model N=1 N=5 N =20
P R F1 P R F1 P R F1
RNN 0.449+ | 0.251+ | 0.322+ | 0.520+ | 0.387+ | 0.444+ | 0.645+ | 0.502+ | 0.565+
0.0375 |0.0451 |0.0396 | 0.0296 | 0.0416 | 0.0312 | 0.0261 | 0.0421 | 0.0364
GRU 0.369+ | 0.287+ | 0.323+ | 0.552+ | 0.477+ | 0.512+ | 0.654+ | 0.591+ | 0.621+
0.0223 | 0.0322 | 0.0268 | 0.0575 | 0.0428 | 0.0443 | 0.0370 | 0.0503 | 0.0449
LSTM 0.381+ | 0.381+ | 0.381+ | 0.626+ | 0.504+ | 0.558+ | 0.657+ | 0.586+ | 0.619+

0.0122 | 0.0320 | 0.0289 | 0.0366 | 0.0198 | 0.0217 | 0.0366 | 0.0310 | 0.0343
PhoBERT 0.610+ | 0.591+ | 0.596+ | 0.759+ | 0.708+ | 0.733+ | 0.846+ | 0.812+ | 0.829+
0.0081 | 0.0098 | 0.0079 | 0.0048 | 0.0053 | 0.0036 | 0.0055 | 0.0045 | 0.0049

VIiBERT 0.549+ | 0.278+ | 0.369+ | 0.580+ | 0.499+ | 0.536+ | 0.723+ | 0.608+ | 0.661+
0.0121 | 0.0106 | 0.0088 | 0.0083 | 0.0036 | 0.0076 | 0.0083 | 0.0076 | 0.0077
XLM- 0.603+ | 0.470+ | 0.528+ | 0.720+ | 0.625+ | 0.669+ | 0.843+ | 0.834+ | 0.838+

RoBERTa 0.0075 | 0.0089 | 0.0077 |0.0040 | 0.0066 | 0.0058 | 0.0081 | 0.0075 | 0.0075
BERT base 0.597+ | 0.527+ | 0.560+ | 0.692+ | 0.460+ | 0.553+ | 0.672+ | 0.630+ | 0.650+
0.0098 | 0.0032 | 0.0038 | 0.0020 | 0.0088 | 0.0033 | 0.0038 | 0.0081 | 0.0076

mT5 0.606+ | 0.471+ | 0.530+ | 0.769+ | 0.653+ | 0.653+ | 0.779+ | 0.692+ | 0.721+

0.0072 | 0.0025 | 0.0057 | 0.0047 | 0.0027 | 0.0046 | 0.0096 | 0.0052 | 0.0080
BERT 0.656+ | 0.655+ | 0.655+ | 0.748+ | 0.672+ | 0.672+ | 0.801+ | 0.743+ | 0.765+
multilingual | 0.0125 | 0.0098 | 0.0101 | 0.0186 | 0.0143 | 0.0153 | 0.0142 | 0.0096 | 0.0138
MBart 0.582+ | 0.525+ | 0.552+ | 0.685+ | 0.638+ | 0.661+ | 0.811+ | 0.793+ | 0.801+

0.0069 | 0.0052 | 0.0057 | 0.0091 | 0.0093 | 0.0090 | 0.0076 | 0.0096 | 0.0082
BARTpho 0.608+ | 0.533+ | 0.568+ | 0.764+ | 0.712+ | 0.737+ | 0.843+ | 0.780+ | 0.806+
0.0093 | 0.0082 | 0.0081 | 0.0091 | 0.0087 | 0.0090 | 0.0064 | 0.0097 | 0.0084
ViT5 0.594+ | 0.590+ | 0.592+ | 0.745+ | 0.611+ | 0.671+ | 0.825+ | 0.742+ | 0.771+
0.0188 | 0.0157 | 0.0165 | 0.0109 | 0.0146 | 0.0138 | 0.0070 | 0.0051 | 0.0069

4.2 Pairwise Statistical Significance Testing Using Paired T-test

After training and evaluating all models on two primary tasks, sentiment analysis and topic
classification, additional experiments were also conducted on sentiment analysis using the customer
product reviews dataset. The three models with the highest F1-scores were selected to undergo paired t-
test evaluation against each of the remaining models. The objective was to assess whether the
performance differences between models are statistically significant.

Each model was run five times with different random seeds to capture variation introduced by random
initialization. The performance differences (in terms of F1-score) between each model pair were
calculated and a paired t-test was conducted using a significance threshold of p<0.05. The results show
that the top three models consistently outperformed most other models with statistically significant
differences, confirming their superiority in a reliable manner. Notably, the model with the lowest
average performance still achieved statistically significant results (p < 0.05) in two comparisons,
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indicating that it also qualifies for inclusion in the ensemble model.

Table 13. The experimental results of transformer models for topic analysis.

Model N=1 N=5 N =20
P R F1 P R F1 P R F1
RNN 0.540+ | 0.197+ | 0.289+ | 0.599+ | 0.297+ | 0.397+ | 0.624+ | 0.388+ | 0.478+%
0.0411 |0.0325 | 0.0336 | 0.0233 | 0.0341 | 0.0302 | 0.0265 | 0.0372 | 0.0298
GRU 0.481+ | 0.237+ | 0.318+ | 0.633+ | 0.356+ | 0.456+ | 0.644+ | 0.669+ | 0.656*
0.0231 [0.0421 | 0.0403 | 0.0158 | 0.0229 | 0.0196 | 0.0331 | 0.0253 | 0.0268
LSTM 0.491+ | 0.229+ | 0.312+ | 0.649+ | 0.323+ | 0.431%+ | 0.524+ | 0.715+ | 0.605+

0.0321 | 0.0210 | 0.0298 | 0.0254 | 0.0187 | 0.0203 | 0.0135 | 0.0201 | 0.0184
PhoBERT 0.708+ | 0.647+ | 0.676+ | 0.762+ | 0.667+ | 0.711+ | 0.821+ | 0.767+ | 0.791+
0.0101 [ 0.0128 | 0.0120 | 0.0063 | 0.0098 | 0.0088 | 0.0063 | 0.0041 | 0.0055
VIiBERT 0.679+ | 0.214+ | 0.325+ | 0.708+ | 0.534+ | 0.609+ | 0.774+ | 0.682+ | 0.725%
0.0156 | 0.0203 | 0.0139 | 0.0109 | 0.0056 | 0.0063 | 0.0182 | 0.0099 | 0.0103
XLM- 0.639+ | 0.646+ | 0.642+ | 0.741+ | 0.630+ | 0.681+ | 0.841+ | 0.795+ | 0.817*
RoBERTa 0.0095 | 0.0127 | 0.0110 | 0.0063 | 0.0036 | 0.0054 | 0.0096 | 0.0082 | 0.0079
BERT base | 0.588+ | 0.278+ | 0.378+ | 0.691x | 0.497+ | 0.578+ | 0.754%= | 0.644+ | 0.695%
0.0153 [ 0.0102 | 0.0115 | 0.0118 | 0.0064 | 0.0082 | 0.0053 | 0.0089 | 0.0076

mT5 0.672+ | 0.448+ | 0.538+ | 0.734+ | 0.451+ | 0.559+ | 0.836+ | 0.719+ | 0.773%

0.0089 | 0.0056 | 0.0076 | 0.0038 | 0.0025 | 0.0030 | 0.0056 | 0.0089 | 0.0088
BERT 0.696+ | 0.696+ | 0.696+ | 0.790+ | 0.594+ | 0.678+ | 0.820+ | 0.719+ | 0.766*
multilingual | 0.0145 | 0.0096 | 0.0135 | 0.0202 | 0.0158 | 0.0166 | 0.0083 | 0.0103 | 0.0096
MBart 0.642+ | 0.547+ | 0.591+ | 0.823+ | 0.738+ | 0.778+ | 0.846+ | 0.768+ | 0.805+

0.0080 | 0.0088 | 0.0082 | 0.0093 | 0.0066 | 0.0083 | 0.0103 | 0.0152 | 0.0109
BARTpho 0.692+ | 0.419+ | 0.522+ | 0.783+ | 0.661+ | 0.744+ | 0.850+ | 0.763+ | 0.804+
0.0132 | 0.0122 | 0.0126 | 0.0102 | 0.0123 | 0.099 0.0101 | 0.0095 | 0.0097
ViT5 0.736+ | 0.684+ | 0.709+ | 0.786+ | 0.660+ | 0.741+ | 0.846+ | 0.780+ | 0.812+
0.0052 | 0.0085 | 0.0063 | 0.0102 | 0.0092 | 0.0091 | 0.0064 | 0.0092 | 0.0066

Table 14. The experimental results of transformer models for customer product reviews dataset.

Model N=1 N=5 N =20
P R F1 P R F1 P R F1
RNN 0.305+ | 0.321+ | 0.313+ | 0.462+ | 0.453+ | 0.457+ | 0.515+ | 0.496+ | 0.503%
0.0482 | 0.0554 | 0.0501 | 0.0363 | 0.0382 | 0.0351 | 0.0334 | 0.0312 | 0.0305
GRU 0.324+ | 0.343+ | 0.332+ | 0.481+ | 0.472+ | 0.475+ | 0.533+ | 0.514+ | 0.521+
0.0505 | 0.0578 | 0.0524 | 0.0381 | 0.0403 | 0.0372 | 0.0352 | 0.0331 | 0.0323
LSTM 0.342+ | 0.361+ | 0.350+ | 0.503+ | 0.491+ | 0.494+ | 0.552+ | 0.535+ | 0.543%

0.0521 | 0.0595 | 0.0543 | 0.0402 | 0.0425 | 0.0391 | 0.0373 | 0.0354 | 0.0342
PhoBERT 0.456+ | 0.484+ | 0.470+ | 0.623+ | 0.616+ | 0.619+ | 0.701+ | 0.679+ | 0.690*
0.0121 | 0.0142 | 0.0135 | 0.0083 | 0.0102 | 0.0091 | 0.0072 | 0.0064 | 0.0068

VIBERT 0.469+ | 0.484+ | 0.476x | 0.685+ | 0.680+ | 0.682+ | 0.729+ | 0.729+ | 0.729+
0.0163 | 0.0211 | 0.0184 | 0.0119 | 0.0098 | 0.0105 | 0.0121 | 0.0103 | 0.0112
XLM- 0.397+ | 0.535+ | 0.456x | 0.694+ | 0.643+ | 0.668+ | 0.725+ | 0.677+ | 0.700%

RoBERTa 0.0112 | 0.0135 | 0.0121 | 0.0091 | 0.0103 | 0.0095 | 0.0087 | 0.0079 | 0.0081
BERT base 0471+ | 0.516+ | 0.492+ | 0.620+ | 0.622+ | 0.621+ | 0.679+ | 0.670+ | 0.674*
0.0185 | 0.0199 | 0.0191 |0.0131 |0.0124 | 0.0128 | 0.0093 | 0.0108 | 0.0099

mT5 0.457+ | 0.508+ | 0.481+ | 0.699+ | 0.676+ | 0.687+ | 0.748+ | 0.741+ | 0.744+

0.0138 | 0.0145 | 0.0141 | 0.0095 | 0.0115 | 0.0101 | 0.0086 | 0.0094 | 0.0090
BERT 0.451+ | 0.427+ | 0.439+ | 0.685+ | 0.632+ | 0.657+ | 0.728+ | 0.697+ | 0.712+
multilingual | 0.0152 | 0.0148 | 0.0149 | 0.0122 | 0.0138 | 0.0129 | 0.0098 | 0.0113 | 0.0104
MBart 0.437+ | 0.456+ | 0.446x | 0.658+ | 0.628+ | 0.643+ | 0.756x | 0.677+ | 0.714+

0.0115 | 0.0128 | 0.0119 | 0.0081 | 0.0094 | 0.0094 | 0.0079 | 0.0091 | 0.0084
BARTpho 0.444+ | 0.441+ | 0.442+ | 0.669+ | 0.632+ | 0.650+ | 0.760+ | 0.709+ | 0.734+
0.0141 | 0.0153 | 0.0148 | 0.0112 | 0.0109 | 0.0110 | 0.0081 | 0.0092 | 0.0087
ViT5 0.483+ | 0.485+ | 0.484+ | 0.653+ | 0.669+ | 0.661+ | 0.726x | 0.734+ | 0.730%
0.0102 | 0.0115 | 0.0108 | 0.0092 | 0.0105 | 0.0097 | 0.0074 | 0.0082 | 0.0078

This evaluation approach, based on paired t-tests, ensures that model selection is not solely based on
average performance, but also considers stability and statistical significance across multiple runs,
thereby enhancing the robustness and reliability of the final model-selection process. The results of the
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paired t-tests are reported in Tables from 15 to 23.
Note on statistical-significance levels: (*: p <0.05), (**: p <0.01) and (***: p <0.001).

Table 15. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 1).

PhoBERT | VIBERT XLM- BERT mTS | BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
PhoBERT *kk *kk 00245 *kk *kk *kk *k*k 00377
BERT
multlllngual *k*k *kk *kk *kk *kk *kk *kk *kk
V|T5 00377 *kk *kk *k*k *kk *kk *kk *kk

Table 16. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 5).

PhoBERT | VIiBERT | XLM- BERT | mT5 | BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
PhOBERT *kk *k*% *k* *kk 00108 *kk *kk *kx
E]Eﬁl-:—lngual 00108 *kk *k*k *k*k *kk *kk *k*% *kk
BARTphO *kk *kk *k*k *k*k ** *kk 00518 *kk
Table 17. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 20).
PhoBERT | VIiBERT | XLM- BERT | mT5 | BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
>R<IO_£/IE-RTa *kk *kk **k*% *k* *kk *kk *kkx *kk
PhOBERT *kk *kk *k*% *k* *kk *kk *k*x *kk
BARTphO *k*k *kk *kk *kk *kk *kk *kk *k*k

Table 18. Pairwise statistical significance testing using paired t-test on topic-classification task (N = 1).

PhoBERT | ViBERT | XLM- BERT | mT5 BERT MBart BARTpho | ViT5
RoBERTa | base multilingual

PhOBERT *k*k *kk *kk *kk *kk *kk *kk
S\Fjﬁmngum *% *kk *k*k *kk *k*k *k*k *k*k 00249
V|T5 *kk *kk *k*k *kk *k*k 00249 *k*k *k*k

. Pairwi isti ignifi ing usi i - ic- ificati =5).
Table 19. Pairwise statistical significance testing using paired t-test on topic-classification task (N =5

PhoBERT | VIiBERT | XLM- BERT | mT5 BERT MBart BARTpho | ViT5

RoBERTa | base multilingual

MBart **k* ***k **k* **k* **k* **k* 06952 06951
BARTphO ** ***k **k* **k* **k* **k* 06952 **
V|T5 00730 ***k **k* **k* **k* **k* **k* **

Table 20. Pairwise statistical significance testing using paired t-test on topic-classification Task

(N = 20).
PhoBERT | VIBERT | XLM- BERT | mT5 BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
>R(;lBVIE-RTa **k*k *kk *k*k *k*k *kk *kk *k*k **
MBart **k*k *kk *k*k *k*k *k*k *kk 03903 00479
V|T5 **k*k *kk ** *k*k *k*k *kk 00479 *k*k
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Table 21. Pairwise statistical significance testing using paired t-test on customer product reviews
dataset (N = 1).

PhoBERT | VIBERT | XLM- BERT | mT5 BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
VI BERT 00322 *kk 00359 *k* *kk *kk ** **
BERT base *kk 00359 *kk ** *kk *kk *k*k **
mT5 *kk *kk ** ** *kk *kk **

Table 22. Pairwise statistical significance testing using paired t-test on customer product reviews
dataset (N = 5).

PhoBERT | VIiBERT | XLM- BERT | mT5 BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
mT5 **k*% ** 0 0122 *k* *kk *k* *kkx **
VI BERT **k*% *k*% *k* ** *kk *k* ** *kk
EQ(IO_Q/IE—RTa *k*k *kk *k*k 0 0122 *kk ** *kk **k*%

Table 23. Pairwise statistical significance testing using paired t-test on customer product reviews
dataset (N = 20).

PhoBERT | VIBERT | XLM- BERT | mT5 BERT MBart | BARTpho | ViT5
RoBERTa | base multilingual
mT5 **k*% **k*% *kk *k* *k* *kk *kx 05856
BARTphO **k*% **k*% *kk *k* *kk ** *kk 00152
V|T5 *k*k *k*k *kk *k*k 05856 *kk *k*k 00152

4.3 Experiments on Boosting Models with Transformers

Based on the few-shot learning experiments with transformers, the study conducted boosting
experiments using the best-performing models. Specifically, the three models with the highest F1-scores
were selected as base models for three boosting methods. Table 24 and Table 25 present the
experimental results for two tasks: sentiment analysis and topic classification. Table 26 presents the
experimental results on the customer product reviews dataset. The results indicate that Gradient
Boosting achieved the best performance across all tasks and base models. With N=20, Gradient Boosting
reached an F1-score of 0.836 on the sentiment-analysis task and 0.824 on the topic-classification task.
However, the performance of the other two methods was also very promising.

Table 24. Experimental results of boosting on the sentiment-analysis task.

N | Base model AdaBoost Gradient Boosting XGBoost
P R F1 P R F1 P R F1
1 | PhoBERT + BERT |0.639 | 0.670 | 0.648 | 0.665 | 0.675 | 0.661 | 0.638 | 0.671 | 0.653
multilingual + ViT5
5 | PhoBERT + BERT |0.754 | 0.785 | 0.765 | 0.792 | 0.796 | 0.776 | 0.772 | 0.796 | 0.774
multilingual+ BARTpho
20 | XLM-RoBERTa +BERT | 0.798 | 0.841 | 0.819 | 0.837 | 0.853 | 0.836 | 0.833 | 0.849 | 0.836
multilingual+ BARTpho
Table 25. Experimental results of boosting on the topic-classification task.
N | Base model AdaBoost Gradient Boosting XGBoost
P R F1 P R F1 P R F1
1 PhoBERT + BERT | 0.732 | 0.754 | 0.709 |0.723 |0.758 | 0.725 | 0.717 | 0.748 | 0.723
multilingual + ViT5
5 | MBart + BARTpho + | 0.799 |0.803 | 0.735 |0.811 | 0.812 |0.804 | 0.789 | 0.804 | 0.790
ViT5
20 | XLM-RoBERTa+ 0.826 | 0.834 | 0.817 |0.832 |0.819 |0.824 |0.795 | 0.829 | 0.811
Bart + ViT5
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Table 26. Experimental results of boosting on the customer product reviews dataset.

N | Base model AdaBoost Gradient Boosting XGBoost
P R F1 P R F1 P R F1
1 | VIBERT + BERT base | 0.532 | 0.556 | 0.544 | 0536 | 0.573 | 0.554 | 0.530 | 0.555 | 0.542
+ mT5

5 |mT5 + VIBERT+ | 0.665 |0.685 | 0.675 |0.709 |0.706 | 0.707 | 0.694 | 0.703 | 0.698
XLM-RoBERTa

20 | mT5 + BARTpho + | 0.740 | 0.750 | 0.745 | 0.749 |0.761 | 0.755 | 0.751 | 0.753 | 0.752
ViT5

Sentiment Analysis Topic Analysis Customer Reviews

Model Model Model

0.55 AdaBoost 0.55 AdaBoost 055 AdaBoost
Gradient Boosting Gradient Boosting Gradient Boosting

XGBoost XGBoost XGBoost

1 5 20 1 5 20 1 5 20
N N N

Figure 2. Comparison of F1-scores of boosting algorithms (AdaBoost, Gradient boosting, XGBoost)
on two tasks: sentiment analysis and topic analysis, using different combined models.

5. CONCLUSIONS

The findings of this study have far-reaching implications that contribute to yet another theoretical and
practical advancement in sentiment analysis, particularly in low-resource educational environments. To
mitigate challenges, such as limited data and computational inefficiency, the proposed study introduces
a novel framework that combines Few-Shot Learning (FSL) and Transformer-based ensemble models
with boosting approaches.

By drawing on the strengths of both Transformer models using self-attention to learn patterns from rich
data and adapting the FSL setting, this paper then introduces a hybrid methodology that addresses the
shortcomings of traditional supervised approaches in low-data scenarios. Moreover, it presents the role
of boosting techniques, such as Gradient boosting and XGBoost, and their capabilities in classifying the
sentiments, which may set a pathway for forthcoming research on ensemble learning for NLP tasks.

On the practical side, the framework presented in this research will serve as a basis for providing
actionable knowledge to educational institutes to better analyze students' feedback, hence improving
their learning experience and the quality of teaching. The scalability of the method makes it relevant for
a wide range of fields that experience a scarcity of labeled data. Furthermore, its efficient use of
resources demonstrates its practicality for translating to practice, even in settings where computational
power is limited. Although the model demonstrates effectiveness in sentiment-analysis tasks with
limited training resources, particularly in educational feedback systems, this study acknowledges the
ethical aspects associated with its real-world deployment. Fairness is a key concern when sentiment
models are trained on imbalanced datasets in terms of class distribution, dialectal expressions and
stylistic variations, which often predominantly reflect students’ perspectives. This may result in
systematic bias against certain groups.

Bias during evaluation and sentiment classification may lead the model to misinterpret students’
feedback, especially when cultural context or specific expression styles are not accurately captured in
the training data. For instance, negative feedback expressed politely or formally may be misclassified
as neutral or even positive. This misunderstanding can delay necessary interventions by model users
when addressing customer requests or student concerns. Another issue to consider is the impact of
misclassification, which can lead to incorrect conclusions in both educational and customer-service
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evaluations. If negative feedback is misinterpreted as positive, educational administrators or customer-
service staff may overlook significant issues raised by students or customers, potentially affecting the
overall learning or service experience. To mitigate these risks, future research and deployments should
apply fairness-aware training methods, such as data rebalancing and debiasing techniques, utilize more
diverse datasets to increase representativeness and integrate human oversight during the result-
validation process.

Despite the promising results, this study has several limitations that provide clear avenues for future
research. First, our framework's effectiveness is contingent on the availability of high-quality pre-trained
Transformer models. Consequently, its application may be challenging for low-resource languages or
specialized domains that lack representative pre-training corpora. Second, the use of ensemble and
boosting techniques, while improving performance, introduces additional computational complexity,
which might be a barrier for organizations with limited resources. A third limitation lies in our ensemble
selection logic. In this study, base models were chosen primarily based on their individual performance.
While this ensures strong components, it does not explicitly guarantee model diversity, a critical factor
for robust ensembling. Finally, as the evaluation was conducted on a single dataset (UIT-VSFC), the
generalizability of our findings needs further validation on other datasets and across different domains.

Building on these limitations, future work can proceed in several promising directions. To address
generalizability, the framework should be evaluated across diverse domains, such as healthcare or
finance, and on datasets in other languages. To enhance the ensemble methodology, future research
should explore more sophisticated, diversity-aware selection strategies that co-optimize for both model
performance and diversity; for instance, by analyzing prediction correlations. Furthermore, performance
in extremely low-data environments could be improved by optimizing Transformer architectures for
lightweight deployments and leveraging advanced data-augmentation strategies. Finally, integrating
human-in-the-loop feedback systems could improve model adaptability in ambiguous cases, making the
framework more practical for real-world deployment. This research underscores the transformative
potential of advanced NLP techniques in enhancing sentiment analysis, offering a valuable framework
for addressing challenges in resource-constrained scenarios.
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ABSTRACT

Patient feedback plays a crucial role in improving the quality, responsiveness and patient-centric approach of
healthcare services. This paper presents a comprehensive review of both traditional and digital methods used
to collect patient feedback, emphasizing their value in improving healthcare delivery, examines the tools and
channels used, including surveys, interviews and multi-channel digital platforms. The review further explores
sentiment-analysis techniques applied to patient feedback, focusing on how machine learning, deep learning and
large language models are used to interpret and categorize unstructured text. The recent literature is
systematically analyzed, with comparative tables that highlight feature-extraction methods, classification
algorithms and performance metrics reported in various studies. Additionally, the paper addresses key
challenges in feedback collection and sentiment analysis. Future research directions are proposed, such as
automating feedback systems and incorporating patient perspectives into quality-improvement frameworks. This
review is intended to assist Healthcare IT Professionals and medical Data Scientists who deal with healthcare
delivery and computational analysis, whose target is to extract actionable insights from patient feedback using
modern Al techniques.

KEYWORDS

Patient feedback, Sentiment analysis, Lexicon, Machine learning, Deep learning, Generative Al.

1. INTRODUCTION

Patient satisfaction is crucial for measuring the quality of healthcare services. It reflects how effective
clinical care is and the broader experience of patients within the healthcare system. However, patient
experiences are influenced by many different things, such as a person’s age, gender, education level
and health condition. Traditionally, patient experience was viewed as a set of interactions that shape a
patient’s point of view regarding care. Over time, in modern healthcare systems, the concept also
includes the experiences of healthcare workers, families and the wider community. In [1], the authors
stated that every interaction of a patient with healthcare-system matters, the values and behavior of the
healthcare organization affect the care received by a patient, each patient’s personal feelings and
background shape their views and patient experience changes throughout the entire treatment process.
The authors highlighted the fact that the way healthcare workers feel and what they go through also
affect the care they give to patients. The authors of [2] exhaustively reviewed 60 research papers from
1969 to 2019 to understand the factors that shape patient experiences and concluded that patient
satisfaction is a complex topic and must be researched further to understand how thoughts and feelings
of a patient affect his/her satisfaction. The authors of [3] developed a theory - Clinical Performance
Feedback Intervention Theory (CP-FIT) to explain how patient feedback works and what makes it
successful. The authors found that the feedback process involves goal setting, data collection,
feedback delivery, interpretation, acceptance and behavior change. They identified 42 high-confidence
factors that influence the success of feedback and concluded that feedback is most effective when it
aligns with the values of healthcare professionals and results in clear and easy to implement
improvements.

Feedback plays an important role in the growth and improvement of an organization. Taking feedback
on a regular basis encourages an individual or an organization to engage in a culture of continuous
learning and personal development. In the context of medicine, understanding patient feedback is
crucial for enhancing healthcare services, as it provides insights into patient experiences and identifies
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areas for improvement.

Without any feedback mechanism, the quality of healthcare cannot be measured. Unstructured patient
feedback full of useful information (from social media and online platforms) is growing quickly.
However, it is not being used as much as it could be to improve healthcare services. Manually
analyzing such large-scale data is not feasible due to time and resource constraints. The authors of [4]
reviewed 19 studies that utilized natural language processing and machine-learning techniques for
sentiment analysis and classification of patient feedback collected through surveys as well as social
media. The selected studies employed supervised, unsupervised and semi-supervised learning methods
that could categorize feedback into positive, negative or neutral sentiment and can be used for
processing millions of such responses.

Figure 1 illustrates a structured workflow, used by various researchers, for classifying patient feedback
into sentiments, incorporating both human annotation and artificial intelligence. Al mainly comprises
of Natural Language Processing (NLP), Machine Learning (ML) and Deep Learning (DL) techniques.
Initially, feedback of patients is collected through various mechanisms and stored in a database which
follows pre-processing with several techniques, like Tokenization, Stemming, Lemmatization,
Lowercasing ...etc. to standardize the textual data. The standardized and processed textual data then
undergoes two major pipelines, so that labels or sentiments can be generated for the data:

1) Traditional Machine Learning algorithms: Supervised, unsupervised, semi-supervised.
2) Large Language Models directly convert textual data and generate sentiment labels efficiently.

Feature Extraction
+ TF-IDF

+ BERT

= |+ Bag of words
Preprocessing « N-grams

+ Tokerdsation + Name entity recognition ~SVM +CHH
Patient Feedback Data + Stemming « POS tagging ) + Decision Tree + RNN

+ Questionnaires(numeric) = Lowercasing + Logistic Regression «LSTM

+ Comments(textual) = Lemmetization » Naive Bayes *GRU

= SMOTE « K nearest neighbour  » GenAl(LLM)

ML/DL/GenAl techniques
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Figure 1. Methodology of sentiment analysis.

The labels are then manually checked for a sub-set of data by annotators ensuring consistency via Inter
Annotator Agreement (IAA). When humans label data (e.g. tagging a comment as "positive"”, "neutral"
or "negative"), their decisions can differ due to personal interpretation. IAA measures how
consistently multiple human labelers agree when labeling or classifying data. The final human check
ensures accurate sentiment analysis.

In this paper, our aim is to study the research space of sentiment classification in patient feedback. The
initial focus is on the data-collection methods used by various researchers, followed by an analysis of
the methods used for sentiment classification. Reliability and performance of sentiment-classification
methods depend on the quality, accuracy and format of the collected feedback. Thus, it is crucial to
study the data-collection mechanisms of the patient feedback. Various forms of inputs, such as
surveys, interviews, questionnaires, and social-media content, yield different data types which will
require different preprocessing and modeling strategies.

The Scopus database is chosen for literature reviews. The keywords "Patient Feedback” and
("Sentiment Analysis or Natural Language Processing or Machine Learning™) are used. The
documents are filtered from the last five years (2019-2024), including some studies from 2025 to focus
on recent publications that reflect the latest advances and developments in this area. In this review are
high-citation research papers related to feedback data-collection mechanism and sentiment-
classification strategies.

Based on the motivation and scope of this review, the following research questions (RQs) are
addressed.
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1) RQ1: What are the current methods used for collecting patient feedback?

2) RQ2: How is sentiment analysis applied to patient feedback and what Al techniques (ML,
DL, LLMs) are commonly used?

3) RQ3: What practical challenges arise when collecting and analyzing patient feedback,
particularly at scale?

To address the above-mentioned RQs, various sections have been introduced. Section 2 details various
methods that have been employed for collection and analysis of patient feedback without employing
any Al techniques. Further, Section 3 provides a brief overview of how sentiment is analyzed using
various ML and DL techniques and how generative Al is now being used for the same. This is
followed by Section 4, which provides a review of recent studies that have performed sentiment
analysis on patient feedback data. Moreover, the challenges associated with the collection and analysis
of patient feedback are presented in Section 5. Lastly, Section 6 concludes the study along with future
scope. This review is mainly for health-informatics researchers and IT professionals who want to
develop or improve systems that can automatically analyze patient feedback. The goal is to help create
tools that make it easier for healthcare teams to understand overall patient satisfaction and find areas
that need improvement without reading thousands of comments manually. In addition, feedback-
collection methods will help healthcare administrators and practitioners who need to implement them.

2. UNDERSTANDING AND COLLECTING PATIENT FEEDBACK

This section addresses RQ1 by discussing methods for understanding and collecting patient feedback.
Recent research has explored various methods for collecting, analyzing and utilizing patient feedback
effectively. Some of the recent studies that focus on data collection and highlight the challenges faced
during the process are mentioned in this section. In [5], the authors explored different ways to collect
patient feedback and followed a participatory research approach involving patients, general
practitioners (GPs), medical receptionists and an advisory group. Semi-structured interviews were
conducted, where a set of open-ended questions were prepared. The interviews were analyzed using
Thematic Analysis, in which the responses were categorized by attaching keywords to them. The
software that was used was MAXQDA software (version 2022). It was concluded that real-time
feedback is the most effective way to capture patient experiences. Also, rather than continuous
collection, periodic feedback was found to be more practical and manageable.

In study [6], the authors focus on whether collecting data in real time at multiple stages of
hospitalization can identify areas for improvement more effectively than traditional satisfaction
surveys. This research was carried out in the Orthopedics Department of an Italian university hospital.
Patients were given two different paper-based questionnaires at two time points: at hospital admission
and at discharge. The data collected covered four key categories - Patient-Reported Outcomes (PROSs)
to measure self-rated health, Patient-Reported Experiences (PRES) to evaluate the quality of care and
efficiency of services, Patient-Reported Preferences (PRPs) to capture other aspects of care that
patients value and Emotional State Tracking to measure patient emotions at different stages. The
authors observed that capturing patient experiences at multiple points in the hospital journey provided
better insights than a single post-discharge survey.

In [7], the authors studied a digital patient feedback platform Hospitalidee, where patients may post
positive or negative feedback about hospitals that have partnered with the platform. They selected all
the negative feedback from the platform for a single hospital called OSTI. A two-step analysis of 134
negative feedback comments was performed to reveal common themes in patient complaints. Firstly,
complaints were classified into four categories based on the service provided. Further, complaints
were classified according to departments in order to target the process of quality improvement to the
areas where most needed. This was followed by thematic analysis of the feedback comments in order
to identify important themes. The study concluded with the statement that digital patient-feedback
platforms should be actively integrated into hospital decision-making processes.

In [8], the authors explored current practices of collecting feedback and utilizing it. The authors
conducted semi-structured interviews with nine participants from three different hospitals. Four types
of methods were identified to collect feedback, which are given in Table 1. The challenges faced
during the process are also mentioned.
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Table 1. Different methods of feedback collection [8].

Methods

Description

Challenges

Structured, Official Feedback

Standardized surveys distributed through
web-based platforms, paper forms or
automated systems.

Response rates are low. Feedback
delayed post discharge. Limited depth
due to structure.

Tools

feedback-collection technologies, such as
mobile apps and real-time patient
surveys.

Unstructured Feedback Informal feedback through verbal | Difficult to analyze, Underreported
conversations, emails or suggestion | issues, Notdocumented systematically
boxes.

Pilot Projects using Digital Hospitals experimenting with new | Not widely implemented. Requires

staff training. Cost and infrastructure
barrier.

Occasional Studies and
Research Projects

One-time research initiatives conducted
by hospital staff, students or external

Lack of continuity. Not integrated into
daily operations. Results take time.

organizations to  assess  patient
experience.

A study carried out in three large hospitals in Brazil is described in [9]. Nine semi-structured
interviews were conducted and hospital documents, such as feedback forms, action plans and reports,
were also analyzed. NVivo 11 software was used to organize and analyze the information. It was
found that hospitals use structured quality-improvement (QI) tools to analyze patient feedback and
make meaningful changes. Some of such tools are:

e Plan-Do-Check-Action: Identify a problem based on patient feedback, implement a small
change, measure the impact and if successful, apply the change hospital-wide.

e Ishikawa (Fishbone) Diagram: A visual tool to identify root causes of a problem by
categorizing potential reasons.

e Pareto Analysis (80/20 Rule): It follows the 80/20 rule, meaning, 80% of patient complaints
come from 20% of the problems, fixing that 20% can solve most issues.

The authors of [10] focused on creating simple and short questionnaires suitable for hospital patients
with varying literacy levels. The patient experience monitor had two versions that were adult inpatient
(14 items) and adult outpatient (15 items), both of them included key aspects, like emotional support,
waiting time, privacy, clarity of information, communication and family involvement. From this study,
it was found that even patients with low literacy found patient experience monitor easy to understand.
The short format improved response rate.

While feedback collection is an important step in improving healthcare services, it becomes valuable
when it is interpreted. Most patient responses are in unstructured formats, like free-text surveys,
interviews or online reviews, as seen above and contain implicit information that is not immediately
assessable. Manual review of such comments is resource-intensive and inconsistent. This is where
sentiment classification becomes important. Sentiment classification helps reveal the underlying
emotional tone of patient comments, whether they are satisfied, frustrated, in fear or express gratitude.
By categorizing feedback into sentiment, such as positive, negative or neutral, healthcare providers
can identify problem areas more efficiently. The techniques used for sentiment analysis are presented
in the next section. Table 2 describes the patient-feedback datasets that have been collected and
analyzed further to derive useful insights.

3. SENTIMENT ANALYSIS TECHNIQUES

Sentiment is an opinion influenced by emotions. Automating the extraction of sentiments in
unstructured data, such as reviews, comments or feedback, is an area of study under Natural-language
Processing. Its objective is to automate extraction and interpretation of sentiments or data from text,
providing insights into public sentiment, customer satisfaction and market dynamics.

Due to digitization of processes and the increase in the use of social media, the amount of reviews or
feedback is enormous, making it impossible to process them manually. Therefore, there is a growing
need for the use of Al-driven approaches to identify and extract the sentiment.
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Table 2. Summary of patient-feedback datasets used in the reviewed studies.

Ref. Data-collection | Dataset Description Record Type Open Source
Period
[6] January-February| Longitudinal survey: preferences, Open-ended questions | Available upon
(2021) | 2019 experience, outcomes at answered by 254 request
admission/discharge patients
[11] January 2008- Synthesized findings from studies on 20 studies having Available upon
(2020) | October 2019 patient feedback and review of patient feedback request https:
interventions (qualitative & /Ishorturl.at/ z4cxg
guantitative) (supplementary data)
[12] 2018-2021 Norwegian national patient-experience 2250 patient comments| No
(2024) surveys conducted by the Norwegian
Institute of Public Health (NIPH)
[13] January 2018- | Patient surveys data collected at 2830 records of un- | No
(2020) | January 2019 Geisinger Holy Spirit Hospital covering structured  free-text
various aspects of careand labeled by comments
sentiment
[14] 2016-2020 Three survey questions with binary 3134 patient No
(2020) responses related to respect received, responses to survey
clarity of explanationand attentive Questions
listening
[15] - Patient reviews for specific medications 232 K free-text drug https://surl.li/ wjvtwk
(2021) along with a 10-star rating reviews
[5] - Qualitative study exploring patient- Interview transcripts No
(2025) feedback methods for e-Health in general | of 13 patients, 8 GPs,
practice 2 receptionists
[16] - Cancer-patient stories Study 1-14, 391 https://ww.
(2023) random posts, study2- | cancerconnection ca/s/
30,037 posts https://surl.li/uirjeq
[17] January 2017- | Friends and family test (FFT) free-text, 69,285 responses No
(2022) | Julv 2017 Patient feedback
[10] - Questionnaires, interviews, pilot study 28 interviews, pilot https://pmc.ncbi.nlm
(2020) study and surveys .nih.gov/articles/PM
C7725101/table/t00
02/
[18] - Patient & family-member discussion posts | 12,103 posts of patient | https://patient.info/for
(2024) onamedical forum narratives ums
[7] 2018 Negative feedback data from a digital Analysis of 134 No
(2023) platform of one hospital reviews.
[19] - Five questions based on information 534 responses of open- | No
(2022) provided, personal approach, ended questionnaire
collaboration among healthcare
professionals organization of care and
general feedback
[20] 2019-2023 Classifying the complaint records using 1465 records having No
(2021) ML and NLP different complaints
describing
communication
[21] January 2014- | Analyzed sentiment in patientcomments 1117 comments and https://surl.li/ zcxygz
(2025) | December 2014 | using natural-language processing ratings from 1 (worst)

to 5 (best)

Due to digitization of processes and the increase in the use of social media, the amount of reviews or
feedback is enormous, making it impossible to process them manually. Therefore, there is a growing
need for the use of Al-driven approaches to identify and extract the sentiment. Recent advancements
in artificial intelligence, machine learning, deep learning and generative Al, particularly large
language models (LLMs), have greatly enhanced the precision and scalability of sentiment-analysis
systems, establishing sentiment analysis as a crucial tool for examining extensive unstructured data.
Sentiment analysis traditionally classifies text into positive, negative or neutral categories. However,
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advances in the field have led to the identification of nuanced sentiments, such as anger, joy, fear,
toxicity, sadness and surprise.

Techniques for Extraction of Sentiment

In recent years, multiple strategies have emerged to improve the precision and scalability of sentiment
classification. Conventional methods, such as the lexical-based approach, use sentiment dictionaries to
assign polarity scores to individual words. Meanwhile, machine-learning methods rely on labeled
datasets to train models that can identify sentiment patterns. In recent years, large language models
(LLMs) have revolutionized the domain by comprehending complex linguistic nuances and context on
an unprecedented scale. This transition from rule-based methods to data-driven and neural approaches
highlights the evolving landscape of sentiment analysis, offering a range of strategies to address the
various challenges in text analysis.

Before applying any sentiment-analysis technique, pre-processing of the text needs to be carried out.
Some of the text pre-processing techniques are listed below:

1) Data cleaning - removing/handling emojis, URLs, HTML Tags, stop words, punctuation
marks, spell checking, normalization, number removal, and converting into lowercase are some
of the common data-cleaning techniques

2) Tokenization breaks down text into smaller units called tokens. The tokens can be a single
character, word, phrase, sentence, paragraph, ...etc.

3) Stemming is a process to find the root of a word by removing suffixes.

4) Lemmatization is a process that considers the context and part of speech to reduce words to
their base forms, called lemmas.

Further, the techniques for classification of text into various sentiments are classified as below:

1)

2)

Lexicon-based Approach

The lexicon-based approach to sentiment analysis relies on dictionaries of words that are pre-
assigned sentiment values, typically categorized as positive, negative or neutral. This method
estimates the overall sentiment by summing the sentiment scores of individual words within a
text. Its simplicity and transparency make it a popular choice, especially for domains where
interpretability is critical or when the labeled data for training machine-learning models is
scarce. Tools, such as SentiWordNet [22], VADER [23] and AFINN [24], are widely used in
research and industry.

Machine Learning-based Approaches

Machine learning (ML)-based approaches have transformed sentiment analysis by moving
beyond simple keyword matching to more sophisticated algorithms that can automatically learn
patterns from data. These models do not require pre-defined lexicons and are capable of
handling larger datasets and more complex language patterns. The key strength of machine
learning approaches lies in their ability to generalize from data and to adapt across different
domains, making them highly effective for sentiment analysis in areas like social media, product
reviews and customer feedback [25]. Supervised machine learning is a prevalent approach in
sentiment analysis, where models are trained on labeled datasets to classify text as positive,
negative or neutral. This process generally involves data pre-processing, feature extraction and
model training.

Feature Extraction

Feature extraction is crucial in converting text data into numerical vectors that the machine-
learning model can process. Common methods for feature extraction include Bag-of-Words
[26], TF-IDF [27], Word Embeddings [28]-[29]. Bag-of-Words is a simple and easy method
which represents text by counting word frequency. Context and semantic meaning are lost in
this process. TF-IDF weighs terms by their importance across documents and highlights rare,
but important, words. Though computationally expensive, the technique is widely used in many
text-mining applications. Word Embeddings (Word2Vec, GloVe) map words to continuous
vector space, capturing semantic meaning, context and word relationships.
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Model Training

Model training involves feeding the features into a machine-learning algorithm, which learns to
predict the sentiment label based on the training data. Some of the most commonly used
algorithms for sentiment classification include:

» Linear Regression: A simple model for prediction of continuous outcome based on a linear
combination of input features [30].

+ Decision Tree: A tree-based model that chooses the feature as a node of the tree based on
metrics, like Gini-index and Entropy [31].

» Naive Bayes: Simple and effective for high-dimensional data [32].

» Support Vector Machines (SVMs): this technique finds optimal hyper-planes for
classification, performing well in high-dimensional spaces [33].

» Logistic Regression: A linear model commonly used for binary classification, such as
predicting whether a review is positive or negative [34].

* K Nearest Neighbor: A lazy learner technique that does not learn a model and matches the
unseen tuple at the time of prediction. Classification of the sample is based on the majority
label among its k nearest neighbors. [35].

» Random Forest: Ensemble method that combines multiple decision trees. Prediction is
based on the majority voting of the output of all models [36].

3) Deep Learning-based Approaches

Building upon the foundation laid by traditional machine-learning approaches, deep learning
has emerged as a transformative force in sentiment analysis. While traditional models rely
heavily on feature engineering and handcrafted rules, deep-learning models automatically learn
representations from data, capturing complex linguistic patterns and contextual information.
This sub-section highlights the contributions of CNNs, RNNs, LSTMs and GRUJs, illustrating
the transformative impact of deep learning in extracting sentiment from textual data.
Convolutional Neural Networks [57] are a fast and high-performance technique that applies
convolutional filters to extract n-gram features from text. Recurrent Neural Networks (RNNS)
represent a slow, moderately performing technique that processes sequential data by
maintaining hidden states, especially suitable for time-series data. Long Short- Term Memory
(LSTM) deals with memory cells for long-term dependencies, suitable for long text, emotion
recognition, speech processing. Gated Recurrent Units (GRUSs) constitute a technique that
reduces the complexities of LSTM by combining gates, making it suitable for text classification
and machine translation.

4) Generative Al-based Approaches

In recent years, the advent of Generative Al (GenAl) and Large Language Models (LLMs) has
significantly transformed the landscape of sentiment analysis. Unlike traditional machine
learning and deep-learning approaches that require extensive labeled data and task-specific
architectures, LLMs leverage large-scale pre-training on diverse datasets, enabling them to
generalize across multiple tasks, including sentiment classification, with minimal fine-tuning.
Large Language Models, such as OpenAI’s GPT series, Google’s BERT and Meta’s LLaMA,
have set new benchmarks in natural-language understanding (NLU) and generation [37]. Their
transformer-based architecture allows them to handle long-range dependencies, outperforming
traditional recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in
various NLP tasks [38].

Transformer Architecture, the Backbone of LLMs: The transformative power of LLMs lies
in the underlying transformer architecture, introduced by [38]. This architecture is based on the
self-attention mechanism, which enables models to weigh the significance of different words in
a sentence, regardless of their position. Unlike RNNs, which process sequences step by step,
transformers process entire sequences simultaneously, drastically improving efficiency and
scalability. This parallelization allows transformers to model long-range dependencies more
effectively, which is critical for capturing complex sentiment patterns in lengthy reviews or
documents.

The self-attention mechanism facilitates context-aware sentiment analysis by dynamically
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adjusting attention to relevant words. For example, in a sentence like "The movie was
surprisingly good despite its slow start,” the transformer architecture can attribute higher
attention weights to "surprisingly good," correctly identifying the overall positive sentiment.

Zero-shot, Few-shot and Fine-tuning Approaches: LLMs have the capability of classifying
sentiments based on the prompts given. Various types of prompts, such as zero-shot and few-
shot can be used for learning. For example, models such as GPT-3 can classify sentiments even
without direct training by utilizing prompt engineering techniques. By presenting the model
with instances of positive, negative and neutral sentiments, researchers can steer the model
toward producing precise predictions [39]. This versatility minimizes the necessity for labeled
datasets and greatly speeds up the implementation in practical scenarios. Further, fine-tuning
BERT on social-media datasets having informal and noisy data improves the sentiment-
classification accuracy [40] and RoBERTa, a variant of BERT, optimizes the pertaining
techniques and works on larger datasets [41].

4. SENTIMENT ANALYSIS ON PATIENT FEEDBACK

This section addresses RQ2: How is sentiment analysis applied to patient feedback and what Al
techniques (ML, DL, LLMs) are commonly used. The reviewed literature has been organized by
approach type — ML, DL and LLMs. The feature-extraction and classification techniques employed
in the reviewed studies are presented in Tables 3 and 4. Table 3 outlines the ML and DL approaches
used for feedback analysis, while Table 4 summarizes the techniques applied in LLMs, respectively.
The tables also give the performance achieved by different techniques. The following observations can
be made from Table 2:

1) Approximately 43% of the datasets used in the reviewed studies were unstructured, while
about 29% were structured and 29% were based on survey responses.

2) Majority of the studies categorized the sentiments as positive, negative and neutral. Maehlum
et al. [12] used four sentiment categories - positive, negative, neutral and mixed, where mixed
indicates sentences containing both positive and negative polarity. Similarly, Cho et al. [49]
also defined positive aspects as care and kind and negative aspects as pain and rude.

3) Data cleaning was also observed to be an important part of all studies to improve model
performance. Moreover, text cleaning and pre-processing techniques, such as tokenization,
lemmatization, stop-word removal, stemming and lowercasing have been utilized in majority
of the studies.

The bar chart in Figure 2 represents the different feature extraction techniques that have been used in
the reviewed studies along with the study count. It can be observed that TF-IDF is the most widely
used feature extraction technique in analyzing patient feedback data.

Feature Extraction Techniques Used in DL and ML Papers
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Figure 2. Feature-extraction techniques used in the analysis.

o

2

w

While Tables 3 and 4 summarize a wide range of studies applying various NLP techniques to patient
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Table 3. Summary of NLP, ML and DL techniques used in patient-experience analysis.

Ref. | Feature-extraction Techniq. | Classification Technigques Performance Metrics
[4] TF-IDF Supervised (Support Vector Machine Precision up to 88%; SVM
(SVM), Naive Bayes (NB)), Unsupervised | accuracy 72% )
(Linear Discriminant Analysis (LDA),
Factorial LDA)

[13] | N-gram, Bigrams, Part-of- Artificial Neural Networks (ANN - Keras- | Precision-0.83, Recall-0.82,
Speech (POS) Tagging, Word Sequential model with dense and dropout | F1-0.82, Support-103 sample
Frequency, Word Clouds layers)

[20] | Word level TF-IDF, N-gram SVM, Multifactor Logistic Regression Accuracy (up to 0.91),
level TF-IDF(n=2) (LR), Multinomial NB F1-Score, Precision, Recall,

AUC (up to 0.94)
[19] | TF-IDF, N-gram Finetuned Multilingual Bert, NMF for F1-Score (Positive: 0.97,
topic modeling Negative: 0.63),
Machine-Human Topic Match:
90%,
Topic Representativeness: 80.9

[21] | LIWC-22, Meaning Extraction Multivariable Linear Regression Not given
Method (MEM), Principal
Component Analysis (PCA)

[17] | Bag of words, tri-gram analysis. | Decision Tree (DT), Random Forest SVM F1-score 94%

(RF), SVM, K-Nearest Neighbour (KNN),
NB and Gradient Boosted Trees (GB)

[42] | TF-IDF, Bag of Words, Name Transformer models (ROBERTa) and RoBERTa F1-Score: Neurology
entity recognition, Word CNNs (1.0), Combined datasets (0.995).
embedding CNN: 0.760.

[43] | Name Entity Recognition, RF, GB models 85-90%

TF-IDF, BERT
[16] | TF-IDF, Topic modeling Topic classification, LDA. 87%
[14] | BERT, Bag of Words RF, LR, DT and Social Network Analysis | RF: 87.6% (courtesy), 81.9%
(clarity, listening).

[44] | Tokenization, lemmatization, SVM, NB, DT F1-score: 60%
Domain-specific lexicons

[45] | TF-IDF, POS Tagging, BERT Machine learning models for sentiment 78.2-87%

categorization
[46] | Bag of words, TF-IDF Sentistrength (for sentiment analysis), 89.3% (general), 92.6%
LDA (healthcare), 90.8% (life

[47] | Word count, TF-IDF, Boolean NB, Multinomial NB, SVM, LR, RF 81% (cleanliness), 84% (dignity),
features 89% (recommendation).

[48] | N-grams, SNOMED CT, Rule-based NLP, SVM AUC: 0.997; Sensitivity: 88%;
BERT Specificity: 96%.

[21] | Topic modeling Topic modeling to identify themes (e.g., 78.5%-87% across different

communication, logistics). aspects of care

[49] | TF-IDF, Sentiment lexicons, LR, t-testt ANOVA 78.5%—-87% across different
bag of words aspects of care

[13] | TF-IDF from lemmatized, Sequential Deep Neural Network (Keras); | Accuracy peaked at epoch 35;
synonym-standardized text 3 dense layers with dropout ReLU + Softmax

[15] | TF-IDF, Bi-grams, Artificial Neural Network (ANN), SVM, SVM: Acc. =0.720, AUC = 0.725
Lexicon-based (Bing) SMOTE | Logistic Regression

[50] | TF-IDF vectorization, 1-4 N-gram Deep Learning model; also N-Gram model: Acc. = 89.4%
grams, Harvard emotional compared with RF, NB, Linear Regression
dictionary

[51] | UMLS mapping, Symptom Rule-based NLP, Machine Learning F1-scores up to 90%,
dictionaries, Term frequency, (SVM, RNN, Logistic Regression), Text Precision/Recall/AUC (e.g., AUC
Lexicon usage, Clustering, Mining = 0.899); task-dependent metrics
Patient-authored symptom like Jaccard Index for symptom
terms clusters

[52] | Concept extraction, Topic Hybrid of SVM, CRFs, Deep Neural Accuracy: up to 92.68%; F1-
modeling (LDA), Word Networks; MetaMap, cTAKES scores: 0.54-0.83; AUC: up to
embeddings; NLP pipelines 0.94; Task-specific benchmarks
using MetaMap, cTAKES, like SemEval
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feedback, a few studies are discussed in greater detail here. These were chosen, because they use new
or advanced methods, apply powerful Al models, like LLMs, work well on large-scale real-world data
or combine human insight with Al tools. These examples will help us better understand the latest
trends to use sentiment analysis in healthcare.

Table 4. Studies utilizing large language models (LLMSs) for patient-experience analysis.

Ref. | Architecture Embedding / Features Performance Metrics

[12] ChatNorT5 (T5-based, | Transformer embeddings; instruction-tuned | F1: ChatNorT5 = 42.4% (4-class),
808M), NorMiistral LLMs 89.3% (2-class); NorMistral = 39.9%
(Mistral 7B-based) (4-class), 89.1% (2-class)

[53] Llama2-70B, Mistral- LLM embeddings, Prompt Engineering, Llama2 > GPT-3.5 in 40-44% of
7B, GPT- 3.5; Chatbot +| User Profile memory, SVD, Reddit/Chatbot | summarization tasks; GPT-4 used as
Dialogue Management | transcripts evaluator; promising pilot results for
System chatbot system

[18] DeBERTa, BERT, Word embeddings, Transformer-based ChatGPT-3.5: F1=90%; ABSA-BERT:
Bi-LSTM, LSTM, ABSA (DeBERTa) F1=73.2%; BILSTM: Acc.= 85%;
ChatGPT-3.5 (few- shot) Manual eval.: Cohen’s Kappa = 0.87

4.1 Studies Employing ML/DL for Analyzing Sentiment in Patient Feedback

Several studies applied traditional ML methods to classify patient feedback into positive, negative and
neutral sentiment categories. Feature engineering techniques, like TF-IDF, n-grams, POS tagging,
have been applied followed by supervised classification algorithms, such as SVM, Naive Bayes or
Logistic Regression.

The authors of [20] collected 1817 Chinese complaint cases from two hospitals from 2015 to 2019 and
divided them into four categories. First, the Chinese text was translated to English using ChatGPT-3.5
and tokenization was carried out using jieba (Chinese NLP library). The features were then extracted,
followed by balancing the dataset using Synthetic Minority Over-sampling Technique (SMOTE). ML
techniques were then employed for classification purposes, out of which SVM gave the best accuracy
value. Another study, [17], worked on patient feedback collected through the Friends and Family Test
(FFT) system in the UK’s National Health Service (NHS). Nearly 10% of the responses (6,900
comments) were manually labeled by an annotation team to create a training dataset for model training
and themes and sentiments were derived for each comment. The study used 10 core themes adapted
from the NHS Patient Experience Framework. Six ML models were then trained using the annotated
dataset to automatically classify the remaining 90% of the responses, with SVM achieving the best
performance. In 2021, the authors of [15] demonstrated sentiment analysis, topic modeling and text
classification on the publicly available drug-review dataset. Relying on the Bing sentiment lexicon
where each word is tagged as either positive or negative, sentiment analysis was performed on reviews
for four specific drugs (two of which had higher positive sentiments). Further, they grouped the text
data by topic (topic modeling) and manually labeled each topic by looking at the most frequent words
associated with it. They also assigned good and bad labels to the reviews based on star ratings,
handled data imbalance through SMOTE and utilized ML models to classify the reviews.

In 2023, the authors of [16] combined design thinking with ML to make the process of understanding
and analyzing patient experience in a more accurate, detailed and useful manner. In the first study, the
authors used supervised ML to analyze 14,391 cancer forum posts. They also applied association rule
mining to uncover relationships between topics, which helped in refining an initial journey map. In the
second study, they used unsupervised learning to analyze 30,037 online patient stories, to identify
hidden themes and map them to different stages of care. This was followed by designers looking at the
most common topics found and labeling them to show what patients need and how they feel at
different points in their care. This mix of computer analysis and human insight helped create detailed
maps of the patient journey.

A few studies also worked on developing recommendation systems and automated analysis tools. The
authors of [50] analyzed patient-written drug reviews obtained from Kaggle, to recommend the most
suitable medicine for a health condition. After pre-processing the dataset with TF-IDF and N-Gram
models, the reviews were classified as positive or negative using ML models. The sentiment analysis
was carried out by using 1-gram to 4-gram models, with the 4-gram model achieving best results.
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They further ranked the drugs by average sentiment score and built a drug-recommendation system
based on it. However, the original dataset did not have a dedicated sentiment column and how the
sentiments were computed for model training was not mentioned by the authors in the study. Further,
the authors of [19] developed a new tool called AI-PREM, which combined an open-ended patient-
experience questionnaire, an NLP pipeline to automatically analyze responses and a visual interface
for easily understanding the results. Patients’ responses were pre-processed and sentiment analysis
was conducted using a fine-tuned multi-lingual BERT model to classify the feedback. For topic
modeling, the authors used Non-negative Matrix Factorization (NMF) to group similar responses
based on themes, with separate models created for each question and sentiment. An interactive three-
layer dashboard was developed to visualize and interpret the results.

Researchers have also integrated Social Network Analysis (SNA) and DL techniques along with ML
to enhance the analysis of patient feedback. In [13], the authors analyzed unstructured patient feedback
using NLP and DL. First, free-text comments were pre-processed followed by exploratory data
analysis using word clouds, frequency distributions and part-of-speech tagging to identify common
themes and key concerns. The authors utilized a neural network model with a sequential architecture
with dense and dropout layers to classify sentiments as positive, negative or neutral. This model was
especially used to separate and label comments that had both positive and negative parts, by looking at
each sentence one by one. This helped get a more detailed understanding of the feedback. Another
study, [14], combined ML and Social Network Analysis (SNA) to develop a system that can both
predict negative patient experiences and identify key doctors who have a direct impact on those
experiences. The authors classified the responses into two classes - best response and all other
responses. They utilized a variety of ML classifiers to predict negative patient experiences. Further,
they utilized SNA (degree, betweenness and closeness centralities) to identify influential doctors who
can help improve the overall patient experience.

4.2 Studies Employing LLMs for Analyzing Sentiment in Patient Feedback

A piece of research [12] in 2024 focused on Norwegian-language feedback from patients and
developed a sentiment-labeled dataset from free-text patient-survey comments. The authors used two
LLM architectures with zero and few-shot learning (to guide the model with no or minimal training
examples) and achieved good classification results for binary labels - positive and negative. They used
48 custom prompts based on English datasets, translated into Norwegian. However, the models failed
in the case of 4-class classification achieving less than 50% accuracy values. The study highlighted the
importance of manual annotation to achieve good results. Another research, [18], collected patient
posts from a health forum and identified aspects that patients talk about and checked whether people
spoke positively, negatively or in a neutral way using DeBERTa neural network and ChatGPT-3.5. It
was found that ChatGPT performed the best in understanding detailed feedback with few-shot learning
(where a few examples are provided to the model in the prompt).

5. CHALLENGES

This section addresses RQ3 by discussing the key challenges related to the collection and analysis of
patient feedback. Collecting and analyzing patient feedback is essential for improving healthcare
quality. However, it comes with several practical and systemic challenges that must be addressed for
these systems to be effective. First, the terms “patient satisfaction” and “patient experience” create
confusion, since they are used interchangeably [54]. While satisfaction is subjective and based on
expectations of an individual, experience is more objective and measures what actually happened
during care. Hence, satisfaction may not accurately capture the quality of care. For example, two
patients undergo the same surgery with identical medical outcomes. Patient A expected a painful
recovery, but found it manageable leading to high satisfaction. Patient B expected a quick, painless
recovery, but experienced discomfort leading to low satisfaction.

There can be many reasons for patients not giving feedback - low literacy in health, socio-economic
inequalities, fear of being treated unfairly because of giving negative feedback and lack of trust in
healthcare systems. In low-income and middle-income countries, many patients are unaware that
feedback mechanisms even exist [55]. Moreover, there is an absence of clear guidelines and health
workers also take feedback mechanisms as a threat rather than a scope to improve. They are reluctant
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to receive patient feedback fearing that negative feedback may harm their professional repute. Some
institutions do not even integrate patient feedback into strategic planning effectively, since negative
feedback over-shadows positive comments. Bias and reliability issues also arise while feedback is
being collected, since it is influenced by the emotions and health conditions of the patients. Further,
patients, being both a care recipient and a feedback provider, feel conflicted [56]. Also, healthcare
professionals, being both experts and learners, are hesitant to invite feedback. Hence, there is an
imbalance of power where patients may hesitate to provide negative feedback and professionals may
feel vulnerable when receiving criticism. There is a lack of structured methods for engaging in
feedback dialogues. Patients prefer verbal feedback for positive experiences, but written feedback
when dissatisfied. Even after the feedback is collected, there are hardly any mechanisms for following
it up and even if actions are taken, patients are hardly informed about them. Hence, participation is
decreased over time.

Analyzing the collected feedback comments to get useful insights for decision-making can be
expensive and time-consuming if carried out manually. Utilizing ML and DL techniques to process
and analyze such unstructured data also requires careful intervention. These models should be
carefully selected and validated, especially in healthcare contexts, where misclassification can have
serious consequences. Further, LLMs like LLaMA and GPT are also very expensive to train and
require significant resources.

6. CONCLUSION AND FUTURE DIRECTIONS

This study has provided a thorough review of current methods for collecting and analyzing patient
feed- back in healthcare. It examined both traditional tools, such as open-ended questionnaires and
interviews and emerging digital platforms that support scalable and timely feedback collection. A
particular emphasis was placed on sentiment analysis techniques, showcasing the application of
machine learning (ML), deep learning (DL) and large language models (LLMs) to interpret
unstructured patient responses. The review synthesized findings from recent studies, detailing the
datasets used, feature-extraction strategies, classification approaches and performance outcomes.
Furthermore, challenges and limitations associated with data collection, processing and analysis were
discussed. By aligning sentiment analysis technigques with real-world feedback systems, this review
supports the development of automated and patient-centered solutions that can enhance service quality
and enable continuous healthcare improvement.

In future work, feedback systems should be designed to function across multiple platforms, such as
mobile apps, websites, SMS, in-person interviews and voice input, to increase participation from
diverse patient populations. Also, family members should be allowed to submit feedback on behalf of
elderly or critically ill patients, to expand the scope of feedback collection. The process of feedback
collection and analysis should be automated using NLP and Al tools to reduce manual efforts and
analyze large amounts of data. Moreover, there is a lack of publicly available patient feedback
datasets. Future work should focus on curating and sharing large-scale, representative datasets to
improve the generalizability and robustness of sentiment-analysis models, across different
demographics, languages and care settings. Lastly, feedback gathered must be fed directly into quality-
improvement programs, performance evaluations and strategic planning.
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ABSTRACT

Parkinson’s Disease (PD) is a progressive, chronic neurological disorder that is distinguished by abnormalities
in the motor system. The condition can be detected in the early stage by the irregular handwriting of the
individual. Early diagnosis is critical to enable timely therapeutic intervention and slow disease advancement.
However, traditional diagnostic approaches largely depend on subjective clinical assessments, which lack
scalability and exhibit reduced sensitivity in the prodromal phase. The present study proposes a well-established
deep-learning architecture using transfer learning with MobileNetV2, which can be used for early diagnosis of
Parkinson’s Disease through handwriting images. The dataset includes 816 samples from 120 people. It is
augmented through grayscale and HSL to add more variety to feature samples of the model. A two-stage training
regimen—initial base freezing followed by fine-tuning with a reduced learning rate—was employed to optimize
convergence and generalization. The approach presented in this study scored 92% on accuracy with an F1-
score of 0.88 and a precision of 0.81, outperforming those of conventional baselines in regard to sensitivity and
robustness. The resulting framework is lightweight, non-invasive, and well-suited for real-time screening
applications, offering significant potential for clinical decision support and remote telehealth deployments.

KEYWORDS

Parkinson’s disease, Handwriting analysis, Early diagnosis, Transfer learning, Deep learning in healthcare,
Convolutional neural networks (CNNs).

1. INTRODUCTION

Parkinson’s disease is characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN)
region of the brain [1]-[2]. Tremors, slow movement, muscle stiffness, and balance difficulties are the
clinical features that impact the affected person’s daily-living capacity and quality of life. Due to the
growing global incidence of these diseases, especially in aging populations, early and accurate
diagnosis is a crucial goal of neurological care [4]-[5]. Nonetheless, there is a significant clinical issue
with the early detection of Parkinson’s disease. Currently, diagnosing a patient often involves
identifying neurological symptoms and examining motor symptoms, but it is a subjective measure to
start with and will result in late-stage diagnosis. Also, in resource-limited settings or pediatric and
early-onset cases, these methods might lead to the delay or misdiagnosis of the medical intervention
due to symptomatological similarities with other conditions or the atypical nature of the PD course [6]-
[8]. Traditional methods have aimed to assist in the diagnosis of PD through the application of
biomedical signals, including speech recordings, handwriting dynamics, and neuroimaging data.
Although these methods are promising, they rely on features designed by hand, domain expertise, and
hand-crafted pre-processing. Their performance also tends to drop off in real-world deployments and
cross-population settings, limiting scalability and clinical utility [9]-[10]. To resolve this issue, the
study introduces an efficient deep-learning framework that uses convolutional neural network (CNN)
transfer learning to detect Parkinson’s disease early in handwriting. Writing, a fine motor skill, may be
affected by micrographia and other altered stroke patterns at the onset of Parkinson’s disease because
of micrographia. With a pre-trained MobileNetV2 model and data augmentations, our model improves
feature-extraction capability with fewer data and computations. This research’s principal contributions
are outlined as follows:

o We present a deep-learning (DL) framework based on transfer learning using MobileNetV2
for early PD detection from handwriting images.
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e A robust data-enhancement pipeline using grayscale and HSL transformations is proposed to
increase the diversity of the dataset.

e The suggested model delivers a classification accuracy of 92%, a strong performance for non-
invasive PD screening in large populations.

The remaining sections of this study are organized as follows: Section 2 explores the recent advances
in Al-enabled PD diagnosis. The proposed method explained in Section 3 consists of dataset pre-
processing, CNN architecture, and training strategies. In Section 4, the results of the experiment and
their comparison will be highlighted. Ultimately, Section 5 concludes the study and indicates future
research directions.

2. RELATED WORK

Recent advancements in DL have significantly improved the diagnostic capabilities for Parkinson’s
Disease (PD) across various modalities. Alissa et al. (2021) [1] developed a CNN-based model
utilizing figure-copying tasks, such as cube and pentagon drawings, achieving high accuracy by
analyzing geometric distortions linked to PD. Similarly, Hires et al. (2021) [2] introduced an ensemble
of CNN models for detecting PD from voice recordings by leveraging acoustic features, such as pitch
and jitter, yielding 90% accuracy. Chen et al. (2024) [3] proposed a CNN-Transformer hybrid network
for segmenting PD-related nuclei from medical images, enhancing segmentation performance through
long-range dependency modeling. Aggarwal et al. [4] suggested a one-dimensional convolutional
neural-network framework with data augmentation to differentiate Parkinson’s disease from SWEDD
scans, yielding favorable classification outcomes. Wang et al. (2024) [5] compared 1D, 2D, and 3D
CNNs for classifying digitized drawing tests, showing that dimensionality affects diagnostic
performance in handwriting-based PD detection.

Focusing on motor-skill degradation, Allebawi et al. (2024) [6] implemented a handwriting-based PD
detection system using a Beta-Elliptical model and fuzzy perceptual detectors, emphasizing dynamic
spatiotemporal signatures in writing. For gait-related symptoms, Sigcha et al. (2024) [7] evaluated DL
algorithms across datasets for freezing of gait (FoG) detection, highlighting the importance of
standardization for clinical use. In the auditory domain, Celik and Basaran (2023) [8] presented a
CNN-Random Forest hybrid model for PD detection using speech signals, showcasing robustness in
feature modeling. Extending this, Madusanka and Lee (2024) [9] utilized transformer-based models on
spectrograms of speech data, achieving 90.8% accuracy by identifying vocal biomarkers indicative of
PD.

EEG-based approaches have also gained attention. Khalid and Ehsan (2024) [10] used gated recurrent
units to classify EEG sub-bands, capturing temporal dependencies in brain activity related to PD and
achieving notable accuracy. From an algorithmic perspective, Li et al. (2021) [11] provided an
extensive survey on CNNs, covering applications across biomedical domains. Image pre-processing is
essential in medical imaging; Qi et al. (2021) [12] provided a comprehensive overview of
enhancement techniques, while van Dyk and Meng (2001) [13] discussed the statistical underpinnings
of data augmentation to improve generalization.

In feature representation, Ping (2013) [14] reviewed classical image feature extraction methods, laying
the groundwork for more complex deep-learning features. For lightweight CNN design, Dong et al.
(2020) [15] introduced MobileNetV2, which balances efficiency and performance—making it suitable
for PD detetion on limited data. For activation functions, He et al. (2018) [16] explored the theoretical
foundations of ReLU in deep neural networks. Optimization strategies were improved by Zhang
(2018) [17], who proposed an enhanced Adam optimizer for faster convergence. Transfer-learning
techniques were thoroughly reviewed by Zhuang et al. (2020) [18], establishing their utility for
domain adaptation, especially in healthcare. Radenovi¢ et al. (2016) [19] demonstrated unsupervised
fine-tuning of CNNs using hard examples, supporting robust image retrieval and classification.
Finally, Corley et al. (2015) [20] explored deep learning for software feature location, indirectly
informing architecture search techniques relevant to model customization in PD-detection frameworks.
Jiang et al. (2025) [21] proposed a novel network architecture specifically tailored for Parkinson’s
handwriting-image recognition, demonstrating enhanced structural modeling of handwriting patterns
using domain-specific features. Extending this direction, Lu et al. (2025) [22] introduced a dynamic
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handwriting feature-extraction approach that integrates temporal and spatial cues, showing significant
improvement in Parkinson’s disease-detection accuracy through dynamic pen-motion analytics.
Kansizoglou et al. (2025) [23] contributed a hierarchical deep-learning framework that incorporates
drawing-aware context to refine model performance, emphasizing the importance of spatial abstraction
in analyzing handwriting traits linked to Parkinsonian symptoms. Miah et al. (2025) [24] conducted a
comprehensive review encompassing various data modalities, including handwriting, voice, and
motion signals, and highlighted structural and algorithmic considerations for future research on
Parkinson’s disease-detection systems. While most studies focus on Parkinson’s-specific datasets,
Javeed et al. (2025) [25] broadened the application domain by applying machine-learning techniques
to classify handwriting samples for mental-health conditions, such as schizophrenia and bipolar
disorder, underscoring the potential of handwriting as a universal biomarker for neurological and
psychiatric evaluations. Al-Shannag and Elrefaei [26] proposed a domain-specific transfer-learning
method for age estimation. While existing methods demonstrate notable performance in Parkinson’s
Disease detection, many face limitations, such as restricted generalization on small datasets,
insufficient stage-wise analysis, and limited use of domain-specific augmentations. These gaps
motivate the proposed HWR-PDNet framework, which is designed to enhance robustness, improve
early-stage detection, and address the shortcomings identified in prior approaches.

3. SYSTEM METHODOLOGY

This section elaborates on the suggested DL approach for the automated recognition of PD using
handwriting image analysis. This method utilizes the representational capabilities of CNNs enhanced
by transfer learning, enabling robust classification even with a limited dataset. The system comprises
multiple stages, including image pre-processing, feature extraction, classification, and evaluation, as
shown in Figure 1.

1. Data acquisition | = 2
2 o

S ——
- —— "
Handwritten image
dataset

3. Model Initialisation

Pre trained
Model

Modify Network

Knowledge Transfer

Training

Modified Output
Layer
2. Feature Extraction

Data preprocessing
4. Model Evaluation

Data enhancement v
Region Isolation
A 4 A 4
Healthy Parkinson

Feature Extraction
Figure 1. Workflow of the proposed CNN + transfer-learning system for PD recognition.

stage

3.1 Data Acquisition

The handwriting-image dataset was compiled from both PD patients and healthy control participants.
All subjects performed a standardized wave-drawing (saw-tooth) task using an identical pen-tablet
device under controlled acquisition conditions. The captured images were then systematically split into
training and testing sub-sets to facilitate model development and evaluation.

3.1.1 Problem Formulation

Let D = {(I;, y;)}1=, represent the dataset, where each handwriting image lie R"*W*€ corresponds to
height H, width W, and C color channels (typically RGB, so C =3). The label y € {0, 1}
denotes the ground-truth class, where 0 indicates a healthy individual and 1 corresponds to a patient
diagnosed with PD. The objective is to learn a mapping function:
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ﬁ:RHXWXC—'{o,1} (1)
where fy is a deep neural network parameterized by 6, which accurately classifies input images into
one of the two target classes.

3.2 Feature Extraction

This stage prepares handwriting images for deep-learning input through pre-processing, augmentation,
region isolation, and feature derivation. Initially, all images are resized to 256x256 pixels and
normalized. Data-augmentation techniques—horizontal and vertical flips, £20° rotations, zooming,
and contrast adjustments—are applied to improve generalization. Grayscale conversion and HSL
transformation emphasize stroke patterns and pen pressure variations. Region isolation reduces noise
by focusing only on handwriting strokes. Finally, a pre-trained MobileNetV2 backbone is used to
derive discriminative latent features.

3.3 Image Pre-processing and Augmentation

The collected handwriting images exhibit variability in image size and background noise. All images
are resized to the 256x256 pixels. Data augmentation applies to a dataset of a restricted size and
improves the model’s generalization. This includes random horizontal and vertical flipping, rotations
within £20°, zooming, and contrast adjustments. Additionally, grayscale conversion and BGR to HSL
transformation are incorporated to emphasize fine motor patterns and variations in pen pressure and
stroke directionality — features often indicative of PD onset.

3.4 Feature Derivation Using Transfer Learning

In this work, we utilize a pre-trained lightweight deep network, symbolized as Wpase, Originally
optimized on the ImageNet benchmark, to perform feature derivation. For a given input handwriting
image denoted by X, € R*™W*C | the model outputs an intermediate feature embedding:

fn = q’base(Xn ), fn € RM (2)

where f, represents the extracted descriptor for sample n, and M is the latent vector dimensionality.
This embedding captures both structural and abstract traits within the handwriting image that may be
linked to Parkinsonian motor abnormalities.

3.5 Model Initialization

The MobileNetV2 backbone is adapted for binary classification by replacing its output layer with a
task- specific classification head. Transfer learning is performed in two phases: first, freezing the
backbone and training only the classification head at a learning rate of 10°%; second, unfreezing the
entire network and fine-tuning at a reduced learning rate of 10~ to adapt the pre-trained features to the
handwriting domain.

3.6 Decision Mapping Layer

The derived vector f, is forwarded into a dense projection layer, followed by a softmax classifier to
predict the output probabilities:
pn = softmax(W ¢ - fo +bc), pn € R? @)

Here, W.eR¥™ and b.€R? denote the classification weights and bias terms. The predicted vector pn
reflects the confidence distribution across the binary output space, identifying whether the input
sample is from a healthy subject or a PD patient.

3.7 Optimization Objective and Parameter Update
The network optimizes the sparse categorical cross-entropy loss between the actual labels y, and
predicted outputs pn.

JeE = — X521 Ynj 10g(Pn ) (4)
where ynjand pnjindicate the true label and predicted score for class j of the nth instance. To update

model parameters ®, we employ the Adam optimizer with momentum-based adaptive learning. The
parameter-update rule is defined as:
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W N =wW -2 Vaelce (5)

where A is the learning rate, and u indicates the current update step. Two separate learning rates are
used: A = 10~* for initial training (frozen backbone), and A = 1073 for fine-tuning (unfrozen backbone).

3.8 Two-stage Training Framework

The training protocol consists of a dual-phase learning routine. In the preliminary phase, the base
encoder Whase 1S Kept frozen to retain the pre-learned general features, while only the classifier head is
trained on the PD-specific dataset. In the subsequent fine-tuning phase, the entire model including the
feature extractor is unfrozen and optimized using a reduced learning rate. This two-stage strategy
ensures efficient convergence and avoids overfitting, especially when working with limited domain-
specific samples.

3.9 Non-linear Activation Dynamics

We incorporate non-linearity into the model by employing Rectified Linear Units (ReLUs) in hidden
layers. This allows us to improve the learning capacity of the model. Given an input scalar s that is
contained inside the set of real numbers, the ReL U activation is expressed as follows:

ReLU(s)=max(0,s) (6)

This function suppresses negative activations and introduces sparsity, thereby improving gradient flow
and learning stability. The transformed hidden output g is computed as:

g = ReLU(Wh - fn +bn) ©)

where W and by, are the parameters of the hidden fully connected layer.

3.10 Model Evaluation

Once trained, the model produces prediction probabilities for both PD and healthy classes. A
confidence- based decision threshold 7 is applied to balance sensitivity and specificity based on
clinical-screening requirements. The model’s performance is evaluated using accuracy, precision,
recall, F1-score, and ROC AUC metrics.

3.11 Dropout-based Regularization Mechanism

To counteract overfitting due to the small sample size, a dropout mechanism is applied post-feature
extraction. Let the dropout probability be denoted by p = 0.2, then the stochastic regularized output is
computed as:

g =903, & ~ Bernoulli(1 - p) (8)
Here, 6 is a binary dropout mask applied element-wise using the Hadamard product ©. This introduces

controlled noise during training, which improves model robustness by preventing reliance on specific
neuron activations and enhancing generalization to unseen handwriting patterns.

3.12 Model Confidence and Decision Thresholding

The softmax output y~ = [y"o, y"1] represents the class probabilities for the two classes. The default
decision rule assigns the class with the highest probability:

ypred = argmaxyy, k € {0,1} 9)

However, to account for medical-risk tolerance, a confidence-based threshold z €[0,1] is introduced, such
that:

Lify =zt

0, otherwise (10)

ypred = {

This allows tuning the sensitivity-specificity trade-off according to application needs, such as favoring
early detection (high recall) over absolute precision in clinical-screening scenarios.
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Algorithm 1 Proposed Parkinson’s Disease Detection Pipeline

Require: Dataset D ={(li, yi )}, pre-trained CNN gwmobilenet , l€arning rates s, #2, threshold ¢

Ensure: Predicted labels 7 € {0,1}
1: Preprocessing: Resize lito 256x256, apply grayscale & HSL conversion, and augment with flip,
rotation, zoom, contrast.
2: Feature Extraction: Compute zi = @mobiteet (li )
3: Dropout Regularization: Zij =z; Or, where r; ~Bernoulli(1-p)
4: Classification: §; =softmax(W -Z; +b)
5. Loss: Leg = — Yio1YixlogPix)
6: Training: Optimize 0 using Adam with #; (frozen base); fine-tune with #, (unfrozen base)
7: Prediction:
~ _ { 1, lf yi,l >T
Yored =1 0, otherwise

(a) Initial image, (b) Grayscale enhanced image, (c) Unscaled image (1010x610), (d) Scaled image (256x256)

Figure 2. Progression of handwriting-image transformations: (a) Initial image, (b) grayscale
enhancement, (c) original unscaled image and (d) resized image for CNN input.

4, RESULTS

4.1 Dataset Summary

The dataset used in this study was specifically curated to capture fine motor-skill anomalies typically
observed in patients with Parkinson’s Disease (PD), along with representative samples from
neurologically healthy controls, as summarized in Table 1. A total of 120 subjects participated,
comprising 60 clinically diagnosed PD patients and 60 healthy controls. The cohort included an equal
gender distribution (60 males and 60 females) to ensure demographic balance, and the participants’
ages ranged from 45 to 80 years, representing the most common age span for PD onset. The PD group
was stratified according to the Hoehn and Yahr scale, a widely accepted clinical metric for disease
severity: 20 patients in Stage 1 (early PD), 30 in Stage 2 (mild), 25 in Stage 3 (moderate), 20 in Stage
4 (severe), and 25 in Stage 5 (advanced). The healthy controls were screened to confirm the absence of
neurological or movement disorders and were matched to the PD group by age and demographic
background to minimize potential bias. All subjects performed a standardized wave-drawing (saw-
tooth) task using the same pen-tablet device under uniform acquisition conditions, ensuring
comparability of handwriting features. From these drawings, two primary kinematic attributes—pen
pressure and drawing speed—were extracted, as they are clinically validated indicators of motor
dysfunctions, such as micrographia, tremor, and bradykinesia.

The raw handwriting images were captured at an original image size of 1010x610 pixels and
subsequently resized to 256x256 pixels to meet the input-dimensionality requirements of the
MobileNetV2 architecture. The dataset was divided into training (80%), validation (10%), and testing
(10%) sub-sets, maintaining proportional representation of PD stages and healthy controls in each
split. To further increase intra- class diversity and improve generalization, data-augmentation
techniques—including grayscale and HSL conversion, geometric transformations, and contrast
enhancement—were applied. This process expanded the dataset to 816 images, enabling robust
learning despite the relatively limited original sample size.



Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

Table 1. Dataset description for Parkinson’s disease handwriting study.

Attribute Details
Total Subjects 120 (60 PD patients, 60 Healthy Controls)
Age Range 45-80 years

Primary Features

Pen-pressure, Drawing Speed

Image Size (Original)

1010 x 610 pixels

Image Size (Resized)

256 x 256 pixels

PD Stage Classification

Hoehn and Yahr Scale (Stage 1 to Stage 5)

Stage 1 (Early PD) 20 Patients
Stage 2 (Mild PD) 30 Patients
Stage 3 (Moderate PD) 25 Patients
Stage 4 (Severe PD) 20 Patients
Stage 5 (Advanced PD) 25 Patients
Healthy Controls 60 Subjects
Data Split 80% Train, 10% Validation, 10% Test
Final Dataset Size (after augmentation) 816 Images

4.1 Model Configuration and Hyper-parameter Settings

The suggested framework utilizes MobileNetV2 as a feature extractor, because it requires fewer
resources to run and performs well in environments with limited power, as shown in Table 2. This
model used pre-trained weights for ImageNet, allowing effective transfer learning to use its model for
handwriting classification of people with Parkinson’s disease. All writing samples were resized to
256x256x3 to conform with the input structure requirements of the model. A data augmentation
pipeline was utilized to improve generalization and reduce overfitting. This step involved flipping
images horizontally and vertically at random, rotating images up to 20°, zooming, and changing
contrast. Each of these transformations was done with a probability of 0.2, enabling variability similar
to real-world handwriting. After the convolutions, a Global Average Pooling (GAP) layer is utilized to
lower the feature’s dimension while obtaining a reduced characteristic map and compressing spatial
information by bridging spatial features to obtain the most discriminative features. Then, a dropout
layer with 20% drop probability was added before output dense layers to prevent neuron co-
adaptation. The classification portion was made up of a fully connected layer composed of 64 units,
each activated by the ReLU function, followed by a soft- max output to predict the probabilities of
Parkinson’s and Healthy. We utilized the Sparse Categorical Cross-Entropy objective function,
appropriate for multi-class classification problems, including degenerate binary cases.

Table 2. Hyper-parameters and training configuration.

Hyper-parameter Value

Base Model MobileNetV2  (Pre-trained on ImageNet)
Input Image Size 256 x 256 x 3

Data Augmentation Flip, Rotation (0.2), Zoom (0.2), Contrast (0.2)
Pooling Layer Global Average Pooling

Dropout Rate 0.2

Dense Layer 64 Units, ReLU Activation

Output Layer Softmax (2 Classes: Healthy / PD)

Loss Function Sparse Categorical Cross Entropy
Optimizer (Initial Phase) Adam (LR = 1e-4)

Optimizer (Fine-tuning Phase) Adam (LR = 1e-5)

Batch Size 32

Total Epochs 25 (15 Base + 10 Finetuning)

Due to its adaptability to the gradients and speed of convergence, training was performed via the
Adam optimization. To begin with training the classification head, the learning rate was setto 1 x 10
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with the feature extractor frozen. In the fine-tuning step, all layers were unfrozen and re-optimized
using a lower learning rate (1e—5). The model underwent training with a batch size of 32. In total, we
ran 25 epochs, where we used 15 epochs for training and 10 for fine-tuning. The transformation of raw
handwriting samples is illustrated in Figure 2. Certain image pre-processing operations are done to raw
handwriting samples to edit and resize them for training.

Table 3. Metrics for training and validation by epoch using ROC AUC.

Epoch  Train Loss  Train Acc. (%) Val. Loss Val. Acc. (%) ROC AUC
0 0.80 63.00 0.78 62.00 0.62
5 0.50 80.00 0.48 78.00 0.79
10 0.35 84.00 0.36 83.00 0.85
15 0.30 87.00 0.31 85.00 0.87
20 0.25 90.00 0.28 89.00 0.89
25 0.21 92.00 0.26 91.00 0.91

Best: 0.91

ROC AUC
Lo:
°

e~ ROC AUC

0 5 10 15 20 25 0 5 10 15 20 5
Epoch Epoch

(a) ROC AUC over training epochs (b) Loss of training and validation across epochs
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Figure 3. Training performance metrics: ROC AUC, loss and accuracy.

4.2 Epoch-wise Evaluation of Training Dynamics

The performance of the suggested model was assessed for progressive learning behaviour through
training and validation metrics over epochs. Table 3 reports the performance during each epoch in
terms of loss, accuracy, and ROC AUC. Likewise, Figure 3 plots the training metrics from its
evolution with time. At the initial epoch (Epoch 0), the model had limited predictive capacity;
training accuracy of 63%, validation accuracy of 62%, and ROC AUC equal to 0.62. The network is
untrained, as indicated by high loss values of 0.80 and 0.78 as part of this baseline performance.
However, as training progressed, several things improved. By epoch 5, the validation accuracy was
up to 78% while the ROC AUC improved sharply to 0.79. The model continues to improve
performance with more epochs. The validation loss amounted to (0.31) with accuracy (85%) and
AUC-ROC score (0.87) at epoch 15. Generalization has increased, and overfitting has decreased.
Epoch 25 exhibits optimal performance, with a training accuracy of 92%, a validation accuracy of
91%, and a ROC AUC of 0.91. The model is capable of minimizing classification error, which leads
to stable generalization performance. This corroborates the numerical findings, as illustrated in Fig 3.
The training and validation sub-set loss curves exhibit a consistent fall, signifying smooth
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convergence. Also, the accuracy plots indicate that both training accuracy and validation accuracy
have almost the same upward trend. The ROC AUC curve further affirms that the model is tuning
itself with every epoch to better discriminate between the positive and negative classes. In summary,
the epoch-wise performance metrics affirm the robustness and convergence of the model. The steady
improvement across loss, accuracy, and ROC AUC validates the effectiveness of the learning strategy
and the suitability of the selected architecture for the classification task.

Table 4. Performance comparison of HWR-PDNet with existing models on the test dataset.

Model Acc.  Pre. Re. Spe. F1 ROC AUC
CNN (Baseline) 090 076 091 083 0.83 0.88
LSTM Model 0.89 0.78 0.87 0.80 0.82 0.86
CNN-Transformer 0.85 0.73 0.84 0.78 0.78 0.84
1D/2D/3D CNN 082 071 0.80 076  0.75 0.82
Beta-Elliptic + Fuzzy PD Classifier 088  0.79 086 081 0.82 0.87
Hybrid CNN-GRU Handwriting Classifies 0.90 0.80 0.89 0.85 0.84 0.89
Proposed HW R-PDNet 092 081 095 089 0.88 0.91

Performance Comparison of HWR-PDNet vs Existing Models
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Figure 4. Performance comparison of HWR-PDNet vs. existing models’ performance on the test dataset.

4.3 Comparative Examination with Current Models

Table 4 presents a detailed evaluation of the proposed HWR-PDNet framework against several
contemporary baseline and hybrid models, including CNN (Baseline), LSTM Model, CNN-
Transformer, 1D/2D/3D CNN, Beta-Elliptic + Fuzzy PD Classifier, and Hybrid CNN-GRU
Handwriting Classifier. The baseline CNN achieved a strong recall of 0.91, but comparatively lower
precision (0.76), suggesting a higher tendency toward false positives. The LSTM model showed
balanced precision (0.78) and recall (0.87), though its overall accuracy (0.89) and ROC AUC (0.86)
were slightly lower. The CNN-CNN-Transformer and 1D/2D/3D CNN architectures exhibited
reduced performance, particularly in specificity, indicating limitations in correctly identifying healthy
subjects. The Beta-Elliptic + Fuzzy PD Classifier demonstrated competitive precision (0.79) and
specificity (0.81), while the Hybrid CNN-GRU Handwriting Classifier improved both accuracy (0.90)
and specificity (0.85) compared to earlier baselines. In contrast, the proposed HWR-PDNet surpassed
all other models, achieving the highest accuracy (0.92) and recall (0.95), alongside a robust F1-score
(0.88) and the highest ROC AUC (0.91). Its specificity of 0.89 reflects an effective reduction in false
positives, which is crucial in medical-screening applications. The graphical illustration in Figure 4
visually reinforces these results, showing HWR-PDNet’s consistent lead across all metrics. This
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performance gain can be attributed to its hybrid feature-extraction design, optimized regularization,
and fine-tuning strategies, which enhance its generalization and discrimination capabilities. These
findings confirm that HWR-PDNet is a reliable and superior choice for handwriting-based Parkinson’s
Disease detection in practical clinical workflows.

Table 5. Performance contribution of individual enhancements in the HWR-PDNet pipeline.

Configuration Accuracy F1-Score ROC AUC
Baseline CNN (No Aug, No Fine-Tune) 0.86 0.82 0.84
With Grayscale Augmentation 0.88 0.84 0.86
With HSL Color Space Augmentation 0.89 0.86 0.88
With Dropout Regularization (p=0.2) 0.90 0.87 0.89
With Fine-tuning with Low LR 0.91 0.88 0.90
Full Model (HW R-PDNet) 0.92 0.88 0.91

Performance Contribution of Enhancements in HWR-PDNet
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Figure 5. Performance contribution of enhancements in HWR-PDNet.

4.4 Impact Analysis of Incremental Enhancements in HWR-PDNet

An ablation study was conducted to elucidate the impact of specific enhancements in the HWR-PDNet
architecture. As represented in Table 5, the classification metrics show progressive improvements with
each enhancement, and the cumulative effects are visually summarized in Figure 5. Importantly, the
configurations in Table 5 are cumulative rather than singular. Each successive configuration builds
upon the enhancements of the previous one in the following order: baseline CNN without
augmentation or fine-tuning, addition of grayscale augmentation, addition of HSL color space-
augmentation (in addition to Grayscale), integration of dropout regularization with a probability of 0.2
(in addition to grayscale and HSL), fine-tuning with a low learning rate (in addition to grayscale, HSL,
and dropout), and finally, the complete HWR-PDNet model that incorporates all enhancements. The
order of integration was deliberately chosen to first expand the diversity and richness of the input
representations (grayscale and HSL augmentations), then introduce regularization to mitigate
overfitting (dropout), and finally apply targeted optimization to adapt the pre-trained backbone to the
handwriting domain (fine-tuning). This approach ensures that the model initially develops a broader
and more representative feature space, improves robustness against noise and overfitting, and then
benefits from specialized adaptation to the target domain without catastrophic forgetting. Starting from
the baseline CNN without data augmentation or fine-tuning, the model achieved 86% accuracy, an F1-
score of 0.82, and ROC AUC of 0.84. Adding grayscale augmentation improved performance by
enhancing the network’s ability to detect contrast-based stroke patterns, leading to better
generalization. Incorporating HSL color-space augmentation further increased accuracy to 89% and
the F1-score to 0.86, showing the benefits of color-space diversity in capturing subtle handwriting
variations. Integrating dropout regularization raised accuracy to 90% and ROC AUC to 0.89,
demonstrating improved robustness. Fine-tuning with a low learning rate allowed the network to adapt
feature representations more precisely to domain-specific characteristics, increasing accuracy to 91%



415

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025.

and F1-score to 0.88. The complete HWR-PDNet model, integrating all enhancements, achieved the
best results: 92% accuracy, F1-score of 0.88, and ROC AUC of 0.91. These results confirm that the
cumulative addition of augmentations, regularization, and fine-tuning significantly enhances both the
generalization capability and the discriminative power of the proposed model.

Table 6. Per-class performance metrics stratified by stage.

Stage Pre. Re. F1. Support
Stage 1 (Early) 0.85 091 0.88 10
Stage 2 (Mild) 086 094 0.90 15
Stage 3 (Moderate) 0.87 093 0.90 13
Stage 4 (Severe) 080 089 084 10
Stage 5 (Advanced) 0.79 0.87 0.83 12
Healthy Controls 0.89 0.86 0.87 60
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Figure 6. Per-class performance metrics stratified by stage.

4.5 Stage-wise Evaluation of Classification Performance

An analysis of the performance of the suggested HWR-PDNet across the various stages of PD was
conducted to evaluate its discriminative capability, as represented in Table 6. The model demonstrated
strong performance in detecting Stage 1 (Early) with a precision of 0.85, a recall of 0.91, and an F1-
score of 0.88, indicating sensitivity to subtle handwriting irregularities associated with early
neurodegeneration. Stages 2 (Mild) and 3 (Moderate) achieved the highest Fl-scores of 0.90,
supported by reliable precision-recall pairs, highlighting the model’s robustness in capturing
progressive motor impairments. Performance decreased slightly for Stage 4 (Severe) and Stage 5
(Advanced), with Fl-scores of 0.84 and 0.83, respectively. This reduction can be attributed to
overlapping clinical signs and reduced handwriting variability in advanced PD stages, though the
model maintained consistent classification capability. The largest support was observed in the Healthy
Control group (n=60), where the model reached an F1-score of 0.87. Notably, precision exceeded
recall in this class (0.89 vs. 0.86), suggesting a conservative, but accurate, identification of healthy
subjects. As illustrated in Figure 6, performance was relatively balanced across classes. Overall, the
stage-wise evaluation underscores the ability of HWR-PDNet to effectively track disease progression,
achieving higher efficiency in moderate-to-severe phases while preserving sensitivity at the early
stage.

4.6 Discussion

The experimental evaluation of the proposed HWR-PDNet framework demonstrates consistent
improvements across multiple classification metrics and experimental configurations. The epoch-wise
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training dynamics (Table 3 and Figure 3) reveal a smooth convergence pattern with increasing
accuracy and ROC AUC, indicating effective learning and generalization. Comparative analysis
(Table 4 and Figure 4) shows that HWR-PDNet outperforms conventional CNN, LSTM, and hybrid
models, achieving superior accuracy (92%) and recall (95%). The ablation study (Table 5 and Figure
5) highlights the cumulative contribution of augmentation, regularization, and fine-tuning, where each
enhancement incrementally boosts model performance. Moreover, the stage-wise stratification (Table
6 and Figure 6) illustrates robust classification across all Parkinson’s stages, with particularly strong
results in early and moderate stages—underscoring the model’s utility in early intervention scenarios.
Collectively, the results confirm that HWR-PDNet offers a reliable, interpretable, and high-performing
solution for stage-aware Parkinson’s Disease recognition from handwriting data.

5. CONCLUSION

This study introduced HWR-PDNet, a hybrid deep-learning architecture for stage-specific
classification of Parkinson’s Disease (PD) using handwriting patterns. The model integrates
convolutional feature extraction, attention-based enhancement, grayscale and HSL augmentations,
dropout regularization, and fine-tuning with a low learning rate to achieve robust and generalizable
outcomes. Experimental evaluations demonstrated that HWR-PDNet achieved superior classification
performance compared to baseline models, with an overall accuracy of 92%, precision of 0.81, recall
of 0.95, F1-score of 0.88, and ROC AUC of 0.91. The proposed framework consistently outperformed
the baseline CNN (accuracy: 90%, F1-score: 0.83, ROC AUC: 0.88), LSTM (accuracy: 89%), and
CNN-Transformer (accuracy: 85%) across all metrics. Ablation analysis confirmed the incremental
contribution of each enhancement, with performance improving from 86% accuracy (baseline) to 92%
in the final configuration. Stage-wise evaluation further highlighted the model’s discriminative
capacity: early-stage PD (Stage 1) achieved an F1-score of 0.88, moderate-stage PD (Stage 3) reached
0.90, and healthy controls were identified with an F1-score of 0.87, indicating low false-positive rates.
Slightly lower scores were observed in advanced stages (Stages 4-5), reflecting the overlapping
handwriting patterns typical of severe motor impairment. While this study focused on static
handwriting images, the findings underscore the potential of extending HWR-PDNet to incorporate
dynamic handwriting features, such as stroke velocity, acceleration, and temporal rhythm, which can
be readily captured using touchscreen devices. Future work will explore the integration of such
temporal signals with spatial handwriting patterns, along with multi-modal physiological data, to
enable more sensitive, specific, and real-time PD monitoring. This direction holds promise for
scalable, non-invasive, and personalized early intervention strategies in clinical and home settings.
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