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عنوان البحث الصفحات 
نهج هجين يجمع بين الشّبكات الالتفافية والمحوّلات للتصّنيف الدّقيق ثلاث الدّرجات لاعتلال الشّبكية لدى   ٢٧٩- ٢٩٩

ك�ري مرضى الس�
سميرة علي كاسي أزو، جميلة بوكريديرا، وسيف الدين باوز  

نحو تحسين تخطيط المسار لأسراب الطّائرات غير المأهولة بناءً على التحّسين المستوحى من مستعمرة النمّل  ٣٠٠- ٣١٨
أريج العبادي، و بلال صبابحة  

الترّجمة من العربية الأردنية إلى العربية القياسية الحديثة باستخدام نموذج ضخم مُعاير على مجموعة بيانات   ٣١٩ - ٣٣٥
مبنية لهذا الغرض وقائم على حقَن الأخطاء الترّكيبية

غيث عبندة، معاذ خليل، إياد جعفر، محمد عبد المجيد، يوسف حمدان، أشرف الصياغ، أسماء عبد الكريم، و شروق   
العواودة

ر السّيبراني في التغّريدات بالل�غة العربية ن للكشف عن التنّم� تقنيات تعل�م عميق متقدمة من أجل نظامٍ محس�  ٣٣٦ - ٣٥٠
مرح حوا، ثاني كميل، و أحمد حساسنة  

تحسين الأمان في إنترنت الأشياء: أثر تقليل الأبعاد والحجم في أداء كشف الاختراقات  ٣٥١ - ٣٦٨
رماح بني يونس، أمل سيف، نائلة الماضي، سفيان المجالي، و باسل محافظة  

تحسين أداء التعّل�م قصير المدى باستخدام التعّزيز على المحوّلات: تجارب على مهامّ تحليل المشاعِر   ٣٦٩ - ٣٨٩
لنِ بان كونغ بام، و هُوان تاي بونغ  

من المُسوحات إلى المشاعِر: مراجعة لطُرق جمع وتحليل التغّذية الراّجعة من المرضى  ٣٩٠ - ٤٠٤
أيوشي غوبتا، أناميكا غوبتا، دروف بنسال، و كوشي  

شبكة عصبية التفافية CNN للتعّل�م الانتقالي للكشف عن مرض باركنسون من الرسّومات بخطّ اليَد  ٤٠٥ - ٤١٧
ماثو ت.، رونال روي، جينيفا أركبول، و إبنيزر ف.  
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ABSTRACT 

This study evaluates the effectiveness of Vision Transformers (ViTs) and hybrid deep-learning architectures for 

diabetic retinopathy (DR)  classification,  addressing  the  challenge  of  inter-stage  ambiguity in traditional 

systems. While convolutional neural networks (CNNs) such as ResNet50 excel at localized feature extraction in 

retinal images, ViTs offer superior global contextual modeling. To synergize these strengths, we propose a 

hybrid architecture integrating ResNet50’s granular feature extraction with ViTs’ global relational reasoning. 
Three models are designed and evaluated:  (1) an auto-tuned ResNet50, (2) a hyperparameter-optimized ViT 

and (3) a hybrid model combining both architectures. To reduce ambiguity between neighboring stages, we 

simplified the traditional five-stage classification into three clinically relevant categories: no DR, early DR 

(mild/moderate) and advanced DR (severe/proliferative). Trained and validated on the APTOS dataset, the 

ResNet50 model achieves precision scores of 93.0% (No DR), 82.0% (Early DR) and 86.0% (Advanced DR). 

The standalone ViT demonstrates relative improvements, attaining 98.0%, 91.0% and 93.0%, respectively. The 

hybrid model surpasses both, achieving 98.0% average precision across all classes, with gains of +7.0% (early 

DR) and +5.0% (advanced DR) over the standalone ViT. The proposed hybrid model achieved an impressive 

value of 99.5% on all metrics (accuracy, precision and recall) for identifying DR (binary classification) and a 

value of 98.3% for 3-stage classification. It was also concluded that the proposed method achieved better 

performance in DR detection and classification compared to conventional CNN and other state-of-the-art 

methods. The proposed hybrid approach significantly reduces confusion between classes, demonstrating its 

potential for accurate classification of the different stages of DR. 

KEYWORDS 

Diabetic retinopathy, Vision transformer, Transfer learning, Artificial intelligence. 

1. INTRODUCTION 

Diabetic retinopathy (DR) is a disease that affects the blood vessels of the retina and can result in 

blindness. It is a serious complication in diabetic patients [1]-[2]. DDR is identified by the emergence 

of several types of lesions on the retina. The lesions include microaneurysms (MAs), hemorrhages 

(HMs) and soft and hard exudates (EXs) [3]. Positive RD is split into several stages. (1) 

Microaneurysms indicate the mild phase, (2) Moderate stage reveals a stage where blood vessels begin 

to lose their ability to transport, (3) Severe stage includes blood vessel obstructions and (4) 

Proliferative stage represent the advanced phases of RD, as shown in Figure 1. 

According to the International Diabetes Federation [4], there are around 537 million diabetics, with 

this figure anticipated to increase to 643 millions by 2030 and 783 millions by 2045. Furthermore, 

most individuals with diabetes remain undiagnosed for DR, because this disease is often asymptomatic 

until an advanced stage [5]. In order to diagnose and treat DR, regular retinal screening is essential for 

diabetic patients. Classification issues associated with DR can be divided into two categories: binary 

classification and five-class classification. Binary classification focuses on distinguishing between sick 

and healthy retinas in color fundus images, as established by [6]-[8]. Conversely, five-class 

classification methodologies strive to categorize images into five distinct classes: Class 0- no DR, 

Class 1- mild DR, Class 2- moderate DR, Class 3- severe DR and Class 4 -proliferative DR [9]-[10], 

as resumed in Figure 1. Manual examination   of retinal images is carried out using traditional methods 

to detect the presence of DR, which requires experienced and professional ophthalmologists. In 
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addition, there is a high probability of misdiagnosis during the manual examination, which is time-

consuming and costly. 

Automated methods have emerged as viable solutions to enable early identification of Diabetic 

Retinopathy (DR) and avoid permanent blindness [11]-[12], overcoming problems related to manual 

classification. In this case, machine learning has shown to be the most effective technique to overcome 

this problem [13]. 

Figure 1. Fundus images representing phases of diabetic retinopathy from the Aptos dataset. 

Deep-learning (DL) methods, particularly transfer-learning models, like VGG16, InceptionV3 and 

ResNet50, have shown considerable promise in analyzing medical images [14-[17]. Convolutional 

neural networks (CNNs), which underpin these models, mainly concentrate on local features in the 

input images, which restricts their capability to effectively recognize long-range dependencies and 

global contextual connections. Vision Transformers (ViTs) have emerged as a revolutionary 

substitute, addressing these constraints by utilizing self-attention mechanisms to capture long-range 

dependencies and global contextual associations throughout whole images. While transfer learning-

based approaches [18]-[19] have been widely adopted for diabetic-retinopathy (DR) severity 

classification, existing methods struggle with diagnostic accuracy in early-stage DR, where subtle 

lesion patterns (e.g. microaneurysms, mild hemorrhages) necessitate both fine-grained feature 

extraction and global contextual understanding of the retinal image. 

To address these challenges and evaluate the effectiveness of ViTs for DR classification, we propose 

and compare three architectures, each differing in its feature extraction method: 

1) ResNet50-based model: A CNN baseline optimized via Bayesian hyperparameter tuning for

localized feature extraction. 

2) ViT-based model:A standalone ViT model tailored for global dependency modeling.

3) Hybrid architecture: A novel fusion of ResNet50 and ViT, combining their complementary

strengths. 

We further redefine the traditional five-stage DR grading system into three clinically relevant classes: 

no DR, early DR (encompassing mild and moderate stages) and advanced DR (comprising severe and 

proliferative stages). This regrouping minimizes confusion between closely related stages, enhancing 

classification accuracy. Experiments carried out on the APTOS 2019 dataset [20] demonstrate that the 

hybrid architecture achieves 98.0% precision across all classes, reducing misclassification between 

adjacent stages by 15%–20% compared to standalone models. ViTs alone outperform ResNet50, with

relative improvements of 11.0% (early DR) and 8.1% (advanced DR) in precision. The hybrid 

architecture significantly enhances early-stage detection of DR, leading to better clinical results. 

To sum up, our contributions are as follows: 

1) Three novel architectures for DR detection and classification:

 AtRD/AtR3C: Auto-tuned ResNet50 models with Bayesian hyper-parameter optimization,

achieving 99.22% detection accuracy and 94.26% 3-class severity-classification accuracy. 

 ViRD/ViR3C: Vision Transformer (ViT) models leveraging global attention, attaining 97.73%
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detection accuracy and 92.97% classification accuracy. 

 Revi-RD/Revi-3C: A hybrid CNN-Transformer architecture combining both precedent

architectures. It achieves 99.55% detection accuracy and 98.26% 3-class severity-

classification accuracy. 

2) Redefined DR grading into (0: no DR, 1: early DR, 2: advanced DR), reducing ambiguity in

traditional 5-stage grading between neighbor classes. 

3) State-of-the-Art Performance:

 The proposed models are validated on the APTOS 2019 dataset and compared against one

another, highlighting the effectiveness of ViTs and the complementary advantages of the 

CNN-ViT hybrid architecture. 

 The earliest stages were detected with greater accuracy, especially in the hybrid model.

 We effectively optimized each model’s performance as compared to previous methodologies.
With the hybrid approach, we greatly outperformed previous results. 

The rest of the article is organized as follows: Section 2 reviews relevant research conducted on the 

DR classification. Section 3 details the methodology, including data pre-processing, the proposed 

approach and performance measures. The results are presented and analyzed in Section 4. Finally, 

Section 5 presents the key conclusions and recommendations for future works. 

2. LITERATURE REVIEW 

Early identification of Diabetic Retinopathy (DR) remains a significant challenge. Researchers have 

investigated several techniques to address this issue. Classifying DR from retinal images falls into two 

main categories. Binary classification determines whether or not DR exists, whereas multi-class 

classification indicates the disease’s specific stage. This latter method needs the model to differentiate

minor visual variations between DR stages, making it a more difficult task. Several studies have 

investigated both binary and 5-class classification of DR using machine-learning (ML) [13], [21]-[22], 

deep-learning (DL) [14], [23]-[25], transfer-learning techniques (TL) [8], [26]-[28] and more recently 

vision-transformer methods [29]-[30]. However, research into the classification of DR into three 

classes remains limited. Public retinal-image datasets, such as Idrid, EyePACS, Messidor and Aptos, 

have been instrumental in these studies for detecting and diagnosing DR. This work will specifically 

focus on recent advancements in transfer learning (TL) and Vision Transformer (ViT) applied to DR 

detection and classification on the Aptos dataset. 

2.1 Transfer Learning in DR Classification 

Dekhil et al. [31] proposed a customized CNN based on a transfer-learning technique for a 3-class 

classification task. It consists of a pre-processing stage, VGG16 and fully connected layers. To adapt 

the pre-trained model, they retrained all the layers, achieving a validation accuracy of 77%. In their 

study [32], Rao et al. evaluated five CNN classifiers; namely, Inception-V3, VGG19, VGG16, 

Resnet50 and InceptionResNetV2. Resnet50 achieved the highest accuracy (95.59%) for a binary 

classification. InceptionResNetV2 excelled at multi-class classification. It reached an accuracy of 

88.14% for classifying DR into three stages and 85% accuracy for a five-stage classification. Gangwar 

and Rav [33] proposed an hybrid model incorporating a custom convolutional neural network (CNN) 

block added to the pre-trained Inception-ResNet-v2. For training these hybrid models, they utilized 

two Kaggle datasets: Messidor-1 and the APTOS 2019. The achieved test accuracy was 72.33% for 

Messidor-1 and 82.18% for the APTOS 2019 dataset, respectively. Islam et al. [34] proposed an 

architecture based on supervised contrastive learning, utilizing the pre-trained Xception model, the 

APTOS dataset and Messidor-2. They achieved an accuracy of 98.36% for binary classification and 

84.364% for multi-class classification. Their study revealed an improvement in performance compared 

to previous architectures, including ResNet50, Inception and other earlier models. Oulhadj et al. [35] 

proposed an automatic method based on deep learning. It consists of two main steps; the first one is 

the pre-processing. The second one is the classification. Four CNN models (Densenet-121, Xception, 

Inception-v3 and Resnet50) are employed to detect the DR-severity stage. The authors implemented a 

voting mechanism using the APTOS 2019 dataset. They achieved a final accuracy of 85.28%. Mondal 

et al. [36] also suggested a deep-learning strategy for detecting diabetic retinopathy that combines the 

DenseNet101 and ResNet models. Experiments were carried out using the APTOS19 and 
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DIARETDB1 datasets. Their approach produced an accuracy of 86.08% for five-class classification 

and 96.98% for binary classification. Many CNN-based techniques have proved their ability to extract 

subtle image features surpassing traditional methods. While CNNs excel at extracting discriminative 

local features, crucial for recognizing subtle image characteristics, they struggle to process long-range 

information due to their inherent local receptive field mechanism. This limitation hinders their ability 

to fully understand the complex patterns associated with diabetic retinopathy. To address CNNs’ 
difficulties in collecting long-range dependencies within retinal images, Vision Transformers (ViTs) 

have emerged as a potential solution. 

2.2 ViT in DR Classification 

Dosovitskiy et al. [37] introduced the Vision Transformer (ViT) for image classification, motivated by 

the effectiveness of transformers in natural-language processing [38]. ViTs have surpassed traditional 

convolutional neural networks in a variety of computer-vision tasks by considering images as 

sequences of patches and exploiting self-attention. Despite the promising potential of ViTs, their 

application in DR classification remains relatively unexplored and studies specifically focused on DR 

classification are still limited. Recently, the remarkable representation capabilities of transformers 

received increasing interest in medical-image analysis [39]-[40]. For DR classification, Wu et al. [41] 

employed ViTs to prove their superior performance compared to CNNs. Additionally, Mohan et al. 

[42] proved that dividing the fundus images into non-overlapping portions maintains information

about the position of each patch. A different dataset was used to test the effectiveness of DR 

classification. For example, Nazih et al. [43] provided a ViT-based deep-learning pipeline for 

recognizing the severity stages of DR. ViT requires big datasets for successful learning; therefore, they 

utilized the FGADR (fine-grained annotated diabetic retinopathy) dataset, which comprises 1,842 

fundus images, to build their model. Experimental results of their ViT model using F1-score, accuracy, 

and recall metrics were 82.5%, 82.5% and 82.5%, respectively. In [29], Gu et al. classified DR using 

ViT on the DDR dataset. The performances of the model using specificity, sensitivity and accuracy 

metrics were 82.45%, 81.40% and 82.35%, respectively. Khan et al. [44] presented an automated 

approach for DR-severity classification using a fine-tuned Compact Convolutional Transformer (CCT) 

model, which combines convolutional layers with transformer mechanisms. The model was trained on 

a huge dataset created by combining five datasets (Aptos, Idrid, Messidor2, DDR and Kaagel Dr 

dataset). Different pre-processing and augmentation techniques were used to improve image quality. 

The model achieved an accuracy of 84.5%, outperforming both the ViT (81.56%) and the shifted 

window transformer (Swin) (82.23%). Different ViT architectures are tested in the study conducted by 

Karkera et al. [45]. Four pre-trained image transformers:  ViT, DeiT, CaiT and BEiT, were trained on 

a dataset called DBtr. The researchers then combined all four models to predict the severity stages of 

DR. The combined approach achieved an accuracy of 94.63% outperforming the results obtained by 

each of the individual models. Recently, Oulhadj et al. [46], proposed a hybrid architecture combining 

a fine-tuning vision transformer and a capsule network for automatic prediction of the severity level of 

diabetic retinopathy. The approach was evaluated using four datasets, including APTOS, Messidor-2, 

DDR and EyePACS and attained the best accuracy scores on the Aptos dataset:  88.18%. Lian and Liu 

in [47] combined a convolutional neural network (Inception-Resnet-v2) with a vision transformer. The 

model attained an accuracy of 93.2% using Messidor1 for binary classification and an accuracy of 

89.1% using the Aptos dataset for 5-stage classification. Yang et al. [48] have developed a 

Transformer model based on multiple instance learning (MIL) to classify diabetic retinopathy (DR). 

Their model divides high-resolution retinal pictures into 224 × 224 pixel patches, which are then 

processed by a Vision Transformer (ViT) to extract local characteristics. A Global Instance 

Computing Block (GICB) then combines information from many patches, improving the model’s 
capacity to understand global relationships within the image. The model obtained 93.2% accuracy for 

binary classification on the Messidor1 dataset and 85.65% accuracy for 5- stage classification on the 

Aptos dataset, surpassing the Mil-ViT proposed by Yu et al. [49]. Dihin et al. [50] used a combination 

of Wavelet and multi-Wavelet transforms with the Swin-transformer model. The study highlights the 

innovative use of the multi-Wavelet transform for feature extraction, integrated into the Swin 

transformer. The model obtained 96% accuracy for binary classification on the Kaggle APTOS 2019 

dataset. The Swin-T model with multi-Wavelet transformation achieved a 98% recall and 96% F1-

score for binary classification. However, the model’s accuracy decreased in multi-class classification

(82%). Approaches based solely on CNNs or ViTs struggle to combine the detection of local lesions 
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with the analysis of the global anatomical context, which accentuates the ambiguity between classes. 

To demonstrate the efficacy of hybridization in overcoming these limitations, this study proposes a 

hybrid CNN-ViT architecture that combines fine feature extraction and contextual modeling. Further, 

we redefine DR staging into three-tier clinically actionable categories - no DR, early DR and advanced 

DR - to improve the accuracy of classification, which remains under-explored in the literature. 

3. METHODOLOGY 

This section presents three deep-learning architectures for the classification of diabetic retinopathy 

(DR). Each model was trained for binary detection (0: No DR, 1: DR) and three-stage severity 

classification (0: No DR, 1: Early DR, 2: Advanced DR). The first proposed architecture employs 

transfer learning with ResNet-50 for feature extraction. AtRD and AtR3C, respectively, handle binary 

and 3-class classification. The second proposed architecture uses ViTs for feature extraction. ViRD 

and ViR3C deal with binary and 3-class classification, respectively. Finally, we propose a hybrid 

architectures, ReVi-RD and ReVi-3C, for detection and 3-class classification, respectively, combining 

the strengths of both previous models. As illustrated in Figure 2, each model follows a similar pipeline 

composed of several processes: 

 Pre-processing process that balances the dataset and enhances the quality of input images.

 Feature extraction is performed using the chosen architecturen (Rsnet50 and ViT).

 A multi-layer neural network classifies the image into two or 3-class classification. In the

following part, we give more details for each of these processes. 

3.1 Datset Description 

A Kaggle dataset titled APTOS 2019 Blindness Detection (APTOS stands for Asia Pacific Tele 

Ophthalmology Society) was used to train and evaluate the models [20]. This dataset was collected by 

Aravind Eye Hospital in rural areas of India with the objective of developing high-performance tools 

for the automated diagnosis of diabetic retinopathy and enhancing the hospital’s ability to identify 
potential patients. The dataset consists of 3,662 retinal images, categorized into five stages of diabetic 

retinopathy (DR)(see Figure 3b): no DR, mild DR, moderate DR, severe DR and proliferative DR, 

which are annotated with values ranging from 0 to 4. However, one of the main limitations of this 

dataset is the significant class imbalance, particularly for the severe NPDR category, which contains 

only 193 images. Additionally, the images vary in size and exhibit considerable variations due to their 

collection in a real-world multi-center environment. These variations arise from differences in camera 

settings across centers and the presence of noise, both in the data and in the annotations. 

Figure 2. Proposed-approach pipeline from data pre-processing to class prediction. 
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3.2 Dataset Preparation 

Our goal is to develop a model that can detect the existence of DR and classify its severity. As shown 

in Figure 3a and Figure 3b, the classes were grouped and re-annotated according to the classification 

task (binary or three-class classification, respectively). However, achieving an accurate model 

performance necessitates overcoming the persistent problem of data imbalance. For DR detection, we 

use a binary classification (No DR, DR). This grouping successfully balances the dataset, as shown in 

Figure 3a. 

(a) Binary Aptos dataset          (b) Aptos dataset before augmentation           (c) 3-class Aptos dataset

Figure 3. Aptos dataset before and after aggregation and augmentation. 

However, for three-stage classification, the problem of data imbalance persists. To address this issue, 

we use data-augmentation techniques that create additional images. 

3.3 Data Augmentation 

We employ data-augmentation techniques to expand the database and provide additional images of the 

different DR stages as illustrated in Figure 3c. Each original image underwent multiple augmentation 

transformations, resulting in five augmented images. These transformations include distortions, 

horizontal and vertical flips, as well as brightness adjustments. The purpose is twofold: expanding the 

dataset’s variability while meticulously preserving the essential DR characteristics. This enables

machine-learning models to learn and identify retinopathy features regardless of the image’s position 
or lighting conditions. Figure 4 shows a sub-set of the generated images by the augmentation process. 

3.4 Image Pre-processing 

Due to their many sources, the fundus images in the dataset show significant heterogeneity in terms of 

size, noise levels and distortion. These variations present significant problems for accurate analysis 

and reliable lesion detection. To overcome these obstacles and improve the quality of feature 

extraction, we propose a multi-stage pre-processing process (see Figure 5). The different stages of pre-

processing that we have carried out are: 

1) The initial step involves resizing all images to a uniform size of 224x224 pixels. This

standardization facilitates subsequent analyses and the extraction of characteristics. 

2) Each resized color image was converted into gray scale, followed by convolution using a Gaussian

blur filter, as illustrated in Figure 5b [51].This step is designed to reduce noise and accentuate 

features, in particular by improving the visibility of exudate, red lesions and blood vessels. 

3) A circular-cropping [52] technique was used to remove non-informative black pixels (background

or noise) and retain only the regions of interest, as shown in Figure 5c. 

4) Finally, normalization was performed on the pre-processed images to ensure consistent scaling of

all pixel values, thereby enhancing the efficiency and stability of model training. This data 

normalization process aims to standardize the distribution of the images. 

3.5 Fine Tuning 

Pre-trained models, such as ResNet50 and Vision Transformers (ViTs), require fine-tuning to meet the 

specific demands of DR detection and classification. For proposed models—AtRD/AtR3C (ResNet50-
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(a) Original (b) Horizontal Flip (c) Vertical Flip

(d) Brightness (e) Grid Distortion

Figure 4. Data-augmentation illustration. 

(a) Original (b) Gaussian Blur (c) Circle Crop

Figure 5.  Pre-processing phases. 

based) and ViRD/ViR3C (ViT-based), we employed a two-phase optimization. First, the pre-trained 

architectures were fine-tuned on the APTOS dataset, enabling them to capture discriminative retinal 

features, such as microaneurysms, hemorrhages and exudates, by adapting their weights to the 

morphological patterns of DR. Second, we applied Bayesian optimization to systematically refine 

critical hyperparameters, including image resolution, batch size and learning rate, ensuring robust 

classification performance across DR-severity classes while minimizing overfitting. This dual-phase 

strategy optimizes both the models’ feature-extraction capabilities and training dynamics.

Figure 6. Auto-hyperparameter-tuning process. 
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As shown in Figure 6, the fine-tuning process using Bayesian optimization aims to efficiently 

identify the optimal hyperparameter configuration for our architectures based on transfer learning. 

For efficient optimization, the network is trained with a limited number of epochs while exploring 

various hyperparameter combinations within a pre-defined range. This approach prioritizes 

identifying the hyperparameter set that yields the best score on the validation of metric set. 

3.6 DR Classification Using AtRD and AtR3C: Approach-based Transfer 

Learning 

Transfer learning, unlike training from scratch, aims to transfer knowledge that has been learned from 

another data set to a target problem. In this study, we adopted ResNet50, a convolutional neural 

network pre-trained on the ImageNet dataset, as the backbone for feature extraction. 

ResNet-50 is a specific variant of Residual Neural Networks (ResNets), developed by Kaiming He et 

al. in 2015 [53] for image recognition. It consists of 50 layers structured into convolutional layers and 

identity blocks. The key innovation of ResNet-50 lies in the use of residual connections, also known as 

skip connections (see Figure 7), which enable the network to bypass certain layers. This approach 

facilitates the training of very deep networks by mitigating the vanishing-gradient problem. ResNet-50 

adopts an optimized architecture in which each residual block contains three convolutional layers 

(1×1, 3×3 and 1×1 convolutions) instead of the two used in earlier ResNet variants. The 1×1 

convolutions serve to reduce and expand dimensionality, improving computational efficiency, while 

the 3×3 convolution captures spatial features. Several factors contribute to the model’s success: its 
large receptive fields, which capture more contextual information for each pixel; the separation 

between localization and classification stages; its computational efficiency at deeper layers; and its 

effective encoding schemes that rely on low-complexity arithmetic operations. 

Figure 7. Resnet50 architecture [53]. 

While ResNet50 excels in general image classification, its final fully connected layer—originally

configured for 1,000-class ImageNet classification—was unsuitable for our specialized binary and

three-class DR classifications. In response, we designed the AtRD and AtR3C architectures, which 

retain the feature-extraction capabilities of ResNet50 while incorporating domain-specific adaptations. 

As illustrated in Figure 8, we replaced the final classification layer of ResNet50 with a customized 

multi-layer perceptron (MLP) comprising five additional layers (Flatten, Dense, Dropout, Dense, 

Dense). The final dense layer contains two nodes for binary classification or three nodes for 3-class 

classification. 

3.7 DR Classification Using ViRD and ViR3C: Approach-based ViT 

Taking advantage of ViT’s ability to model long-range dependencies, we propose ViRD and ViR3C,

two ViT-based architectures, for the detection and classification of DR. Figures 9 illustrates the 

proposed architecture. 

The important components of the transformer are multi-head self-attention (MSA) and multi-layer 

perception (MLP). Multi-head attention in the Figure 10 is the core part of the Transformer. The ViT 

model considers an image submitted as a series of image patches. 

Here are the key steps in its operation: 



287 
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

Figure 8. Proposed architecture-based ResNet50: AtRD and AtR3C. 

Figure 9. Proposed architecture-based ViT: ViRD and ViR3C. 

Image Splitting into Patches: After pre-processing and resizing to 224*224, input picture I is divided 

into a series of flattened patches Xip (for i = 1, 2, ..., np), each with a size of p × p × C, C=3 

corresponding to the three RGB  channels in the image I; p = 16, resulting in np =(224 × 224/16*16)= 

196 patches. Each patch Xip is flattened and transformed into a 1D vector X0 of dimension pxpx3= 

162x3=768 using linear embedding. 𝑋0 = [𝑥1, 𝑥2, … , 𝑥] ∈ ℝ196×(768) (1) 

Linear Projection of Patches (Patch Embedding): Each flattened patch is projected into a space of 

dimension D using a learnable matrix  E ∈ ℝ(768)×𝐷. For  the i-th patch xi, the embedding  is given  by

zi = xi.E. E represents the projection weight matrix, with dimensions 768×D, where 768 is the

flattened patch dimension and D is the dimension of the projection space. D defines the dimension of 

the transformer’s input tokens, which serve as the basis for self-attention mechanisms. In basic ViTs,

D is commonly set to 768. 𝑍0 = [𝑧1, 𝑧2, … , 𝑧𝑛𝑝] ∈ ℝ196×𝐷
(2)
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Class Token and Positional Embedding Initialization: As illustrated in Figure 9, the positional 

information Pos ∈ ℝ196×𝐷 added into each embedded patch, allowing ViT to better understand the

spatial relationships within the input data. The ViT model also incorporates a classification token 

(z[cls]) inside the embedded patches. This is a randomly initialized, learnable parameter used to 

aggregate global information for classification. It essentially acts as a decoder. 

The input to the Transformer encoder is constructed as: 𝑍 = [𝑧[𝑐𝑙𝑠], 𝑧0] ∈ ℝ(196+1×𝐷) (3) 

After adding positional encoding, the final input to the encoder becomes: 𝑍𝑓 = 𝑍 + 𝑃𝑂𝑆 ∈ ℝ(197×𝐷)   (4) 

The resulting embedding matrix Zf, enriched with both visual and positional information, is then fed 

into a Transformer encoder stack. 

Transformer Encoders: The Transformer Encoder is composed of two main layers: Multi-head Self- 

Attention (MSA) and Multi-layer Perceptron (MLP). The resulting embedding matrix, Zf , is then fed 

into a stack of six Transformer encoder blocks. Each block consists of a multi-head self-attention 

(MSA) module with eight attention heads, followed by a multi-layer perceptron (MLP). Layer 

normalization and residual connections are applied before and after each sub-layer. 

Figure 10. MSA process: (a) MSA process with several attention layers; (b) Scaled dot-product 

attention [38]. 

The multi-head attention mechanism (MSA) is a form of self-attention that allows the model to 

concentrate on information from different sub-spaces of representation at various positions. To 

calculate attention scores, MSA uses several scaled dot-product attention mechanisms, as shown in 

Figure 10. The complete MSA operation is summarized as: 𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, … , ℎ𝑛). 𝑊0     (5) 

where Concat denotes the concatenation of all attention-head outputs; n is the number of attention 

heads. hi is the output of the i-th self-attention head. The concatenated output is then projected back to 

the original embedding space using a final weight matrix W0. 

The output of each attention head hi is computed as: ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖𝐾𝑖𝑇√𝑑𝑘 )𝑉𝑖    (6) 

A softmax function is applied to derive the attention weights for the value matrices. This softmax 

operation normalizes the resulting scores, ensuring that they are positive and sum to unity. We then 

multiply the attention weights with value matrix (Vi) to get the self-attention output hi. 

The query Qi, key Ki and value Vi vectors for each head (𝑖 ∈ {1, … , 𝑛}) are obtained by multiplying the
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input embedding matrix Zf by three distinct weight matrices, effectively projecting the input 

embeddings into different representation sub-spaces for each attention head. 𝑄𝑖 = 𝑍𝑓𝑊𝑖𝑄 𝐾𝑖 = 𝑍𝑓𝑊𝑖𝐾 𝑉𝑖 = 𝑍𝑓𝑊𝑖𝑉
The outputs from all the heads are subsequently merged and forwarded to an MLP layer for further 

processing. Each MLP and MSA operation is preceded and followed by residual blocks and 

normalization layers to guarantee stability and model optimization. MLP comprises two fully-

connected linear layers and between these layers, a non-linear activation function is applied. This 

function introduces non-linearity, allowing the model to learn more intricate patterns in the data. A 

common choice for this activation function in ViT is the Gaussian Error Linear Unit (GELU). GELU 

has a smoother, more continuous shape than the ReLU function, which can make it more effective at 

learning complex patterns in the data [38]. 𝐺𝑒𝐿𝑈 = 0.5. 𝑥 + 𝑡𝑎𝑛ℎ [√2𝜋 . (𝑥 + 0.0447𝑥2)]     (7) 

We introduce two dropout layers to regularize the model and prevent overfitting. Finally, we extract 

the [Cls] token from the Transformer Encoder output and pass it through a classification head to obtain 

class predictions y. In order to classify DR into 2 or 3 severity stages, we use a head classification 

output layer composed of 2 or 3 neurons for ViRD and ViR3C, respectively. We applied a softmax 

function to get a probability distribution to classify fundus images over the two or three severity stages 

of DR (see Figure 9). 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧[𝐶𝑙𝑠])     (8) 

3.8 DR Classification Using ReVi-RD and ReVi-3C: A Novel Hybrid Approach 

To enhance the precision of DR classification, we suggest a novel hybrid architecture that merges the 

benefits of Vision Transformers (ViTs) and Resnet50. Retinal-image features can be captured locally 

and globally by ReVi-RD and ReVi-3C models by integrating pre-trained ViRD/ViR3C with pre-

trained AtRD/AtR3C models. 

The hybrid approach is illustrated in Figure11. To construct this hybrid model, we use the weights of 

the pre-trained AtRD or AtR3C models to extract local features. We remove the MLP (final layers) of 

these models and replace it with the pre-trained ViRD or ViR3C, as described in Figure 12. In the 

following part, we describe our hybrid approach, illustrated in Figure11 and Figure 12, from input 

images to final classification. 

Figure 11. Hybrid architectures: ReVi-RD and ReVi-3C. 
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Figure 12. Detailed architecture of ReVi-RD and ReVi-3C. 

 Input:  an RGB image of 224×224 pixels, represented by a shape tensor [224, 224, 3], which   is a

standard input size for the ResNet50 model, is introduced into the pre-trained model. 

 After pre-processing, AtrD/Atr3C are used to extract local spatial features from input images of

size 224×224×3. The final classification layers of AtrD/Atr3C are removed and replaced with a 

transformer-based head. 

The output from an intermediate layer (specifically, the 7th layer from the end) of the modified 

ResNet50 model is extracted. The resulting feature map is 7×7×768 in size. This feature map 

retains high-dimensional representations of localized patterns while compressing spatial 

resolution to 7×7 grids, each with 768 channels. 

 Reshaping for Vision Transformer (ViT): The resulting feature map of dimensions 7×7×768 is

reshaped into a sequence of flattened patches, transforming the 7×7×768 feature map into a 

sequence of 49 tokens, each of 768 dimensions [49, 768]. Here, the 7×7 spatial grid is 

reinterpreted as 49 non-overlapping "patches", each represented as a 768-dimensional vector. 

This step adapts the output into a format compatible with transformer-based processing. 

 Position Embedding and Class Token: To inject spatial information into the transformer, we add

a learnable position embedding to the 49 patches, preserving their spatial relationships. Then, we 

concatenate a learnable [CLS] token (classification token) to the sequence, increasing its length 

to 50 ([50, 768]). A final sequence of length 50 is then processed by a Transformer Encoder. 

 Transformer Encoder: the sequence of length 50 is fed through a series of 6 Transformer encoder

blocks. Each block comprises a multi-head self-attention mechanism with 8 attention heads, 

followed by an MLP that includes layer normalization and residual connections. 

 Classification Head: After the Transformer encoder, we performed a layer normalization and

extracted the output corresponding to the class token. Then, we projected the final representation 

into the class space (2 for ReVi-RD or 3 For ReVi-3C) via a dense layer, yielding raw 

classification scores, which are then transformed into class probabilities using a softmax function. 

4. EXPERIMENTAL RESULTS 

In this section, a detailed discussion of the experimental results obtained is carried out to prove the 

effectiveness of the Vits and hybrid models proposed for the classification of DR. The experiment was 

conducted using the Python environment on a server equipped with an Intel(R) Xeon(R) CPU @ 

2.20GHz processor, 13 GB of RAM and a GPU P100 16GB provided by Kaggle platform. We use the 

Aptos dataset to train and test our architectures. To prevent data leakage, the dataset was explicitly 

split into two sub-sets with the ratio of 80:20 to make the training and testing datasets. Additionally, to 

address class imbalance, data augmentation was applied only to the training set, ensuring that 

artificially generated samples did not leak into validation or test sets. 



291 
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

The model underwent multiple independent trials, each with a unique random seed for dataset 

shuffling and partitioning. This approach introduced variability in data order and distribution across 

trials, enabling a thorough assessment of the model’s stability.

For the ResNet50-based model, we used the Adam optimizer, while the ViT-based model utilized the 

AdamW optimizer. We employed categorical cross-entropy as the loss function, suiatable for our 

multi- class classification task with softmax activation. The learning rate was automatically selected 

through hyperparameter tuning and the optimal value obtained was 0.0001 for model based on 

Resnet50 and 0.00002 for model based on ViT. This value was fixed during training to ensure stable 

convergence. 

4.1 Evaluation Metrics 

To assess the detection performance of the proposed models, we use the most commonly used metrics: 

accuracy, precision, specificity or recall (sensitivity) and F1 score. Their mathematical expressions are 

given in Table 1. TP, TN, FP and FN are true positives, true negatives, false positives and false 

negatives, respectively. 

4.2 Obtained Hyperparameters after Auto-tunning 

After image pre-processing, we fine-tuned the architectures to get the best hyperparameters which are 

presented in Table 2 for AtRD and AtR3C, and in Table 3 for ViRD and ViR3C. 

Table 1.  Performance metrics. 

Metrics Formula 

Accuracy (Acc) 𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
Precision (Positive Predictive Value) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃
Recall (Sensitivity) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁
F1-score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
Specificity (True Negative Rate) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃

 Table 2. Best hyperparameters obtained for AtRD and AtR3C. 

All the proposed architectures are trained using their obtained hyperparameters. 

Their performance based on test data was evaluated using the five metrics: accuracy, precision, recall 

(sensitivity), F1-score and specificity. 

4.3 Diabetic Retinopathy Detection Performance 

As the first experiment, we compare the performance of AtRD, ViRD and ReVi-RD to evaluate their 

effectiveness in DR detection and assess the impact of the features extracted by each model. The 

results reported in Table 4 summarize the evaluation metrics obtained for detecting DR. We can notice 

that AtRD and ReViRD architectures demonstrate exceptional performance, exceeding 99% across all 

Hyperparameter Value 

Image size 224x224 

Batch size 32 

Warmup epochs 5 

Warmup learning rate 0.00001 

Epochs 50 

Learning rate 0.0001 

Weight decay 0.02 

Early stopping patience 15 

Reduced LR patience 5 

Regularizer 0.02 
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metrics (accuracy, precision, recall, F1-score), showcasing their robustness in DR detection. The 

exceptional performance of AtRD can be attributed to the efficient tuning of hyperparameters. The 

ViRD model achieves slightly lower, but still impressive results, surpassing 97.7% across all metrics. 

This disparity arises from the inherent data requirements of ViTs, which typically demand larger 

datasets to fully leverage their global attention mechanisms compared to transfer-learning models [37]. 

The hybrid ReViRD model outperforms both standalone architectures , underscoring the synergistic 

benefits of combining ResNet50’s localized feature extraction with ViTs’ ability to model long-range

dependencies. 

The detection performance of the AtRD, ViRD and hybrid ReVi-RD models is compared using their 

confusion matrices (see Figure 13) and the evaluation metrics summarized in Table 5. The AtRD 

model achieves high sensitivity in retinopathy detection (99.2% true positive rate), but exhibits a 

specificity   of 96.81%, corresponding to a 3.2% false positive rate in healthy-patient classification. 

While this underscores its efficacy in identifying pathological cases, the elevated misdiagnosis rate for 

normal patients highlights limitations in distinguishing subtle non-pathological variations. In contrast, 

ViRD demonstrates balanced specificity (98.0% overall), with a slightly reduced 2.7% false negative 

rate for retinopathy cases. Although with an area under curve (AUC) of 99.1% (see Figure 14a), the 

ViT model is excellent at capturing global context through self-attention; it sometimes misses subtle 

local features that are critical for identifying retinopathy. This reliance on global context means that, in 

cases where pathological signs are very localized or subtle, the model might not sufficiently 

distinguish them from normal variations. 

Table 3. Best hyperparameters obtained for the ViRD and Vi3C. 

Parameter Value 

Image size 224x224 

Batch size 16x16 

Train batch size 32 

Test batch size 64 

Warmup steps 500 

Warmup learning rate 0.00001 

Epochs 20 

Learning rate 0.00002 

Weight decay 0.01 

Table 4. Performance comparison of proposed models for DR detection (%). 

Metric AtRD ViRD ReVi-RD 

Accuracy (%) 99.22 97.73 99.55 

Precision (%) 99.66 97.72 99.51 

Recall (%) 99.23 97.73 99.58 

F1-Score (%) 99.40 97.73 99.54 

Specificity(Average) (%) 98.01 98.00 99.50 

The hybrid ReVi-RD architecture addresses these limitations by synergistically combining CNN-

driven local feature extraction (AtRD) and ViT-based global dependency modeling (ViRD). This 

integration achieves near-perfect classification: a 1.0% false negative rate for retinopathy and 0.0% 

false positives rate for healthy cases (Table 4). With a specificity of 99.50%, ReVi-RD minimizes 

unnecessary diagnoses while maintaining exceptional sensitivity, outperforming both AtRD (98.01%) 

and ViRD (98.00%) in robustness. Class-specific metrics (Table 5) further elucidate these distinctions. 

AtRD shows moderate precision-recall harmonization (F1-scores: 97.7% for both classes), constrained 

by CNN architectures’ focus on localized textures rather than on lesion correlations. ViRD improves

balance, achieving 98.00% F1-scores for both classes via global attention, yet remains vulnerable to 

localized oversights. ReVi-RD’s hybrid design transcends these trade-offs, leveraging CNN-localized

granularity and ViT-global context to optimize feature representation. This dual capability enables 

superior accuracy in diabetic-retinopathy classification, particularly for cases requiring simultaneous 
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fine-grained and global analysis. 

The hybrid ReVi-RD resolves residual trade-offs, achieving near-perfect metrics (100% F1-score for 

both classes, 99–100% precision/recall and 99.9% AUC, as shown in Figure 15a). Its dominance stems

from synergizing AtRD localized feature extraction with ViRD global-context modeling, effectively 

eliminating misclassifications (only 0.85% of non-healthy cases mislabeled). For clinical deployment, 

ViRD’s standalone performance—particularly its precision gains for critical non-healthy cases—
validates ViTs as an important tool for severity staging, while ReVi-RD’s hybrid architecture sets a 
new benchmark for applications requiring ultra-reliable classification. These results emphasize the 

necessity of integrating CNNs and ViTs in medical imaging, where both local granularity and global 

coherence are essential for accurate, interpretable diagnoses. 

Table 5. Class-wise performance of proposed models for DR detection (%). 

Metrics 

AtRD ViRD ReVi-RD 

Class 0 Class 1 Class 0 Class1 Class 0 Class1 

Precision (%) 97.60 97.90 97.00 98.00 99.00 100.00 

Recall (%) 97.90 97.60 98.00 97.00 100.00 99.00 

F1-score (%) 97.70 97.70 98.00 98.00 100.00 100.00 

Specificity (%) 99.21 96.81 98.00 98.00 100.00 99.00 

 (a)                                                          (b)  (c) 

Figure 13. The confusion matrices: (a) AtRD, (b) ViRD and (c) ReVi-RD. 

(a) (b) 

Figure 14. ROC curve for (a) ViRD and (b) ViR3C. 

4.4 Diabetic Retinopathy Classification Performance 

In the following experiment, we test the generalization capacity of the suggested models for the 

difficult task of classifying data into three different stages of severity in order to evaluate its potential. 

Table 6 summarizes the evaluation metrics for staging RD into 3 classes. AtR3C and ViR3C offers a 

well-balanced performance across precision, recall and F1-score, as well as about 94% and 93% across 
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all metrics, respectively. ReVi-3C produced remarkable results, achieving an average of nearly 98% 

across all metrics and classes, including an area under the curve (AUC) of 99% per class, as shown in 

Figure 15b. This indicates that the model’s predictions are balanced and reliable across the different 
performance measures. 

(a)                                                                         (b)

Figure 15. ROC curve for (a) ReVi-RD and (b) ReVi-3C. 

Table 6. Performance evaluation of proposed models for 3-class DR classification (%). 

Metric AtR3C  ViR3C  ReVi-3C 

Accuracy (%)  94.26  92.97  98.26 

Precision (%)  94.41  93.77  98.43 

Recall (%)  94.09  93.22  98.21 

F1-score (%)  94.24  93.46  98.32 

Specificity (Average) (%)  93.70  96.60  98.67 

In order to evaluate the effectiveness of the suggested models (AtR3C, ViR3C and ReVi-3C), we 

examined the confusion matrices (see Figure 16), to provide details on the distribution of errors and 

classification accuracy across the three severity classes. As illustrated in Table 7, AtR3C model excels 

at identifying class 0 cases, achieving a precision of 97%, which means that nearly all predictions for 

this category are accurate. However, a specificity of 91.40% indicates that the model encounters 

difficulties with class 1. Specifically, 13% of cases are mislabeled as class 2 and 7% are incorrectly 

classified as class 0. Similarly, 15% of class 2 cases are mistakenly assigned to class 1. These patterns 

reveal a critical limitation: the model struggles to differentiate between adjacent severity levels, 

particularly distinguishing class 1 (moderate severity) from class 2 (high severity). This confusion 

suggests that AtR3C may lack the nuance needed to separate closely related categories, a gap that 

could impact its reliability in scenarios requiring precise severity staging. On the other hand, the ROC-

curve in Figure 14b corresponding to class 0 lies very close to the top-left corner of the plot. This 

indicates that ViR3C is very accurate at detecting patients without DR. 

The model demonstrated exceptional specificity of 99.5% for class 0 (healthy patients), minimizing 

false positives (0.5%) and thus avoiding misdiagnosis in unaffected individuals, which is essential for 

reliable screening. For class 1, specificity reached 92.8%, with 7.2% false positives, reflecting 

moderate difficulty in isolating this intermediate category. In contrast, class 2 (severe stage) has a high 

specificity of 97.5%, drastically limiting critical over-diagnosis and avoiding unwarranted invasive 

treatment. 

For unhealthy cases, early-stage DR (class 1) is correctly identified in 94% of instances, though a 1% 

misclassification as healthy poses a risk of missed diagnoses, while advanced-stage DR (class 2) 

shows 88% accuracy, with 12% confused as early-stage DR, but none misclassified as healthy, 

highlighting robust performance for severe cases, but some overlap in staging severity. These results 

highlight the model’s potential for accurately diagnosing early-stage DR and shows that the

misclassification error mainly concerns stages 1 and 2.  
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Compared to AtR3C, ViR3C enhances the detection of healthy cases by reducing the misclassification 

rate of healthy individuals as non-healthy from 3% with AtR3C to 2% with ViR3C. This improvement 

highlights the power of ViTs in better detecting primitives across the entire set of images. We can 

decrease the errors by combining the strengths of the two architectures. 

The hybrid ReVi-3C model dramatically outperforms its predecessors, AtR3C and ViR3C, achieving 

near-flawless classification across all severity levels: 99% precision for class 0 and class 1 and 97% 

for class 2, marking a substantial leap in accuracy. Misclassification errors are reduced to negligible 

levels, with only 3% of class 2 cases mistakenly labeled as class 1, while confusion between class 0 

and class 1 is virtually eliminated. These results highlight the critical role of hybrid architectures in 

addressing multi-class challenges, where subtle inter-class differences demand precise discrimination. 

(a)                                                     (b)                                                        (c) 

Figure 16. The confusion matrix: (a) AtR3C, (b) ViR3C and (c) ReVi-3C. 

Table 7. Class-wise performance of proposed models for 3-class DR classification (%). 

AtR3C ViR3C REVi-3C  

Metrics Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 

Precision (%) 98.00 82.00 86.00 98.00 91.00 93.00 100.00 98.00 98.00 

Recall (%) 97.00 80.00 85.00 98.00 94.00 88.00 99.00 99.00 97.00 

F1-score (%) 95.00 81.00 85.00 98.00 92.00 90.00 100.00 98.00 97.00 

Specificity (%) 96.50 91.40 93.20 99.5 92.80 97.50 100.00 97.00 99.00 

4.5 Results’ Conclusion 

The results obtained and their subsequent interpretation demonstrate that the proposed hybrid 

architectures (Revi-RD and Revi-3c) achieved remarkably high performance in both sensitivity and 

specificity. This success can be attributed to the effective exploitation of the complementary strengths 

of local feature extraction (by Resnet50) and global modeling of spatial dependencies (by ViTs). 

5. COMPARISON OF OUR APPROACHES WITH THE STATE-OF-THE-ART 

To benchmark our approach, we compared our results with those of other state-of-the-art methods that 

have utilized transfer learning on the APTOS dataset for DR severity-level classification. Our models 

were benchmarked against Convolutional Neural Networks (CNNs) [32], [54], ensemble transfer 

learning [55], Supervised Contrastive Learning [34], a Deep Dual Branch model [56], Swin 

Transformer [50] and hybrid models combining Multiple Instance Vision Transformer (Milv4) [49] 

and Vision Transformer with Inception [47]. The comparison is carried out utilizing performance 

parameters including accuracy, precision, recall or sensitivity  and F1-score across both binary and 

three-class classification tasks. All the methods illustrated in Table 8 are explained in the Related 

Works section. We can clearly say that our results are better and more enhanced than state-of-the-art 

results. 

 2-stage Classification 

AtRD model delivers a balanced performance (99.22% accuracy, 99.60% precision, 99.41% F1-score) 
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surpassing recent models, such as those of Shakibania et al. [56]. (98.50% accuracy) and Islam et al. 

[34] (98.36%). Athira et al. [55] achieved a slightly higher accuracy of 99.80%, as they also used an

ensemble deep-learning approach with auto-tuning, but did not provide an F1-scor. In comparison, 

AtRD (99.22%) and ReVi-RD (99.55%) surpass nearly all previous works. However, the hybrid ReVi-

RD model, with 99.55% accuracy, 99.51% precision and 99.54% F1-score, outperforms all existing 

approaches. 

 3-stage Classification 

AtR3C model did well in the 3-class-classification test, achieving accuracy, recall and F1-score values 

of 94.41%, 94.09% and 94.24%, respectively. Our results are somewhat superior to those of Athira et 

al. [55], who reported a slightly lower F1-score of 93.00%, but attained precision and recall of 94.00% 

each, noting that Athira did not report class performance. On the other hand, ViR3C attains an F1-

score of 93.46%, demonstrating the potential of Vision Transformers (ViTs) in DR classification, 

though these models require more data than CNNs based on transfer learning. ReVi-3C, a hybrid 

architecture, achieves an impressive F1-score of 98.32%, representing an absolute improvement of 

10.3% over Rao et al. and   a 5.1% gain over Athira et al. This significant performance boost validates 

the effectiveness of hybrid models, where CNNs excel in localized feature extraction, while ViTs 

capture global contextual patterns. The importance of our method is underscored by the lack of 

research on the three-class classification of diabetic retinopathy (DR). Revi-3C’s encouraging 
performance highlights its potential for DR detection, especially in its early stages, leading to better 

diagnostic results. 

Table 8. Comparison of the proposed approaches with relevant previous works: binary and 3-stage 

classifications (unit %). 

Architecture Accuracy Precision Recall F1-Score 

Binary classification 

Esfahani [54] 86.00 85.00 86.00 85.00 

Rao et al. [32] 96.56 97.00 97.00 96.56 

Islam et al. [34] 98.36 98.37 98.36 98.37 

Athira et al. [55] 99.80 99.00 99.00 99.00 

Shakibania et al. [56] 98.50 97.61 99.46 / 

Our AtRD 99.22 99.60 99.23 99.41 

Dihin et al. [50] 96.00 / 98.00 96.00 

Yang et al. [48] 93.2 / 86.9 / 

Lian and Liul [47] 95.3 / 94.2 / 

Our ViRD 97.73 97.72 97.73 97.73 

Our ReVi-RD 99.55 99.51 99.58 99.54 

3-class Classification 

Rao et al. [32] / 88.00 88.00 88.02 

Athira et al. [55] 94.00 94.00 93.00 

Our AtR3C 94.26 94.41 94.09 94.24 

Our ViR3C 92.97 93.77 93.22 93.46 

Our ReVi-3C 98.26 98.431 98.21 98.32 

6. CONCLUSION 

This study highlights the potential of Vision Transformers (ViTs) and hybrid architectures in 

advancing diabetic retinopathy (DR) classification, particularly for early detection. By simplifying the 

traditional five-stage DR classification into three classes—no DR, early DR (mild/moderate) and

advanced DR (severe/proliferative), we reduced ambiguity between adjacent stages. To this end, we 

proposed three architectures: (1) a Resnet50-based model with Bayesian hyperparameter optimization 

(AtRD, AtR3C), (2) a fine-tuned Vision Transformer model (ViRD, ViR3C) and (3) a hybrid 

architecture (ReVi-RD, ReVi-3C) that combines the strengths of both approaches. Experimental 
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results show that while our architecture-based ViTs improve class differentiation, our hybrid model 

achieves superior accuracy and precision, demonstrating the advantage of integrating both local 

feature extraction and global attention mechanisms. This impressive result points to a high potential 

for accurate DR detection, which might greatly improve early diagnosis and care. However, several 

limitations should be noted. The use of the APTOS dataset alone for model training and evaluation 

may not fully represent the variety of fundus images encountered in real clinical settings. 

Consequently, it remains to generalize the models by training and evaluating on diverse datasets. 

Furthermore, the work does not fully address the difficulties of interpreting the models. It is essential 

to develop methods that enable clinicians to understand and trust the decisions made by the model. For 

future work, we aim to extend our model to five-stage DR classification to align with standard clinical 

grading. Additionally, we plan to enhance generalization by training and evaluating on diverse 

datasets, ensuring robustness across different populations and imaging conditions. Furthermore, we 

will investigate how to apply explainable AI approaches to improve the clarity of our model and 

encourage its application in medical environments. 
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 ملخص البحث:

جللللل  أيلللللّ  التللللل   تلللللل ع ن   تعم للللل   ت   تلللللّ  للللل  ؤتعمللللل  للللللعل  تقييلللللّ ت للللل  ت  للللل     لللللق     ت   

للللللل      تمعات لللللللّ  ت ملللللللق   ت لللللللع   لللللللض  ّ تلللللللمع  تمصلللللللاا   امللللللل    ت ن تصلللللللت    تللللللللى   تص 

لللللض ا   تعصلللللض ّ نظملللللّ  تل    ميلللللّت  وللللل   للللل   تلولللللق    لتللللل   تل م  لللللا اللللل    تم   للللل   للللل   أي  تص 

ؤيللللللّ  للللللض  ّ   لللللل      للللللق     ت   ي  تص  للللللما   تم    للللللّ  لللللل   للللللق    تلوا  للللللّ  لللللل   الللللللّىة  ت  ل

ر ت للللل   ن لللللل   الت لللللّث ل  تلللللّث ت مللللل   تلللللق   نمعجلللللّ ث تاتم لللللّ  ةات لللللّت  تىاللللللواتر  للللل  ن لللللاج  ت لللللق 

ؤيللللللّ ا للللللم   تل صللللللت    تللللللم ي    تلللللللى للللللض ا   تعصللللللض ّ   تلوا  للللللّ    للللللق     ت     الللللل    تص 

للللل     لللللض  ّ تلللللمع   يللللل   ت ن    ت  يلللللم يمتلللللا اضتلللللاذ  ى لللللّ نملللللاال ت لللللعل  ت ايلللللّ  ت   م لللللا   أ تص 

ؤيللللللّ  للللللض ا   تعصللللللض ّ   تلوا  للللللّ   للللللملا    تة للللللان  ي لللللللتم  تلللللل    للللللق     ت   ي ت للللللا ت لللللل   تص 

   ملا    تةاتث نمقال ل    ي م  ا ت مات

لللللض  ّ    للللل   ت ملللللق   للللل   تل م  لللللا اللللل    تم   للللل   يمتلللللا  تل ال   للللل  تلللللمت     للللل   تللللللى   تص 

للللل   رو للللل    لقاللللل      تللللللى    للللل  رملللللى     للللل   تللللل   لللللى)     تللللللى     تللللللى   ض  

 ل للللللم د  قللللللميم  ياالللللل  تىنلصللللللاي ت  يللللللم تلللللل  تللللللميي   تت مللللللاال  ت   م للللللا ااالللللللّم د   مقتللللللّ 

  ت  تللللللللمع   اينللللللللّ نلللللللللاة، ت  لللللللل    تت مللللللللاال  تة ى للللللللّ  تضلللللللل   أ   APTOS تض انللللللللا  أالللللللللق   

ث تي لللللّ تصلللللت   ا  للللل   للللل   علللللم ت ا   تت ملللللقال  ت  للللل   يلولللللق  ت للللل   تت ملللللقاج    برللللل ي       لللللا

%  لللللل  جم لللللل  أ للللللتا    تلللللللى   تةى للللللّت  يللللللم    لللللل   تت مللللللقال  ت  لللللل   ي مللللللّث  ملللللللا ر 98

لللللللل     أت ذ  تملع   لللللللّ ااتل صللللللللت    تة تللللللللاة   تللللللللمد  جللللللللقت 5ت99ا  للللللل   %  لللللللل  جم لللللللل   تق 

للللللللل     أت ذ 3ت98ا  للللللللل  ت للللللللل   ت  ملللللللللّ  تللللللللللى ت  جلللللللللقت  تللللللللللى    ا تملللللللللا  %  للللللللل   تق 

للللللل ت  تللللللللى   ل لللللللمد ت  رى لللللللّ   تم تضطلللللللّ ااتل صلللللللت    تة ى للللللل      تللللللللى ت  تللللللللى   ض  

  تلللللللمد  جلللللللقت  تللللللللى   للللللل  أ ت لللللللق  لللللللل  أ    تت ظلللللللاد  ت  للللللل    تم لللللللل   تلصلللللللت    جلللللللقت 

للللل      ت ميلللللم تيجلللللّ اتللللل    تللللللى   لللللض  ّ تلللللمع   يللللل   ت ن  للللل    لللللث تولللللق    - ْ   جلللللم– تص 

لللللللض ا   تعصلللللللض ّ   تلوا  لللللللّ  ت للللللل   ت لللللللل    أت ذ ت للللللل   أنظملللللللّ  تل    ميلللللللّ  ت لللللللل  ت للللللللّمد  تص 

ث أرللللل ع    لللللث يعمللللل   تت ظلللللاد  ت  للللل    تم لللللل   ت للللل   تل    للللل   للللل   ت  لللللضْى  للللل   ت للللللّمد ج يلللللا

للللللض  ّ   اتلللللل  يضلللللل   أ   تميلللللل   ت للللللمير ت لللللل   تل صللللللت     تل صللللللت   الللللل       لللللل   تلللللللى   تص 

     تمّل وّ تعت    تلى ت تم ي   ت م   
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ABSTRACT 

Unmanned Aerial Vehicles (UAVs) play a crucial role in various operations, especially where human life must 

be protected. Efficient path planning and autonomous coordination are critical for UAV swarms in dynamic 3D 

cooperative missions, where real-time adaptability is essential. This work addresses the challenge of optimizing 

UAV swarm operations by proposing a novel hybrid navigation system based on Ant Colony Optimization 

(ACO). The system efficiently balances path optimization with dynamic formation control, adapting to mission-

specific requirements. A key contribution is the hybrid navigation approach, which prioritizes the desired 

formation of the swarm or the path length and flight time through a threshold- based mechanism, allowing real-

time adaptation to changing environments. The system also introduces a comprehensive cost function that 

evaluates the quality of the path, time consumption, mission completeness and formation divergence. The 

experiments show that the system consistently provides high-quality paths, achieving around 97% path quality in 

most cases and never declines below 90%, even in challenging scenarios. The collision avoidance module 

ensures the completeness of the 100% mission, successfully navigating drones around obstacles and maintaining 

an optimal path. Furthermore, the formation conservation mechanism effectively maintained the desired swarm 

configurations while dynamically adapting to obstacles, with the formation change staying within 30% of the 

allowable range in most scenarios, highlighting the system’s ability to preserve the desired formation even in 

dynamic environments. This research advances UAV swarm intelligence, enabling efficient and autonomous 

operations in complex 3D environments for diverse cooperative missions. The system’s adaptability to formation 

requirements opens new possibilities for UAV swarm applications, improving navigation efficiency and 

enhancing formation control. 

KEYWORDS 

Ant colony optimization (ACO), 3D dynamic environment, UAV swarm, Hybrid navigation approach, Collision 

avoidance mechanism. 

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are revolutionizing the industry. They enable rapid and more cost- 

effective completion of industrial activities while ensuring safety primarily due to their small size, 

affordable density and general simplicity of management and operation [1]. UAVs are an effective tool 

for carrying out operations in locations that are difficult to access. Performing in groups or swarms 

offers additional benefits. The ability to perform tasks that require flying over large areas, reducing the 

time required for specific operations, area coverage and coordinated impacts are only a few of the 

operational benefits that UAV swarms have over non-swarm systems [2]-[5].UAV swarms leverage 

aerial mobility, high-speed maneuverability and extensive coverage capabilities, making them 

essential for a variety of applications [6]-[8]. Hundreds of thousands of agents can collectively be 

controlled by swarm systems, while a single operator or a small team is focused on carrying out 

mission objectives. Humans can maintain operational control while delegating low-level routine 

choices to UAV agents. UAV swarms can provide the capability for quick communication and 

decision-making, as detailed in [3]. A UAV swarm is considerably more effective than one or even 

several human decision-makers in many situations. Because of many advantages, autonomous swarms 

are often much more effective, timely and responsive than human or human-operated robot groups. 

Centralized and distributed control architectures are the two main categories into which cooperative 

multi-UAV autonomous control architectures are typically classified [9]. With the benefit of obtaining 

a globally optimal solution, the centralized-control method has dominated early research. However, 

this strategy has a fundamental weakness: the multi-UAV system will become uncontrollable should 

the decision-making layer fail due to the high dependence on the communication link. The distributed 

mailto:are20208172@std.psut.edu.jo
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control approach, which has the advantages of increased dependability, less computation and 

communication, becomes a study focus as UAV performance and autonomous capabilities develop 

[10]-[11]. 

The capability of assigning targets and building a 3D trajectory for each UAV in the swarm is an 

essential part of its operation. The general problems associated with 3D path planning for a single 

UAV have been addressed using a variety of techniques, including probabilistic road maps, A* 

algorithms, artificial potential fields, probabilistic navigation functions and many other techniques 

[12]-[15]. Most of these algorithms use sampling-based and graph-based search techniques, which 

work well in high-dimensional configuration spaces and are relatively simple to implement. It is also 

known that, given enough time, they are probabilistically completed in a way that increases the 

probability of discovering a solution. Many of these techniques have drawbacks, such as potential 

exposure to local minima and limitations imposed by constraints connected to the grid’s properties. 

These algorithms often need a balance between exploration and exploitation and are computationally 

demanding. Some of these algorithms lack robustness, which prevents them from functioning in 

situations with various dynamic obstacles and automated real-time applications [16]-[17]. 

Kennedy and Eberhart presented an introductory book on swarm intelligence, based on previous work 

on robot control and decentralized AI [18]. Swarm intelligence is the intelligent behavior that results 

from a collection of independent, heterogeneous agents acting as one system. In terms of the 

distribution of organizational structure, simplicity of individuals, flexibility of the action mode, and 

establishment of Swarm Intelligence (SI), various social organisms in nature (such as ant colonies, bee 

colonies, fish schools, and wolf packs) exhibit many characteristics that UAV swarms share [19]. The 

swarm can be conceptualized as a single entity or system in which intelligence develops through the 

specific behaviors of a group of people [20]. To develop novel distributed integrated algorithms for 

UAV swarm cooperative mission planning, some researchers simulated the sophisticated and 

structured collective behaviors of social organisms. 

This research makes several significant contributions to the field of UAV swarm intelligence and 

distribution for cooperative missions. First, an ACO-based path-planning algorithm is developed. 

Then, a hybrid navigation and obstacle-avoidance algorithm is proposed. The hybrid navigation 

method adapts to different application requirements. By integrating a formation-conservation 

mechanism, the hybrid method monitors the relative positions of drones in real time and dynamically 

adjusts their positions to maintain a desired formation. This development adds versatility to the 

algorithm, as it can prioritize either formation conservation or optimized path planning based on the 

application’s specific needs. 

2. LITERATURE REVIEW

With advancements in electronic intelligence and control sub-systems, UAVs have gained popularity 

and are widely used in various professional and recreational applications [21]. Although initially used 

primarily for military purposes, UAVs have expanded their presence in the commercial and industrial 

sectors [22]. This expansion can be attributed to technological advancements and improved power 

capacities, enabling customized structures, configurations, and equipment customized to specific 

tasks[23]-[24]. 

Engaging in risky or laborious tasks often requires the deployment of multiple UAVs. This 

requirement arises from the significant time commitment and limited autonomy of these small 

unmanned vehicles. Using multiple drones concurrently, each vehicle assuming the role of a backup in 

the event of failure, tasks can be performed in parallel, resulting in reduced overall time requirements 

compared to sequential execution with individual drones. This collective approach improves 

efficiency, productivity, and the ability to tackle challenging endeavors effectively. This strategy 

draws inspiration from the remarkable group dynamics observed in various natural biological models, 

such as birds or ants [25]. These organisms exhibit remarkable coordination and interaction among 

individuals, as they work together toward a shared objective: migrating to warmer regions or 

efficiently transporting food to their colonies. Swarm-based systems aim to harness the power of 

coordinated action and adaptability to solve complex problems. 

Metaheuristic algorithms have emerged as powerful tools in artificial intelligence and mathematical 

optimization, gaining significant attention over the past two decades [26]. These algorithms exhibit 
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stochastic behavior and offer optimal solutions with reduced computational effort compared to 

conventional techniques. Metaheuristic algorithms are problem-independent and can be broadly 

classified into four categories: swarm-based (SI), physics-based, evolutionary-based and human-based 

algorithms. SI algorithms, particularly, harness the collective intelligence observed in natural systems, 

such as birds, ants, fish, wolves, and other social organisms. These algorithms strike a balance 

between exploration and exploitation within the search space. Exploration involves a global search for 

exploration, while exploitation involves a local search in areas identified as promising during the 

exploration phase. SI algorithms aim to find optimal solutions to a wide range of problems by 

emulating these social behaviors. 

Multi-UAV cooperative path planning aims to meticulously determine an optimal flight path for each 

UAV, starting from its initial point and ending at the terminal point. This planning process involves 

minimizing overall flight costs while simultaneously satisfying various constraints, including the 

distance between UAVs, arrival time, safety requirements, and UAV Performance Criteria. Chen et al. 

tackled the air-ground cooperation problem of Unmanned Ground Vehicles (UGVs) and UAVs by 

combining the Genetic Algorithm (GA) with ACO [27]. Their method effectively decoupled the routes 

of UGVs and UAVs, optimizing the heterogeneous delivery problem and obtaining optimal routes. 

Kyriakakis et al. introduced a novel dynamic optimization problem for UAV search and rescue 

scenarios [28]. They developed a multi-swarm framework with additional UAV constraints and 

evaluated seven optimization algorithms. Yu et al. proposed a mutation-constrained adaptive selection 

Differential Evolution Algorithm (DE) to handle the optimization problem [29]. The algorithm aimed 

to find the optimal solution while satisfying these constraints. To plan feasible paths that cover an 

entire area for a UAV to maintain a constant flight level relative to the ground, Gonzalez et al. 

developed a coverage algorithm [30]. They used DE to evaluate the resulting paths and select the best 

path based on distance costs. 

Wu et al. developed an improved fast convergence Artificial Bee Colony (ABC) algorithm to obtain 

the optimal path in a battlefield environment, considering conflicts and constraints [31]. Xu et al. 

developed an improved multi-objective Particle Swarm Optimization (PSO) algorithm [32]. Their 

approach calculated feasible and collision-free trajectories with variable minimum altitude, length, and 

angle rates. 

Phung and Ha addressed the path-planning problem for multiple UAVs in complex environments with 

multiple conflicts [33]. They proposed the Spherical Vector-based PSO, which efficiently explores the 

configuration space of UAVs to generate the optimal path that minimizes the cost function. Tong et al. 

integrated the Pigeon-inspired Optimization (PIO) algorithm with DE mutation strategies for path-

planning optimization [34]. Their approach considered three indices: path length, path sinuosity, and 

path risk. Qu et al. combined hybrid Grey Wolf Optimization (GWO) with a modified Symbiotic 

Organism Search (SOS) algorithm [35]. They simplified the GWO phase to improve the convergence 

rate and maintain the population’s exploration ability. The SOS phase was synthesized with GWO to 

enhance the ability to exploit. 

There have been significant recent advancements in UAV swarm research in the integration of AI 

algorithms to enhance decision-making and adaptability [36]-[37]. However, challenges remain in 

achieving robust solutions for complex tasks, especially in dynamic and uncertain environments. Key 

research gaps include the need for improved collision avoidance, navigation strategies, and path-

planning algorithms that can effectively address real-world constraints, such as uncertainty, security 

restrictions, and dynamic obstacles, which until now were discussed as an open issue and a research 

challenge [38]. While existing studies have explored these areas individually, there is a need for 

integrated systems that can comprehensively address these challenges. The proposed system 

significantly contributes to UAV swarm research by integrating several essential components, 

including a collision-avoidance algorithm, a hybrid navigation approach, and a path-planning 

algorithm based on Ant Colony Optimization. The system showcases cooperative detection and 

avoidance capabilities, enabling UAV entities to collaborate effectively in detecting and avoiding 

collisions with both obstacles and other UAVs. It functions in a 3D dynamic environment, addressing 

uncertainties, security restrictions, and multiple objects. Utilizing ACO, the path-planning algorithm 

exhibits distributed-planning behavior, as it is applied to each target in the mission, ensuring optimized 

safety and cost objectives. The system’s ability to maintain formations enables UAV swarms to 

preserve their desired shapes and spatial dimensions. These features set the system apart from other 
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studies in the literature, demonstrating its versatility and potential for real-world applications in 

various cooperative missions. 

3. PROPOSED SYSTEM

The proposed system consists of four key modules: the ACO-based path-planning module, the hybrid-

path navigation module, the collision-avoidance module, and the messaging module. Each module 

serves a specific purpose in cooperative mission planning. These components work together to 

optimize the mission performance of the UAV swarm. Figure 1 illustrates the key components of the 

proposed system. 

The ACO module forms the core of the system, drawing inspiration from ants’ foraging behavior. 

Using pheromone-based communication and local heuristics, it guides the decision-making process of 

individual UAVs. By balancing exploration and exploitation, the ACO module facilitates the search 

for optimal paths within the swarm. To enhance the adaptability and flexibility of the system, a 

developed approach called the Hybrid Approach is proposed. The Hybrid Approach introduces 

adaptability to the system by dynamically adjusting the path-planning strategy based on the desired 

swarm shape. The Obstacle Avoidance module integrates real-time obstacle detection and intelligent 

decision-making to ensure safe navigation. By employing collision-avoidance algorithms, the module 

guides UAVs to navigate around obstacles and complete their missions. The Messaging System 

facilitates effective communication and information sharing among UAVs. 

3.1 ACO-Module 

Ant Colony Optimization (ACO) was initially proposed by Dorigo et al. as a powerful multi-

dimensional optimization algorithm that draws inspiration from the foraging behavior of specific 

species of ant [39]-[40]. 

Figure 1.  System block diagram. 

Through collective intelligence, the ACO collaboratively determines the shortest path based on the 

density of the pheromone trail [41]. The strength of ACO lies in its ability to balance exploration and 

exploitation effectively. Randomly exploring ants ensures a diverse search-space coverage, enabling 

the algorithm to discover potential solutions. At the same time, the exploitation of the pheromone trails 

by other ants reinforces the convergence towards promising paths, promoting the identification of 

optimal solutions. This inherent balance between exploration and exploitation makes ACO highly 

robust and adaptive in dynamic problem domains. 

To simulate the behavior of real ants, ACO models employ equations or algorithms to update and 

propagate the pheromone values dynamically. These updates reflect the collective behavior of the 

artificial ants and play a critical role in the convergence of the algorithm toward optimal or near-

optimal solutions. The equation for the pheromone update is as follows: 
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τij(t+1)←(1−ρ) ∗ τij(t)+Δτij(t)             (1) 

where: 

 τij(t + 1): Represents the updated pheromone value on the path of component i to j at time t+1.

 τij(t): Represents the current pheromone value on the path of component i to j at time t.

 ρ: The pheromone evaporation rate is a control of the rate at which pheromones decay.

 ∆τij(t): The pheromone deposit rate represents the amount of pheromone deposited on the

path from component i to j at time t by the artificial ants constructing solutions. 

ACO algorithms use mathematical models for simulating ant decision-making. Various models exist, 

often relying on state-transition rules and probabilistic methods. One widely used model is the ant 

system, which employs probabilities to choose paths. It balances pheromone intensity and heuristics, 

achieving the exploration-exploitation trade-off. The probability equation used in ant decision-making 

is as follows: 

𝑃𝑖𝑗 =
(𝜏𝑖𝑗(𝑡))𝛼∗(𝜂𝑖𝑗(𝑡))𝛽

∑ (𝜏𝑖𝑗(𝑡))𝛼∗(𝜂𝑖𝑗(𝑡))𝛽𝐴𝑙𝑙𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑝𝑎𝑡ℎ𝑠
0

(2) 

where: 

 Pij(t): Represents the probability of selecting the path from component i to j at time t.

 ηij(t): Represents a problem-specific heuristic value associated with the path of component i to

j at time t. 

 α and β: Are parameters that control the relative importance of the pheromone trail and

heuristic information, respectively. 

 The denominator [∑ (𝜏𝑖𝑗(𝑡))𝛼 ∗ (𝜂𝑖𝑗(𝑡))𝛽𝐴𝑙𝑙𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑝𝑎𝑡ℎ𝑠
0 ] represents the sum of the probabilities 

for all possible paths or components at time t. 

In decision-making, artificial ants consider pheromone information and problem-specific heuristics. 

Pheromone information, encoded in the pheromone trails, provides a collective memory of the paths 

previously explored by the ants. The higher the pheromone concentration on a path, the more attractive 

it becomes to subsequent ants. 

The equation used to calculate the heuristic value, ηij(t), is problem-specific and depends on the 

characteristics of the path or component. One example of a commonly used heuristic is the inverse of 

the distance between two points, represented as: 

𝜂𝑖𝑗(𝑡) =
1

𝐷𝑖𝑗
(3) 

Where, 𝐷𝑖𝑗: Represent the distance between the two points i and j.

In this research, the characteristics of swarm UAV path planning and the parameter values accordingly 

are considered carefully, as shown in Table 1. 

Table 1. Parameter values for ACO in the proposed algorithm. 

ACO Parameter Value 

Evaporation Rate 0.5 

Pheromone Deposit Rate 1/Path length 

Heuristic Information (β) 5 

Importance of Pheromone Trails (α) 1 

Initial Pheromone Rate 0.01 

Number of Iterations 50 

At initialization, each drone establishes its colony by populating several ants. These ants are then 

tasked with finding the optimal path from the drone’s start to its target point. The information sharing 

and cooperation among ants occurs exclusively within the bounds of the same colony, which belongs 

to a specific UAV. Each ant performs its path exploration within a colony, utilizing local and global 

search strategies to identify the most efficient route toward the target. The local search involves 

making decisions based on the immediate surroundings and information available locally within the 

drone’s colony. Meanwhile, global search entails updating pheromone trails to incorporate valuable 

information gathered during exploration. As a result, the swarm of drones operates with high degrees 

of decentralization and parallelism, significantly enhancing the overall efficiency and scalability of the 

system. The algorithm’s key steps are shown in Algorithm 1. 
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⇐

≥ 
⇐ 

Algorithm 1 ACO-based Path Planning Algorithm 

    1: Initialize algorithm parameters 
2: Set starting and target positions for the ant’s paths 
3: Create a list of random points representing the map, including start and target nodes 
4: Connect nodes with edges and set initial pheromone values 
5: Initialize the pheromone matrix 
6:  Number of iterations ⇐ 0 
7: while Number of iterations < desired number of iterations do 
8: Populate ants on the map 
9: for each ant in the ant-list do 

10: Create a visit list and add the start point to it 
11: while ant is not at the target node do 
12: Move the ant to the next node based on Eq2 
13: Add the chosen point to the visit list 
14: Apply local search 
15: Apply global search 
16: Update the pheromone matrix based on Eq1 
17: end while 
18: end for 
19: Number of iterations ⇐ Number of iterations + 1
20: if Number of iterations desired number of iterations then
21: Calculate the distance of each ant’s shortest path 
22: Compare distances of shortest paths and output the optimal path 
23: end if 

24: end while 

3.2 Collision Avoidance Algorithm 

The collision-avoidance process within the UAV swarm navigation system is an accurately designed 

multi-step procedure, supporting optimal path planning and obstacle avoidance. The collision-

avoidance algorithm implemented in the proposed system builds upon a well-established approach 

presented in [42]-[43], known for its effectiveness in handling complex scenarios. To work for a 

swarm of UAVs instead of a single UAV, the modified obstacle avoidance algorithm is illustrated in 

Algorithm 2. 

    Algorithm 2 Collision Avoidance 

1: Initialize each UAV with start point, target point, speed, rotation, scale and priority 
2: The UAV moves to its current target 
3: while UAV is moving to the target do 
4: Check if there is a potential collision on the UAV path 
5: if No potential collision then 
6: The UAV keeps moving to its target normally 
7: else 
8: Send a message to alert all drones in the swarm about the collision possibility 
9: Check if the UAV is considered to have the highest priority 

10: if UAV has the highest priority then 
11: Go back to The UAV moves to its current target and repeat 
12: else 
13: Generate a number of random points around the current position 
14: Calculate the distance to the target through the waypoints 
15: Find the nearest point with the minimum distance 
16: Check if the chosen point eliminates the potential collision 
17: if No, if the newly chosen point still leads to a potential collision then 
18: Go back to Generate a number of random points and repeat 
19: else 
20: Store the original target in the temporary target variable 
21: Set the target to the nearest point 
22: Go back to ”UAV moves to its current target” to move the UAV to the nearest point 
23: Check if the nearest point is reached 
24: if The nearest point is not reached then 
25: Go back to ”UAV moves to its current target” 
26: else 
27: Restore the original current target 
28: Go back to ”UAV moves to its current target” 
29: end if 
30: end if 
31: end if 
32: end if 

33: end while 

3.3 Messaging Module 

The messaging module in the system facilitates effective communication and coordination between 

drones within the UAV swarm. The messaging module implemented in the proposed system is based 

on a well- established approach presented in [43]. It is crucial to enable the swarm to operate as a 

cohesive unit, dynamically adapting to changing conditions and avoiding collisions while pursuing its 

mission objectives. Significant updates are made to enhance dynamic adaptability and swarm 

robustness. The system now adopts a distributed-path planning and hybrid navigation approach, 

allowing for more efficient and resilient performance.
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The messaging module enables drones within the swarm to share their real-time positions. This 

continuous data exchange is essential for maintaining the desired formation during cooperative 

missions. Knowing the positions of the other drones, each UAV can adjust its trajectory to stay in the 

designated formation. 

3.4 System Design 

The system described in this sub-section is designed to control a swarm of drones operating within a 

specified environment. Its primary objective is to optimize the movement and coordination of the 

drones to achieve efficient and effective task completion. The system aims to minimize the distance 

traveled, maximize productivity and ensure safe operation by intelligently guiding the drones through 

commands and paths. The drone-swarm navigation system can be adapted to two different options 

based on application requirements. In the first option, formation conservation is not an application 

requirement, while in the second option, the application requires maintaining a specific formation or 

shape. In both options, the drones follow the optimal path generated by the ACO module, ensuring 

efficient navigation and collision avoidance within the environment. 

 Option one: The system coordinates the movement of the drones, optimizes their paths using

ACO, controls their movement using PID controllers and performs collision avoidance to ensure 

safe operation within the swarm, as shown in Algorithm 3. 

 Option two: In the second option shown in Algorithm 4, additional functionality is introduced

when the application requires maintaining a specific formation or shape. 

3.5 Cost Function Evaluation 

For an objective evaluation of the overall performance of the swarm, the following data is collected 

before the evaluation parameters are computed: 

 Minimum Distance: The straight-line distance between each drone’s initial and final target

positions. 

 Total Travelled Distance: The cumulative distance traveled by each drone from its initial position

to its final target. 

 Total Travelled Time: The duration a drone needs to reach its final target.

 Number of Divergences: A divergence occurs when a drone deviates from its intended path.

 Number of Collisions: When two drones come into physical contact.

In addition, for option two, where formation conservation is required, an extra parameter is calculated: 

 Average Distance Change: Measures how much each drone deviates from the desired formation.

The following evaluation parameters are formulated to capture the mission’s quality, efficiency, 

completion and formation conservation during cooperative missions: 

 Path Quality (PQ): Evaluates the efficiency of the path-planning module. It is calculated using the

following equation (Eq. 4): 

𝑃𝑄 =
1

𝑁
∗ ∑

𝑀𝑖𝑛𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑁−1
𝑖=0 ∗ 100%     (4) 

where: 

o N: the total number of drones in the swarm.

o MinTravelledDistancei: is the minimum distance traveled by drone i from its initial position to

its target. 

o TotalTravelledDistancei: is the total distance traveled by drone i during its mission.

A higher value for this parameter indicates that the drone successfully optimizes its path, following the 

shortest route to its target. 

 Algorithm 3 System Behavior – Option 1 

1: UAVs receive important mission information from the ground station, including start and target points, speed, rotation, scale, 
formation and priority. 
2: Apply the ant colony algorithm for each UAV. 
3: while the optimal path is not generated do 
4: Keep waiting 
5: end while 
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6: Begin the main loop of the system 
7: for each UAV do 
8: Each UAV’s initial target is set to the first node on its optimal path 
9: Each UAV sets the last point in the optimal path as the destination target 
10: Use a PID controller to calculate the drive forces for each axis (x, y,  z)   

  11: UAV moves to its current target 
12: while UAV is moving to the target do 
13: UAV checks if there is a potential collision on its path 
14: if No potential collision then 
15: Check if the current target has been reached 
16: if the current target is reached then 
17: Check if the current target is the destination target 
18: if the current target is the destination target then 
19: Mission ends 
20: else 
21: Update the target position to be the next node in the optimal path 
22: Go back to UAV moves to its current target 
23: end if 
24: end if 
25: else 
26: Send a message to alert all drones in the swarm about the collision possibility 
27: Check if the UAV has the highest priority 
28: if UAV has the highest priority then 
29: Go back to UAV moves to its current target 
30: else 

  31:  Generate several random points around the current position 
  32:  Calculate the distance to the target through the waypoints 
  33:      Find the nearest point with the minimum distance 

34: Check if the chosen point eliminates the potential collision 
35: if Chosen point eliminates collision then 
36: Store the original target in the temporary target variable 
37: Set the target to the nearest point 
38: Go back to UAV moves to its current target 
39: Check if the nearest point is reached 
40: if the nearest point is not reached then 
41: Go back to UAV moves to its current target 
42: else 
43: Restore the original current target 
44: end if 
45: else 
46: Go back to the step of generating several random points and repeat 
47: end if 
48: end if 
49: end if 
50: end while 
51: end for 

52: Repeat the main loop until the UAV reaches its target 

Algorithm 4 System Behavior – Option 2 

1: UAVs receive mission information from the ground station, including start and target points, speed, rotation, scale, formation 
and priority. 

2: Each UAV reads the start point for all other UAVs in the swarm. 
3: Create a reference distance array that captures the distances between drones in the desired formation. 
4: Apply the ant colony algorithm for all UAVs in the swarm. 
5:  Set the current target as the first node in the optimal path for the UAV and set the last point in the optimal path as the 

destination target. 
6: Use a PID controller to calculate drive forces for each axis (x, y, z). 
7: UAV moves to its current target. 
8: while UAV is moving to the target do 
9: Read the current positions for all drones and create a current distance array, representing the current formation distances 

for the swarm. 
10: if The current distance array equals the reference distance array then 
11:  The UAV keeps moving to its current position while checking for potential collisions and if the UAV reaches its 

target, continue to the next step. 
12: else 
13: Calculate the difference in distance between the UAV and all other UAVs in the swarm. 
14: if The difference in distances is less than the threshold then 
15: The UAV keeps moving to its current position while checking for potential collisions and if the UAV reaches its 

target, continue to the next step. 
16: else 
17: Generate several random points around the current position. 
18: Choose the nearest point. 
19: Check if the nearest point will maintain the UAV position. 
20: if The nearest point maintains the UAV position then 
21: Store the original target in the temporary target variable. 
22: Set the target to the nearest point. 
23: Go back to "UAV move to its current target". 
24: Check if the UAV reaches the nearest point. 
25: if UAV is not at the nearest point then 
26: Go back to UAV move to its current target and repeat. 
27: else 
28: Restore the original target. 
29: end if 
30: else 
31: Go back to Generate several random points and repeat. 
32: end if 
33: end if 
34: end if 
35: end while 

36: Repeat the main loop until the UAV reaches its target 
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 Mission Completeness (MC): Evaluates the collision-avoidance module’s effectiveness and the
UAV swarm’s adaptability in successfully achieving its mission objectives. It is calculated using 

Eq. 5. 

𝑀𝐶 =
𝑁𝑅𝑒𝑎𝑐ℎ𝑒𝑑𝐼𝑡𝑠𝑇𝑎𝑟𝑔𝑒𝑡

𝑁
∗ 100% (5) 

Where, NReachedItsTarget: is the count of drones successfully reaching their targets. 

A higher value for this parameter indicates a success rate in achieving mission objectives, as many 

drones have reached their targets without collisions. 

 Average of Divergence (AD): Measures how much each drone deviates from its original path to

avoid collisions with other drones or with obstacles. It quantifies the quality of the new routes 

generated by the collision-avoidance module. Eq. 6 shows how this is calculated. 

𝐴𝐷 =
∑ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠𝑖

𝑁−1
𝑖=0

𝑁
(6) 

Where, NumberOf Divergencesi: is the number of times that drone i deviates from its original path. 

 Swarm Flight Time (FT): Quantifies the efficiency of the UAV swarm in completing the mission,

referring to a predefined time frame. It reflects how effectively all drones in the swarm work 

together to achieve mission objectives. This parameter is calculated as shown in Eq. 7. 

𝐹𝑇 =
𝑇

𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑚𝑒
(7) 

Where, T: is the total time taken for all drones in the swarm to reach their respective targets. 

A smaller value indicates a more cohesive and cooperative swarm, where drones work towards 

mission completion with minimal delays and divergences. 

 Formation Change (FC): Evaluates how effectively drones in the swarm maintain their desired

formation during cooperative missions. This parameter is calculated as shown in Eq. 8. 

𝐹𝐶 =
1

𝑁
∗ ∑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑓𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑖

𝐷𝑒𝑓𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑁−1
𝑖=0 ∗ 100%  (8) 

Where: 

o Averageof DistanceChangei: is the average distance change for each drone relative to the

desired formation of the swarm. 

o DefinedThreshold: is a predefined value that determines acceptable deviations from the

desired formation. 

A lower formation change value indicates better performance of the hybrid module, as it 

indicates that the drones successfully maintain their formation with minimal deviations from 

the desired configuration. 

A cost function is formulated as a weighted sum (α,β,ω,γ,µ) of the four parameters in the first option 

and five parameters in the formation-conservation option, with each parameter assigned a specific 

weight to reflect its relative importance. The formula for the comprehensive cost function is given 

by Eq.9 and Eq.10 for option one and option two, respectively. 

Option one: 

𝐶𝐹 = 𝛼𝑃𝑄 + 𝛽(1 − 𝐹𝑇) + 𝜔(1 − 𝐴𝐷) + 𝛾𝑀𝐶  (9)

Option two: 

𝐶𝐹 = 𝛼𝑃𝑄 + 𝛽(1 − 𝐹𝑇) + 𝜔(1 − 𝐴𝐷) + 𝛾𝑀𝐶 + 𝜇(1 − 𝐹𝐶)   (10) 

These formulations ensure that the algorithm is evaluated based on its ability to optimize multiple 

key aspects simultaneously. A higher comprehensive cost function value indicates better 

performance. 

3.6 System Complexity 

The algorithm complexity measures how the performance and execution time of the algorithm scale 

with the increasing number of drones in the swarm. As the swarm size grows, the algorithm’s 

efficiency becomes critical in ensuring real-time operation and mission success. Efficient algorithms 
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with lower complexity ensure that the swarm can handle larger numbers of drones without 

compromising performance. 

Figure 2. System execution time for both options as the number of drones in the swarm increases. 

The execution time of the algorithm is a critical aspect that directly impacts the real-time operation of 

UAV swarms. In the first option, where formation conservation is not a specific application 

requirement, the algorithm complexity is O(X + C), where X is the number of drones in the swarm and 

C is the number of execution cycles, which remains constant regardless of the number of drones. The 

algorithm’s scalability in this option is relatively better due to the linear complexity, making it suitable 

for swarms with a large number of drones. 

In the second option, where formation conservation is essential, the algorithm complexity becomes 

O(X4 + C). This increase in complexity is due to the additional calculations and coordination required 

to maintain the desired formation during cooperative missions. The formation-conservation constraint 

introduces non- linearity in the algorithm, which impacts its scalability as the number of drones 

increases. 

To ensure real-time execution in both options, an upper bound for the execution time of the algorithm 

is established as follows: 

 For Option One:

(𝑋 + 𝐶) ∗ (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒) < (
𝑠𝑒𝑛𝑠𝑖𝑛𝑔𝑟𝑎𝑛𝑔𝑒

𝑑𝑟𝑜𝑛𝑒𝑠𝑝𝑒𝑒𝑑
) (11) 

 For Option Two:

(𝑋4 + 𝐶) ∗ (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒) < (
𝑠𝑒𝑛𝑠𝑖𝑛𝑔𝑟𝑎𝑛𝑔𝑒

𝑑𝑟𝑜𝑛𝑒𝑠𝑝𝑒𝑒𝑑
) (12) 

By meeting this condition, the algorithm can guarantee safe and efficient navigation for the entire 

swarm, even in dynamic and densely populated environments. Figure 2 illustrates the algorithm 

execution time for both options as the number of drones in the swarm increases. 

4. SIMULATION AND RESULTS

The proposed system is implemented using the UTSim simulator, which offers an adaptable platform 

for creating and configuring multiple instances of UAVs [43]. The simulation setup involved the 

implementation of flight scenarios in a 3D environment, where the UAVs were controlled using the 

proposed system. Before each mission, the initial locations and destinations of the UAVs were defined 

based on the specific scenario. The UAVs used in the experiments were all fixed in size, with a half-

meter diameter. Their speeds were maintained at a constant value of 6 m/s throughout the missions. 

Due to the inherent characteristics of rigid bodies, the speed decreased when the UAVs changed 

direction or reached their destinations. 

Each run was performed 35 times in the 3D space to ensure reliable results. In an obstacle-free 

environment where formation maintenance is not a mission requirement, the swarm exhibits perfect 

consistency across all 35 experimental runs, with zero variability within a confidence interval of 95%. 
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However, when operating in a dense obstacle environment with a 0.1 allowable distance change, the 

system displays slight variability. For a 30-drone swarm, the error margin remains below 0.007 for 

distance change and 0.009 for flight time. As the swarm size increases to 40 drones, the error in total 

distance remains below 0.12. Even with a swarm of up to 80 drones, the error margin for distance 

change stays below 0.01. These consistently low error margins across all test conditions provide strong 

evidence of the system’s robustness and reliability in both controlled and complex environments. 

4.1 Algorithm Constraints and Assumptions 

Constraints play a vital role in shaping the behavior and performance of UAV swarms during 

missions. They are essential elements that impose limits and restrictions on various aspects of the 

swarm’s operation, ensuring safe, efficient, and coordinated behavior. Several constraints were 

considered to study the system’s performance under different scenarios: 

 Maneuverability Constraints: The maximum turning angle (θmax) was set to 30 degrees on the x-

axis while remaining unrestricted in the y and z-axes. 

Θi(T ) − Θmax ≤ 0    (13) 

where: Θi(T ): The turning angle of the ith UAV at time T. 

 Sensing Range Constraint: Each UAV sampled 25 points every time a reroute was computed.

Rerouting was triggered when a passive obstacle was detected or when a higher-priority UAV was 

sensed. The sample points were taken within a customizable radius (Rs) of a circle/sphere set at 5 

meters. 

Rs − Dij(T ) ≥ 0              (14) 

where, Dij(T): The distance between the ith UAV and the jth UAV or obstacle at time T. 

 Collision-avoidance Constraints: The algorithm incorporates a safe distance, denoted as Dmin,

between two UAVs or between a UAV and an obstacle. This distance defines the collider sensing 

range, represented by the radius of a circle or sphere centered at the UAV. 

Dmin − Dij(T ) < 0            (15) 

where, Dij(T): The distance between the ith UAV and the jth UAV or obstacle at time T. 

 Operating-range Constraint: The flight operation area was defined as 1 km * 1 km, providing a

bounded environment for the swarm’s missions. 

 Time frame: the time frame is set to be a one-minute flight.

 For the first option’s cost function, the (α,β,ω and γ) are 0.3, 0.3, 0.2, 0.2, respectively.

 For the second option’s cost function, the (α,β,ω,γ and µ) are 0.2, 0.2, 0.2, 0.2, 0.2, respectively.

The experiment scenarios were designed to vary the number of drones within the flight area, ranging 

from 5 to 80 drones. The number of obstacles (moving and static) gradually increased, with the 

maximum number exceeding the total number of UAVs in the swarm, which is moving randomly in 

the environment. In the second option, various thresholds were tested to evaluate the performance of 

the hybrid navigation approach. 

4.2 Effects of Different Safe Distances 

This sub-section investigates the influence of varying safe distances on swarms of sizes ranging from 5 

to 80 UAVs. The safe distance is incrementally increased from 1 meter to 3 meters for each case. This 

analysis provides insights into the optimal safe distance setting that maximizes the UAV swarm’s 

efficiency and effectiveness in different scenarios. In this sub-section, all tests were conducted in 

obstacle-free environments and the safe-distance parameter of the system was adjusted and controlled 

from the ground station before each mission. The mission is designed, allowing tuning for a safe 

distance based on the distances between the drones and the total travel distance for each drone 

between the starting and target points, without considering the number of obstacles as a part of the 

mission design. This will be considered a design-preparation phase to set the safe distance to the next 

sections. These evaluations provided valuable insights into the system’s performance and how the 
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adjustable parameters influenced its behavior when encountering unexpected obstacles during 

missions. 

Figure 3. The path quality vs. the number of drones for different safe distances. 

 Path Quality: The ACO module achieves a path quality of over 99% with 1m safe-distance

scenarios. However, it reached 96% when the safe distance increased to 2m and 92% for the 3m 

safe distance, as shown in Figure 3. As the safe distance for drones increased, more drones had to 

make route diversions to avoid potential collisions, which increased the average of divergence, as 

shown in Figure 4, increasing the total traveled distance for each drone, which decreased the path 

quality. The formation and the distances between the start and target points for the drones are 

different from swarm to swarm, which explains the path quality and average of divergence 

behavior change for the same value of safe distance, since the distances between drones in the 

case with twenty UAVs are less than the distances between the drones in ten-UAVs. This 

increased the influence of large safe distances where the UAV needed to increase the number of 

divergences to save the safe distance simultaneously to avoid any potential collisions between the 

other UAVs in the swarm, which decreased the path quality. However, the path-quality values are 

close for all swarms because of the distributed approach in the ACO-based path-planning 

algorithm. The algorithm generates the optimal path for each drone based on its start and target 

point without considering the number of drones in the swarm. 

 Swarm flight time: The increase in the average number of divergences leads to a greater total

travel distance. This typically results in longer flight times for the swarms, as illustrated in Figure 

5. 

4.3 Effects of Number of Obstacles 

The number of obstacles gradually increases. The number, speed, direction and all information of 

obstacles are unknown for the drones in the swarm to evaluate the system’s adaptability to 

uncertainties. The obstacles move randomly in different directions and elevations. All cases are tested 

at a safe distance of 1 m. 

 Path Quality: As illustrated in Figure 6, an increase in the number of obstacles does not

significantly affect path quality in swarms with a small number of drones. This is because the 

drones maintain safe distances from each other and have a wide space within their operating 

range to locate the nearest point for collision avoidance. However, as the number of drones in the 

swarm increases, the distances between them decrease and the available operating space narrows, 

as shown in Figure 7. Consequently, the drones must find the nearest point to avoid collisions 

with obstacles while also considering a safe distance from other drones in the swarm. This 

necessity often increases the average number of divergences. Additionally, since the obstacles 

move randomly within the flight environment, their effects may vary across different scenarios. 

 Swarm FT: Increasing the number of obstacles affected the mission time and the values of the
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cost function. However, since the obstacles are moving randomly in the flight environment, the 

effect does not show the same behavior in all scenarios, as shown in Figure 8 and Figure 9.  

Figure 4. Average of divergence vs. the number of drones for different safe distances. 

Figure 5. Swarm flight time divergence vs. the number of drones for different safe distances. 

Figure 6. Path quality vs. the number of obstacles for different swarm sizes. 
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Figure 7. Eighty-UAV formation with 85 obstacles. 

Figure 8. Swarm flight time vs. the number of obstacles for different swarm sizes. 

Figure 9. Cost function vs. the number of obstacles for different swarm sizes. 
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4.4 The Formation Threshold Effects 

One of the important contributions of this study is the hybrid navigation approach, where application 

requirements are evaluated to prioritize following the optimal ACO path or maintaining a desired 

formation. In this sub-section, different thresholds (allowable change distance) are tested to evaluate 

the system’s performance, where each case has a different formation with different distances between 

the drones within the formation and different distances between the start and destination points for 

each drone. All cases will be tested at a safe distance of 1 m. 

 Path Quality: In the second option, with different threshold values, the system can manage the

trade-off between maintaining formation and following the optimal path, resulting in optimal 

flight trajectories and minimal divergence. The system showed its ability to choose the nearest 

points to preserve the formation. As Figure 10 illustrates, the quality of the path is above 97% in 

all cases. 

 Swarm Flight Time: Increasing the threshold allowed the drones more movement flexibility,

reducing the time needed to complete the mission, as shown in Figure 11. 

Figure 10. Path quality vs. the threshold values for different swarm sizes. 

Figure 11. Swarm flight time vs. the threshold values for different swarm sizes. 

 Formation Change: The formation change parameter evaluates the swarm’s ability to maintain its

desired formation during cooperative missions. The experiments demonstrated the success of the 

hybrid approach, as the formation change remained below 25% of the allowable change in all 

cases, as shown in Figure 12 and this percentage decreased when the threshold increased, but 

with different slopes, since each drone will generate a random point around its current position, 
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which is directly related to its formation and optimal path and choose the nearest point that 

maintains its formation, saves the safe distance between the UAVs and avoids any potential 

collisions. However, in all cases, the system shows high adaptability with an acceptable 

formation change. It shows that the approach effectively conserves the formation during 

missions. 

Figure 12. Formation change vs. the threshold values for different swarm sizes. 

In summary, achieving robust solutions for complex tasks in dynamic and uncertain environments is a 

persistent challenge. In its integrated approach, the proposed system contributes to filling this gap by 

integrating ACO-based path planning, hybrid navigation and collision avoidance, enabling cooperative 

detection and avoidance in 3D dynamic environments with multiple objects, uncertainties and security 

restrictions. As demonstrated in the results, the system’s performance is a direct consequence of this 

integration. ACO provides efficient path planning, while hybrid navigation and collision-avoidance 

algorithms work together to maintain formation and prevent collisions. The varying performance 

between swarms, where UAVs generate random points for collision avoidance, trading off mission 

objectives with safety directly related to these environments’ dynamic and unpredictable nature is a 

key challenge identified in previous research. Although this variability is observed, the system 

consistently demonstrated high adaptability with acceptable formation changes, validating its 

robustness in complex scenarios. 

4.5 Challenging Cases Evaluation 

To further assess the system’s performance, challenging cases were tested in which the swarm must 

preserve its formation with an allowable change distance of less than 0.1 m while flying in a dense-

obstacle environment to assess how the system adapts to high levels of obstacle density while 

maintaining its formation. As shown in Table 2, cases with a threshold of 0.1 and many obstacles were 

tested when evaluating the hybrid navigation approach. This case’s performance shows the hybrid 

approach’s efficiency in achieving mission objectives while ensuring formation conservation. 

Table 2. System’s performance in challenging cases. 

Number of Obstacles Number of Drones AD FT MC (100%) PQ (100%) FC (100%) Cost Function 

6 5 1 1.0969 100 97.7058 26.8118 34.3594 

12 10 1 0.6097 100 99.7400 26.0080 35.0247 

25 20 1.1 1.3182 100 99.1094 20.6193 35.8143 

40 30 4.33 0.9135 100 94.1925 20.0458 34.3799 

45 40 5.525 2.0233 100 94.5771 24.6229 33.0812 

60 50 8.34 2.5419 100 97.6972 24.2275 33.1175 

65 60 3.72 1.1032 100 98.9631 21.6300 35.1919 

75 70 2.3571 1.5063 100 98.8808 31.3673 33.3299 

85 80 4.19 1.8487 100 98.5522 28.7537 33.3524 
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Figure 13. System performance for different numbers of obstacles. 

To test the adaptability of the hybrid approach to the increased density of obstacles in the flight 

environment while maintaining the distance change to be less than 0.1 m, for a twenty-UAV swarm, the 

number of obstacles will start at 10 and then increase to 100, with a constant number of obstacles during 

each run session. As shown in Figure 13, increasing the number of obstacles will increase the possibility 

of collisions, since the operation space is so crowded, which increases the swarm flight time and the 

average number of divergences. With the increase in the number of obstacles, the UAVs need to 

increase the distance within the threshold to maintain their formation while saving their safe distance, 

which will normally affect path-quality and cost-function values. The tests are performed at a 1m safe 

distance. 

5. CONCLUSION

This work presents an adaptable intelligent system for cooperative UAV swarm missions, integrating a 

path-planning algorithm based on the ACO algorithm, a collision-avoidance algorithm and a hybrid 

navigation system. The system was tested and evaluated in various scenarios, including different 

swarm sizes in dynamic 3D environments filled with moving and static obstacles while maintaining 

the desired formation. The simulation results demonstrate the system’s outstanding performance, 

achieving a path quality of around 97% in most cases and never dropping below 90%, even in 

challenging scenarios. This reflects the high efficiency of the ACO module in finding optimal paths 

and the system’s adaptability in consistently following them. The collision-avoidance module showed 

remarkable performance, ensuring that all missions remained collision-free, with a mission 

completeness rate of 100% in all testing scenarios. When the desired formation was necessary, the 

system showed its ability to maintain it even in dynamic environments within 30% of the allowable 

range in most cases. The system’s success lies in its cooperative approach, in which all the modules 

work together smoothly. This collaborative and intelligent system illustrates its potential for real-world 

applications in various cooperative UAV-swarm missions. 
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ملخص البحث:

ما ببببب ائرل  ببببب ا ببببب ائرلااةببببباهائرا  حتا بببببالمئهالةبببببمائراً حربببببفا البببببما الئماياتببببباا عبببببف اأصبببببلطّائرات

اع ببببب  اا  لبببببة ائرطبببببباُاعاببببب ايةبببببا ائرل بببببم اا  لببببب تائر بببببفم  تخابببببةعائربلببببباااراايبببببالاائر  يبببببة اابخاصت

ببببببباهائر ت  ا ة ةبببببببفا بببببببالمئهالةبببببببمائراً حربببببببفا ببببببب ائراّات ئربببببببمتئ  اأ بببببببم  ا ّابببببببة التبببببببمئاائرات

ت اا   ببببباااا ئر تلاانةبببببفا ا ةبببببفائلبلبببببا ايةبببببلا  بببببحيائر ت ةبًببببيا ببببب ائرببببب ت  ائرط ة ببببب اأ بببببمئماأتاتبببببةا

ببببالمئهالةببببمائراً حربببب فائرت بببب ا لاببببتا بببب ا ببببمئائرلطببببلائر تطبببب تيائرا ا تببببتا بببب ا طيببببة اعااةبببباهائرات

ايببببببفائر حت ببببببفا م  بببببب ا ربببببب ائر تطيببببببة اأتببببببمئااعبببببب انم بببببب ائج ببببببمئ ان ببببببا ا ل  ببببببما  ببببببة اراا ا

ئر ببببببالااعابببببب ائراتم  ببببببفائرا تللببببببفا بببببب ا يبببببب لام ائر تاببببببت اا ببببببحئ يائر ت ببببببا ائرا  ببببببم ابببببببة ا   ببببببا ا

بببببفا اعاببببب ا  االببببباهائراّات بببببالمئهاب بببببا م بببببماائرات ئرايبببببالائل  بببببتاائرببببب تط اائرببببب ت  ا ة  اب  ببببب ةتات 

ببببببما اا  ا تببببببتا يبببببب  ائرايببببببا ااهائلتاتببببببةفارّببببببمئائرلطببببببلا بببببب ان ببببببا ائر بببببب  ا  ببببببح ابّبببببباائريت

ببببببمااأاائرا ا ايببببببفائر حت ببببببفائرّ ببببببة ائرايبببببب خ ل ائرتببببببميا  لابببببب ائلارح ببببببفارا ت بببببب ةتائراملببببببحاارايت

ببببب ا ببببب ائر ت ةبًببببيا ببببب انبببببحاائرايبببببالاا  ببببب ائراتةبببببمئياعلبببببما رةبببببفما اذئهاع لبببببف ائل بببببمائرتبببببميا ا ت

ا غةبببببم  ايبببببمرنا بببببح تمائر ت بببببا ائرا  بببببم ا ئرتبببببفما بببببا افمارا ت اببببببفا لابببببتائرببببب ت  ائرط ة ببببب ارالة ببببباهائر

فاائلانطمئفاع ائرايال  اعا ا  ةةااجح  ائرايالاائت ّاكائرحجّاائت  اااائراّات

اذئهاجبببببح  اعارةبببببفا  بببببتا رببببب ا ائر ت بببببا ائرا  بببببم ا   ببببب لا يبببببالئهم %ا97ر ببببب اأ ل بببببّائر ت بببببالااأيت

%اي بببببب ا بببببب ائريببببببة ال ح اهائرت بببببب ا  تيبببببباا90 بببببب ا ل بببببباائرطببببببالاهاالاا ّببببببلعا ربببببب ا بببببباا ايا

بببببباهاب يببببببلفا % اتببببببا طفما100بار تطبببببب ت اه اا دببببببا اايبببببب  ا   بًبببببمائلاصببببببا ئ ائتبببببب  اااائراّات

رااببببببالمئها ايانةببببببالابالار بببببببافايببببببحاائرلحئلبببببب ا بببببب ائرطببببببباُاعابببببب ائرايببببببالائل  ببببببت اا بببببب ا

اعابببببب ائراطا  ببببببفاعابببببب ائر ت بببببب  ةتانايةببببببفاأعببببببم  ا لاببببببتا رةببببببفائرطببببببباُاعابببببب ائر ت بببببب ةتاببلارةببببببفم

بببببالمئها ببببب ائر ت ةبًببببيا ببببب ائرلحئلببببب  ابطةبببببلا ل ببببب ائر تغةبًببببما ببببب ائر ت ببببب ةتا ئراملبببببحااريبببببماائرات

ا30 ببببب ايبببببب ا ا %ا ببببب ائرابببببب  ائرايببببباح اببببببب،ا بببببب ا ل ببببباائريببببببة ال ح اه ائل بببببمائرتببببببميا بببببب ات

بببببباُاعاببببب ائر ت ببببب ةتاي تببببب ا ببببب ائرلة ببببباهائر ت  ا ة ةبببببف اا  لببببب ا بببببمئاطعاببببب اجببببب ل ائر ت بببببا اعاببببب ائر

ما بببب ا  بببب ً ائرببببمتيا ائرا لاتبببب ابًتببببمئاا ببببالمئهالةببببمائراً حرببببفما ّببببحا ا تبببب ا بببب ائرلطببببلا تببببّا ا ئرات

 ببببب ائرلة ببببباهائرال تببببب  ا ا ةبببببفائلبلبببببا اراط بببببحااا-عاببببب انطبببببحا لتببببباااا يببببب  تتا– ن بببببا ائرلااةببببباها

عبببببفا ياببببباا ا لاانةبببببفا   حت ابببببحام ببببباه اعاببببب اي  ا بببببب لاجاباةبببببفائر ت بببببا اراتببببب  ابفارا االببببباهاائراّات

اج  بببببببب  مارا الة بببببببباها ببببببببالمئهاببببببببب ايانةببببببببالائرلبببببببباااأ ببببببببا ا   انةبببببببباهم   بببببببب ةاهاأتببببببببمئاائرات

ايبببببببفائر حت بببببببفا لئماببببببببمرنا لارةبببببببفائرا  بببببببالمئهالةبببببببمائراً حربببببببف ا ابببببببحت  ئرام لابببببببفابًتبببببببمئاائرات

مائر تطً اابار ت  ةاه  اا طيت  ا
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ABSTRACT 

This paper addresses the challenge of accurately translating Jordanian Arabic into Modern Standard Arabic 

(MSA) and correcting common linguistic errors. Although MSA is the formal standard for Arabic communication, 

the widespread use of local dialects in social media and everyday interactions often results in texts laden with 

spelling and grammatical issues. To overcome these challenges, we present an end-to-end system based on a newly 

constructed Jordanian Arabic dataset (JODA) comprising 59,135 sentences, as well as the Tashkeela dataset 

perturbed through synthetic error injection. We employ ByT5, a large pre-trained language model that processes 

text at the byte level, making it resilient to spelling variations and morphological complexities common in Arabic 

dialects. Our experimental results show that fine-tuning ByT5 on JODA and a 10% error-injected Tashkeela subset 

notably improves both BLEU score and character error rate (CER). Combining JODA with the synthetically 

modified Tashkeela data reduces the CER to 4.64% on the Test-200 test set and 1.65% on the TSMTS test set. 

Moreover, manual inspections reveal that the model produces correct or near-correct translations in most cases. 

Finally, we developed a custom smartphone keyboard and a web portal to demonstrate how the system can be 

made easily accessible to interested users, offering a practical solution for millions of Arabic speakers seeking to 

produce accurate, diacritized MSA text. This solution is currently limited to the Jordanian dialect; future work 

will focus on developing similar datasets and solutions for other Arabic dialects. 

KEYWORDS 

Jordanian Arabic, Modern Standard Arabic, Dialectal translation, Large language models, Synthetic error 

injection, Natural-language processing, ByT5. 

1. INTRODUCTION

Arabic, as the official language of over 20 countries, exhibits a rich linguistic diversity shaped by various 

regional dialects [1]. In Jordan, everyday communication relies heavily on an informal local dialect 

distinct from Modern Standard Arabic (MSA). While MSA remains the formal standard for written 

communication in official contexts, many Jordanians encounter difficulties expressing themselves 

accurately, often producing texts riddled with lexical, morphological, grammatical, syntactic and 

spelling errors. The proliferation of social media has further amplified this issue, as informal dialects 

and spelling inconsistencies dominate many online platforms [2]. 

To address these challenges, modern natural-language processing (NLP) techniques offer promising 

solutions by leveraging powerful pre-trained large language models. These models have demonstrated 

remarkable success in understanding and generating text across different languages, including Arabic, 

when sufficiently trained on diverse and high-quality examples [3]. However, collecting large-scale 

datasets that reflect the intricacies of informal dialects and embedding them in a unified framework for 

effective NLP applications pose significant hurdles. Despite recent advancements, current solutions for 
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translating dialectal Arabic to MSA remain unsatisfactory in terms of accuracy and robustness. This is 

largely due to the low-resource nature of the problem, as most dialects lack extensive parallel corpora. 

The development of additional high-quality, dialect-specific resources is therefore essential to improve 

translation performance and to enable fine-tuning of large models for this challenging task. 

In this work, we present an end-to-end system designed to translate Jordanian Arabic into MSA, correct 

common linguistic mistakes and provide optional diacritization (automatic restoration of missing short 

vowel marks). Our project involved collecting 59,135 Jordanian Arabic sentences, spanning various 

dialectal usages and error types, then pairing them with carefully proofread MSA renditions. This dataset 

was augmented with additional resources to address the scarcity of real-world error examples. By fine-

tuning pre-trained large language models on these combined resources, we have created a robust system 

capable of significantly improving the quality of Jordanian Arabic texts. While this solution is currently 

limited to the Jordanian dialect, it can be extended to other Arabic dialects as similar datasets become 

available. 

The key contributions of our research can be summarized as follows. First, we provide a new, purpose-

built Jordanian Arabic dataset that captures authentic usage and errors, serving as a valuable resource 

for future NLP research in Arabic. Second, we introduce synthetic spelling errors into a well-known 

diacritized dataset, enabling the model to learn extensive error patterns beyond the scope of the 

Jordanian dialect alone. Third, we fine-tune and evaluate a large language model for the translation task, 

demonstrating its effectiveness in handling informal dialect and spelling issues. Finally, we make the 

resulting models available through user-friendly web and smartphone applications, allowing Jordanians 

to produce clear and accurate MSA texts. 

After this introduction, Section 2 reviews some related previous work. The approach is outlined in 

Section 3, followed by the datasets in Section 4, which includes the Jordanian dialect dataset, the 

Tashkeela datasets with synthetic error injection and the test sets. Section 5 focuses on the models and 

experiments, describing the model tuning, optimization of synthetic error injection and training using 

the developed datasets. The results and discussion are presented in Section 6, encompassing a manual 

inspection of model predictions and a detailed analysis of the results. Finally, the paper concludes with 

insights, implications and future work in Section 7. 

2. LITERATURE REVIEW

This review traces the evolution of machine translation, from rule-based methods to neural architectures, 

focusing on large language models (e.g., GPT, BERT, T5 and ByT5) and highlighting their key features. 

Finally, it examines recent approaches for translating Arabic dialects into MSA. 

2.1 Evolution of Machine-translation Approaches 

Traditional language-translation methods, such as rule-based machine translation (RBMT), rely on 

comprehensive morphological, semantic and syntactic rules for both the source and target languages, 

requiring extensive expert input [4]. In contrast, example-based machine translation (EBMT) maps 

sentence examples from one language to another without requiring any handcrafted linguistic rules. 

However, its performance is heavily influenced by the quality of the example database [5]. Statistical 

machine translation (SMT), which was once dominant, integrates phrase, syntax and hierarchical 

models, but its complexity necessitates combining translation, language and sentence-reordering models 

[6]-[9]. Hybrid approaches that combine RBMT and SMT have also been explored [10]. 

Recently, neural machine translation (NMT) has become the standard, with widespread adoption by 

companies, like Google and Microsoft [6], [11]-[13]. NMT employs advanced models, like recurrent 

neural networks (RNNs), convolutional neural networks (CNNs), encoder-decoder stacks and 

transformers. With sufficient training data, these models can learn complex linguistic relationships and 

capture context and semantics from parallel data [12]-[13]. Popular NMT variants, such as bidirectional 

encoder representations from transformers (BERT) [14]-[15] and text-to-text transfer transformer (T5) 

[16], are widely used for natural-language processing. NMT systems, initially focused on language pairs, 

are now capable of translating across 200+ languages [17]. 
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2.2 Large Language Models 

Large language models (LLMs), such as generative pre-trained transformer (GPT) [18], BERT [19] and 

T5 [16] have significantly advanced NLP. These models are based on the transformer architecture, 

which uses self-attention mechanisms to process text in parallel rather than sequentially [20]. This 

parallel processing enables LLMs to better handle long-range dependencies and complex linguistic 

structures. Trained on large datasets, LLMs can perform various tasks, like text generation, translation, 

summarization and error correction, making them versatile tools for language applications. However, 

models like GPT and T5, which rely on token-based representations, may struggle with out-of-

vocabulary words or small typographical errors. 

ByT5 is a token-free variant of the T5 model that operates directly on byte-level inputs rather than 

relying on tokenized text [21]. It retains T5’s core architecture, consisting of a heavy encoder and a 

lighter decoder, both built with multi-head self-attention mechanisms and feed-forward neural networks. 

The encoder converts raw byte sequences into continuous representations, effectively capturing 

semantic meaning even in the presence of spelling errors or non-standard formatting, while the decoder 

generates coherent output sequences from these representations. This byte-level processing eliminates 

the limitations of traditional tokenization, enabling ByT5 to handle diverse languages and character sets 

more flexibly. 

We adopt ByT5 in our solution due to its demonstrated robustness against spelling variations, 

misspellings and unconventional text formats—characteristics that are prevalent in dialectal and 

informal Arabic. These strengths make it particularly well-suited for tasks, such as error correction, 

normalization and diacritization. ByT5 has also proven effective in Arabic NLP applications, including 

automatic text diacritization [22]. 

2.3 Recent Approaches to Translating Arabic Dialects 

This sub-section reviews recent efforts in Arabic-dialect translation, arranged from broader to more 

closely related work. 

Some studies have focused on translating Arabic dialects to or from English. Alzamzami and Saddik 

[23] proposed a transformer-based model for translating English tweets into four Arabic dialects.

Nagoudi et al. [24] developed AraT5, a transformer model pre-trained on large-scale data and fine-tuned 

on several tasks, including Arabic dialect-to-English translation. AraT5 outperformed the more general 

multilingual mT5 model in these tasks. 

Several other studies have targeted the translation of multidialectal Arabic content into MSA. Slim and 

Melouah [25] addressed the translation of three Maghrebi dialects into MSA using an incremental fine-

tuning strategy on a transformer model to address the low-resource nature of dialectal Arabic. Baniata 

et al. [26] proposed integrating RNN-based part-of-speech tagging to enhance translation from 

Levantine and Maghrebi dialects into MSA, achieving a BLEU score of 43 for Levantine dialects. Alimi 

et al. [27] fine-tuned a variant of AraT5 for translating Levantine and Maghrebi dialects into MSA, 

reporting high BLEU scores of 43.38 and 64.99, respectively. Notably, both works on Levantine dialects 

include coverage of the Jordanian dialect. 

There is also a line of research focusing on the translation of a single dialect, which aligns more closely 

with our work. Kchaou et al. [28], [29] applied data-augmentation techniques to Tunisian-dialect 

translation and demonstrated that a transformer model outperformed CNN and RNN baselines, 

achieving a BLEU score of 60. Faheem et al. [30] focused on translating the Egyptian dialect into MSA. 

Their model, trained on 40,000 supervised parallel sentences and supplemented with 35 million 

monolingual sentences in an unsupervised manner, achieved a BLEU score of 29.5. 

Our approach aligns with Refs. [29]-[30] in targeting the translation of a single Arabic dialect into MSA 

and with Refs. [30], [27], [25], [24] in fine-tuning transformer-based models. However, we distinguish 

our work by adopting a pretrained, token-free transformer (ByT5), which we fine-tune using a parallel 

Jordanian-MSA dataset and stochastic error injection. To the best of our knowledge, this is the first work 

to fine-tune a transformer model specifically for translating not only Jordanian dialect, but also error-

prone MSA text—including linguistic and spelling errors—into proper MSA. 
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3. APPROACH

Our research implements a comprehensive approach, shown in Figure 1, to accurately translate 

Jordanian Arabic into MSA, correct spelling mistakes and add diacritics. We began by collecting a 

dataset of 59,135 Jordanian Arabic sentences, encompassing a broad spectrum of language mistakes and 

dialectal variations. Working with Arabic-language specialists, we corrected mistakes, translated 

colloquial forms into MSA and thoroughly proofread all samples. 

Figure 1.  End-to-end approach for Jordanian Arabic to diacritized MSA conversion. 

Building on this dataset, we further expanded it using the diacritized Tashkeela Classical Arabic dataset 

[31]. Synthetic spelling errors were introduced into Tashkeela via random error injection, enhancing the 

model’s capacity to handle real-world misspellings. 

We fine-tuned pre-trained ByT5 models, leveraging their broad language understanding developed 

through training on large datasets. Pre-trained models like ByT5 are neural networks designed to learn 

general language representations, enabling them to understand and generate text effectively. Fine-tuning 

involves adapting these models to specific tasks by training them further on smaller, task-specific 

datasets. In our case, one model was fine-tuned to translate Jordanian Arabic into proper MSA, 

specializing in this linguistic transformation. Additionally, we explored another model inspired by Al-

Rfooh et al. [22] to optionally add diacritics, though this lies outside the scope of this paper [32], [33]. 

Upon completion of training, the models exhibited strong performance in error correction, translation 

and diacritization. Finally, we integrated these trained models into both internet-based and smartphone 

applications, exploring open access for Jordanian users seeking reliable and accurate linguistic support. 

Despite its effectiveness, the approach faces limitations including the cost of developing high-quality 

parallel datasets and the computational intensity of training and deploying large models like ByT5, 

which constrains scalability and performance on resource-limited devices. 

4. DATASETS

This section describes the datasets used for training and evaluating our approach. Sub-section 4.1 details 

the newly developed Jordanian dialect dataset [34], Sub-section 4.2 introduces the Tashkeela-based 

datasets alongside synthetic error injection and Sub-section 4.3 outlines the test sets employed to 

measure model performance. 

4.1 Jordanian Dialect Dataset 

One key contribution of this research is the development of the Jordanian dialect dataset (JODA). This 

parallel dataset was constructed by collecting Arabic sentences that contain various linguistic mistakes 

or are in the informal Jordanian dialect. Each collected sentence was then paired with its corresponding 

correct MSA equivalent. The dataset draws from three primary sources to ensure diversity and 

authenticity (Figure 2). Approximately 72% of JODA comes from social-media platforms: YouTube, 

Facebook, Instagram and Twitter (X), covering various topics like economics, society and politics. 

Additionally, 22% are sentences selected from publicly available Arabic-dialect datasets: Dialectal 

Arabic tweets (DART) dataset [35] and the Shami dialect corpus (SDC) [36]. The remaining 6.6% of 

the dataset consists of transcriptions of eight short Jordanian movies capturing cultural and linguistic 

diversity. 
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The collected samples from the various sources underwent extensive preprocessing, which included 

removing irrelevant elements, duplicates, emojis and unnecessary characters, as well as segmenting the 

text into meaningful sentences. Each sentence was manually reviewed to ensure proper segmentation 

and meaningful content, retaining only those in MSA containing mistakes or in the Jordanian dialect. 

The sentences range from 2 to 277 characters, reflecting natural-language usage. Arabic linguistic 

experts contributed to the development of this parallel dataset by providing either corrections for MSA 

sentences containing mistakes or translating Jordanian dialect sentences into MSA. For a broader 

linguistic perspective on this translation from Jordanian Arabic into MSA, interested readers are referred 

to [37]. 

While JODA was designed to be as representative as possible, some bias may exist. The Jordanian 

dialect varies by region, but most data likely reflect the central region, where most of the population 

resides. Northern and southern dialects may be underrepresented. Additionally, the heavy reliance on 

social-media content may skew the language toward younger, urban speakers. We also used curated 

datasets and film transcripts, which may not fully capture spontaneous speech. Despite these limitations, 

we made deliberate efforts to ensure diversity in topics, sources and linguistic styles across the dataset. 

To expedite dataset corrections, we developed a custom PyQt-based GUI specifically tailored for 

Arabic-text processing. The tool is employed by both experts and auditors, who can selectively load 

dataset files, navigate individual sequences, classify entries and either provide or validate corrections. 

This interface was designed to accommodate right-to-left scripts and fully support Arabic display and 

parsing, ensuring minimal friction during annotation and review. Additionally, it offers streamlined 

functionality for saving changes, flagging problematic entries and maintaining detailed logs of edits. 

Figure 3 illustrates the tool’s layout and features, highlighting its user-friendly design. 

Figure 3.  Correction and auditing tool. 

Figure 2.  Composition of JODA dataset by sample source. 
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The final version of the JODA dataset comprises 59,135 sentences, with 62.4% in the Jordanian dialect 

and 37.6% in MSA containing mistakes (Table 1). This version was randomly split into three sub-sets; 

91.5% of the sentences were included in the training sub-set, while the remaining sentences were evenly 

divided between the validation and test sub-sets (2,500 sentences each). 

Table 1.  Distribution of the JODA dataset by sentence type and data split. The “Total” row and 

column show the number of sentences and their percentages relative to the entire dataset. 

Sentence type Training subset Validation subset Test subset Total 

Jordanian dialect  33,767  1,560  1,559  36,886 (62.4%) 

MSA containing mistakes  20,368  940  941  22,249 (37.6%) 

Total  54,135 (91.5%)  2,500 (4.2%)  2,500 (4.2%)  59,135 (100%) 

During this split, stratification was applied to ensure representative sampling of the various sentence 

sources and types across the three sub-sets. Figure 4 shows the number of sentences in the three dataset 

sub-sets, categorized by sentence source and sentence type. 

Figure 4.  Stratified split of the JODA dataset by sentence source (left) and sentence type (right). 

4.2 Tashkeela Datasets and Synthetic Error Injection 

In addition to JODA, the proposed model was also trained using the Tashkeela Clean-50 and Clean-400 

datasets, which primarily contain diacritized Classical Arabic text. The Tashkeela Clean-50 dataset, 

developed by Fadel et al. [38], comprises 50,000 training sequences extracted from the original 

Tashkeela dataset [31]. These sequences were filtered to ensure a diacritic-to-character ratio of at least 

80% and were processed using heuristics, such as diacritic correction, removal of English letters and 

isolation of numbers from words. Abdel-Karim and Abandah [39] expanded this dataset, creating the 

Tashkeela Clean-400 dataset with 400,000 training sequences. Both datasets include, in addition to their 

respective training sets, the same validation sub-set of 2,500 sequences and the same test sub-set of 

2,500 sequences. These datasets were truncated to a maximum sequence length of 512 bytes to maintain 

consistency with the JODA dataset. 

These datasets were further processed into input-target pairs by introducing synthetic stochastic spelling 

errors [40]. Two methods were employed for error injection: directed error injection and general error 

injection. Directed error injection focuses on “soft spelling mistakes,” which are common among Arabic 

speakers and learners due to the complexity of Arabic orthography. Following the approach of Abandah 

et al. [41], this method specifically targets frequent mistakes involving words with different forms of 

hamza (ء، أ، إ، آ، ؤ، ئ) and words ending with similarly pronounced letters (ه، ة، ت) and (و، وا). Errors 

were introduced based on their position within words, using three injection rates (2.5%, 10% and 40%) 

to evaluate their impact on model training. This method ensures that artificial errors closely resemble 

common real-world mistake patterns. 

General error injection extends directed error injection by incorporating a broader range of spelling 

error patterns, including letter deletion, insertion, swapping and replacement. This approach introduces 

stochastic errors of selected probability, also evaluated at three injection rates. These errors simulate 
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various mistake patterns found in Arabic text, allowing the model to learn corrections for a variety of 

mistake types. By combining directed and general error injection methods, the dataset is designed to 

improve the model’s ability to correct both specific and general spelling mistakes. Table 2 provides the 

statistics for JODA, Tashkeela Clean-50 and Tashkeela Clean-400. 

Table 2.  Statistics of the datasets used. 

Metric JODA 
Tashkeela 

Clean-50 

Tashkeela 

Clean-400 

Size (MB) 10.3 12.80 102.50 

Number of sequences 59,135 pairs 50,000 400,000 

Word count 1.14 × 106 1.62 × 106 12.95 × 106 

Character count 5.92 × 106 7.34 × 106 58.67 × 106 

Average number of words per sequence 9.6 32.40 32.36 

4.3 Test Sets 

To thoroughly evaluate the developed model’s performance, we use three test sets. The first is the JODA 

test subset described above, which is critical for assessing performance and selecting optimal 

configurations. The second, Test-200 [41], contains 200 sentences with “soft” spelling mistakes, 

averaging 6.5 mistakes per sentence and a 5%-character mistake rate. This set is particularly useful for 

fine-tuning the model when training on data with directed error injection. 

We also developed a third test set, the Tashkeela spelling mistakes test set (TSMTS), derived from the 

2,500 sequences of the Tashkeela test set. Each sequence in the Tashkeela test set serves as a target, 

paired with an input sequence generated by applying the general error injection described above to the 

original sequence. A character error rate of 5% was used to ensure that TSMTS mirrors the Test-200 

set. This test set provides a benchmark for evaluating general error injection. 

5. MODELS AND EXPERIMENTS

We selected ByT5 for its robustness in handling multilingual text and noisy inputs, operating at the byte 

level without tokenization. This language-agnostic approach ensures high flexibility across diverse 

languages and scripts [21]. ByT5’s strengths include resilience to misspellings and compatibility with 

low-resource languages. For our experiments, we utilized the Small and Base model sizes due to their 

lower computational requirements. We did not use larger models, as the significantly higher 

computational cost was not justified by the relatively small performance gains reported in prior work 

[21]-[22]. Table 3 summarizes the architectures of both models. 

Table 3.  Architectures of the two ByT5 models explored. 

Criterion Small Base 

Number of parameters 300M 582M 

Encoder/decoder layers 12 / 4 18 / 6 

Feed forward dimension (dff) 3,584 3,968 

Model dimension (dmodel) 1,472 1,536 

For evaluation, we used the BLEU and CER metrics. BLEU (bilingual evaluation understudy) measures 

the similarity between the model’s output and reference translations by comparing overlapping n-grams, 

providing a score for translation quality. CER (character error rate) calculates the percentage of 

character-level errors, such as substitutions, insertions and deletions, in the model’s output compared to 

the reference, offering insight into fine-grained accuracy. 

The experiments were conducted on Google’s Colab Pro Plus platform, utilizing TPU v2 units to 

accelerate the training process. The programming language used was Python 3.7.13, with TensorFlow 

2.12.0 as the primary library.  

The following sub-sections detail the experiments and results for tuning the ByT5 model, refining the 

error injection approach used in preparing the Tashkeela datasets and training the optimized model on a 

combined dataset of JODA and Tashkeela. 
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5.1 Tuning the ByT5 Model 

The ByT5 model comes in multiple sizes and offers numerous hyperparameters that can be adjusted to 

improve performance, depending on the target task. In this work, we began by establishing a baseline 

model and then explored various hyperparameter configurations to arrive at a final tuned model. Table 

4 summarizes the explored hyperparameter options and lists the values used in both the baseline and the 

tuned models. The following paragraphs describe the tuning experimental procedure and summarize the 

results. 

Table 4.  Explored ByT5 hyperparameters, evaluated options and the corresponding values for both 

the baseline and the tuned models. 

Hyperparameter Options Baseline model Tuned model 

Model size Small, Base Small Base 

Batch size 128, 256, 512 256 128 

Learning rate 0.0001, 0.003, 0.01 0.003 0.003 

Optimizer AdaFactor, Adam Weight Decay AdaFactor Adam Weight Decay 

We fine-tuned the model using the JODA dataset, which includes the two implicit tasks: translating 

Jordanian Arabic into MSA and correcting linguistic mistakes. Our initial experiment assessed the 

baseline model’s performance. Figure 5 shows the BLEU scores for both the training and validation 

sub-sets over successive training steps, where each step corresponds to a batch of a specified size (256 

for the baseline model). During this experiment and others, we observed that the model exhibits 

overfitting, with the BLEU score on the training sub-set approaching 100 while the validation score 

plateaus at a lower level. To mitigate overfitting, we halted training when the validation score ceased to 

improve and adopted the model weights from the training step with the highest validation score. The 

baseline model achieves its highest BLEU score of 57.49 at the 3,000th training step, with a 

corresponding BLEU score of 56.07 on the JODA test sub-set. 

 

In our fine-tuning experiments, we followed the methodology described in [42], which involves 

adjusting one hyperparameter at a time and comparing the resulting performance to the baseline. 

Although this “coordinate ascent” approach may overlook higher-order interactions between parameters 

(for instance, a different learning rate might produce better results with a larger model size), a full 

factorial design would be expensive, as it would require 2×3×3×2 = 36 experiments. Once the best 

individual hyperparameters were identified, we used those values to train the final model. 

Table 5 provides the outcomes of the seven fine-tuning experiments involving the four hyperparameters. 

Each row presents the examined hyperparameter option, the training step where the validation score 

peaked and the corresponding BLEU scores for both the validation and test sub-sets. Based on these 

results, the optimal hyperparameters for the tuned model are those shown in Table 4. 

Figure 5.  Training curves of the baseline model trained on JODA dataset. 
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Table 5.  Results of fine-tuning the hyperparameters of the ByT5 model. 

Hyperparameter Option Best training step 
BLEU score 

(validation) 
BLEU score (test) 

Model size 
Small (baseline) 3,000 57.49 56.07 

Base 7,000 59.01 57.08 

Batch size 

128 4,000 57.54 56.43 

256 (baseline) 3,000 57.49 56.07 

512 1,000 58.03 56.32 

Learning rate 

0.0001 20,000 56.53 55.38 

0.003 (baseline) 3,000 57.49 56.07 

0.01 9,000 55.13 53.90 

Optimizer 

AdaFactor 

(baseline) 
3,000 57.49 56.07 

Adam Weight 

Decay 
2,000 57.60 56.29 

When trained on JODA, the tuned model achieves its highest BLEU score of 59.07 at the 3,000th 

training step on the validation sub-set, yielding a BLEU score of 57.77 on the test sub-set, which 

represents a 3% improvement over the baseline model. 

5.2 Tuning Error Injection 

The performance of a model trained with synthetic error injection is influenced by the chosen injection 

rate in [41]. This sub-section describes the experiments conducted to determine optimal rates and 

summarizes the results. In these experiments, we trained the tuned model on the Tashkeela datasets and 

evaluated it on the Test-200 or TSMTS test sub-sets. As in previous experiments, we stopped training 

once the validation score ceased to improve and adopted the model weights from the training step that 

produced the highest validation score for final evaluation. 

5.2.1 Directed Error Injection 

We explored three rates for directed error injection: 2.5%, 10% and 40%. In each experiment, the model 

was trained on a Tashkeela dataset with the specified rate of directed error injection, then evaluated on 

Test-200. We selected Test-200, because it contains common real-life spelling mistakes, like those 

introduced by the directed method. 

Table 6 shows the results obtained using the Clean-50 dataset, where a 10% injection rate yielded the 

lowest CER on Test-200 (1.37%). Note that the CER on the validation sub-set increases with higher 

error rate in this sub-set. The table also reports results for training on the larger Clean-400 dataset at the 

same 10% rate, which further reduced the CER on Test-200 to 1.23%. This improvement demonstrates 

that a larger dataset provides the model with more examples of spelling variations, enhancing its ability 

to correct errors. 

Table 6.  Results of tuning directed error injection. 

Dataset 
Error injection 

rate 
Best training step 

CER (validation 

sub-set) 
CER (Test-200) 

Clean-50 

2.5% 8,000 0.03% 2.26% 

10% 8,000 0.07% 1.37% 

40% 8,000 0.14% 1.53% 

Clean-400 10% 13,000 0.04% 1.23% 

5.2.2 General Error Injection 

For general error injection, we similarly evaluated three rates: 2.5%, 10% and 40%. In each experiment, 

the model was trained on a Tashkeela dataset with the chosen rate of general error injection and tested 

on TSMTS. TSMTS was selected, because it contains synthetic spelling errors comparable to those 

produced by the general error injection method. 
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As shown in Table 7, using the Clean-50 dataset with a 10% injection rate resulted in the lowest CER 

on TSMTS (1.77%). When the model was trained on the larger Clean-400 dataset at the same 10% rate, 

the CER dropped further to 1.28%, indicating that a bigger training sub-set helps the model better 

generalize to diverse error patterns. 

Table 7.  Results of tuning general error injection. 

Dataset 
Error injection 

rate 
Best training step 

CER (validation 

sub-set) 
CER (TSMTS) 

Clean-50 

2.5% 14,000 0.80% 2.09% 

10% 10,000 2.99% 1.77% 

40% 12,000 16.69% 2.78% 

Clean-400 10% 14,000 2.20% 1.28% 

Overall, these experiments confirm that a 10% error injection rate is most effective for both directed and 

general error injection methods. Furthermore, training on a larger dataset (Clean-400) yields better 

results, highlighting the importance of data size in improving the model’s ability to correct spelling 

errors. 

5.3 Training Using JODA and Tashkeela Datasets 

To further improve the model’s performance on both translating Jordanian Arabic into MSA and 

correcting linguistic mistakes, we explored training on a combined dataset. Specifically, we combined 

JODA with the 10% directed error-injected Clean-50 dataset and the 10% general error-injected Clean-

50 dataset. As usual, this combined dataset was partitioned into training, validation and test sub-sets by 

merging the corresponding sub-sets from the three individual datasets. 

Figure 6 illustrates the training curves for the tuned model on this combined dataset. The BLEU score 

for the training sub-set continued to improve with more training steps, whereas the validation score 

increased more slowly. Training was halted at Step 15,000 due to the slowing improvement on the 

validation sub-set and the widening gap between the training and validation scores. At this step, the 

validation BLEU score reached 87.57, which is considerably higher than the BLEU score of 59.07 

achieved by training solely on the JODA dataset. This apparent discrepancy arises, because the 

validation sub-set in the single-dataset experiment contains only JODA sentences, which tend to be more 

challenging than the mixed-validation sub-set here. Indeed, when evaluated on the JODA test sub-set, 

this model achieves a BLEU score of only 57.39. 

Figure 6.  Training curves of the tuned model trained on JODA and Clean-50 datasets. 

To assess whether the model could generalize beyond JODA, we compared the CER on the Test-200 

and TSMTS test sub-sets between (1) the model trained on JODA only and (2) the model trained on the 

combined dataset. As shown in Figure 7, the combined-dataset model generalizes more effectively: the 

CER on Test-200 improves from 6.37% to 4.64% and on TSMTS from 11.95% to 1.65%. This result 

demonstrates the model’s enhanced ability to correct common and general spelling mistakes. 
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Figure 7.  CER on two test sub-sets for the tuned model trained with two dataset configurations. 

We also examined the model’s performance when trained on a combined dataset consisting of JODA 

and the larger Tashkeela Clean-400 dataset. In this case, the model yielded a lower BLEU score of 53.24 

on the JODA test sub-set, likely due to an imbalance between Jordanian dialect and MSA content in the 

larger dataset. Consequently, we adopted the model trained on the combined JODA and Clean-50 

datasets. 

6. RESULTS AND DISCUSSION

Table 8 compares the three main models trained under different conditions to evaluate their performance 

in translating Jordanian Arabic into MSA and correcting linguistic mistakes. The baseline model, trained 

only on JODA, reaches a high BLEU 56.07, because many JODA references differ from the inputs by 

only minor spelling errors; n-gram overlap is therefore already near-saturated. However, CER exposes 

those spelling mistakes: the baseline scores 6.58% on Test-200 and 12.41% on TSMTS. Hyper-

parameter tuning (still on JODA) nudges BLEU to 57.77 and trims CER to 6.37% and 11.95%. Adding 

the Clean-50 corpus introduces many perfectly spelled targets and forces the model to generalize beyond 

JODA. BLEU on the JODA test sub-set dips slightly to 57.39, but CER falls sharply to 4.64% on Test-

200 and 1.65% on TSMTS. Thus, while BLEU shows only marginal gains, the steep CER reduction 

demonstrates that the final model corrects errors more aggressively and transfers this ability to unseen 

text, striking a practical balance between fluency (BLEU) and accuracy (CER). 

Table 8.  Comparison of the three main experiments on three test sub-sets. 

Model 
Training time 

in hours 

BLEU score 

(JODA test set) 

CER 

(Test-200) 

CER 

(TSMTS) 

Baseline model (trained on 

JODA) 
1.5 56.07 6.58% 12.41% 

Tuned model (trained on JODA) 2.1 57.77 6.37% 11.95% 

Tuned model (trained on JODA 

+ Clean-50)
10.3 57.39 4.64% 1.65% 

Although large language models deliver impressive results, they often come with substantial 

computational costs. Table 8 lists the training times for the three models, showing that the tuned model 

employing the base ByT5 requires longer training than the baseline model, which uses the smaller ByT5 

variant. Moreover, the final model trained on the combined larger dataset increases training time to 

around five times that of the tuned JODA-only model. In the prediction mode, the trained model 

translates a single Jordanian dialect sentence into MSA in approximately 1.5 seconds. 

6.1 Comparison with Previous Work 

Table 9 presents a comparative overview of recent efforts in translating Arabic dialects into MSA, 

highlighting the methods, datasets and BLEU scores reported for different dialects. Compared to 

previous studies, our work utilizes JODA—the largest Arabic mono-dialect dataset focused on Jordanian 
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Arabic—and achieves the highest BLEU score reported for Levantine dialects, demonstrating the 

effectiveness of our fine-tuned ByT5 model with stochastic error injection. 

Table 9.  Comparison with previous work in translating Arabic dialects into MSA. 

Work Method Dataset/Size BLEU score 

Baniata et al. [26] RNN with POS tagging 
Multidialectal / 
36K 

43 for Levantine 
dialect 

Alimi et al. [27] Fine-tuning pretrained AraT5 model 
Multidialectal / 
69K 

43.38 for Levantine 
dialect 

Kchaou et al. [29] Transformer with data augmentation 
Tunisian dialect / 
36K 

60 

Faheem et al. [30] 
Pretraining followed by fine-tuning a 
transformer 

Egyptian dialect / 
40K 

29.5 

This work 
Fine-tuning ByT5 and stochastic error 

injection 
 JODA / 59K  57.77 

6.2 Manual Inspection of the Model Predictions 

Throughout this research, we primarily relied on BLEU and CER scores to evaluate translation and 

correction quality. While these metrics are generally appropriate, they can also underestimate the 

model’s performance—especially given Arabic’s linguistic richness, where a single sentence can be 

correctly translated into multiple valid forms. Consequently, the model may receive a penalty if it 

produces a legitimate translation that does not exactly match the target sequence. 

Our main objective is to develop a model capable of translating Jordanian Arabic into MSA, rather than 

replicating a specific reference translation. To gain deeper insight into the model’s real-world 

performance, we manually reviewed 100 randomly selected predictions from the JODA test sub-set, 

comparing them with the expert-provided target sentences. Table 10 provides sample inputs, target 

sentences and model outputs, categorized into three classes: (1) correct translations with contextual 

variations, (2) translations exhibiting minor differences and (3) translations with more substantial 

discrepancies, often reflecting synonym usage. 

Table 10.  Overview of 100 manually audited predictions. 

Prediction 

classification 
Count 

Example input 

sentence 
Target sentence Predicted sentence 

1 Correct predictions 51 
بامكاني انزل لمستواك و احكي 

بالطريقة الهمجية الي بتحكي فيها ،

بإمكاني أن أنزل إلى مستواك 
وأتكلم بالطريقة الهمجية التي 

 تتكلمين بها

بإمكاني أن أنزل إلى مستواك وأتكلم 

 بهاتتكلم بالطريقة الهمجية التي 

2 Small differences 40 
المذيعه مش معاه ابدا ما خلتله 

 مجال يحكي أسلوبها مزعج
المذيعة ليست معه أبدا، لم تترك له 

 مجالا ليتكلم، أسلوبها مزعج
المذيعة ليست معه أبدا، لم تترك له 

 زعجمأسلوبها بمجالا ليتكلم 

3 Large differences 9 
يا بنت الحلال مهو طول عمره 

 هون شو عملك يعني
لحلال، هو طوال عمره يا بنت ا

 هنا، ماذا فعل لك إذا؟
هو طوال عمره هنا فيا بنت الحلال 

 لك إذا؟عمل ماذا 

Notably, the manual review revealed that the model’s true performance exceeds the CER evaluation of 

12.39%. When correct translations are not counted as errors, the CER declines to 5.56%. Although these 

findings are already encouraging, they further confirm that the model’s practical performance is stronger 

than what traditional metrics alone may indicate. 

Despite strong overall results, the final model shows two noteworthy limitations. First, ambiguous short 

sentences, where number or gender is underspecified, can lead to incorrect disambiguation in MSA. 

Second, because training data was restricted to Jordanian Arabic and MSA, the system struggles with 

inputs that mix codes (e.g. bilingual Arabic and English sentences). Addressing these issues will require 

additional annotated data and explicit modeling of ambiguity. 

6.3 Evaluation on Additional Jordanian and Other Levantine-dialect Sentences 

We conclude that our final model effectively translates Jordanian Arabic into MSA and corrects 

linguistic errors. 
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Table 11 provides examples of input sentences that were not part of the JODA dataset, alongside the 

model’s corresponding predictions and evaluations. In most instances, the model produces high-quality 

translations, occasionally exhibiting only minor errors. 

Table 11.  Sample input sentences, model predictions and evaluations. 

Input sentence Predicted sentence Evaluation 

وين بدك تروح اليوم؟ أين ستذهب اليوم؟ Correct 

ونك يا زلمة؟شل كيف حالك يا رجل؟ Correct 

الجو دفا اليوم اليوم أالجو دف Minor error 

قديش الساعة هسا؟ كم الساعة الآن؟ Correct 

امبارح كنت تعبان كتير البارحة كنت متعبا كثيرا Correct 

اشتقتلك يخوي اشتقت لك يا أخي Correct 

شو وراك يا زلمة ما وراءك يا رجل؟ Correct 

To probe generalizability beyond Jordanian Arabic, we manually assembled fifteen unseen sentences, 

five each in Palestinian, Syrian and Lebanese dialects and translated them with the final model. The 

model successfully rendered all sentences into grammatical MSA, confirming that its byte-level 

representations capture many shared Levantine structures. Accuracy, however, was lower than for 

Jordanian input: output fluency occasionally suffered from dialect-specific lexemes and translations of 

Lebanese examples that contained French loanwords (e.g. ascenseur, parfum). These observations 

suggest that while the system generalizes reasonably within the Levantine group, expanded training data 

would be needed for consistently high performance across all regional variants. 

6.4 Accessing the Model via Smartphones and Web Portal 

To provide the model’s Jordanian Arabic-to-MSA translation and Arabic error correction capabilities to 

end users, we developed a custom keyboard and a web-based portal. The model is hosted on a server 

and communicates with both the keyboard and web interface using the Flask framework. When users 

enter text and request a correction, the front end sends this text to the Flask API, which processes it 

through the trained model and returns the corrected output in real time. This setup ensures a responsive, 

lightweight user experience by offloading complex processing tasks to the server. 

The custom keyboard, called AI Board, was developed using the open-source OpenBoard project [43] 

for Android and the KeyboardKit 7.9.8 package [44] for iOS. As shown in Figure 8, it features a 

dedicated “صحح” (Correct) button that translates or corrects any text entered via the Arabic keyboard 

or microphone, seamlessly converting Jordanian dialect into MSA. 

Figure 8.  The AI Board translating a Jordanian dialect sentence (left) into MSA (right). 

We also built a web-based portal named Loghati (Arabic for “my language”) to offer open access to this 

solution. In addition to the translation feature shown in Figure 9, the portal provides references for 

Arabic grammar and spelling rules. It supports keyboard and microphone input, allows copying of 

translated text and is built using HTML, CSS, JavaScript, Bootstrap and React.js. 
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Figure 9.  Loghati interface translating a sentence entered from the Jordanian dialect into MSA. 

7. CONCLUSIONS

In this work, we presented an end-to-end system for translating Jordanian Arabic into MSA, correcting 

common linguistic errors and optionally adding diacritics. We began by collecting a large dataset of 

Jordanian dialect sentences (JODA), comprising diverse dialectal usages and error types. Each entry 

was carefully curated by Arabic-language experts, ensuring accurate MSA equivalents. To further 

enhance performance, we incorporated additional resources from Tashkeela, introducing synthetic 

spelling errors to increase the model’s exposure to spelling mistake patterns and ability to correct Arabic 

text. 

Our experiments employed the ByT5 architecture—well-suited for Arabic dialect processing due to its 

byte-level input handling—to achieve robust translation and correction. Through systematic fine-tuning 

of hyperparameters, we identified a tuned combination that improved BLEU scores on the JODA test 

subset by 3% over a baseline system. Furthermore, integrating the error-injected Tashkeela dataset 

enhanced the model’s generalization, as evidenced by significant improvements in CER across various 

benchmark test sub-sets. 

Beyond quantitative metrics, manual reviews revealed that the model’s output often matched or closely 

approximated expert translations, underscoring its practical effectiveness. Finally, we made the resulting 

models accessible via a custom keyboard and a web portal, thus offering user-friendly solutions that 

expand the reach and impact of this research. These solutions will first be introduced in pilot scenarios 

to collect user feedback, enabling further refinement before a wider public launch. 

Our approach, trained on JODA, the largest mono-dialect corpus, achieves the highest reported BLEU 

for Levantine dialects, outperforming prior Arabic-dialect-to-MSA systems. Nevertheless, it can 

mishandle number/gender ambiguities and code-mixed Arabic-English inputs, pointing to the need for 

richer data and explicit ambiguity modeling. Tests on other Levantine samples show reasonable cross-

dialect transfer, but reduced accuracy with dialect-specific or French-derived terms, underscoring the 

need for further adaptation to other Levantine varieties. 

One avenue for future research is to explore larger, more advanced ByT5 or similar transformer-based 

models. Increasing model parameters could enhance their capacity to capture a broader range of 

linguistic nuances, especially when trained on significantly expanded datasets. 

While large models often produce superior results, they may be too resource-intensive for deployment 

on mobile devices with limited computational capabilities. A natural extension is to investigate smaller, 

more efficient architectures, employing techniques, like model distillation or quantization, to reduce size 

and inference time. This would facilitate on-device processing, ensuring offline usability and faster, 

more personalized performance. 

Currently, we rely on two separate models whenever the corrected text also needs diacritization. 

However, modern-language models are powerful enough to handle multiple tasks within a single 
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architecture—one task for correction only and another task for both correction and diacritization. This 

approach eliminates the need to chain two distinct models, which will reduce latency. Future work could 

integrate the developed translation capabilities into Arabic chatbots [45] to enable them to automatically 

understand and translate user inputs from dialectal Arabic into MSA, thereby enhancing their generality 

and linguistic accuracy. 
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ملخص البحث:

تعُاااااالج هاااااذه الورقاااااة التيحاااااديي المتمثااااال فاااااي إنتااااااإ ترجماااااة  دقيقاااااة  مااااان العربياااااة ا ردنياااااة إلاااااى 

ااااااااا عة   (MSA) الحديثااااااااة الفصااااااااحىالعربيااااااااة  وعلااااااااى مااااااااا تصااااااااويب ا خطاااااااااء اللي ويااااااااة ال ي

سااااامية للتيواصااااال باللي اااااة العربياااااة،  الفصاااااحىالاااااري م مااااان أني العربياااااة  اااااي ة الري الحديثاااااة هاااااي الصي

فااااااإني الانت ااااااار الواسااااااا لليهجااااااات المحلييااااااة فااااااي وسااااااا ل التيواصاااااال الاجتماااااااعي إلااااااى جانااااااب 

تعُااااااني مااااان أخطااااااء فاااااي التيهج اااااة وعياااااو    نصُاااااو  انت اااااارالتيفااااااعلات اليومياااااة نجااااام عنهاااااا 

 قواعدية 

ع علاااااى مجموعاااااة بياناااااات  للت لاااااب و ع مبتكاااااراع مبنياااااا بالعربياااااة علاااااى هاااااذه التيحاااااديات، نقاااااديم ن اماااااا

( جُملاااااااااة، إلاااااااااى جاناااااااااب مجموعاااااااااة البياناااااااااات 59135( تتاااااااااألف مااااااااان )JODAا ردنياااااااااة )

ونقااااااوم بتوويااااااف نمااااااوذإع ل ااااااوي    الصااااااناعية)ت ااااااكيلة( المعديلااااااة ماااااان خاااااالال حقاااااان ا خطاااااااء 

ع  البايْااااات تجعلاااااه قاااااابلاع للتيكي اااااف للتيباينُاااااات نصُاااااو  علاااااى مساااااتو   يقبااااالضاااااخم مُااااادرً   مُسااااابقا

المتعليقاااااااة بالتيهج اااااااة فاااااااي الليهجاااااااات المحليياااااااة المختلفاااااااة والتيعقيااااااادات التيركيبياااااااة المختلفاااااااة فاااااااي 

ن امناااااا مااااان خااااالال التيجاااااار  العملياااااة تحساااااين معاااااديل الخطاااااأ فاااااي   هااااارلهجاااااات العربياااااة  ويال

مجموعاااااات البياناااااات الماااااذكورة،  الااااانيري عبااااار تقليااااال ذلاااااك المعاااااديل بفعااااال معاااااايرة الني اااااام علاااااى

ع أني  اااااح أني الني اااااام المقتااااارح ينُاااااتج ترجماااااات  دقيقاااااةع فاااااي مع ااااام الحاااااالات  وتباااااين أيّاااااا كماااااا اتيّ

اااااااعين للحصااااااول  ع لملايااااااين المتحاااااادي ين بالعربيااااااة السي ع ناجعااااااا اااااادار البحااااااا يُ ااااااكيل حاااااالاي الني ااااااام مل

   الحديثة الفصحىعلى نصو   دقيقة بالعربية 

اهن مُ والني ااااااام المقتاااااارح فااااااا صاااااار علاااااااى ترجمااااااة النيصاااااااو  ماااااان العربياااااااة قتي وضااااااعه الاااااااري

اااااي التيرجماااااة مااااان  ا ردنياااااة، وتتيجاااااه مسااااااعي البحاااااا المساااااتقبلية إلاااااى توسااااايا اساااااتخدامه لي طي

 لهجات  عربية أخر  

http://creativecommons.org/licenses/by/4.0/
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ABSTRACT 

Cyberbullying has emerged as a pressing issue in the digital era, particularly within Arabic-speaking communities, 

where research remains limited. This study investigates the detection of Arabic cyberbullying on social media 

using both traditional machine learning (ML) and deep learning (DL) techniques. A publicly available dataset of 

Arabic tweets was used to train and evaluate several ML models (SVM, NB, LR and XGBoost), alongside a 

recurrent neural network (RNN). The results demonstrate that the RNN significantly outperforms classical ML 

models, highlighting the efficacy of DL in accurately identifying abusive content in Arabic text. These results 

emphasize the necessity of incorporating linguistically rich data and advanced neural architectures to improve 

cyberbullying-detection systems in low-resource languages such as Arabic. 

KEYWORDS 

Machine learning algorithms, Arabic tweets, Deep-learning techniques, Recurrent neural network, Cyberbullying. 

1. INTRODUCTION

Cyberbullying involves the use of digital platforms—such as smartphones and social media—to inflict 

harm through behaviors like verbal abuse, offensive language and harassment. Its psychological impact 

can be profound, especially among teenagers, leading to issues, such as low self-esteem, anxiety and 

identity-related concerns. The problem has intensified globally with the growing popularity of 

platforms, like Twitter (now X), where anonymity enables harmful behavior without accountability [1]. 

Recent reports highlighted the scale of the issue: in 2024, 28% of adolescents experienced cyberbullying 

and over 42% of youth aged 13–24 years in the MENA region reported exposure to online abuse via 

popular apps like Instagram, TikTok and Twitter [2]–[5]. The ITU and Arab Social Media Observatory 

have similarly flagged cyberbullying as a major digital threat to the mental health of children and 

adolescents [6]-[7]. These findings point to an urgent need for scalable, data-driven solutions that go 

beyond manual moderation. 

Despite growing efforts in English-language research, Arabic cyberbullying detection remains 

underexplored. The increasing use of Arabic on social media—especially Twitter—demands more 

targeted approaches, but the language’s rich morphology, diverse dialects and limited annotated 

resources present ongoing challenges [8]. The situation was further exacerbated by the COVID-19 

pandemic, which saw young users spending more time online and becoming more vulnerable to digital 

abuse [9]. 

To address these gaps, this study proposes a deep learning-based model for detecting cyberbullying in 

Arabic text. By combining three datasets representing different Arabic dialects into a single corpus and 

applying a Recurrent Neural Network (RNN)—a relatively underutilized method in this context—we 

achieve significant improvements in detection performance. Our work contributes to the development 

of more robust and linguistically aware systems for identifying abusive content in Arabic-language 

social media. 

The rest of this paper is organized as follows: Section 2 reviews related work and the datasets used; 

Section 3 outlines the proposed methodology; Section 4 presents and analyzes the results; Section 5 

offers a comprehensive discussion; and Section 6 concludes the paper. 

mailto:t.kmial@student.aaup.edu
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2. LITERATURE REVIEW

Natural-language processing (NLP) technologies have evolved substantially over the decades, becoming 

vital for enabling effective human-computer interaction [11]. Fundamentally, NLP transforms natural-

language texts into machine-processable digital formats, enabling sophisticated tasks, such as machine 

translation and sentiment analysis [12]-[13]. The roots of NLP trace back to the 1950s with early 

systems, like the Georgetown-IBM translation experiment, which laid the groundwork for subsequent 

advances in AI-driven text understanding. 

A critical initial step in NLP pipelines is text pre-processing, which ensures high-quality input data for 

improved model performance. Tokenization breaks text into meaningful units, such as sentences or 

words, facilitating downstream analysis. Techniques, like stemming, which reduce words to their root 

forms and stop-word removal, which excludes frequent, but semantically light words, are essential for 

reducing noise and dimensionality [14], [16]. Kanaan et al. [15] demonstrated that combining stemming 

with truncation, normalization and stop-word removal significantly boosts classification accuracy and 

F1-scores in document-classification tasks. 

In the realm of machine learning (ML), classical algorithms such as Support Vector Machines (SVMs), 

Naive Bayes (NB), Logistic Regression (LR) and Extreme Gradient Boosting (XGBoost), have 

remained popular due to their efficiency and interpretability. These models have been applied 

extensively for Arabic-cyberbullying detection, yielding solid baseline results. For example, Hani et al. 

[23] reported over 89% accuracy using linear SVM with TF-IDF features on a small Arabic dataset,

while Rashid et al. [24] and Moheb et al. [21] achieved accuracies up to 95% with NB classifiers. 

Logistic regression also performs competitively, with Rashid et al. [24] improving F1-scores through 

dataset balancing and feature engineering. XGBoost, a powerful ensemble method, showed promising 

results with 85% accuracy [24]. 

2.1 Classification Methods 

Many researchers have collected data from popular social-media platforms, such as Twitter and 

Facebook, to study cyberbullying. For instance, Aladdin et al. [17] utilized the Twitter API to gather 

their dataset. Similarly, Haidar et al. [18]-[19] developed dedicated tools in Python and PHP to collect 

data from both Facebook and Twitter, storing it in a MongoDB database. Al-Harbi and colleagues [20] 

compiled a large dataset comprising 100,327 tweets and comments collected from Twitter, YouTube 

and Microsoft platforms. Meanwhile, Mohib et al. [21] gathered 25,000 tweets and comments from 

Twitter and YouTube using their respective APIs. Other studies employed tools, such as NLTK, for text 

analysis or platforms, like RStudio, for extracting tweets [22]-[23]. Although most of these datasets 

were primarily in English, some research focused on Arabic data collected from sources, including 

Twitter, Facebook and YouTube [22]. Most datasets were processed and manually annotated, while 

Arabic-cyberbullying datasets remain comparatively limited. 

The literature highlights the significant role of machine-learning algorithms in addressing cyberbullying 

challenges by detecting harmful patterns and behaviors through classification and text analysis. Support 

Vector Machines (SVMs) have been widely used for text classification in Arabic-cyberbullying 

research. For example, Hani et al. [23] achieved over 89% accuracy using a linear SVM on a small 

dataset of 1.6K publications after extracting features with the term frequency-inverse document 

frequency (TF-IDF) method. The Naive Bayes (NB) classifier has also been extensively applied in 

Arabic-text analysis [12], [24]-[25]. Rashid et al. [24] employed NB with the bag of words model, 

reaching 87% accuracy and 35% recall, while Moheb et al. [21] reported up to 95% accuracy. Kanaan 

et al. [20] further demonstrated that NB attained 91% accuracy following demodulation and stop-word 

removal. Logistic regression (LR) is another common classification algorithm used in both binary and 

multi-class problems. Rashid et al. [24] used LR as a baseline model and, after balancing the dataset, 

improved the F1-score to 84% using TF-IDF features. Alfageh et al. [25] applied LR with TF-IDF, 

reporting results slightly lower by 1.8% compared to count vectorization. Lastly, the Extreme Gradient 

Boosting (XGBoost) algorithm has shown effectiveness in handling text data for cyberbullying 

detection, with Rashid et al. [24] reporting 85% accuracy using this approach. 

2.2 Deep-learning Techniques 

These methods have demonstrated impressive effectiveness in addressing the challenge of identifying 
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cyberbullying in the Arabic language. For example, the researchers in [21], [25] developed a CNN-

based model specifically tailored for this task. Their methodology involved four key steps: converting 

textual data into numerical representations, applying convolutional operations to extract significant 

features, reducing the convolution output to preserve only the most relevant information and finally 

feeding the processed data into a dense layer fully connected to all neurons in the network. This approach 

was tested on a dataset of 39,000 Arabic tweets collected via the Twitter API, achieving an impressive 

accuracy exceeding 95% without requiring manual intervention. Similarly, Banerjee et al. [26] extended 

the use of CNN to a larger dataset of 69,000 Arabic tweets, reporting an accuracy rate above 93%. In 

another study, Benaissa et al. [24] compared CNN with other deep-learning architectures, including 

Gated Recurrent Units (GRUs), Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM). 

Their analysis, conducted on a dataset of 32,000 Arabic comments from Aljazeera.net, showed that CNN 

outperformed the other models by a margin of one percent in the F1-score. Across the balanced dataset, 

these models collectively achieved an average F1-score of 84%. Further insights were provided by 

Srivastava et al. [27], who explored GRU, LSTM and BLSTM models for detecting objectionable 

content in online conversations. Their methodology incorporated rigorous data pre-processing steps, 

such as text cleaning, tokenization, stemming, lemmatization and stop-word removal prior to training 

the deep-learning algorithms. Among the models tested, BLSTM achieved the highest accuracy of 

82.18%, followed closely by GRU (81.46%) and LSTM (80.86%). These results highlight the 

transformative potential of deep-learning techniques, particularly CNN, in enhancing the detection of 

cyberbullying within Arabic social media posts. Although these findings are promising, they also 

emphasize the need for continued research to further refine these models and effectively manage the 

growing volume and complexity of Arabic content on social-media platforms. 

Building on the promising results of deep-learning techniques, such as CNN and RNN, in Arabic-

cyberbullying detection, recent studies have explored hybrid and transformer-based approaches to 

further enhance performance. The study in [35] proposed a hybrid deep-learning model that combines 

LSTM networks with CNNs to detect cyberbullying in Arabic tweets. Their study focused on applying 

deep learning techniques to social-media data, specifically targeting the challenges of NLP. They 

demonstrated that their hybrid model outperformed several traditional ML algorithms, including SVM 

and NB, in terms of classification accuracy. While their contribution is significant, the study did not 

explicitly address dialectal variations within Arabic, nor did it elaborate on the size and linguistic 

diversity of the dataset used, which are important considerations in the context of Arabic social-media 

text. Abu Kwaik et al. [36] introduced an advanced methodology for identifying hate speech in Arabic 

tweets by integrating Recurrent Neural Network architectures—namely GRU and BiLSTM—with 

contextual word embeddings derived from AraBERT. Their experiments on dialectal Arabic-tweet 

datasets demonstrated strong discriminatory power, achieving an AUROC of approximately 0.84 in 

binary classification, 87.05% accuracy for the 2‑class task, 78.99% for the 3‑class task and 75.51% for 

the 6-class task. This study highlights the effectiveness of combining transformer-based embeddings 

with recurrent neural models when handling Arabic social-media content.  

Building on these advances, a very recent study in [39] proposed state-of-the-art deep-learning 

techniques and provided comparative benchmarks closely aligned with the methodology of this research. 

The study applied a combination of CNN, RNN and transformer-based models to large-scale datasets 

of Arabic social-media content, emphasizing the importance of handling dialectal diversity and semantic 

nuances. Their results surpassed previous benchmarks, achieving improvements in both accuracy and 

F1 score metrics, demonstrating significant progress in the field between 2022 and 2024. Including such 

up-to-date research enhances the understanding of current capabilities and helps guide future work 

toward more robust cyberbullying-detection systems. Based on the previous studies referenced [13], 

[26], [23], [27], it has been observed that detecting bullying in the Arabic language remains a critical 

topic that requires significant attention in research. There is an urgent need for more studies on this 

topic. The existence of new technologies can help reduce the harmful impact of social media to prevent 

unwanted occurrences. Obeidat et al. [37] conducted a comparative study evaluating deep-learning 

models, such as RNN and CNN, against traditional machine-learning classifiers, like SVM and Random 

Forest for Arabic sentiment analysis on Twitter datasets. Their findings demonstrated that deep-learning 

approaches outperform traditional machine-learning methods in effectively handling the complexity and 

dialectal variations of Arabic social-media text. This is highly relevant to cyberbullying detection, which 

shares similar linguistic challenges. Our work extends these findings by applying RNN architectures on 
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a larger, multi-dialectal dataset specifically focused on cyberbullying detection, further confirming the 

superior performance of deep-learning techniques over traditional models in Arabic NLP tasks. Earlier 

work by Al-Hassan and Al-Dossari [38] proposed one of the earliest benchmark datasets for Arabic-

cyberbullying detection, compiling approximately 10,000 tweets labelled for offensive content. They 

evaluated both ML (Random Forest) and DL models (CNN, RNN), highlighting the promising 

performance of RNNs. Their dataset, however, is limited in scale and dialectal coverage. In contrast, 

our study utilizes a larger and more dialectally diverse dataset and focuses on standard RNN 

architectures, allowing for a more detailed exploration of their effectiveness in cyberbullying detection. 

Furthermore, other deep-learning models have also demonstrated promising results in Arabic-text 

classification tasks outside the cyberbullying domain. For instance, Jamaluddin et al. [43] proposed a 

multi-channel deep-learning model for Arabic news classification, emphasizing the importance of 

capturing semantic features through parallel architectures. Similarly, Al Qadi et al. [44] introduced a 

scalable shallow learning approach for tagging Arabic news articles, highlighting the benefits of 

lightweight models for Arabic NLP. These contributions further underline the growing applicability of 

both deep and shallow models across diverse Arabic-language NLP tasks. 

While previous research demonstrates considerable progress using classical ML and deep learning for 

Arabic-cyberbullying detection, several gaps remain. Most studies rely on limited datasets with narrow 

dialectal coverage and modest sample sizes. The increasing linguistic complexity of Arabic social-media 

content necessitates larger, more diverse datasets and efficient deep-learning models. Our study 

addresses these gaps by utilizing extensive, dialect-rich datasets and focusing on RNN architectures that 

balance performance and complexity. This approach contributes to advancing robust cyberbullying 

detection in Arabic, complementing recent transformer-based innovations. 

Therefore, a group of ML and deep-learning algorithms that were observed in the literature was chosen. 

Table 1 provides a summary of some of the literature on Arabic cyberbullying. 

3. MATERIALS AND METHODS

It is well known that the detection of a cyberbullying attack involves several steps, including data 

collection, visualization, pre-processing, feature extraction, model training and then model evaluation, 

as illustrated in Figure 1. 

Figure 1. A general workflow of the proposed methodology. 

3.1 Data Description 

The data used in this research consists of public datasets published on Kaggle and divided into three 

separate and linguistically varied datasets, as shown in Table 2. The initial dataset, consisting of 5,846 

Syrian/Lebanese political tweets, is included in the "Levantine Arab Hate Speech" dataset [42], which 

is divided into three groups: abusive tweets, hate-speech tweets and normal tweets. The second set, 

known as the "Arabic Sentiment Twitter Dataset Corpus" [43], consists of 56,795 Arabic tweets divided 

into two categories: positive and negative. The third group, "Arabic Dataset 1" [44], consists of a 

relatively small dataset of 1,100 tweets, divided into two categories using binary classification:  
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Table 1. Brief summary of the literature on Arabic cyberbullying. 

negative speech (1) and positive or neutral speech (0). This data is characterized by the diversity of 

dialects used, including local dialects and classical Arabic, making it comprehensive and covering 

different linguistic styles in the Arab world. Tweets are categorized into two main categories: bullying, 

which contains offensive words or phrases and non-bullying, which does not. The final dataset 

comprises labels of 0 or 1 depending on whether the comment is bullying or not. Additionally, the data 

used is balanced, as shown in Figure 2. 

Table 2. Data description. 

Figure 2. Distribution of positive and negative text, where (0 = Non-bullying, 1 = Bullying). 

3.2 Data Visualization and Pre-processing 

To know the most frequent words for bullying and non-bullying comments, this is expressed by 

displaying the word sizes, where large words are frequently repeated, as shown in Figure 3. 

Ref. Classifier Year Dataset (Size)  Evaluation matric 

[9] XGBoost, NB.SVM, LR 2024 Twitter 9000 Tweets Accuracy: 88%,78%, 84.4%, 

83.95% 

[14] SVM 2021 Twitter API, (17.748 

Tweets) 

Accuracy: 85.49% 

[15] SVM, KNN, NB, RF 2020 X API, (4000 Tweets, 

Facebook2138Posts) 

N/A 

[24] Deep Learning 2020 Aljazeera.net (32000 

Comments) 

Accuracy: 84% 

[28] NB 2023 YouTube Platform 

(4760 Comments) 

Accuracy: 94% 

[29] SVM, NB 2024 Twitter and YouTube 

(30000 Tweets) 

Accuracy: 95%, 70% 

[30] LSTM 2023 Twitter 10000 Tweets Accuracy: 88% 

[31] MLP 2023 Twitter API 4140 

Tweets

Accuracy: 89% 

[32] LR, voting classifier, SVM 2024 Twitter 12000 Tweets Accuracy: 65%, 71%, 98% 

[33] Codellama, DeepSeekCoder, Llama2 2025 10000 Comments Accuracy: 35%, 26%, 6.41 % 

[34] AraBERT 2025 4240 Comments N/A 

[35] Hybrid (CNN, LSTM) 2022 N/A Accuracy: 97% 

[36] GRU and BiLSTM combined with 

contextual embeddings (AraBERT) 

2023 N/A Accuracy: 87.05% (2-class), 

78.99% (3-class), 75.51% (6-

class) 

[39] CNN, LSTM and BiLSTM 2025 50000 comments Accuracy: 91% 

Ref. Group Name No. of  Tweets Categories Size - Notes 

[42] Arabic -Levantine Hate Speech 5846 Normal, Abusive, Hate Syrian–Lebanese Politics 

[43] Arabic Twitter Sentiment Dataset 56795 Positive, Negative Training 45275, Testing 11920 

[44] Arabic Dataset 1100 Negative, Positive Relatively Small Data Size 

Total 63741 
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(a)                                                                         (b) 

 Figure 3. Word cloud negative (a), Word cloud positive (b). 

Figure 4 shows the representation of the most frequent words using the Count Vectorizer technique, 

where the frequency of words within texts is counted and converted into a numerical representation. 

The graph displays the twenty most frequently used words, ranked by frequency. 

Figure 4. Count-vectorizer technique (top-20 most frequent words). 

The first word is shown to have the highest frequency, occurring more than 250 times, followed by other 

words with decreasing frequencies. This representation is useful for understanding the distribution of 

words within the text data and discovering words that may be of high analytical interest in the context 

under study. The pre-processing stage is an important step in an ML technique, because it cleans and 

prepares the dataset, so that it can be used to train the model. In this study, the tweets are written in 

various dialects that differ from traditional Arabic. Therefore, we have used the NLP technique to 

address issues presented by comments on Twitter written in Arabic. This was applied in Figure 5. 

Figure 5. Data pre-processing main steps. 

3.2.1 Removing Duplicates 

There is a duplicate tweet; with bullying the duplicate count is 9896 and without bullying the duplicate 

count is 11122. So, by using the Python code, we remove these duplicates and they become zero 

duplicates, as shown in Figure 6. 

Figure 6. Remove duplicate. 

3.2.2 Normalization 

We applied the normalization to the dataset and converted it into a uniform text. The Python 

programming language implemented this process. It significantly contributes to improving the 

performance of models in ML tasks by reducing unnecessary linguistic variations. By converting texts 

into a standardized format, such as removing diacritics or similar characters, the model becomes better 
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at understanding underlying patterns, which reduces noise in the data. This step leads to improved model 

accuracy and increased efficiency in handling unstructured and diverse texts, such as those found in 

cyberbullying tasks. In our study, we remove the English Letters, URLs, Hashtags, Special Characters 

and emojis. After applying the normalization process this led to the text being normalized and the result 

is shown here in Figure 7. 

(a)                                                                        (b) 

Figure 7. Text; before normalization (a); after normalization (b). 

In Figure 7. (a), we see the tweets (“ إذا أردت أن تعرف شيئا همي إسألني قبل أن تسأل“), we see (“أ,ئ,ي” ) converted 

into uniform text, as shown in Figure 7. (b). For example, (“إ,أ “) converted into (ا). 

3.2.3 Removing Stop Words 

Stop words are meaningless in our study; we normalize text by removing the stop words. In applications, 

omitting standard words is a good way to implement and emphasize the most important words.  

3.2.4 Tokenization 

The texts were converted into words using natural-language units based on language rules defined by 

word boundaries. This step enabled the RNN model to treat each word as an independent unit within a 

sentence string, creating innovations in learning and processing context. When tokenization is carried 

out accurately, it makes it easier for the model to handle a wide variety of texts, such as those found in 

cyberbullying, which can include offensive words and complex phrases. Through good segmentation, 

the model can "understand" these offensive elements separately from other words, improving the 

accuracy of its predictions. 

3.2.5 Stemming 

In this step, words are reduced to their original roots by removing good suffixes or additions such as" 

 The goal of stemming is to reduce word diversity, helping the model understand that ."ات" أو "ين" أو "ه

words derived from the same trigger have the same underlying meaning, such as "كتاب," "كتابة", "كتب" 

being reduced to "كتب". If stemming is applied effectively, it can improve the model's accuracy by 

reducing the variety of words associated with the same root. However, sometimes it can have a negative 

impact if it excessively reduces words, leading to weakened differentiation between important words. 

After we applied the pre-processing steps shown in Figure 5, Figure 8 shows a sample of the pre-

processing phase. 

Figure 8. A sample of the pre-processed data. 
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As Figure 8 illustrates, there are six columns. The first and second columns represent the dataset before 

processing. Column 3 (“Tokenize Text”) shows how the text is tokenized into small words. Column 4 

(“Filter Text”) displays the result after removing meaningless data using stop words. Column 5 (“Stem 

Text”) shows the text converted into its original form in Arabic and the final column presents the 

uniform data after pre-processing. The study then investigates the best model features that yielded the 

highest accuracy to identify the most effective ML algorithms for detecting cyberbullying in Arabic 

tweets using TF-IDF techniques. In this study, Twitter tweets are categorized into two groups: bullying 

and non-bullying. The TF-IDF feature-extraction method was employed to enhance the textual data 

representation by measuring the importance of terms within individual tweets relative to the entire 

dataset. Additionally, the study utilized n-grams to analyze the sequences of words rather than isolated 

terms, allowing the capture of contextual information. This significantly improved the model's 

understanding of language patterns associated with bullying behavior. This approach was essential for 

classifying tweets in a relevant and accurate manner. 

3.3 Machine-learning Classification and Tuning 

3.3.1 Support Vector Machine 

In this study, the SVM algorithm was used as one of the basic ML techniques for tweet classification 

and cyberbullying analysis. SVM is an effective tool for handling high-dimensional text data and finding 

the best hyperplane between different categories, such as bullying-free tweets and bullying tweets. SVM 

has been applied to text features extracted using NLP techniques, such as converting text into numerical 

representation via TF-IDF vectorization. The algorithm has improved classification accuracy thanks to 

its ability to handle multi-dimensional text, especially in light of the diversity of dialects and linguistic 

patterns within the dataset [9]. 

3.3.2 Naïve Bayes 

In this study, Arabic tweets were categorized into cyberbullying-related groups using the NB algorithm. 

As a result of its effectiveness and simplicity, NB was an appropriate option when handling huge and 

high-dimensional data. The algorithm's output also showed strong performance in rapidly and precisely 

gathering data, which aided in the efficient identification of cyberbullying in tweets [9]. 

3.3.3 Logistic Regression 

In this study, Arabic tweets were analyzed using LR as a classification method and they were divided 

into two groups: cyberbullying and non-bullying. LR is a good choice for this kind of data, because it 

can handle binary problems well and has shown promise in identifying the correlation between textual 

characteristics and the degree of bullying in tweets. Obtaining precise and comprehensible classification 

models was also beneficial [31]. 

 3.3.4 Extreme Gradient Boosting 

XGBoost was employed in this study as a technique to classify Arabic tweets into two groups: those 

that involved cyberbullying and those that did not. XGBoost was selected because of its top-ranking 

performance and good accuracy in handling data with many different dimensions. Furthermore, the 

XGBoost method enhances performance by employing strategies, like regularization to lessen 

overfitting and enhance generalization [31]. 

3.3.5 Deep-learning Approach 

In this research, RNNs were used to analyze Arabic tweets related to cyberbullying and categorize them 

into two classes: "bullying" and "non-bullying." This technique was selected due to its ability to 

recognize sequential patterns in text data, such as understanding context within a series of words. RNNs 

are particularly well-suited for tweet analysis, as they account for the chronological order of words and 

expressions, helping identify offensive messages influenced by contextual nuances. 

The model was trained using Keras’s sequential interface, incorporating an embedding layer, followed 

by a simple RNN layer and ending with a dense layer. The embedding layer transformed words into 

numerical representations, with an input dimension of 5,000 and an output dimension of 64. The 

sequence length was determined based on the maximum length of tweets in the dataset. 
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The training process was conducted using a set of pre-defined hyperparameters, with multiple tests 

performed to determine the optimal configuration. The model was initialized with random weights and 

the number of units in the output layer was tailored for binary classification, as the task requires 

categorizing tweets into two classes: "bullying" and "non-bullying." 

The learning rate was optimized using the Adam optimizer, chosen for its efficiency in training deep-

learning models. The batch size was set to 64, enabling the model to process a sufficient number of 

samples per iteration. The training spanned 27 epochs. The text data was also classified using a 

combination of ML and DL algorithms to enhance performance and identify the optimal model. The 

ML algorithms included SVC, LR and NB, while RNNs represented the deep-learning component. Texts 

were transformed into numerical representations using the TF-IDF technique and hyperparameters were 

fine-tuned using GridSearch to achieve the best possible performance. Below is a summary of the 

parameter settings used for each algorithm [24]. 

3.3.6 Hyper-parameter Fine-tuning and Evaluation Measures 

Several algorithms were used with parameter adjustments to enhance performance. In SVC, the 

parameter C was set to control regularization, max_iter for the number of iterations, length for defining 

stopping criteria and TF-IDF max_features to specify the number of words considered in the TF-IDF 

representation. In LR, C and solver were configured to select the solution method, along with 

adjustments to TF-IDF max_features and TF-IDF ngram_range to define the range of words considered. 

In NB, the alpha parameter was used to regulate the influence of rare words and TF-IDF ngram_range 

was used to define the word range considered in the model. In the RNN model, the learning rate was 

determined using the Adam optimizer. The parameters input_dim, output_dim and input_length were 

set to properly format the text input, while epochs and batch size were selected for the training process. 

All models used TF-IDF to convert textual data into a numerical format and GridSearch was employed 

to determine the optimal values for each model’s parameters. 

3.3.7 Model Generation and Evaluation 

In this study, the Python, Sklearn and XGBoost libraries were used to develop four supervised ML 

models to classify the data. The results were evaluated using several performance metrics, including 

accuracy as given in Equation (1), precision as given in Equation (2), recall as given in Equation (3) and 

F1-score as given in Equation (4). These measures were calculated using the following equations [31], 

where TP is the true positives, TN is the true negatives, FP is the false positives and FN is the false 

negatives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
        (4) 

We also calculated the F1-score computed at the class level (Macro-F1) and at the sample level (Micro-

F1). The Macro-F1 was calculated as the simple average of the F1 scores for each class and the Micro-

F1 was calculated based on the confusion matrix, which takes into account all true positives, false 

positives, false negatives and true negatives across all classes, as follows: 

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
𝐹1 𝑐𝑙𝑎𝑠𝑠0+𝐹1 𝑐𝑙𝑎𝑠𝑠1

2
         (5) 

𝑀𝑖𝑐𝑟𝑜 − 𝐹1 =
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑇𝑃
(6) 

4. RESULTS

Experiments were conducted to analyze the performance of models used in text classification, using ML 

and deep-learning algorithms with parameter adjustment to improve accuracy. The aim was to compare 

the effectiveness of the models and choose the most appropriate for the available data. The results are 

presented below. 
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4.1 Experiment Results Using Different Machine-learning Algorithms 

The models were built and tested using a dataset collected and processed for this study. The collection 

contains 42,723 tweets after initial processing, obtained from Kaggle. This study used four ML 

algorithms: SVM, NB, LR and XGBoost. The performance of these models was evaluated using 

measures of accuracy, precision, recall and F1-score, as shown in Table 3. 

Table 3. Experimental results of various machine learning methods. 

Table 3 compares the performance of four models (SVM, NB, LR and XGBoost) in the cyberbullying-

detection task using the TF-IDF feature-extraction method. Each model's performance was evaluated 

based on the mentioned metrics. The SVM model performed best, recording 75% accuracy, 76% 

precision, 76% recall and 76% F1-score. This makes it the most effective of all models, showing a good 

balance across all metrics. The NB model recorded 72% accuracy, 73% precision, 73% recall and 73% 

F1-score. Despite its weaker performance compared to SVM, it still offers acceptable results, 

particularly in recall. The LR model achieved 74% accuracy, 76% precision, 72% recall and 75% F1-

score. LR performed close to SVM, but was lower in terms of recall and F1 score. The XGBoost model 

showed balanced performance, achieving 74% accuracy, 77% precision, 70% recall and 74% F1-score. 

XGBoost outperformed other models in terms of precision, with the highest score (77%), demonstrating 

its ability to make more accurate positive predictions. Although the initial results obtained using 

traditional ML algorithms were acceptable, they were not sufficient to meet the required objectives. 

Therefore, the accuracy and overall performance of the model were enhanced by applying deep-learning 

techniques using RNN. 

4.2 Experiment Results Using RNN 

To improve model performance and achieve better outcomes, we transitioned to using deep learning, 

with a focus on RNNs, to process the same large and complex dataset. During our experiments, neural 

networks demonstrated their ability to outperform traditional algorithms. In the first experiment, the 

model was trained for 20 epochs, resulting in an excellent accuracy of 96%. In the second experiment, 

we used 27 epochs and achieved an accuracy of 97%. These findings highlight the high proficiency of 

deep-learning techniques in extracting complex patterns from large datasets and underscore their 

significance as an effective approach to enhancing performance in this context. Table 4 presents the 

results of the experiment using RNNs. 

Table 4. Experimental results of the deep-learning approach. 

To ensure fair evaluation, we report precision, recall and F1-score separately for each class (0: non-

bullying, 1: bullying). As shown in Experiment 2, Table 5, the model achieved high precision and recall 

for both classes (class 0: 97% recall, 96% F1-score; class 1: 96% precision, 97% F1-score), indicating 

balanced performance and minimal bias. In addition to per-class metrics, we computed the macro-

averaged F1-score (97%) and micro-averaged F1-score (97%), confirming consistent performance 

across classes. We also include the confusion matrix to visualize the distribution of true positives, false 

positives, true negatives and false negatives, further supporting the reliability of our results. 

ML Feature Extraction Accuracy Precision Recall 

 SVM TF - IDF 75% 
0 76% 0 76% 
1 75% 1 75% 

 NB TF - IDF 72% 
0 73% 0 73% 
1 72% 1 72% 

 LR TF - IDF 74% 
0 76% 0 74% 
1 73% 1 75% 

 XGBoost TF - IDF 74% 
0 77% 0 70% 

1 71% 1 78% 

Experiments Classifier Accuracy Precision Recall F1- Score 

Experiment 1 RNN 96% 
0 97% 0 94% 

96% 
1 94% 1 97% 

Experiment 2 RNN 97% 
0 97% 0 96% 

97% 
1 96% 1 97% 
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Furthermore, the training process was stable, as evidenced by accuracy and loss curves, which show no 

signs of overfitting. These results highlight the model’s robustness and its ability to distinguish between 

bullying and non-bullying instances effectively. 

The attached diagrams illustrate the performance of the RNN model used in the experiment. Figure 9(a) 

shows the confusion matrix, which reflects the model’s prediction accuracy, where the values in the 

cells indicate the number of correctly and incorrectly classified cases. For example, the model correctly 

classified 20,699 instances of the negative category (0) and 20,633 instances of the positive category 

(1), while misclassifications were limited to 795 and 596, respectively. These results indicate strong 

performance in data classification. 

Figure 9(b) presents the loss and accuracy curve. This curve illustrates the relationship between the 

number of epochs and the corresponding values of loss and accuracy. The loss is shown to continuously 

decrease as the number of epochs increases, indicating the model’s learning progress and improvement. 

Conversely, accuracy steadily increases to high levels, reflecting model stability and the ability to 

achieve accurate results over time. 

Figure 10 displays the ROC Curve, which is used to evaluate model performance by comparing the True 

Positive Rate (TPR) with the False Positive Rate (FPR). The curve indicates that the model achieved an 

Area Under the Curve (AUC) of 97%, reflecting high effectiveness in distinguishing between categories. 

These results demonstrate the model’s efficiency and its ability to process and classify data with high 

accuracy. 

(a)                                                                             (b) 

Figure 9. (a) Confusion matrix and (b) Loss and accuracy curve for RNN. 

Figure 10. ROC curve for RNN results. 

An important aspect of evaluating model performance involves analyzing false positives (FP) and false 

negatives (FN), as they directly impact the precision and recall scores, especially in sensitive tasks, like 

cyberbullying detection. As shown in the RNN confusion matrix (Figure 9A), the model misclassified 

795 non-bullying tweets as bullying (false positives) and 596 bullying tweets as non-bullying (false 

negatives). While both types of errors are undesirable, false negatives are particularly critical in this 

context, as failing to identify a bullying instance could allow harmful content to persist unflagged. 

However, the low number of false negatives relative to the total sample suggests strong recall, 

particularly for the bullying class (97%). Similarly, the limited number of false positives supports the 

model's high precision (96%) in identifying actual bullying content without over-flagging benign posts. 

This balance between FP and FN reinforces the model’s robustness and practical reliability in real-world 

applications. 
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5. DISCUSSION

To compare the proposed system with the latest available methods, we used a quantitative comparison 

between studies by selecting some recent studies that share three common aspects (language (Arabic), 

social media (Twitter) and data-collection source). However, the dataset used in those studies is different 

from the proposed one. In this regard, a comparison was made with three recent methods from 2023 
[29]-[31], [35]-[36]. 

Table 5.  Comparison between the proposed approach and state-of-the-art. 

Based on the results shown in Table 5, previous studies utilizing traditional machine-learning 

techniques, such as SVM and NB, with feature-extraction methods, like TF-IDF and Bag of Words, 

have reported accuracies reaching up to 95%. However, these studies typically relied on smaller datasets, 

which may have contributed to inflated performance metrics due to reduced complexity. In contrast, our 

approach employed a standard RNN model trained on a large-scale (42,000 samples), multi-dialectal 

dataset, achieving an accuracy of 97%. This underscores the capacity of deep-learning models, 

particularly RNNs, to generalize effectively across more diverse and complex data, outperforming 

traditional algorithms when evaluated on a broader scale. Our findings are consistent with Obeidat et al. 

[37], who demonstrated that deep-learning models, such as RNNs, significantly outperformed traditional 

machine-learning approaches (e.g. SVM, Random Forest) in Arabic sentiment analysis on Twitter. This 

further supports the superiority of neural architectures in handling complex linguistic features in Arabic 

social-media content. The dataset referenced in [29]-[31], [35]-[36], [39] was used to evaluate the 

performance of our algorithms. In the broader context of Arabic-cyberbullying detection, our results 

extend prior literature by emphasizing the impact of both dataset size and dialectal diversity. For 

example, Al-Hassan and Al-Dossari [38] introduced one of the earliest benchmark datasets (~11K 

tweets) and reported an F1-score of 73% using CNN-LSTM models. Our study, leveraging a more 

comprehensive dataset, achieved significantly higher F1-scores using a simpler RNN architecture, 

highlighting the value of rich data over architectural complexity. Similarly, Al-Azani and El-Alfy [35] 

proposed a hybrid CNN-LSTM model that attained an F1-score of 84.1%. Despite their more intricate 

design, our RNN-based model achieved comparable or superior accuracy without relying on hybrid or 

ensemble methods, affirming that a well-optimized standard RNN can deliver state-of-the-art results 

when trained on appropriate data. Furthermore, Abu Kwaik et al. [36] combined GRU/BiLSTM models 

with AraBERT embeddings, reporting an AUROC of 0.84 and accuracies ranging from 75% to 87% 

across various classification tasks. Although their use of transformer-based contextual embeddings 

enhanced performance, our model demonstrated that even without such embeddings, classical RNNs 

can achieve competitive results, particularly when trained on diverse and large-scale datasets. In 

addition, the recent study by Alshahrani et al. [39] employed CNN, LSTM and BiLSTM architectures 

on a dataset of approximately 50,000 Arabic tweets, achieving an accuracy above 94%. However, their 

work did not focus on dialectal diversity or use RNNs. By contrast, our approach incorporated three 

distinct Arabic dialects and applied a standard RNN, achieving superior accuracy. This demonstrates 

that simpler architectures, when supported by carefully curated and dialect-diverse data, can outperform 

more complex models lacking linguistic variation. Collectively, these comparisons reinforce two critical 

conclusions of our study: (1) the effectiveness of deep learning in Arabic-cyberbullying detection is 

closely tied to dataset size and dialectal diversity and (2) standard RNN architectures remain a viable 

Approach Feature 

Extraction 

Classifier Accuracy Precision Recall F1- 

Score 

[29] TF- IDF, Wob SVM, NB 95%,70% 92% 84% 88% 

[30] Non LSTM 88% 88% 88% 88% 

[31] TF- IDF MLP 89% 88% 90% 89% 

[35] 
Automatic feature 

extraction 
hybrid LSTM-CNN 87.8% N/A 83.6% 84.1% 

[36] 
AraBERT 

embeddings 

GRU and BiLSTM with 

AraBERT embeddings 

Accuracy: 87.05% (2‑class), 

78.99% (3‑class), 75.51% 

(6‑class) 

N/A N/A N/A 

[39] 
standard text 

embeddings 

CNN, LSTM and BiLSTM 

architectures. 
91% N/A N/A N/A 

Proposed TF- IDF RNN 97% 97% 97% 97% 
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and efficient alternative to more complex hybrid or transformer-based models. 

Although the size of the dataset was limited in the previous studies, applying the RNN algorithm yielded 

outstanding results. Regarding reference [29], we used their same dataset and applied our proposed RNN 

model to it. Our approach achieved an accuracy of 99.6%, compared to 95% reported in [29] using 

SVM. This confirms the superiority of our method, since the improvement was demonstrated on the 

same dataset under comparable conditions. Therefore, the performance gain is not only due to the size 

or structure of the dataset, but is directly related to the effectiveness of the proposed RNN-based 

architecture in capturing sequential patterns in Arabic text better than traditional classifiers, such as 

SVM. The comparison of the proposed approach with a closely related study is shown in Table 6. 

Table 6.  Comparison of the proposed approach with a closely related study [29]. 

Approach Classifier Accuracy Precision Recall F1- Score 

Proposed RNN 99.6% 99% 98% 98% 

[29] SVM 95% 92% 84% 88% 

While this study has demonstrated the effectiveness of the proposed algorithm in detecting 

cyberbullying in Arabic text, several limitations should be addressed in future work. Firstly, one 

challenge lies in the imbalance of the dataset, as the amount of cyberbullying content is often 

significantly lower than neutral or non-bullying content. This can affect the performance of the model 

and lead to a bias towards the majority class. In the future, techniques, such as data augmentation and 

oversampling, can be explored to balance the dataset and improve the detection accuracy. Furthermore, 

while our model achieved promising results, it may struggle to accurately interpret the context in longer 

and more complex sentences. In future studies, hybrid models combining RNNs with Transformers [45] 

could be explored to leverage the strengths of both approaches. Transformers, with their ability to 

capture long-range dependencies, could complement the sequential learning nature of RNNs, improving 

the overall model's understanding of the context. Moreover, challenges related to the diverse use of 

language and slang in cyberbullying cases, especially in Arabic, require further attention. Future 

research could focus on developing advanced pre-processing techniques and word embeddings to more 

effectively handle such linguistic variations. Finally, while this study provides valuable insights into 

cyberbullying detection using deep learning, future work should focus on overcoming these limitations 

through the integration of advanced techniques, such as hybrid models and better handling of data 

imbalance and contextual complexities. 

6. CONCLUSIONS

Cyberbullying is becoming increasingly difficult to detect, as users can bully without being identified. 

Cyberbullying poses a threat to individuals and can lead to suicide or depression among victims, making 

its detection essential. Although there are many studies on this topic, most of them have focused on the 

English language, while there are only a few studies in Arabic. In the current study, we proposed and 

trained a different ML model to detect cyberbullying in Arabic comments of tweets from different 

dialects. This study achieved significant improvements in the performance of the proposed model using 

feature-extraction techniques. RNNs produced the best results when utilizing 27 echoes in perfect time. 
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ملخص البحث:

ددددديبرا ي  دددددر السي قمدددددي  كقضدددددية    لقددددد  لتدددددر التينما دددددة عدددددي الع،دددددر الري وبخاصدددددة عدددددي الم تمعدددددات لحي

المتح يثدددددة بالعربيدددددة  يدددددف   يدددددجال البحدددددف عدددددي هددددد ا الم دددددال  حددددد ودا . وهددددد ه ال رقدددددة تبحدددددف 

ددددديبرا ي بالعربيدددددة رلددددد  وسدددددا ل التي اصدددددل ا  تمددددداري باسدددددتخ ا   دددددر السي عدددددي الن دددددم ردددددن التينما

م رددددددة تقنيددددددات الددددددتيعلال ايلددددددي التيقلي يددددددة  وتقنيددددددات الددددددتيعلال العميدددددد . وقدددددد   ددددددر  اسددددددتخ ا    

تا ددددددة للعمدددددد   لتدددددد ريب وتقيدددددديل ردددددد ي   مدددددداذ  تعلاددددددل  لددددددي  إلدددددد   بيا ددددددات لت ريدددددد ات بالعربيددددددة   

 (.RNN ا ب  م ذ  تعلال رمي  قا ل رل  شبنة ر،بية )

دددددبنة الع،دددددبية ت ددددد ي  رلددددد  النيمددددداذ  ا  دددددر  وقددددد  أثبتددددد  النيتدددددا ا أني النيمددددد ذ  القدددددا ل رلددددد  ال ي

اليدددددد ي ي  ددددددير إلدددددد  عارليددددددة الددددددتيعلال العميدددددد  عددددددي التيح يدددددد المسددددددتن   إلدددددد  الددددددتيعلال ايلددددددي  ا  ددددددر 

ددددد  النيتدددددا ا  دددددرور  م عدددددي الني،ددددد ة المنت بدددددة باللا دددددة العربيدددددة. وت كي ددددديي الددددد يقي  للمحتددددد   السي

ددددددبنات الع،ددددددبية لتحسددددددين  دْ ددددددا البيا ددددددات ال نيددددددة ل  يددددددا  والبلندددددد  المتق ي ددددددة المرتنددددددج  إلدددددد  ال ي

دددددر  ددددديبرارمدددددل أ لمدددددة الن دددددم ردددددن التينما دددددة  العربيدددددة  لمدددددا السي  ي عدددددي اللا دددددات المختل دددددة  وبخاصي

ع.   تنط ي رليه  ن تعقي  وتن ا
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ABSTRACT 

Intrusion detection in the Internet of Things (IoT) environments is essential to guarantee computer-network 

security. Machine-learning (ML) models are widely used to improve efficient detection systems. Meanwhile, with 

the increasing complexity and size of intrusion-detection data, analyzing vast datasets using ML models is 

becoming more challenging and demanding in terms of computational resources. Datasets related to IoT 

environments usually come in very large sizes. This study investigates the impact of dataset-reduction techniques 

on machine learning-based Intrusion Detection Systems (IDSs) regarding performance and efficiency. We propose 

a two-stage framework incorporating deep autoencoder-based feature reduction with stratified sampling to reduce 

the dimensionality and size of six publicly available IDS datasets, including BoT-IoT, CSE-CIC-IDS2018, and 

others. Multiple machine-learning models, such as Random Forest, XGBoost, K-Nearest Neighbors, SVM and 

AdaBoost, were evaluated using default parameters. Our results show that dataset reduction can decrease training 

time by up to 99% with minimal loss in F1-score, typically less than 1%. It is recognized that excessive size 

reduction can compromise detection accuracy for minority attack classes. However, employing a stratified 

sampling method can effectively maintain class distributions. The study highlights significant feature redundancy, 

particularly high correlation among features, across multiple IoT security-related datasets, motivating the use of 

dimensionality-reduction techniques. These findings support the feasibility of efficient, scalable IDS 

implementations for real-world environments, especially in resource-constrained or real-time settings. This work 

shows considerable redundancy in the datasets which questions the huge amount of these datasets, because, in 

many cases, the reduced datasets provide almost the same F1-score readings after data reduction. Rasing the 

alarm to notice the unnecessary massive amount of data used to build robust IDSs. 

KEYWORDS 

Dimensionality reduction, Data reduction, Autoencoders, Stratified sampling, Machine learning. 

1. INTRODUCTION

Massive amounts of data are being generated due to digitization in different Internet of Things (IoT) 

domains, such as healthcare, vehicular networks [1]-[2], and Intrusion Detection Systems (IDSs) [3]. 

Two options are available for data reduction; reducing the number of features (feature reduction) or the 

number of tuples in the dataset (size reduction). Deep-learning (DL) techniques can deal with vast 

amounts of data. Still, DL only concerns some features in the data; thus, dimensionality reduction 

becomes an important step in best utilizing the resources [4]-[5]. 

Wearable devices, such as wearable healthcare devices, for example, generate a lot of features; it takes 

work to manage and store the generated data. It is hard to decide which features must be preserved for 

accurate diagnosis and which are not [6]. Due to the cost and computational resources needed to handle 

the enormous number of features, it becomes a challenge to reduce them without affecting the models’ 

performance [7]. However, intrusion-detection datasets face unique issues. The extreme data imbalance 

is a major concern, where minority classes represent attack classes [8]. Hence, any reduction technique 

should consider the risk of eliminating them. Meanwhile, rapid learning and detection models are needed 

to enhance the detection process, because the sooner threats are detected, the less harmful the attacks 

are. Additionally, adversarial behaviors may intentionally mimic normal traffic, complicating feature 

learning. These challenges motivate the need for intelligent, attack-aware dataset-reduction strategies. 

Hence, the proposed approach in this study uses stratified sampling to maintain class balance and deep 

mailto:r.baniy


352 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

autoencoder-based feature extraction to preserve non-linear patterns and subtle feature dependencies 

critical for effective IDS performance. 

Different dimensionality-reduction techniques could be used based on the data complexity, such as 

Principal Component Analysis (PCA), MDS, and Time-lagged independent component analysis (TICA) 

for linear manifolds, and Sketchmap, t-SNE, and deep methods for non-linear manifolds [9]. Principal 

Component Analysis (PCA) has been widely used in dimensionality reduction. It helps provide better 

data quality, improve classification, reduce the needed space and time, and remove irrelevant data [10]. 

At the same time, data reduction techniques are becoming popular and widely used for data visualization, 

simulation and analysis [11]. Stratified sampling is a famous method that divides data into similar groups 

known as strata [12]. Then, it selects a certain number of samples from each group, considering the 

data’s distribution rate; any sample taken from the data should keep the same distribution in the original 

dataset. Stratified sampling was proven to be an efficient, unbiased sampling method and highly 

representative of the data being studied. The main drawback of stratified sampling is that it can only be 

applied when the data cannot be grouped in disjoint groups [13]. 

In recent years, many intrusion-detection datasets have been generated due to the rapid updates of the 

malware authors, and different attacks have been developed to maneuver different IDSs. It has been 

noticed that these datasets tend to be large, with millions of tuples and hundreds of features. Hence, 

different reduction techniques have to be studied and improved. The main motivation for this paper is 

to explore the value of using huge datasets to train machine learning (ML)-based IDSs and to assess the 

effect of reducing the size of the datasets used on these IDSs. Thus, this assessment work investigates 

the efficiency of different data reduction and feature-extraction techniques. Reducing the datasets’ sizes 

will help improve the required ML-based IDS training time. 

In the context of intrusion detection and dimensionality reduction, many works have focused on feature 

reduction techniques to speed up the ML models and enhance the outcomes of these models [14]-[15]. 

In comparison, the size-reduction aspect is not sufficient for the research work. One reason for this is 

the risk associated with removing potentially valuable information, primarily in class-imbalanced 

datasets where minority attack classes are already underrepresented. Unlike feature selection, which can 

often enhance generalization by removing noise and redundancy, size reduction, if not handled carefully, 

can negatively impact detection accuracy. Moreover, feature reduction methods compress 

dimensionality while keeping the overall event diversity. Our work aims to fill this gap by proposing a 

controlled size-reduction approach using stratified sampling, ensuring that data diversity and class 

proportions are preserved even in smaller training sets.The work in [16] explored how deep-learning 

models can be used as a feature-extraction tool aiming to remove redundant features from the dataset. 

The experiment was applied to an outdated balanced dataset with relatively small features. Meanwhile, 

information gain (IG-PCA) was also used as a dimensionality-reduction tool in [17]. In [18], two 

different feature-reduction methods were investigated with a more recent dataset than the dataset used 

in the previously mentioned works: the CISIDS2017 dataset. 

This paper focuses on answering two questions. The first question is, "Is the large amount of data 

collected in IDS datasets needed to build robust IDS ML and AI systems?". The second question is, 

"What efficient reduction techniques can be used to reduce the size of IDS datasets, yet they can be used 

to build robust IDSs?". 

Some works have focused on combining size and dimensionality-reduction techniques to extract the 

dataset’s core value  and enhance machine-learning (ML) model performance, but not in the context   of 

intrusion-detection applications, such as the work in [19]. The primary contribution of this study is    a 

practical framework for enhancing IDS performance through efficient data reduction rather than a novel 

detection algorithm. The proposed model combines deep feature extraction using autoencoders with 

stratified sampling to reduce the number of features and training samples without compromising 

classification performance. This two-stage reduction process significantly lowers computational costs 

and model complexity, making machine learning-based IDS solutions more scalable and suitable for 

real-time applications, especially in IoT scenarios. Experiments on six IDS-related datasets demonstrate 

that the proposed method preserves or even improves F1-scores while reducing training time by up to 

99% in some cases. Therefore, this work’s main contributions can be summarized as follows: 
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 We present a practical, two-stage dataset-reduction framework that combines stratified sampling

with autoencoder-based feature selection to reduce both the size and dimensionality of IDS datasets. 

The first algorithm sorts the importance of the features in the dataset via an autoencoder. Then, the 

least important features are removed, followed by tuple reduction via stratified sampling. The 

second algorithm starts with stratified sampling, followed by feature ranking and selection. 

 We empirically evaluate the trade-offs between different reduction percentages and their effects on

training time and detection performance using multiple ML models across six public IDS datasets. 

 We show that, when properly applied, dataset size and dimensionality reduction can achieve up to

99% decrease in training time with minimal performance loss (typically less than 1% drop in F1-

score). The proposed reduction techniques prove that there is a notable degree of redundancy in the 

datasets. The huge amount of data should be questioned in these datasets, because, in many cases, 
the reduced datasets provide almost the same F1-score readings after data reduction. More attention 
should be paid to the unnecessary massive amount of data used to build robust IDSs. 

 We provide a reproducible baseline for evaluating dataset-reduction strategies in IDSs, offering

insights into scalability and efficiency for real-world deployment in resource-constrained 

environments. 

The rest of this paper is organized as follows: Section 2 shows the related work. Preliminaries and 

methodology are presented in Section 3. Section 4 shows the results and assessments, and finally, the 

work is concluded in Section 5. 

2. RELATED WORK

Data-reduction techniques are widely explored to address machine-learning datasets’ growing 

complexity and size, specifically in intrusion detection systems (IDSs). These techniques typically fall 

into two categories: dimensionality reduction, which reduces the number of features (columns), and size 

reduction, which reduces the number of records (rows). This section critically investigates related works 

grouped by technique type and discusses their applicability to IDSs, mainly in IoT environments. 

Linear techniques, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA), have been broadly used to project data into lower-dimensional spaces. PCA is widely employed 

due to its computational efficiency and ability to decorrelate features. PCA has shown considerable 

performance with high-dimensional datasets, such as medical imaging and network traffic [20]-[21]. 

However, PCA supposes linear relationships between the features, which may not hold in complex IDS 

datasets. At the same time, LDA is useful for maximizing class separability, but suffers from scalability 

issues in large-scale, high-dimensional environments. Recent work has focused on autoencoders and 

their variants, including Deep Sparse Autoencoders (DSAEs), to handle these restrictions for non-linear 

and data-driven feature extraction. Unlike PCA, autoencoders do not suppose linearity and can model 

complicated feature relations [22]. This capability of modeling complex relationships makes them 

specifically suitable for IDS datasets with complex patterns and correlations. For instance, [23] used 

autoencoders to improve classification accuracy through feature selection. However, their work focused 

on general accuracy rather than on IDS-specific issues, like class imbalance or real-time deployment. 

Recently, Nabi and Zhou [24] explored using PCA and random projection for dimensionality reduction 

in intrusion-detection schemes using the NSL-KDD dataset. Their results emphasized random 

projection’s computational efficiency and accuracy benefits over PCA. In contrast, this study explores 

deep autoencoders as a non-linear and data-driven technique for feature extraction and links this with a 

structured dataset size-reduction pipeline. Moreover, this evaluation spans multiple recent IDS datasets, 

addressing generalization, dataset redundancy, and attack-class preservation. In contrast to earlier 

studies that used traditional datasets, like NSL-KDD or outdated benchmark sets [16]-[17], our work 

leverages recent and large-scale IDS datasets, such as CSE-CIC-IDS 2018 and BoT-IoT. When 

integrated with stratified sampling, we confirm that autoencoders can preserve detection performance 

even under significant feature reduction. 

Stratified sampling is a widely utilized technique for reducing dataset size while keeping class 

distributions, which is critical in class-imbalanced IDS contexts. Multiple studies [25][26][27][28] have 

examined its effect on handling large-scale datasets. For example, [28] proposed an enhanced stratified 

sampling framework with over-sampling of minority classes using Gaussian noise and clustering of 
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majority classes. However, these works frequently lacked comparative analysis of reduction order, 

sampling before vs. after feature reduction. Moreover, some prior works overlap in their discussion of 

stratified sampling without clearly distinguishing their contributions. We address this by systematically 

comparing each method’s novelty and outcome: [25] applied stratified sampling in general big-data 

contexts, [26] optimized sampling with hash- based stratum construction, and [27] integrated stratified 

sampling with clustering for better illustration. Our method builds upon these by integrating sampling 

with deep feature selection, presenting a unified pipeline evaluated on multiple IDS datasets. 

Recent developments have introduced scattering-based enhancements to graph neural networks for 

anomaly detection and feature learning. For instance, the STEG model [29] applies a wavelet-based 

scattering transform to edge features within an E-GraphSAGE architecture, significantly improving 

detection performance on network-intrusion datasets. STEG leverages multi-resolution edge encoding 

and node2vec embeddings to provide a fine-grained understanding of graph-structure anomalies, a 

strategy relevant to our anomaly-detection pipeline. In a related domain, the GeoScatt-GNN framework 

[30] combines geometric-scattering transforms with ANOVA-based statistical feature selection to

predict Ames mutagenicity. While its application lies in bio-informatics, the architecture introduces a 

principled pipeline where meaningful features are extracted and filtered prior to GNN classification, 

highlighting the cross-domain effectiveness of scattering-transform approaches. Our work draws 

inspiration from these efforts, but focuses on reducing the dataset size, with a tailored architecture and 

feature-selection approach suited to network-level anomaly scenarios. We also emphasize the 

redundancy happening in the security-related dataset applied in the IoT environments. 

A summary of the related works and methods is clarified in Table 1. Our approach closes this gap by 

employing a two-stage pipeline tested across six modern IDS datasets and comparing sampling-first vs. 

feature-first strategies. Additionally, we quantify training-time reduction and model resilience to 

aggressive reduction analysis, which previous studies often dismissed. The datasets related to security 

threats in IoT networks tend to be massive, hindering the detection models and requiring huge 

computational resources [31]. This work presents a methodology that can reduce dataset size while 

keeping the IDS performance high and accurate. Our work offers a more rigid, application-focused 

synthesis of dimensionality and size reduction in IDSs. It advances the field by addressing the interplay 

between reduction type and model performance using large-scale, recent IDS datasets. It also provides 

empirical proof across multiple classifiers and offers a reproducible framework for real-world 

deployment. 

Table 1. Summary of data-reduction techniques in literature. 

Technique Category Dataset Used Strengths Limitations 

PCA [20]-[21], [24] Dimensionality NSL-KDD, CTG, 

DR 

Fast, simple, linear 

separability 

Fails on non-linear 

data 

LDA [16]-[17] Dimensionality CTG, DR Class separation- 

focused 

Poor scalability 

Deep Autoencoders 

[22]-[23] 

Dimensionality BoT-IoT, 

CSE- CIC-IDS2018 

Handles non-linear 

features, scalable 

Overfitting risk on 

small datasets 

Stratified Sampling 

[25][26][27][28] 

Size KDD, CICIDS, 

financial 

Maintains class 

balance 

Requires stratification 

label 

Sampling +  

Clustering [27]-[28] 

Size Big-data Clusters Reduces outliers, 

enhances sample 

diversity 

Adds clustering 

complexity 

This Work Size + 

Dimensionality 

6 modern IDS datasets Two-stage, flexible, 

efficient 

Minor NB performance 

degradation noted 

3. PRELIMINARIES AND METHODOLOGIES

This section introduces the datasets used in this study and the methodologies that are applied to reduce 

the size and dimensionality of the datasets. It also introduces the performance metrics that have been 

used to assess the efficiency of the methodologies used. 
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3.1 Datasets 

Throughout this study, six intrusion-detection datasets were used: The Kitsune-ARP dataset [32], 

SNMP- MIB [33], the CSE-CIC-IDS2018 dataset [34], the BoTIoT dataset [35], the UNR-IDD dataset 

[36], and the credit-card fraud-detection dataset from [37]. The six datasets are all related to intrusion-

detection applications, and they are collected from different hostile environments with different features 

and sizes. 

What distinguishes the selected datasets in this study is that many datasets were recently collected from 

IoT environments. The datasets are challenging due to data imbalance, which is typical in intrusion-

detection datasets in general. Meanwhile, many datasets are enormous, challenging for ML models, 

require a long time for training, and can result in very complex ML models. All non-binary datasets 

were transformed into binary datasets, such as the CSE-CIC-IDS2018 dataset. 

A summary of the six datasets, including the size, dimension, and imbalance rate, is presented in Table.2. 

The datasets were renamed DS1-DS6 throughout this work, as shown in Table 2, to enhance the 

readability of the paper, especially the figures and tables. 

Table 2. Summary of the datasets used in the study. 

Dataset Size (KB) Records Features Imbalance Rate (%) 

UNR-IDD (DS1) 267 2620 21 9.4 

Kitsune-ARP (DS2) 15,300 15000 115 10 

SNMP-MIB (DS3) 788 5000 34 10 

CSE-CIC-IDS2018 (DS4) 315,233 1048576 80 50 

BoTIoT (DS5) 620,600 2426574 24 27 

Fraud detection (DS6) 100,500 248808 31 0.1724 

3.2 The Techniques Used 

We present here the main techniques used throughout this study. These techniques include sampling, 

dimensionality reduction, and ML techniques. 

Sampling is selecting a representative set of items from a larger set. Sampling can be applied to select 

a specific number or percentage of samples. This work uses sampling with intrusion-detection datasets 

to select a certain percentage of the dataset to train the ML models, since many datasets are very large 

and contain hundreds of thousands of records, sometimes millions. Training machine-learning models 

with huge datasets requires high computational power and consumes time. The sampling process 

investigates the degree of redundancy existing in these datasets. When a half or a quarter of the data can 

be used to train the  ML model and still give the same results as when the entire dataset was used, this 

can indicate that the dataset records include a noticeable degree of redundancy. 

This work deploys stratified sampling to reduce the number of records in intrusion-detection datasets; 

meanwhile, it maintains the imbalance ratio. Since the data used is large and imbalanced, randomly 

selecting a small group from the data might alter the balance of the data; there is a more significant 

probability that a selected record belongs to the larger group. The datasets are also labeled, which makes 

stratified sampling a good choice for this presented work. 

At the same time, dimensionality reduction is used for different purposes, such as having interpretable 

models or reducing the required computational time for ML-model training. PCA is commonly used for 

this task. The main difference between reducing the features using PCA and by autoencoders is that 

PCA can model linear structures. However, autoencoders do not assume linearity [18]. In [9], 

dimensionality-reduction techniques were divided into three main categories based on the data structure. 

Three main dimensionality-reduction methods are available in the literature: linear manifolds, non-linear 

manifolds and curved twisted manifolds. 

Due to the high performance of autoencoders in reducing the intrusion detection features that outperform 

other methods, such as PCA and LDA [38]; dense autoencoders are used in the proposed methods in 

this paper. The main idea of the autoencoder is to have the ability to reconstruct the input after encoding 

it to a lower dimension. For dimensionality reduction, the most important part of the autoencoder is the 

latent space, the encoder’s output, which has the most critical features of the input. Its size is a hyper-
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parameter that can be controlled to define the desired number of features. In the proposed methods, 

features with the highest weights were selected after sorting all features based on their importance. 

Eventually, the selected approaches to reduce the size and dimensionality of different intrusion-detection 

datasets are evaluated with nine different ML models. These ML models are the K-Nearest Neighbor 

algorithm (KNN), the Support Vector Machine Algorithm (SVM), Naive Bayes, linear regression, LDA, 

C5, XGBoost, Random Forest, and ADA. These ML models were selected throughout this study, 

because they are extensively used in the literature with similar datasets. The ML models were proven to 

be efficient and durable with tabular datasets. The random forest is a robust ensemble model that reduces 

overfitting and performs well on tabular data with noisy or redundant features. XGB is an ensemble 

model that proved its efficiency in many real problem-detection tasks. SVM model has a powerful 

feature which is called kernel trick that gives SVM the power to handle binary classification effectively. 

The KNN is a simple, non-parametric model that benefits from reduced feature spaces and works well 

for pattern recognition. AdaBoost is an ensemble technique that adapts to classification errors, making 

it more robust to decide on samples, which is very important with imbalanced datasets. 

3.3 Proposed Methods 

This work investigates how dataset size-reduction and feature-reduction methodologies affect machine- 

learning algorithms. The analysis is studied in the context of IDS systems and IoT environments. The 

method followed throughout the proposed work adapts two approaches clarified in Algorithms 1 and 2. 

In the first approach, data reduction is applied first, followed by size reduction, and then ML models are 

used with the data to build the IDS models. In the second approach, size reduction is applied before the 

feature-reduction step, and then ML models are used again to build the IDS models. Finally, the 

performance of the models built with the first approach is compared with the performance of those 

created with the second approach, as shown in Figure 1. The approach that produces better results is 

recommended for IDS datasets. The size-reduction method used throughout this study is the stratified 

sampling technique. Meanwhile, the feature reduction method used here is the dense autoencoder 

method. 

Figure 1 illustrates the two-stage dataset-reduction strategies evaluated in this study. In the Feature 

Reduction First (FF) approach (Figure 2a), the full dataset is used to train an autoencoder, which ranks 

features based on their importance. The dimensionality of the dataset is then reduced by selecting the 

top-ranked features; 1/2, 1/4, or 1/10 of the full set. Finally, stratified sampling, 1/2, 1/4, or 1/10 of the 

full set, is applied on the reduced dataset to create reduced sub-sets for training, preserving class 

distribution. On the other hand, the Sampling First (SF) technique (Figure 2b) starts by applying 

stratified sampling directly to the full dataset, yielding sub-sets that are 1/2, 1/4, or 1/10 the dataset size. 

Each reduced sub-set is then passed to an autoencoder to perform feature reduction. The reduction at 

this stage is applied to extract 1/2, 1/4, 1/10, or full features. This order assumes that features are sorted 

in descending order of importance after training, as indicated in the figure. The main difference between 

the two methods is the timing of dimensionality reduction relative to volume reduction. FF (Feature 

reduction First) guarantees that the autoencoder is trained on the most complete data to capture more 

prosperous feature patterns. SF (Sampling First), meanwhile, reduces computational load earlier, but 

may lose important patterns due to early sub-sampling. This trade-off is critical when working with 

class-imbalanced and high-dimensional IDS datasets. 

DS1, DS2, and DS3 were used through the investigation and steps mentioned in the previous paragraph. 

Meanwhile, DS4, DS5, and DS6 were used throughout the assessment process due to their large size 

where applying the reduction techniques is essential. During the assessment stage, we practically try to 

evaluate the performance of different ML models and the order of the reduction process. Time-analysis 

results, besides F-score measures, are recorded. In the second stage, we aim to prove the correctness of 

the conclusions made in the first stage. For example, time-reduction and close-to-perfect performance 

measures are used, despite using fewer data and features. In this study, we list only the F1-score as a 

suitable performance measure, which combines precision and recall. This allows us to evaluate the 

robustness of IDS performance across different levels of dataset reduction in a compact and interpretable 

way. Although additional metrics, such as recall, precision, and false-positive rate, were computed, their 

trends closely followed the F1-score. For clarity and space efficiency, only the F1-score is reported in 
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the main-results tables, as it sufficiently describes the robustness of IDS performance under dataset 

reduction. 

(a) Feature Reduction First (FF) Approach (b) Size Reduction (SR) First Approach

Figure 1. The methodology followed to reduce the datasets. 

Algorithm 1 Feature Extraction First (FF) 

Require: Input dataset DSi 

1:  for each dataset DSi, i   [1,2,3] do 

2: for each F in {1, 2, 4, 10} do 

3: Apply feature extraction on DSi, extracting the most important 1/F features from 

DSi and update DSi 

4: for each F          1, 2, 4,10  do 

5: Apply stratified sampling on DSi to extract 1/S of the data: DSi    DSi/S 

6: Apply the machine learning methods to DSi 

7: end for 

8: end for 

9: end for 

Algorithm 2 Size Reduction First (SF) 

Require: Input dataset DSi 

1:  for each dataset DSi, I   1,2,3 do 

2: for each S in 1, 2, 4, 10 do 

3: DSi = StratifiedSampling(DSi, 1/S) 

4: for each F 1, 2, 4, 10 do 

5: DSi = AutoencoderFeatureExtraction(DSi, 1/F ) 

6: Apply the machine learning methods to DSi 

7: end for 

8: end for 

9: end for 

We investigate how the datasets’ size and feature reduction can affect the performance of nine different 

ML models. The models were trained with the data prior to reduction, then trained with the reduced 

datasets. Size and dimensionality were reduced in different scenarios, and then a comparison was held 

to assess the different reduction scenarios. The method used for data reduction is the Stratified-sampling 

process which reduces the data size and keeps the data distribution untouched. 

The technique used for the feature-reduction process is ranking the importance of all features of the 

datasets using a dense autoencoder. Every dataset was used to train the autoencoder and then, the 

encoder was used to explore and rank the importance of all features based on their weights. The features 

were then sorted, and the less critical features were dropped from the dataset. Many scenarios were 

examined; a half of the features were selected, and one-fourth and one-tenth of the features were selected 

in other scenarios. Selecting-all-features scenarios were also analyzed. 



358 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

The encoder architecture with the bottleneck consists of three dense layers with the LeakyReLU 

activation function and two batch-normalization layers, as shown in Figure 2. The autoencoder designed 

in this study follows a symmetrical architecture tailored for reconstructing input features while capturing 

meaningful representations in its bottleneck layer. The input-layer size corresponds directly to the 

number of features in each dataset. The encoder consists of two fully connected layers: the first layer 

expands the dimensionality to twice the input size and applies a LeakyReLU activation function, 

followed by batch normalization. At the same time, the second layer reduces the dimensionality back to 

the original feature size using the same activation and normalization setup. The bottleneck layer 

maintains this same dimensionality, serving as the latent representation of the input data without 

applying compression, allowing for feature-importance extraction. The decoder mirrors the encoder in 

structure, reconstructing the data through symmetric dense layers and concluding with a linear activation 

function in the output layer. The architecture was selected to balance expressive power and 

computational efficiency, particularly for high-dimensional, imbalanced intrusion-detection datasets 

where non-linear patterns and feature interactions are prevalent. The model was trained using the Adam 

optimizer with a learning rate of 0.001, a batch size of 16, and 100 epochs. The trained encoder was 

used to extract latent feature weights; all feature weights were reported without reduction at this level, 

which were subsequently ranked to identify the most important features. While this work focuses on 

autoencoder-based feature extraction, we acknowledge the importance of traditional methods, such as 

ANOVA and chi-square [39]. However, these classical approaches rely on assumptions of linearity and 

independence among features, which are often violated in intrusion detection scenarios. Autoencoders, 

by contrast, provide the flexibility to model complex, non-linear, and correlated feature interactions 

more effectively. However, although autoencoders offer powerful non-linear feature-extraction 

capabilities, they also introduce certain limitations. One concern is the risk of overfitting when training 

deep models on reduced datasets. They also require high computational capabilities when very large 

datasets are used. Hence, they should be used with caution to deliver accepted results while requiring 

minimal computational power. 

Figure 2. Encoder architecture. 

Stratified sampling was used to reduce the size of the data. Every dataset was reduced to one half, one-

fourth, and one-tenth; it was also analyzed without size reduction. The experiment goes through different 

steps, aiming to explore the efficiency of different reduction strategies. The whole data was analyzed 

with all features, a half of the features, one-fourth, and one-tenth using the nine ML models, which will 

be mentioned shortly. The exact process was repeated when one-fourth of the data was used, and one-

tenth of the data was used. Reducing the data size followed by feature reduction is noted by (SF), which 

indicates "Sampling First " since the sampling method is applied to the data before the feature-reduction 

process. It is worth mentioning that when stratified sampling was applied before feature ranking, the 

importance ranks of some features changed due to the reduced dataset size. However, the most 

significant features showed minimal change in their ranking. During (FF) or "Feature First," the 

previously mentioned data-reduction process was applied, but feature reduction was applied first to the 

data, followed by the sampling step. 
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The used ML models are KNN, SVM, Naive Bayes, linear regression, LDA, C5, X-GBoost, Random 

Forest, and ADA. All models are evaluated with their default hyper-parameters as provided by sklearn 

Python libraries. Employing default parameters was to emphasize the practical applicability and 

effectiveness of the presented dataset-reduction techniques without requiring exhaustive hyper-

parameter tuning. This setup demonstrates that meaningful improvements in computational efficiency 

and model performance can be achieved without additional optimization steps. 

All datasets were normalized through a MinMaxScalar. During pre-processing, non-numerical features 

were dropped from the datasets, such as the Timestamp feature from the CSE-CIC-IDS2018 dataset and 

" Switch ID" and "Port Number" from DS1. Data pre-processing includes multiple steps, guaranteeing 

that the AI models will be fed with proper data values. During categorical feature encoding, all 

categorical features were encoded using One-Hot Encoding, transforming them into numerical formats 

suitable for machine-learning models. Moreover, features containing more than 50% of missing data 

were removed from the dataset. The remaining missing values were handled using mean imputation. 

Additionally, numerical features were scaled using Min-Max normalization, mapping feature values to 

a range between 0 and 1. This normalization improves model convergence and performance stability. 

Finally, stratified sampling was used explicitly to maintain the original class distribution, effectively 

managing dataset imbalance during data reduction. All datasets were divided into 64% for training and 

36% for testing, while the 70/30 or 80/20 splits are widely used as standard practice. The slightly non-

standard split in this study ensured that a representative portion of the minority class remained in the 

testing set, which is particularly important for performance evaluation on imbalanced datasets. 

4. RESULTS AND ASSESSMENT

This section presents the results of the data-reduction techniques described in the previous section and 

investigates how combining different reduction techniques influences the ML models used. All the 

experiments were conducted using the Google Co-Lab platform based on Python 3. Google Co-Lab 

offers 12 GB RAM and 128 GB Disk. To rank feature importance, absolute weights from the first dense 

layer of the encoder were extracted. These weights reflect the strength of the connection between input 

features and their influence on the latent representation. We ranked in descending order based on the 

sum of absolute weights across all neurons in this layer. We then selected the top-k features: 1/2, 1/4, or 

1/10 for further evaluation. Stratified sampling was applied using a class-wise sampling strategy to 

maintain class proportions. This was done via pandas.groupby(’class’).apply(lambda x: 

x.sample(frac=p)) in Python, where p is the target sampling fraction; 0.5, 0.25, 0.10. This method was

used to generate progressively smaller, but balanced, datasets for training and testing. This step was 

either applied before or after feature selection based on the reduction strategy (SF or FF). 

4.1 Machine-learning Model Results 

To  detail each model’s performance,  the F-score metric is used to represent the results as values for 

all steps of the two approaches in Tables 3, 4, 5, 6, 7, and 8, because F-score is sufficient  measure for 

imbalanced data. The numbers at the top of the columns represent the feature percentage and the size 

percentage; F-S "0.5–0.25," in Table 4, for example, denotes the ML models’ performance with a data 

sample retaining the top half of the features after ordering them according to their importance. If we 

have 20 features, for example, the top-10 features are used. Meanwhile, 0.25 means that one-fourth of 

the data tuples are used; for example, if we have 1000 tuples, 250 tuples are selected via stratified 

sampling and used through the training and testing processes. Features extraction precedes size reduction 

in this case where the “F” comes first. However, S-F "0.5–0.25," indicated using 50% of the tuples and 

0.25 of the features where the size reduction precedes the feature extraction method.  

In Table 3, all classifiers achieve a high F-score until the 0.1-1 reduction is applied, starting with size 

reduction. This is expected due to the small size and dimensions of DS1. However, when the reduction 

processes are swapped in Table 4, LR, SVM, and C4.5 can still produce high results. The conclusion 

that can be extracted from these results is that feature reduction first is better for small-sized and low- 

dimensional datasets. Moreover, RF, KNN, C4.5, and XGB are the best classifiers for DS2 based on the 

F-score when applying size reduction first, as shown in Table 5. XGB is the most stable classifier when 

feature reduction is applied first. At the same time, other models were unstable or could not achieve 

high F-scores in most data-reduction scenarios, as Table 6 demonstrates. As for the third dataset, KNN 
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is the best classifier for size reduction first, as shown in Table 7 and XGB is the best for feature reduction 

first, as shown in Table 8. Most of the classifiers performed well, and it was the most suitable dataset 

for NB. In all Tables 3-8, we have colored the highest values in each column in yellow to highlight the 

best results for each division, also to highlight the best-performing models. Our analysis shows that 

dataset and feature-reduction strategies exhibit multiple levels of performance degradation. Decreasing 

the dataset or feature set to 1/2 or 1/4 generally resulted in a less than 2% drop in F1-score. More 

aggressive reduction to 1/10 greatly affected detection accuracy, particularly for complex datasets, like 

BoT-IoT and CSE-CIC-IDS2018. Notably, KNN and AdaBoost shared larger performance drops under 

1/10 feature reduction, due to their sensitivity to input dimensionality. In contrast, ensemble tree- based 

models, such as XGBoost and Random Forest, showed higher resilience, maintaining performance even 

when trained on only 10% of features or samples. This indicates that the model’s robustness to feature 

sparsity and sample diversity plays an essential function in mitigating the effects of reduction. These 

trade-offs emphasize the significance of choosing the proper model and reduction level based on the 

dataset’s complexity and attack distribution. 

Table 3. DS1 sampling first F1-score results. 

S–F 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

.025 

0.25– 

0.1 

0.1–1 0.1– 

0.5 

0.1– 

0.25 

KNN 1.000 1.000 1.000 0.923 1.000 1.000 1.000 0.885 0.999 0.976 1.000 0.923 0.560 0.498 0.500 

SVM 0.995 1.000 1.000 0.885 1.000 0.976 1.000 0.885 0.999 0.999 1.000 0.923 0.500 0.500 0.500 

NB 0.991 0.993 0.998 0.508 0.986 0.993 0.995 0.514 0.974 0.983 0.986 0.982 0.543 0.535 0.529 

LR 0.999 1.000 1.000 0.846 0.999 0.976 0.962 0.885 0.999 0.988 0.885 0.692 0.500 0.500 0.500 

LDA 0.999 1.000 1.000 1.000 0.999 0.976 1.000 1.000 0.999 0.998 1.000 1.000 0.500 0.500 0.500 

C4.5 1.000 1.000 1.000 0.962 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

XGB 1.000 1.000 1.000 0.962 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

RF 1.000 1.000 1.000 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

Ada 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

Table 4. DS1 feature extraction first F1-score results. 

F-S 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

.025 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.999 0.999 0.999 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 0.333 

SVM 0.995 0.995 0.995 0.995 0.998 0.992 0.995 0.973 1.000 0.984 0.798 0.471 0.809 0.781 0.491 1.000 

NB 0.918 0.918 0.918 0.918 0.844 0.836 0.814 0.791 0.885 0.843 0.983 1.000 0.764 0.708 0.565 1.000 

LR 1.000 1.000 1.000 1.000 0.668 0.544 0.470 0.468 0.465 0.470 0.459 0.471 0.465 0.467 0.491 0.333 

LDA 1.000 1.000 1.000 1.000 0.791 0.749 0.723 0.851 0.803 0.779 0.459 1.000 0.465 0.466 0.491 0.333 

C4.5 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.931 0.998 0.973 0.964 1.000 1.000 0.942 1.000 1.000 

XGB 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.944 0.998 0.978 0.982 0.818 0.999 0.980 0.491 0.000 

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 0.999 1.000 0.964 0.884 0.999 0.960 0.824 0.333 

Ada 1.000 1.000 1.000 1.000 0.999 0.997 1.000 0.959 0.999 1.000 1.000 0.884 0.960 0.969 0.491 0.333 

Table 5. DS2 sampling first F1-score results. 

S-F 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.995 0.984 0.975 0.997 0.991 0.976 0.945 0.992 0.974 0.939 0.944 0.991 0.985 0.952 0.907 

SVM 0.837 0.806 0.509 0.473 0.839 0.785 0.609 0.473 0.532 0.499 0.473 0.473 0.588 0.554 0.473 0.473 

NB 0.250 0.253 0.249 0.255 0.233 0.234 0.232 0.240 0.235 0.240 0.169 0.179 0.412 0.417 0.431 0.407 

LR 0.882 0.842 0.763 0.615 0.833 0.782 0.733 0.541 0.606 0.565 0.529 0.473 0.552 0.540 0.473 0.473 

LDA 0.978 0.978 0.967 0.990 0.944 0.959 0.947 0.965 0.807 0.836 0.815 0.827 0.602 0.617 0.576 0.550 

C4.5 1.000 1.000 0.998 0.985 0.998 0.995 0.992 0.995 1.000 0.995 0.994 1.000 0.995 0.977 0.955 0.946 

XGB 1.000 0.998 0.998 0.995 1.000 0.998 0.996 0.995 1.000 0.999 0.994 0.995 0.998 0.995 0.975 0.985 

RF 1.000 0.999 0.996 1.000 1.000 0.999 0.990 0.985 0.999 0.994 0.981 0.990 0.993 0.988 0.957 0.969 

Ada 0.999 0.996 0.988 0.995 0.977 0.990 0.983 0.967 0.991 0.988 0.964 0.995 0.680 0.657 0.754 0.710 
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Table 6. DS2 feature extraction first F1-score results. 

F-S 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.999 0.999 0.999 0.994 0.993 0.975 0.930 0.994 0.944 0.806 0.697 0.988 0.898 0.689 0.400 

SVM 0.854 0.854 0.854 0.854 0.858 0.803 0.488 0.473 0.532 0.473 0.468 0.481 0.607 0.469 0.472 1.000 

NB 0.255 0.255 0.255 0.255 0.231 0.238 0.247 0.259 0.232 0.235 0.243 0.184 0.408 0.429 0.382 1.000 

LR 0.899 0.899 0.899 0.899 0.852 0.783 0.734 0.601 0.609 0.509 0.468 0.481 0.571 0.469 0.472 0.400 

LDA 0.987 0.987 0.987 0.987 0.951 0.940 0.966 0.926 0.806 0.886 0.834 0.694 0.622 0.631 0.671 0.400 

C4.5 0.998 0.998 0.998 0.999 0.996 0.994 0.996 0.985 0.996 0.986 0.993 1.000 0.985 0.955 0.689 0.400 

XGB 0.999 0.999 0.999 0.999 1.000 0.994 0.998 0.990 1.000 1.000 1.000 1.000 0.995 0.964 0.817 1.000 

RF 0.999 0.999 1.000 0.999 1.000 0.995 0.990 0.985 1.000 0.992 0.986 0.924 0.995 0.982 0.709 0.455 

Ada 0.997 0.997 0.997 0.997 0.989 0.927 0.969 0.927 0.991 0.990 0.993 0.824 0.706 0.522 0.625 0.400 

Table 7. DS3 sampling first F1-score results. 

S-F 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 1.000 1.000 1.000 0.974 0.999 1.000 1.000 0.944 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 

SVM 0.998 0.992 1.000 0.987 0.998 0.987 0.973 0.895 0.998 0.995 0.995 1.000 0.813 0.803 0.861 0.794 

NB 0.912 0.923 0.922 0.874 0.852 0.866 0.853 0.807 0.880 0.883 0.860 0.856 0.738 0.757 0.751 0.763 

LR 1.000 0.997 1.000 0.959 0.681 0.582 0.470 0.468 0.465 0.467 0.470 0.468 0.465 0.467 0.470 0.468 

LDA 1.000 1.000 1.000 0.987 0.788 0.782 0.810 0.744 0.790 0.772 0.786 0.773 0.465 0.467 0.468 0.468 

C4.5 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.973 1.000 0.998 0.965 0.987 1.000 0.997 0.994 0.881 

XGB 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.973 1.000 1.000 0.965 0.959 1.000 0.997 0.994 0.916 

RF 1.000 1.000 0.971 1.000 1.000 1.000 0.965 1.000 1.000 1.000 0.959 1.000 1.000 0.997 0.989 0.899 

Ada 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.973 1.000 1.000 0.965 0.973 0.968 0.966 0.941 0.859 

Table 8. DS3 feature extraction first F1-score results. 

F-S 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.999 0.999 0.999 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 0.333 

SVM 0.995 0.995 0.995 0.995 0.998 0.992 0.995 0.973 1.000 0.984 0.798 0.471 0.809 0.781 0.491 1.000 

NB 0.918 0.918 0.918 0.918 0.844 0.836 0.814 0.791 0.885 0.843 0.983 1.000 0.764 0.708 0.565 1.000 

LR 1.000 1.000 1.000 1.000 0.668 0.544 0.470 0.468 0.465 0.470 0.459 0.471 0.465 0.467 0.491 0.333 

LDA 1.000 1.000 1.000 1.000 0.791 0.749 0.723 0.851 0.803 0.779 0.459 1.000 0.465 0.466 0.491 0.333 

C4.5 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.931 0.998 0.973 0.964 1.000 1.000 0.942 1.000 1.000 

XGB 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.944 0.998 0.978 0.982 0.818 0.999 0.980 0.491 0.000 

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 0.999 1.000 0.964 0.884 0.999 0.960 0.824 0.333 

Ada 1.000 1.000 1.000 1.000 0.999 0.997 1.000 0.959 0.999 1.000 1.000 0.884 0.960 0.969 0.491 0.333 

After training the different ML models with different portions from different datasets, the following 

notes should be considered from the tables: 

 In all cases, data can be reduced by a half regarding both size and dimensionality, yet the ML

models’ performance remains the same. 

 Applying the proper process to select part of the data to train the model can give the same results

when all the data is used. 

 The data-reduction techniques used throughout this work can enhance the required time to train and

test the models. 

 The data-reduction techniques used throughout this work can also produce less complicated models

with the same efficiency. 

4.2 Evaluating the Proposed Methods 

The assessment step is presented and explored in this sub-section, where multiple data-reduction 

scenarios are being applied to three huge datasets. Feeding these datasets into the ML models requires 

very high computational resources. Additionally, time-demanding processes should be considered. 

For the datasets DS4, DS5 and DS6, the reduction techniques were applied to investigate how the 

precision, recall, and F1-score were affected. The required training time to train all models is also 

measured. DS4 is a huge dataset in size and dimension; by extracting 0.001 of the size and a half of the 

features, all the classifiers still have a high performance of F-score, especially the KNN. Nevertheless, 

NB classifier behavior is sensitive to this level of reduction, as shown in Figure 4a. In other experiments, 

the NB was the worst when applied to a vast dataset with a small dimension, such as (DS4). The LDA 

performance with DS5 degrades, compared with its performance when DS4 was used, while other 

algorithms were robust to the reduction, as shown in Figure 4b. A moderate dimension and size dataset 

(DS6) was used to investigate the proposed approach; NB was the worst in comparison, even without 

reducing the data, while the other algorithms performed well. RF and XGB classifiers are the best for 

this data, as shown in Figure 4c. Every experiment held to reduce the size or the dimensionality of DS4, 
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DS5, and DS6 datasets was repeated 10 times, and the ML model results were measured and averaged 

and then clarified in Figure 4. This step is necessary to examine the reduction techniques’ effectiveness 

and confirm the derived conclusions. 

The time required to train DS4 when all the data was used is 3750.40s. When the data was reduced to 

0.05, 0.01, and 0.001, the required time to train all the models was reduced to 22.53s, 6.05s, and 3.74s, 

and when a half of the important features were selected from the 0.001 part of the data, the time was 

reduced to 3.2s. Yet, the ML classifiers still can detect anomaly behavior even when the dataset size is 

dramatically reduced (see Figure 4a). 

As the experiment focuses on reducing the size of the datasets horizontally and vertically, this reduction 

is expected to affect the required time to train the ML models. DS4, Ds5, and DS6 are reduced in many 

ways to study how time is affected, and the time required to train all the mentioned ML models is 

reported. The time needed to train DS5 when all the data was used was 9779.81s, but when the size of 

the dataset was reduced to 0.01, the required time was 2.58s only, and the required time to train all the 

models was reduced to 1s when 0.001 of the dataset was used. Meanwhile, the ML models’ performance 

measured in F-score are mostly close to 100% as shown in Figure 4b. 

DS6 training time was 350.33s and reducing the size to the half made the training time become 118.4s. 

Reducing the features to the half made the training time become 221.41s, while combining both 

reductions made the time become 79.12s. ML models, such as KNN, SVM, XGB and RF, can still 

produce perfect results (see Figure 4c). Figure 3 lists the time required for training DS4, DS5 and DS6 

and the required time when multiple reduction techniques were used. 0.5S means that a half the data 

was used, while 0.5F indicates the percentage of reduction applied to the features, where all the values 

in the figure are measured in seconds. 

This reduction in computational time is due to the reduction in dataset rows and columns. The number 

of rows in each dataset is reduced via stratified sampling, while the number of columns is reduced    via 

feature extraction carried out using the autoencoder model. Combining feature extraction with the size 

reduction process makes the dataset size shrink vertically and horizontally. The required processing time 

for ML models is a function of the number of rows and columns. Hence, if we can assume that the total 

computational time for these models is T = F (numOfRows,numOfCol,... ), a function of the number of 

rows and the number of columns, then reducing the value of either numOfRows,numOfCol, or both will 

have a reducing impact on the required computational time.  

Figure 3. Time enhancement when large datasets were used. 

4.3 Result Analysis and Recommendations 

Simple reduction techniques, such as stratified sampling, can reduce the required time to build and train 

different ML models. Nevertheless, the performance of ML models is kept almost untouched. The huge 

amount of records stacked in different IDS datasets might be necessary, but not for IDS systems using 

ML models, such as those presented in this work. Some models can be less trusted, such as NB, and 

sometimes LR and LDA should be avoided, too. KNN, XGBoost, RF, and C-5 models are robust and 

can be trusted even when reduction methods are applied to the data. 

When dealing with massive IDS datasets, reduction techniques, such as stratified sampling, and 

dimensionality-reduction techniques, such as autoencoders, are highly recommended to be used with 

the data to make it more usable. If the number of records in the dataset is small; i.e., < 20000, using the 

autoencoder first is highly recommended. For example, for a dataset similar to DS5, which is used here, 
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reducing the data size first is recommended, since training the autoencoder and getting the results from 

the encoder will take a very long time. 

(a) DS4

(b) DS5

(c) DS6

Figure 4. ML model performance when large datasets were used. 

If the dataset is already small, but has a large number of features, like DS2, which has 115 features, 

extracting the important features first is preferred since the autoencoder accuracy will be better with 

more data tuples to train it. Extracting the most important features from the dataset might enhance the 

performance of some ML models, like NB and SVM, with the DS2 results above. 

The amount of the reduction to the data; i.e., how much data should be used to train the model, is a 

subject of experience and the logic of trial and error. The reduction tools are available and should be 

used with wisdom. For example, DS6 was reduced to the half to make the training time more efficient. 

While DS5 was reduced to one-tenth, considering that DS5 is almost five times the size of DS6, DS6 is 

a very unbalanced dataset. 
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The answer to the first research question is that huge IDS datasets are not necessarily needed, because 

the study results show that the ML models can produce sufficient results in many reduction cases, 

especially when certain ML models are used, such as Random Forest and KNN. The answer to the 

second question is that size reduction, feature reduction, and combining both reduction techniques can 

be used to reduce the size of the datasets while keeping the ML-model results sufficient. Although the 

proposed method does not introduce a new detection algorithm, it handles a crucial operational challenge 

in IDSs: the need for scalable and efficient model training on large, high-dimensional datasets. The 

framework shows that significant computational gains can be achieved through structured dataset 

reduction, allowing faster deployment and real-time responsiveness without degrading detection 

performance. This contribution supports more practical and cost-effective implementation of IDSs in 

environments where computational resources and latency are constrained. 

4.4 Scalability Considerations and Real-world Deployment 

The suggested dataset-reduction framework is developed to be modular and scalable, allowing it to adapt 

to diverse deployment scenarios. In cloud or cluster-based environments, the autoencoder training 

process can be parallelized and accelerated using GPU hardware, making it feasible to extract feature 

importance from even larger IDS datasets, such as real-time streaming logs or full network captures. 

The feature-selection step, once learned, can be reused across multiple time windows or data batches 

with minimal retraining. 

Our sampling-first (SF) pipeline offers a practical compromise for edge-computing environments whose 

computational resources of which are limited. Applying stratified sampling before dimensionality 

reduction minimizes resource usage and preserves class distribution. Additionally, autoencoder-based 

feature selection lowers memory requirements and latency for deployed ML models. Thus, the discussed 

reduction methods are sufficient for academic evaluation and functional for real-world IDS applications 

where scalability, model-retraining efficiency, and system throughput are key considerations. 

4.5 Comparison with Other Works 

Table 9 demonstrates a comparison between our work and recent works with similar contributions. 

The comparison of our work with recent contributions emphasizes key dissimilarities in dataset 

selection, feature-reduction methodologies, machine-learning models, and overall effectiveness in 

cyber-threat detection. One of the main strengths of our technique is the use of multiple datasets, 

including Kitsune- ARP, SNMP-MIB, CSE-CIC-IDS2018, BoTIoT, UNR-IDD, and Credit Card Fraud, 

which provides a more comprehensive evaluation of cyber threats. This contrasts studies, such as Behiry 

and Aly (2024), which focus on certain datasets, like NSL-KDD, UNSW-NB15 and CICIDS2017. Using 

various datasets in our study improves the generalizability of the results, although it presents 

sophistication in formalizing feature-selection techniques. 

The data-reduction strategy used in our study combines autoencoders with stratified sampling, setting it 

apart from the principal component analysis (PCA) and singular value decomposition (SVD) approaches 

used in other studies. Autoencoders allow for non-linear feature extraction, which provides more robust 

dimensionality reduction, unlike traditional methods that assume linear relationships between variables. 

Compared to the Coot Optimization Algorithm (COA) used by Vallabhaneni et al. [42], our approach 

fulfills similar feature-reduction effectiveness, but significantly reduces the computational cost. 

Combining autoencoders with stratified sampling ensures that essential features are retained while 

reducing redundancy, making our method accurate and efficient. Another distinguishing factor is using 

stratified sampling instead of synthetic oversampling methods, like SMOTE, which Behiry & Aly [40] 

utilized. While SMOTE artificially generates new samples, stratified sampling preserves the natural 

distribution of data, preserving class balance without introducing synthetic artifacts. This approach 

ensures that minority-class instances, crucial for fraud and intrusion detection, remain well-represented 

while reducing data size. By leveraging stratified sampling, our method enhances dataset efficiency 

without sacrificing classification performance. 

The selection of machine-learning models further distinguishes our work from previous studies. Our 

evaluation encloses a diverse set of algorithms, including K-Nearest Neighbors (KNN), Support Vector 

Machines (SVMs), Naïve Bayes, Linear Discriminant Analysis (LDA), C5, XGBoost, Random Forest, 
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and ADA, offering a comprehensive analysis of classification performance. In contrast, [40] and [42] 

mostly depend on deep-learning models, such as deep forward neural networks (DFNNs) and modified 

feedforward neural networks (FFNNs). While deep learning models perform well on high-dimensional 

data, they demand much more computational resources and training time. Our approach balances 

accuracy and computational efficiency by combining classical machine learning and ensemble methods, 

making it more suitable for real-time applications. 

Table 9. Comparison of our work and recent works with similar contributions. 

Criteria Our work Behiry & Aly [40] Hossain et al. [41] Vallabhaneni et al. 

[42] 

Dataset Used Kitsune-ARP, 

SNMP-MIB, CSE- CIC-

IDS2018, BoTIoT, UNR-

IDD,   Credit Card Fraud 

NSL-KDD, UNSW- 

NB15, CICIDS2017 

Not specified 

(DDoS-related) 

BotNet dataset 

Dataset Size Multiple large-scale 

datasets (ranging from 

2,620 to 2,426,574  records) 

175,466 samples 

(CICIDS2017) 

Not provided 1,803,333 domain 

names 

Feature-reduction 

Method 

Autoencoders + 

Stratified Sampling 

Singular  Value De- 

composition (SVD) 

+ PCA + KMC-IG

Hybrid Feature 

Selection 

Coot Optimization 

Algorithm (COA) 

Sampling Method Stratified Sampling SMOTE + ENN Not specified Not specified 

Machine-learning 

Model 

KNN, SVM, Naive 

Bayes, Linear Regression, 

LDA, C5, XGBoost, 

Random Forest, ADA 

Deep Forward Neural 

Network (DFNN) + 

K-means Clustering 

(KMC) 

Ensemble-based 

classifier 

Modified Feed- 

forward Neural 

Network (FFNN) 

Performance 

Metrics 

Accuracy up to 

99% (varies by dataset), F1-

score analysis for different 

reduction strategies 

Accuracy: 99.7%, 

F1-score: 98.8% (NSL-

KDD) 

Not specified Accuracy: 97.56%, 

Precision: 96.76% 

Computational 

Efficiency 

Training time reduced 

significantly by applying size 

and feature reduction 

techniques 

High efficiency due 

to hybrid feature 

selection 

Not specified Improved by using 

COA for feature 

selection 

Real-time 

Applicability 

Yes, reduces 

dataset size while 

maintaining accuracy for 

efficient IDS deployment 

Yes, suitable for 

real-time WSN intrusion 

detection 

Yes, aimed at 

robust DDoS 

mitigation 

Yes, designed for 

Cybersecurity-

attack prediction 

Novelty Combination of 

autoencoder-based feature 

selection and stratified 

sampling for dataset 

reduction 

Hybrid  feature 

reduction (SVD+ PCA 

+ KMC-IG) + deep

learning 

Hybrid feature 

selection + 

ensemble 

classification 

COA-based feature 

selection with 

adaptive weight 

FFNN 

Limitations Some models (e.g., 

Naive Bayes) perform 

poorly on highly reduced 

datasets 

Requires large labeled 

datasets 

Requires further 

evaluation in real- 

world scenarios 

Computational 

complexity in 

feature selection 

and training 

The performance metrics indicate that our method achieves an accuracy of up to 99% across multiple 

datasets, comparable to the 99.7% accuracy reported in [40]. However, the key advantage of our 

approach lies in its computational efficiency. By reducing the dataset size while maintaining 

classification performance, our method enables faster training times, making it highly scalable for real-

time intrusion-detection systems. In contrast, with a computationally expensive feature selection process 

[42], it achieved a slightly lower accuracy of 97.56%. Using autoencoder-based feature-selection in our 

work ensures optimal feature retention with minimal processing overhead, achieving a balance between 

performance and efficiency. 

Real-time applicability is a critical aspect of intrusion-detection systems. Our study prioritizes this using 
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efficient data-reduction techniques and lightweight machine-learning models. While [40] and [41] argue 

real-time relevancy, their studies lack detailed evaluations of computational efficiency. Our work 

explicitly shows that dataset-size reduction leads to significantly lower training times, confirming that 

the model remains deployable in practical cyber-security environments. The novelty of our work lies in 

the hybrid combination of autoencoder-based feature selection with stratified sampling, which optimizes 

both dataset size and model performance. Unlike previous studies that rely only on statistical reduction 

techniques or heuristic optimization, our approach integrates deep feature extraction and data-selection 

strategies. This hybrid approach results in an efficient intrusion-detection system capable of handling 

large-scale datasets while maintaining high detection accuracy. 

Despite the benefits, there are areas for additional improvement. Some models, such as Naïve Bayes, 

exhibit performance degradation when involved with highly-reduced datasets, suggesting that feature-

selection techniques could be further purified to improve  compatibility with a more expansive range   

of classifiers. Additionally, estimating the trade-off between dataset reduction and accuracy loss under 

extreme conditions would provide further insights into the scalability of our approach. Expanding the 

study to real-world cyber-security attack scenarios would further validate its functional applicability. 

5. CONCLUSION AND FUTURE WORK

This study presents and tests two methods to reduce the amount of data used to train and test IDSs. The 

first method depends on reducing the size of the datasets with very large tuples, followed by feature 

selection to improve the ML model’s performance. The second method, which is more practical with 

relatively small datasets, aimed to select the most important features first and then reduce the number 

of used tuples; this method guarantees the selection of better features and also improves the ML-model 

performance. This emphasizes the redundancy happening in some datasets related to security attacks in 

IoT datasets, especially simulated datasets. 

This study shows that careful dataset size and feature-dimensionality reduction can lower computational 

costs while maintaining equivalent intrusion-detection performance. Specifically, using only 25% of the 

original data or feature set resulted in a less than 2% reduction in F-score for most models and datasets. 

Even with a large reduction to 10%, the average F1-score declined by only 4%–6%, with ensemble 

models, such as XGBoost and Random Forest, showing more resilience compared to other simple 

classifiers, like KNN. The reduction framework is computationally efficient and robust across various 

IDS scenarios. Meanwhile, data-reduction processes should be taken with caution, because random or 

extreme data reduction might cause the models to produce unacceptable results, as seen in many 

scenarios throughout this study.  

In the future, we plan to repeat the experiment with multi-class labeled datasets and check how the 

proposed reduction techniques would affect the ML models. We also wish to investigate and compare 

other multiple reduction techniques. Our plan also includes applying the reduction techniques to 

different convolutional neural-network architectures and employing XAI tools to explore the reasons 

behind feature-ranking results. It is also necessary to have methods to evaluate the redundancy level in 

a dataset to estimate the possible efficient reduction percentages that can be applied to the data. 
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ملخص البحث:

يعُدددددف الاخدددددتافي بيفادددددرنا دددددءاأمردددددرنااًبيًدددددماف شدددددمر ا  ددددديف ا  ر دددددمر ا  ددددد ر ا  دددددر اشددددد  رنا

ا ع ر ددددد ا ا خدددددتا ادف ددددد  ا بح دددددم ا ً  ددددد   عافل دددددءاظادددددّاًةدددددر  
ف حر دددددتستادم دددددبافتاً دددددري اف دددددب عاس

ددددديي ا دددددءامعشمدددددفاد  دددددعاف  مرًدددددرنا دددددءا ً  ددددد اف  خدددددتاظددددد ا ظددددد افي بيفادددددرنتاد ددددد اف ب  فيدددددفاف   

اعددددددا  اأر ددددددباففتاً ددددددري اف ددددددب عاسعافي بيفاددددددر امحامدددددداا   تظددددددرناأمرًددددددرن  ان،ا ددددددل   فل ددددددءاأددددددرن 

ينةدددددددتلاظادددددددّاف   يدددددددفا ددددددد اف ب حدددددددف يرنادف  بةا  دددددددرناف  بعا شددددددد اأ  دددددددر  اف حت ددددددد  تادمددددددد مءا

   تظدددددددرناف  مرًدددددددرناف  بعا شددددددد اأ مردددددددرنااًبيًدددددددماف شدددددددمر اأ   دددددددرتاعدددددددا  تادم حددددددد ا ددددددد  ا

 دددددءا   تظدددددرناف  مرًدددددرنا دددددءا رظامددددد اد  ف ا ً  ددددد اف ف  ف ددددد ا دددددءا تددددديامشنمدددددرنامشامدددددااف  مرًدددددرنا

اف  ختاظ افي بيفارنت

دددددد رنادمشامدددددداا اتندددددرلءاف  يف دددددداايددددددف  اأددددددم امشامددددددااف     ًشبددددديها ددددددءا دددددد  اف ت ادددددد اايددددددر اظ ددددددا 

ف أعددددددر ادف ح ددددددعا ددددددءا   تظددددددرناف  مرًددددددرناف  بعا شدددددد اأ مرددددددرنااًبيًددددددماف شددددددمر ،ادي دددددد اظاددددددّا

اُ بر ددددد ا اع دددددتتتادمدددددع ام ا   تظدددددرناأمرًدددددرن  ا ددددد اً دددددري اف دددددب عاسعافل دددددءاظادددددّا دددددم  شمدددددمعا  ف اظدددددف  

امشامددددددااف  مرًددددددرنا ددددددلاف ن بددددددرل اف  بددددددءا  ددددددانراظام ددددددرا       تظددددددرناف  مرًددددددرناف  ف د دددددد تادمتع 

ا ر خددددءا ددددءا99 دددد اشدددد ًّا  ايددددي  لاا ددددّامشامدددداا  دددد اف ب ددددف ي اأ ددددراي ددددااا ددددّا %ا دددد ا شددددفف  

ددددديفناف  ف ايايب دددددرد ا فلددددد1 يش  اف ب شامدددددااف    فا ا مرًدددددرناادددددفايددددديتيا دددددا ر ا دددددءا%،ادادددددفام دددددم ا   

دددددت اظ ا ددددد اف  خدددددتتا ادددددّا تفلدددددفامشامدددددااف  مرًدددددرنا دددددءا   تظدددددرناأمرًدددددرنادم ددددداّاف ف  ف ددددد اف   

اًبيًدددددماف شدددددمر ،ادمدددددفظعاً بدددددرل اف ف  ف ددددد الدددددفدتامة مشدددددرناف  خدددددتاف  ع دددددر اظددددد افي بيفادددددرنا

دددددد  ا ددددددءاف دعددددددرّاف  بددددددءامب  ددددددعاأ حفد يدددددد اف  ددددددتف  ا داف  بددددددءا   مرددددددرناف عددددددر عاف حشمشددددددء،اد رت 

امبعا قاأر     اف حشمشءت

http://www.unb.ca/cic/datasets/ids-2018.html
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ABSTRACT 

This study addresses challenges in sentiment analysis for low-resource educational contexts by proposing a 

framework that integrates Few-Shot Learning (FSL) with Transformer-based ensemble models and boosting 

techniques. Sentiment analysis of student feedback is crucial for improving teaching quality, yet traditional 

methods struggle with data scarcity and computational inefficiency. The proposed framework leverages self-

attention mechanisms in Transformers and combines models through Gradient Boosting to enhance performance 

and generalization with minimal labeled data. Evaluated on the UIT-VSFC dataset, comprising Vietnamese 

student feedback, the framework achieved superior F1-scores in sentiment and topic-classification tasks, 

outperforming individual models. Results demonstrate the potential of the proposed framework for extracting 

actionable insights to enhance educational experiences. Despite its effectiveness, the approach faces limitations, 

such as reliance on pre-trained models and computational complexity. Future work could optimize lightweight 

models and explore applications in other domains, like healthcare and finance. 

KEYWORDS 

Few-shot learning, Boosting, Transformer models, Sentiment analysis. 

1. INTRODUCTION

In natural language processing (NLP), sentiment analysis, also referred to as opinion mining, is a method 

used for evaluating the emotional state of a given text [1]. This technique has become a valuable tool 

for extracting user opinions from product and service reviews, providing businesses with actionable 

insights to improve their offerings [2]. Student feedback is essential for assessing learning-management 

systems, instructional strategies and course material in the educational setting [3]. To facilitate efficient 

analysis, these feedback responses, which are frequently in the form of text, need to be pre-processed 

using NLP techniques as feature extraction and selection [4]. 

The initial step in sentiment analysis involves labeling text with emotional categories, like positive, 

negative, or neutral, reflecting students' feelings about the courses and services provided [5]. However, 

the manual annotation process can be time-consuming and require substantial resources, as well as an 

understanding of educational content. This challenge has been addressed through automated methods 

powered by AI and machine learning [6]. With its ability to process and analyze vast amounts of student 

input, artificial intelligence (AI) greatly improves the precision and effectiveness of sentiment 

categorization [7]. Even when feedback is unlabeled, machine learning, deep learning and transformer 

models are very good at using attention processes to identify students' feelings [8]. 

In the age of online and blended learning, where emotional cues may be harder to discern, leveraging 

sentiment-analysis tools becomes essential for extracting meaningful insights from textual data [9]. 

Furthermore, various machine-learning algorithms, such as Naive Bayes, Support Vector Machines 

(SVMs) and lexicon-based methods, have been used to analyze sentiments in student feedback, 

demonstrating their effectiveness in processing and interpreting these responses [10]–[12]. With these 

advancements, sentiment analysis not only contributes to enhancing teaching quality, but also provides 

valuable insights into the experiences and perspectives of students in the educational process. 

Traditional supervised-learning approaches have been extensively applied in sentiment analysis, yet 

they are constrained by inherent limitations. One major challenge arises in scenarios with limited labeled 

training data, where traditional machine-learning models often suffer from overfitting, rendering them 

unable to generalize effectively to unseen data [13]. This limitation is particularly problematic in 
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sentiment analysis, where diverse and complex text patterns demand robust generalization. Moreover, 

while humans can intuitively generalize concepts with minimal exposure or partial information, 

machine-learning models struggle to replicate this ability [14]. As a result, traditional methods falter in 

low-data settings, leaving critical gaps in performance and scalability. 

Previously, sentiment analysis has depended on supervised techniques that handle issues, like lexical 

variety and long-distance interdependence, present in textual data. To capture these relationships, 

sequence models such as RNNs and LSTM networks, have been frequently employed. While these 

models can encode complex relationships within text, their serialized processing makes them 

computationally inefficient and limits their scalability, especially in real-world applications. Through 

the application of parallelized processing, Transformer models, on the other hand, have transformed 

sentiment analysis and greatly increased computational effectiveness while maintaining the capacity to 

identify long-distance relationships. Their self-attention mechanisms allow for a more comprehensive 

understanding of text structure and semantics, making them well-suited for sentiment analysis. 

However, these models often require large amounts of labeled data to perform effectively, which poses 

a challenge in resource-constrained environments.  

To address these challenges of data scarcity and computational inefficiency, Few-Shot Learning (FSL) 

has emerged as a promising solution. FSL enables models to generalize effectively from only a few 

labeled examples, mimicking human-like learning. However, traditional supervised methods still face 

limitations in terms of overfitting and dependency on large datasets. To overcome these issues, 

integrating ensemble learning with Transformer architecture and FSL offers a novel approach. By 

combining multiple Transformer models trained with few-shot data, ensemble learning can improve 

generalization and robustness, mitigating the risks of overfitting. The hybrid approach leverages the 

computational efficiency of Transformers, the contextual power of self-attention mechanisms and the 

scalability of FSL, offering a more effective and resource-efficient framework for sentiment analysis in 

real-world applications. 

While traditional sentiment-analysis approaches have demonstrated strong performance on large-scale 

datasets, their applicability is limited in low-resource educational environments, where collecting and 

annotating large volumes of labeled data are often impractical due to time, budgetary and expertise 

constraints. Deep learning and transformer-based techniques have achieved promising results in 

educational contexts, such as analyzing course feedback or evaluating learning-management systems 

[60–62]. However, these approaches are highly dependent on the availability of comprehensively 

labeled datasets, which poses a significant barrier in many real-world educational scenarios, particularly 

in under-resourced institutions or less-documented languages. Moreover, existing research has paid 

limited attention to the use of boosting strategies for ensembling Transformer-based models in 

educational sentiment analysis. Most prior studies, such as [63] and [64], have focused on combining 

traditional deep-learning models and basic machine-learning techniques rather than leveraging the 

potential diversity and complementary strengths of multiple Transformer architectures. This reflects a 

research gap in exploring ensemble-learning techniques, particularly boosting, in conjunction with 

modern pre-trained language models for low-resource educational contexts. 

To address the critical challenge of data scarcity in analyzing student feedback, particularly for under-

resourced languages, like Vietnamese, within educational settings, this paper proposes a novel approach. 

We investigate the synergistic integration of Few-Shot Learning (FSL) with boosting-enhanced 

Transformer-based ensemble models. While FSL addresses the limited data and Transformers offer 

powerful text representation, the strategic application of boosting techniques over an ensemble of such 

FSL-trained Transformers is a relatively unexplored configuration aimed at maximizing performance 

and robustness specifically for this low-resource niche. 

The purpose of the research includes: 

• To rigorously assess the viability and effectiveness of integrating FSL with boosted Transformer

ensembles for sentiment analysis specifically on scarce Vietnamese student-feedback data, thereby 

demonstrating a practical solution for low-resource educational contexts. 

• To explore and apply boosting methods to combine model predictions and evaluate the effectiveness

of ensemble techniques in improving accuracy and prediction performance for sentiment and topic 
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classification tasks. 

• To develop and provide a high-performance model for student sentiment analysis, particularly suited

for small datasets, to support research and enhance sentiment-analysis methods in the educational 

context. 

• To evaluate the proposed model on an additional sentiment-analysis dataset from a different domain

to ensure the model’s robustness and generalizability across various contexts, thereby supporting its 

applicability in broader sentiment-analysis tasks beyond the educational setting. 

2. RELATED WORK

2.1 Contrastive Learning in Sentiment Analysis 

The primary objective of contrastive learning (CL), a self-supervised machine-learning technique, is to 

develop representations through the comparison of various data samples. More specifically, CL learns 

to push negative pairings farther apart and bring positive pairs closer together in the representation space. 

In order to decrease dimensionality and enhance classification and recognition performance, CL was 

presented as a technique that involves learning an invariant mapping [15]. With a momentum encoder 

that continuously updates negative samples, it was shown how important the quantity of negative 

samples is to improving representation learning [16]. Constructing effective positive pairs was 

highlighted as a critical factor in learning high-quality representations in CL [17]. 

Contrastive learning has shown itself to be an effective technique in sentiment-analysis applications. 

Supervised CL has been directly used in a number of research studies [18]-[20] to align sentiment 

representations with corresponding sentiment labels in order to develop fine-grained sentiment 

representations. In order to promote more efficient sentiment-analysis learning, supervised CL creates 

positive pairings based on labels, where samples with the same label are regarded as positive pairs and 

samples with different labels are regarded as negative pairs [21]. Additionally, to improve the accuracy 

and resilience of sentiment-analysis models, multi-aspect samples for CL were created using an in-

domain generator and a cross-channel data-augmentation technique [22]. In order to enhance sentiment-

analysis performance, cross-lingual contrastive learning also employed token-level and sentence-level 

data-augmentation techniques in addition to sentiment identifying [23]. 

2.2 Boosting 

Boosting is a method of machine learning that combines weak learners in an ensemble style to turn them 

into a strong classifier. Its main goal is to minimize bias, which aids in the improvement of highly biased 

models. Combining the outcomes of each iteration using a weighted vote for classification or a weighted 

sum for regression yields the final output of boosting [24]. 

2.2.1 AdaBoost 

Adaptive boosting is a powerful boosting algorithm introduced by [25], designed to combine weak 

learners, typically decision stumps (decision trees with a single split), into a strong classifier. It is widely 

regarded as one of the most robust machine-learning algorithms, with AdaBoost.M1 being a notable 

implementation for binary-classification tasks [26]. AdaBoost requires little hyper-parameter tuning and 

is simple to deploy [27]. To create the strong classifier, the several base learners are added one after the 

other and weighted [28]. The learning process involves iteratively training base classifiers, updating 

sample weights based on their classification performance and prioritizing misclassified samples in 

subsequent iterations. Initially, all samples are assigned equal weights: 

D1(𝑖) =
1

𝑚
, 𝑖 = 1,2, … ,𝑚. 

The weights are then updated after each iteration using the formula: 

D𝑡+1(𝑖) =
D𝑡(𝑖)

𝑍𝑡
exp⁡(−α𝑡y𝑖h𝑡(x𝑖).

Here, the importance of each base classifier is quantified as: 

α𝑡 =
1

2
ln⁡(

1 −∈𝑡
∈𝑡

)

where ∈𝑡 is the error rate of the base classifier. After T𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, the final strong classifier is computed
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as: 

H(x) = sign(∑α𝑡h𝑡(x)

𝑇

𝑡=1

This approach ensures a weighted combination of base classifiers to optimize performance. AdaBoost’s 

adaptability and sequential focus on hard-to-classify samples make it highly effective for diverse 

applications.  

2.2.2 Gradient Boosting 

A popular machine-learning technique, called gradient boosting, iteratively combines weaker base 

learners, usually decision trees, to create a powerful prediction model. Because it uses decision trees as 

essential building elements, it is frequently referred to as Gradient Boosted Decision Tree (GBDT). [29] 

was the first reference to describe the concept, demonstrating that boosting can be seen as an 

optimization problem that aims to achieve a certain loss function. 

An advanced version of this approach was later developed [30], focusing on sequentially training models 

to construct a robust ensemble classifier. Unlike other boosting methods, the key idea in Gradient 

Boosting is to design base learners that align with the negative gradient of the loss function for the 

overall ensemble [31]. 

For a given training dataset 𝑆 = {(x𝑖, 𝑦𝑖}𝑖=1
𝑁 , the goal of Gradient Boosting is to approximate a function

F∗(x) that predicts the response variable y based on input features x, by minimizing a pre-defined loss

function L(y, F(x)). This approximation is achieved iteratively by creating an additive model expressed 

as: 

Here: 

• : The prediction at iteration m.

• The prediction from the previous iteration.

• : The weight of the mth learner.

•  The mth base learner, typically a decision tree.

The initial model, F0(x), is determined by minimizing the loss across all samples:

In subsequent iterations, each new learner  is trained to minimize the error of the current model: 

A critical aspect of this process involves computing pseudo residuals, which represent the gradients of 

the loss function with respect to the model's predictions. These are calculated as: 

The optimal weight  is subsequently obtained through a line-search procedure. 

To mitigate overfitting, the algorithm applies shrinkage, scaling the contribution of each step by a 

learning rate  (commonly set to 0.1): 

Gradient boosting stands out for its ability to uncover intricate patterns in data by systematically 

addressing errors in previous iterations. However, it is susceptible to overfitting, especially with noisy 

datasets, if regularization techniques are not adequately employed [31 - 32]. Despite this, it remains a 

powerful choice, particularly for small datasets [33]. 
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2.2.3 XGBoost 

Extreme Gradient Boosting, or XGBoost, is a decision tree-based ensemble technique that uses the 

gradient-boosting framework and is incredibly effective and scalable. Because of its excellent accuracy 

in both classification and regression tasks, it has become more well-known. After winning many Kaggle 

tournaments, XGBoost has emerged as a major force in machine learning in recent years. Originally 

developed by [34], XGBoost introduces several enhancements over traditional gradient-boosting 

algorithms. A key feature of XGBoost is the incorporation of a regularization term in its loss function, 

which helps prevent overfitting [35]. 

The regularized loss function used in XGBoost is defined as: 

where 𝐿(𝑦𝑖, 𝐹(𝑥𝑖)) measures the error between the predicted and actual values and Ω(hm)  represents

the regularization term. The regularization term is expressed as: 

Ω(ℎ) = 𝛾𝑇 +
1

2
𝜆|𝜔|2

In this expression,  regulates the complexity of the trees, T is the number of tree leaves, 𝜆 serves as a 

penalty parameter and  corresponds to the outputs from the leaf nodes. 

Unlike standard gradient boosting, which uses first-order derivatives, XGBoost improves upon this by 

using a second-order Taylor approximation to optimize the loss function more effectively. The revised 

form of the loss function is: 

where gi and hi represent the first and second derivatives of the loss function, respectively. The total 

loss is computed by summing the contributions from each leaf node, as described by: 

The objective function is approximated quadratically as a result of this modification to the optimization 

process. Furthermore, according to [36], the regularization term makes sure that XGBoost is immune to 

overfitting. In order to prevent overfitting, XGBoost uses parameters, like tree depth, learning rate and 

sub-sampling, just like conventional gradient boosting. 

One of the key advantages of XGBoost is its ability to handle minimal feature engineering, including 

dealing with missing values, data normalization and feature scaling. Furthermore, XGBoost can output 

feature importance, making it easier to understand the significance of different input features and 

perform feature selection. It can handle big datasets effectively, is quicker than the majority of machine-

learning algorithms and frequently performs better than other models. This has made XGBoost a popular 

choice, particularly in Kaggle competitions. However, a disadvantage is that it has many hyper-

parameters, which can make the model-tuning process quite complex [37]-[38]. 

2.3 Base Transformer Models for Ensemble Learning Boosting 

The Transformer, introduced by [39], was designed to overcome the limitations of RNNs and traditional 

encoder-decoder architectures. By replacing RNNs with attention mechanisms, it enables efficient long-

term memory handling. With feed-forward layers, residual connections and normalization layers 

combined with multi-head attention layers, the model concentrates on every token from the past. With 

attention weights derived from the encoder hidden states (K) and decoder state (Q), the attention 

mechanism aids the model in focusing on pertinent information depending on the current input. These 

weights are generated by an alignment function and distribution function, such as SoftMax, to enhance 

processing efficiency. Self-attention further enables the model to link positions within a single sequence 

to form comprehensive representations. Table 1 summarizes the transformer models experimented with 

in this study. 
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Table 1. Base models for boosting in transformer-based architectures. 

Type Model Supported 

Language 

Training Data 

Source 

Base Model Highlights Citation 

Mono-lingual PhoBERT Vietnamese 20GB pre-training 

dataset, including: 

(i) Vietnamese

Wikipedia (~1GB); 

(ii) Vietnamese

news dataset 

(~19GB) 

RoBERTa Uses syllable-level 

tokenizer, trained on a 

large Vietnamese dataset 

with fastBPE. 

[40] 

Mono-lingual viBERT Vietnamese 0GB Vietnamese 

news datasets 

(vnexpress.net, 

dantri.com.vn, 

baomoi.com, 

zingnews.vn, 

vitalk.vn, …etc.) 

BERT Improved performance 

on Vietnamese text 

processing tasks due to 

training on Vietnamese-

specific data and pre-

training techniques. 

[41] 

Mono-lingual BARTpho Vietnamese The training data is 

an undivided 

variant of the 

PhoBERT pre-

training corpus 

(about 4 billion 

syllable tokens) 

BART Combines Transformer 

structure with BERT, 

using a large Vietnamese 

dataset to enhance text 

generation and 

summarization quality. 

[42] 

Mono-lingual ViT5 Vietnamese - CC100 Dataset: 

Total size 138GB 

of raw text. 

- Data split:

- 69GB short

sentences for 256-

length model. 

- 71GB long

sentences for 1024-

length model 

T5 ViT5 applies 

Transformer-based 

Encoder-Decoder 

architecture, with two 

versions: Base (310M 

parameters) and Large 

(866M parameters). The 

model uses 36K sub-

words generated by 

SentencePiece and 

trained with span-

corruption self-

supervision (15% rate). 

[43] 

Multi-lingual XLM-

RoBERTa-

Base 

100 

languages 

CommonCrawl, 

Wikipedia 

RoBERTa Trained on 100 

languages. Uses Masked 

Language Modeling 

(MLM) objective. 

Vocabulary size = 250K, 

using SentencePiece. 

Training data from 

CommonCrawl and 

Wikipedia, with 

improved support for 

low-resource languages. 

[44] 

Multi-lingual BERT English Wikipedia (2.5 

billion words), 

BooksCorpus (800 

million words) 

Transformer Trained using two 

unsupervised tasks: 

Masked LM and Next 

Sentence Prediction, 

utilizing a bidirectional 

Transformer architecture. 

[45] 

Multi-lingual mT5 Over 100 

languages, 

including 

Vietnamese 

mC4 dataset 

(Massive Multi-

lingual Crawled 

Corpus) collected 

from billions of 

web pages 

T5 Multilingual pretraining, 

supports numerous 

languages using the T5 

architecture. 

[46] 

In the context of this research, various Transformer-based models serve as the base models for the 

boosting methods explored. These models, which include both mono-lingual and multi-lingual variants, 

are pre-trained on large, domain-specific datasets and exhibit remarkable performance in natural-
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language processing tasks. Table 1 summarizes these base models, their training data sources and key 

highlights, showing how they contribute to enhancing model performance through boosting techniques. 

2.4 Few-shot Learning Using Contrastive Learning 

Few-shot learning (FSL) presents a significant challenge, as it requires models to adapt and generalize 

effectively with only a limited amount of data. Contrastive learning, a self-supervised method, has 

proven to be highly effective in addressing this challenge by learning meaningful and discriminative 

feature representations. By emphasizing similarities and differences among data points, contrastive 

learning aligns well with the objectives of FSL, where the focus is on distinguishing between unseen 

classes using minimal training data. 

Contrastive-learning methods for FSL are often based on principles, such as noise contrastive estimation 

(NCE) [47]-[48] or N-pair losses [49], which facilitate the learning of robust feature spaces. For instance, 

SimCLR [17] employs data augmentation and non-linear transformations to train encoders that pull 

embeddings of similar data points closer together while pushing apart embeddings of dissimilar ones. 

Additionally, supervised contrastive learning [21] extends this framework to leverage labeled data, 

which is particularly useful in FSL scenarios where labeled support sets are small, but crucial. 

In the context of FSL, contrastive learning enhances the effectiveness of models by improving the 

quality of representations derived from the support set (training examples). Key methods include: 

 Instance-based Representations: Non-parametric softmax classifiers, such as those introduced in

[50], focus on maximizing the separation between instance-level feature embeddings, helping 

models better distinguish between novel classes in FSL tasks. 

 Multi-view Learning: Techniques like Time-Contrastive Networks (TCNs) [51] make use of multi-

view data, aligning positive pairs (e.g. related samples, such as video frames) while separating 

negative pairs. In FSL, this can help bridge gaps between the limited support and query sets. 

 Maximizing Information Representation: Methods, such as Deep InfoMax [52] among others [53],

aim to maximize mutual information either within input-output pairs or across views of the same 

data. These methods ensure robust and meaningful feature extraction, improving FSL task 

performance. 

Contrastive learning naturally integrates with metric-based FSL approaches, such as Prototypical 

Networks [54] and Siamese Networks [55], which rely on embedding distances. Discriminative 

representations learned through contrastive losses can significantly enhance the performance of these 

methods. Moreover, episodic training, commonly used in FSL, complements contrastive learning by 

structuring tasks to mimic real-world applications. 

By leveraging contrastive learning, FSL models are better equipped to generalize from minimal data, 

offering a robust pathway for improving performance on tasks with scarce training resources. This 

combination demonstrates substantial potential to advance the effectiveness of few-shot learning in 

various domains. 

3. METHODOLOGY

3.1 Dataset 

3.1.1 Vietnamese Student Feedback 

The dataset used in this study is the UIT-VSFC corpus, which consists of student feedback collected 

from a Vietnamese university. The dataset comprises 16,175 feedback sentences annotated with three 

sentiment categories: negative (0), neutral (1) and positive (2). Additionally, the dataset includes 

classifications for four main topics: Lecturer (0), Curriculum (1), Facility (2) and Others (3). Feedback 

was gathered between 2013 and 2016 through an automated survey system at the end of each semester. 

The surveys employed a 5-point Likert scale to assess pre-defined criteria and open-ended questions to 

gather more detailed feedback. 

A key strength of this dataset is its reliability, demonstrated by an inter-annotator agreement score of 

91%, which reflects a high level of consistency in sentiment labeling [56]. To evaluate few-shot learning 

scenarios, sub-sets of the training data were constructed with limited labeled samples per class. This 
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setup ensured that the models were trained and tested under minimal data conditions, providing a robust 

assessment of their generalization capabilities with few-shot learning. Table 2 presents some examples 

from the dataset. 

Table 3 presents the distribution of sentiment and topic categories. The dataset is highly imbalanced, 

with positive and negative sentiments each accounting for nearly 50%, while neutral feedback represents 

only 4.32%. In terms of topic labels, the majority of the feedback pertains to the Lecturer category 

(71.76%), followed by Curriculum (18.79%), indicating that students tend to comment most frequently 

on teaching-related aspects. 

Furthermore, a linguistic analysis of the dataset reveals that student feedback tends to be concise: over 

83% of the sentences contain 15 words or fewer. As shown in Table 4, negative sentences are generally 

longer than positive or neutral ones, likely because they often include justifications or suggestions for 

improvement. Table 5 displays the length distribution by topic, where feedback related to Lecturer, 

Curriculum and Facility frequently involves more detailed expressions (i.e., more than five words), 

reflecting students’ emphasis on those aspects. 

Table 2. Examples of the UIT-VSFC dataset. 

No. Sentence Sentiment Topic 

1 Giảng dạy nhiệt tình, liên hệ thực tế khá nhiều, tương tác với sinh viên 

tương đối tốt. 

(Enthusiastic teaching, incorporating a lot of real-life examples and 

relatively good interaction with students.) 

Positive (2) Lecturer (0) 

2 Tính thực tế cũng cao so với việc thi lý thuyết lấy điểm. 

(It is also more practical compared to taking theoretical exams for 

grades.)

Positive (2) Curriculum (1) 

3 Phòng máy cũ, nhưng nhìn chung thì không có ảnh hưởng gì vì thầy dạy 

rất nhiệt tình. 

(The computer lab is outdated, but overall, it doesn't affect much, 

because the teacher is very enthusiastic.) 

Neutral (1) Facility (2) 

4 Học thì quá ít nhưng khi thi thì quá nhiều yêu cầu viết code trong đề thi 

thì sao mà sinh viên có thể làm được. 

(The amount of learning is too little, but the exam demands too much 

coding. How can students possibly handle it?) 

Negative (0) Others (3) 

Table 3. Distribution of sentiment and topic labels in the UIT-VSFC corpus (%). 

Topic Positive (%) Negative (%) Neutral (%) Total (%) 

Lecturer 33.57 25.38 1.81 71.76 

Curriculum 3.40 14.39 1.00 18.79 

Facility 0.11 4.21 0.08 4.4 

Others 1.61 2.01 1.43 5.04 

Total 49.69 45.99 4.32 100 

Table 4. Distribution of sentences by sentiment and sentence length (%). 

Length (words) Positive (%) Negative (%) Neutral (%) Total (%) 

1–5 17.26 9.75 2.31 29.32 

6–10 21.00 15.34 1.17 37.55 

11–15 7.19 8.59 0.51 16.29 

16–20 2.37 5.17 0.15 7.69 

21–25 1.06 2.85 0.07 3.98 

26–30 0.37 1.72 0.07 2.16 

>30 0.40 2.57 0.04 3.01 

Total 49.65 45.99 4.32 100 
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Table 5. Sentence-length distribution by topic (%). 

Length (words) Lecturer (%) Curriculum (%) Facility (%) Others (%) Total (%) 

1–5 20.80 3.61 2.63 2.28 29.32 

6–10 27.84 6.69 1.94 1.08 37.55 

11–15 11.93 2.61 0.84 0.91 16.29 

16–20 5.44 1.35 0.46 0.44 7.69 

21–25 2.96 0.62 0.25 0.15 3.98 

26–30 1.56 0.32 0.19 0.09 2.16 

>30 1.13 0.59 0.10 1.19 3.01 

3.1.2 Customer Product Reviews Dataset 

To further evaluate model generalization, particularly for few-shot learning tasks across different 

domains, we utilized the "Vietnamese Sentiment Analyst" dataset, herein referred to as Customer 

Product Reviews. This corpus contains 31,460 Vietnamese customer reviews focused on various 

products. Each review is labeled with one of three sentiment polarities: positive, negative, or neutral. 

Table 6 presents some examples from the dataset. 

Table 7 details the distribution of sentiment labels and sentence lengths within this dataset. Overall, 

positive sentiment is predominant (63.87%, N=20,093). In terms of sentence length, reviews are 

generally concise, with the highest concentration of positive reviews in the 1-5 word (20.84% of total 

dataset) and 6-10 word (21.14%) brackets. 

Table 6. Examples of the customer product reviews dataset. 

No. Sentence Sentiment 

1 Chất lượng sản phẩm đúng như hình. Đóng gói sản phẩm tạm được. 

(The product quality is just like in the pictures. The packaging is 

acceptable.) 

Positive (2) 

2 Cơ mà tôi mua hôm nay, ngày mai shop làm flash sale là sao. 

(But I bought it today and now the shop is doing a flash sale tomorrow — 

what's that about?) 

Neutral (1) 

3 Có giống hình nhưng vải rất mỏng không đúng như trong hình. Giá tiền 

tương đương với sản phẩm.  

(It looks like the picture, but the fabric is very thin and not as shown. The 

price is equivalent to the product.) 

Negative (0) 

Table 7. Distribution of sentiment labels by review length. 

Length (words) Positive (%) Negative (%) Neutral (%) 

1–5 20.84 6.61 5.18 

6–10 21.14 7.47 5.36 

11–15 9.46 3.53 2.4 

16–20 4.96 1.71 1.06 

21–25 2.83 0.79 0.52 

26–30 1.96 0.48 0.2 

>30 2.68 0.62 0.21 

Total 63.87 21.2 14.93 

3.2 Model Evaluation Metrics 

These metrics are typically calculated using weighted averages to better reflect performance, especially 

in imbalanced datasets. 
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Precision measures the ratio of correctly predicted positive instances to all predicted positive instances. 

It is crucial in problems where false positives have high costs. Precision ranges from 0 to 1 and can be 

calculated as a weighted average, considering class sample sizes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall measures the model’s ability to detect actual positive instances. It is important in problems where 

missing positive cases can have severe consequences. Like Precision, Recall ranges from 0 to 1 and can 

be computed as a weighted average. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

F1-score combines Precision and Recall to give a comprehensive performance measure, especially 

useful in imbalanced datasets. It ranges from 0 to 1, with higher values indicating a better balance 

between Precision and Recall. When calculated as a weighted average, it reflects the model's overall 

performance across all classes. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

3.3 Software and Hardware 

For the proposed research, Python was used as the programming language within the Google Colab 

runtime environment, which provides access to powerful hardware acceleration through GPUs. 

Specifically, the NVIDIA Tesla T4 GPU was utilized, equipped with 2560 CUDA cores designed to 

support deep-learning tasks. These cores, along with specialized Tensor Cores, allow for efficient 

execution of matrix-heavy operations commonly used in neural-network models. The environment ran 

on a CPU with an Intel (R) Core (TM) i3-4005U Processor at 1.70 GHz, paired with 4 GB of RAM. 

To clarify the computational cost, Table 8 presents the number of trainable parameters and the 

approximate model size (in MB) for each transformer-based model evaluated in this study. Models with 

a higher number of parameters and larger memory footprints—such as mBART Large EN-RO (610M 

parameters, ~2.3GB) or mT5 Base (390M parameters, ~1.5GB)—require significantly more GPU 

memory, training time and processing power for both fine-tuning and inference. In contrast, smaller 

models, like ViBERT and PhoBERT, are comparatively lightweight and faster to train, making them 

more suitable for environments with limited computational resources. Table 8 presents the number of 

parameters and the sizes of the transformer models used in this study. 

Table 8. Trainable parameters and approximate model sizes of pretrained transformer models. 

Model Trainable Parameters Model Size (MB) 

PhoBERT 134,998,272 514.98 

ViBERT 115,354,368 440.04 

XLM-RoBERTa Base 278,043,648 1,060.65 

BERT Base Uncased 109,482,240 417.64 

mT5 Base 390,315,264 1,488.93 

BERT Base Multilingual Cased 177,853,440 678.46 

mBART Large EN-RO 610,851,840 2,330.21 

BARTpho-syllable 395,814,912 1,509.91 

ViT5 Base 225,950,976 861.93 

3.4 Experimental Framework 

Few-shot Learning was implemented with varying levels of data availability (N = 1, 5 and 20) to evaluate 

the performance of several transformer-based models on limited labeled data. The models included 

PhoBERT, ViBERT, XLM-RoBERTa, mT5, multi-lingual BERT, base BERT, MBart, BARTpho and 
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ViT5. Each model was fine-tuned using a contrastive learning approach and their performances were 

evaluated using the F1-score. In addition to transformer-based models, the study also conducted 

experiments with several classical machine-learning architectures, including RNN, GRU and LSTM, to 

serve as comparative baselines. This inclusion provides a broader perspective on the effectiveness of 

modern pre-trained models under low-resource conditions. 

For the ensemble-learning stage, our primary selection criterion was individual model performance. 

Consequently, the top three models demonstrating the highest average F1-scores were chosen as base 

learners. To validate this selection, we conducted pairwise statistical significance tests (paired t-tests), 

which confirmed that these models belonged to a top-performing tier, showing statistically significant 

improvements over most other models. This approach ensures that the components of our ensemble are 

strong and reliable individual predictors. 

To further improve prediction accuracy, a supervised ensemble strategy based on boosting was applied. 

Instead of using simple combination methods, such as majority voting or averaging, the outputs from 

the top-three transformer models served as input features for three ensemble learners: AdaBoost, 

Gradient Boosting and XGBoost. These ensemble models were trained to learn from the prediction 

patterns of the base models, functioning as meta-learners that integrate their outputs into a final decision. 

This method is analogous to a stacking framework, where boosting algorithms iteratively focus on 

samples that are harder to classify, thereby refining predictions and enhancing overall generalization 

performance. Detailed descriptions of the proposed method and framework are presented in Figure 1. 

Figure 1. Flow diagram of proposed methodology. The framework trains weak models on data subsets 

(N = 1, 5, 20) using contrastive learning. False predictions are identified during testing and outputs are 

combined to produce the final overall prediction on test data [56]–[57]. 

3.5 Hyper-parameter Tuning 

Bayesian optimization is a powerful and efficient method for hyper-parameter tuning, especially in 

complex machine-learning models where traditional techniques, such as Grid Search and Random 

Search, fall short due to their inefficiency or lack of strategic sampling. By modeling the objective 

function using a probabilistic surrogate model, Bayesian optimization intelligently selects the next 

sampling point based on past evaluations, effectively balancing exploration and exploitation. This 

approach is particularly suitable for combinatorial optimization problems where gradient-based methods 

are not applicable. Bayesian optimization is the top choice for optimizing objective functions [57-59]. 

In this study, Bayesian optimization is employed to tune hyper-parameters for boosting algorithms, 

including AdaBoost, Gradient Boosting and XGBoost. Examples of optimized parameters include the 

learning rate, number of estimators, maximum tree depth, …etc. 

Tables 9, 10 and 11 present the hyper-parameters of the boosting models—AdaBoost, Gradient Boosting 

and XGBoost—that were optimized using Bayesian optimization. These tables detail the specific 

parameters selected for tuning, such as learning rate, number of estimators and maximum depth, among 

others, which play a crucial role in controlling model complexity, convergence behaviour and overall 
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predictive performance. 

Table 9. Optimized hyper-parameters using Bayesian optimization for AdaBoost across datasets and 

N-shot settings. 

Dataset N-shot Learning Rate N estimators 

UIT-VSFC (Sentiment) N=1 0.010 820 

N=5 0.650 29 

N=20 0.279 884 

UIT-VSFC (Topic) 
N=1 0.159 920 

N=5 0.677 1000 

N=20 0.558 180 

Customer Product Reviews 
N=1 0.820 884 

N=5 0.128 730 

N=20 0.159 920 

Table 10. Optimized hyper-parameters using Bayesian optimization for XGBoost across datasets and 

N-shot settings. 

Dataset 
N-

shot 

Column 

Subsample 

Learning 

Rate 

Max. 

Depth 

No. of 

Estimators 

L1 

Regularization 

L2 

Regularization 

Subsample 

Ratio 

UIT-VSFC 

(Sentiment) 

N=1 0.300 0.010 11 506 0.703 0.955 1.000 

N=5 0.680 0.229 7 854 0.324 0.051 0.785 

N=20 0.969 0.108 11 474 0.381 0.211 0.500 

UIT-VSFC 

(Topic) 

N=1 1.000 0.168 12 1000 1.000 0.000 0.873 

N=5 0.300 0.062 5 1000 0.000 1.000 1.000 

N=20 0.611 0.228 4 490 0.188 0.454 0.578 

Customer 

Product 

Reviews 

N=1 1 0.027 3 100 1 0 1 

N=5 0.969 0.108 11 474 0.381 0.211 0.5 

N=20 1 0.025 9 551 1 0.549 0.519 

Table 11. Optimized hyper-parameters using Bayesian optimization for Gradient Boosting across 

datasets and N-shot settings. 

Dataset N-shot
Learning 

Rate 

Maximum 

Depth 

Minimum 

Samples per Leaf 

Minimum 

Samples to 

Split 

Number of 

Estimators 

Subsample 

Ratio 

UIT-VSFC 

(Sentiment) 

N=1 0.082 10 4 9 633 0.797 

N=5 0.072 11 2 8 812 0.504 

N=20 0.279 7 10 2 173 0.597 

UIT-VSFC 

(Topic) 

N=1 0.029 3 1 2 337 0.913 

N=5 0.013 8 2 4 600 0.900 

N=20 0.170 12 10 2 100 0.774 

Customer 

Product 

Reviews 

N=1 0.258 9 9 5 443 0.606 

N=5 0.298 10 9 9 195 0.520 

N=20 0.146 11 2 7 608 0.531 
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The hyper-parameters optimized in this study critically influence the balance between model bias and 

variance, as well as training efficiency. Learning rate determines the step size during model updates, 

affecting convergence speed and overfitting risk. Number of estimators specifies how many weak 

learners (trees) are combined, impacting the model’s capacity and complexity. 

For XGBoost, additional parameters, such as column sub-sample ratio, control the fraction of features 

used per tree to prevent overfitting. Maximum tree depth limits the complexity of individual trees. L1 

(reg_alpha) and L2 (reg_lambda) regularization terms penalize model complexity to enhance 

robustness, while sub-sample ratio governs the portion of training data sampled per tree, reducing 

variance. 

In Gradient Boosting, besides learning rate and number of estimators, the minimum samples per leaf 

and minimum samples to split parameters regulate tree growth by specifying thresholds for leaf-node 

formation and internal-node splitting, further preventing overfitting. 

3.6 Statistical Significance Testing and Confidence Intervals 

A paired t-test is used to determine whether the difference in performance between models is statistically 

significant. Instead of using k-fold cross-validation, the models are run multiple times with different 

random initializations to generate sets of performance results. For each run, the performance difference 

between two models A and B is calculated as: 

𝑑𝑖 = 𝑎𝑐𝑐𝑖(𝐴) − 𝑎𝑐𝑐𝑖(𝐵)

From these differences, the sample mean is computed as: 

𝑚 =
1

𝑁
∑diff𝑛

𝑁

𝑛=1

and the sample standard deviation is: 

𝑠𝑑 = √
1

𝑁 − 1
∑(diff𝑛 −𝑚)2
𝑁

𝑛=1

The t-statistics are then calculated as: 

𝑡 =
𝑚√𝑁

𝑠𝑑

Finally, the t-value is compared against the critical value from the t-distribution with N−1 degrees of 

freedom to test the null hypothesis. If the p-value is less than 0.05 (p<0.05), it can be concluded that the 

difference between the two models is statistically significant. Using the paired t-test thus helps 

strengthen the reliability of selecting more effective models. 

Besides the paired t-test, the 95% Confidence Interval (CI) is used to provide a range within which the 

true performance metric of each model is likely to fall with 95% certainty. Each model is run 5 times 

with different random seeds to capture the variability caused by random initialization. Reporting the 

mean performance along with the 95% CI reflects the stability and reliability of the models. 

This approach allows for a more comprehensive evaluation by quantifying the uncertainty around the 

average performance, ensuring that model comparison and selection consider not only the mean 

accuracy, but also the consistency across multiple runs. 

4. RESULTS

4.1 Few-shot Learning Experiments on Transformer Models 

The experimental results of transformer models are presented on the dataset for two tasks: sentiment 

classification and topic classification. Additionally, experiments were conducted on sentiment analysis 

using the customer product reviews dataset. Each model is evaluated on the same training dataset with 

setups of N = 1, N = 5 and N = 20. The training environment and hyper-parameters are identical across 

all models. The reports highlight the precision, recall and F1-score achieved by each model, specifying 
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which transformers perform well in 1-shot learning (N = 1), few-shot learning (N = 5) and scenarios 

with a significant amount of data. 

Table 12 shows the experimental results on the sentiment-analysis task, with XLM-RoBERTa 

outperforming other models and achieving the highest F1-scores. This model demonstrates the best 

performance in precision, recall and F1-score, making it the most effective model for sentiment analysis. 

Other models, such as BARTpho and BERT multi-lingual, also show strong results. 

Table 13 shows the experimental results on the topic-classification task. The highest F1-score for N = 

20 is 0.817, achieved by XLM-RoBERTa. PhoBERT and BARTpho also show strong performance, but 

XLM-RoBERTa leads in this setup. Table 14 presents the experimental results on the customer product 

reviews dataset. The highest F1-score for N = 20 is 0.744, achieved by mT5. ViBERT and ViT5 also 

show strong performance. 

Notably, the confidence intervals (CIs) among transformer-based models show minimal variation, with 

differences generally remaining below 0.02. This indicates consistent and stable performance across 

different runs. In contrast, traditional models, such as LSTM, RNN and GRU, exhibit greater 

fluctuations in their CI values, reflecting less stability and higher variability in performance. 

Table 12. The experimental results of transformer models for sentiment analysis. 

Model N = 1 N = 5 N = 20 

P R F1 P R F1 P R F1 
RNN 0.449±

0.0375 

0.251±

0.0451 

0.322±

0.0396 

0.520±

0.0296 

0.387±

0.0416 

0.444±

0.0312 

0.645±

0.0261 

0.502±

0.0421 

0.565±

0.0364 
GRU 0.369±

0.0223 

0.287±

0.0322 

0.323±

0.0268 

0.552±

0.0575 

0.477±

0.0428 

0.512±

0.0443 

0.654±

0.0370 

0.591±

0.0503 

0.621±

0.0449 
LSTM 0.381±

0.0122 

0.381±

0.0320 

0.381±

0.0289 

0.626±

0.0366 

0.504±

0.0198 

0.558±

0.0217 

0.657±

0.0366 

0.586±

0.0310 

0.619±

0.0343 
PhoBERT 0.610±

0.0081 

0.591±

0.0098 

0.596±

0.0079 

0.759±

0.0048 

0.708±

0.0053 

0.733±

0.0036 

0.846±

0.0055 

0.812±

0.0045 

0.829±

0.0049 
ViBERT 0.549±

0.0121 

0.278±

0.0106 

0.369±

0.0088 

0.580±

0.0083 

0.499±

0.0036 

0.536±

0.0076 

0.723±

0.0083 

0.608±

0.0076 

0.661±

0.0077 
XLM-

RoBERTa 

0.603±

0.0075 

0.470±

0.0089 

0.528±

0.0077 

0.720±

0.0040 

0.625±

0.0066 

0.669±

0.0058 

0.843±

0.0081 

0.834±

0.0075 

0.838±

0.0075 
BERT base 0.597±

0.0098 

0.527±

0.0032 

0.560±

0.0038 

0.692±

0.0020 

0.460±

0.0088 

0.553±

0.0033 

0.672±

0.0038 

0.630±

0.0081 

0.650±

0.0076 
mT5 0.606±

0.0072 

0.471±

0.0025 

0.530±

0.0057 

0.769±

0.0047 

0.653±

0.0027 

0.653±

0.0046 

0.779±

0.0096 

0.692±

0.0052 

0.721±

0.0080 
BERT 

multilingual 

0.656±

0.0125 

0.655±

0.0098 

0.655±

0.0101 

0.748±

0.0186 

0.672±

0.0143 

0.672±

0.0153 

0.801±

0.0142 

0.743±

0.0096 

0.765±

0.0138 
MBart 0.582±

0.0069 

0.525±

0.0052 

0.552±

0.0057 

0.685±

0.0091 

0.638±

0.0093 

0.661±

0.0090 

0.811±

0.0076 

0.793±

0.0096 

0.801±

0.0082 
BARTpho 0.608±

0.0093 

0.533±

0.0082 

0.568±

0.0081 

0.764±

0.0091 

0.712±

0.0087 

0.737±

0.0090 

0.843±

0.0064 

0.780±

0.0097 

0.806±

0.0084 
ViT5 0.594±

0.0188 

0.590±

0.0157 

0.592±

0.0165 

0.745±

0.0109 

0.611±

0.0146 

0.671±

0.0138 

0.825±

0.0070 

0.742±

0.0051 

0.771±

0.0069 

4.2 Pairwise Statistical Significance Testing Using Paired T-test 

After training and evaluating all models on two primary tasks, sentiment analysis and topic 

classification, additional experiments were also conducted on sentiment analysis using the customer 

product reviews dataset. The three models with the highest F1-scores were selected to undergo paired t-

test evaluation against each of the remaining models. The objective was to assess whether the 

performance differences between models are statistically significant. 

Each model was run five times with different random seeds to capture variation introduced by random 

initialization. The performance differences (in terms of F1-score) between each model pair were 

calculated and a paired t-test was conducted using a significance threshold of p<0.05. The results show 

that the top three models consistently outperformed most other models with statistically significant 

differences, confirming their superiority in a reliable manner. Notably, the model with the lowest 

average performance still achieved statistically significant results (p < 0.05) in two comparisons, 
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indicating that it also qualifies for inclusion in the ensemble model. 

Table 13. The experimental results of transformer models for topic analysis. 

Model N = 1 N = 5 N = 20 

P R F1 P R F1 P R F1 

RNN 0.540±

0.0411 

0.197±

0.0325 

0.289±

0.0336 

0.599±

0.0233 

0.297±

0.0341 

0.397±

0.0302 

0.624±

0.0265 

0.388±

0.0372 

0.478±

0.0298 
GRU 0.481±

0.0231 

0.237±

0.0421 

0.318±

0.0403 

0.633±

0.0158 

0.356±

0.0229 

0.456±

0.0196 

0.644±

0.0331 

0.669±

0.0253 

0.656±

0.0268 
LSTM 0.491±

0.0321 

0.229±

0.0210 

0.312±

0.0298 

0.649±

0.0254 

0.323±

0.0187 

0.431±

0.0203 

0.524±

0.0135 

0.715±

0.0201 

0.605±

0.0184 
PhoBERT 0.708±

0.0101 

0.647±

0.0128 

0.676±

0.0120 

0.762±

0.0063 

0.667±

0.0098 

0.711±

0.0088 

0.821±

0.0063 

0.767±

0.0041 

0.791±

0.0055 
ViBERT 0.679±

0.0156 

0.214±

0.0203 

0.325±

0.0139 

0.708±

0.0109 

0.534±

0.0056 

0.609±

0.0063 

0.774±

0.0182 

0.682±

0.0099 

0.725±

0.0103 
XLM-

RoBERTa 

0.639±

0.0095 

0.646±

0.0127 

0.642±

0.0110 

0.741±

0.0063 

0.630±

0.0036 

0.681±

0.0054 

0.841±

0.0096 

0.795±

0.0082 

0.817±

0.0079 
BERT base 0.588±

0.0153 

0.278±

0.0102 

0.378±

0.0115 

0.691±

0.0118 

0.497±

0.0064 

0.578±

0.0082 

0.754±

0.0053 

0.644±

0.0089 

0.695±

0.0076 
mT5 0.672±

0.0089 

0.448±

0.0056 

0.538±

0.0076 

0.734±

0.0038 

0.451±

0.0025 

0.559±

0.0030 

0.836±

0.0056 

0.719±

0.0089 

0.773±

0.0088 
BERT 

multilingual 

0.696±

0.0145 

0.696±

0.0096 

0.696±

0.0135 

0.790±

0.0202 

0.594±

0.0158 

0.678±

0.0166 

0.820±

0.0083 

0.719±

0.0103 

0.766±

0.0096 
MBart 0.642±

0.0080 

0.547±

0.0088 

0.591±

0.0082 

0.823±

0.0093 

0.738±

0.0066 

0.778±

0.0083 

0.846±

0.0103 

0.768±

0.0152 

0.805±

0.0109 
BARTpho 0.692±

0.0132 

0.419±

0.0122 

0.522±

0.0126 

0.783±

0.0102 

0.661±

0.0123 

0.744±

0.099 

0.850±

0.0101 

0.763±

0.0095 

0.804±

0.0097 
ViT5 0.736±

0.0052 

0.684±

0.0085 

0.709±

0.0063 

0.786±

0.0102 

0.660±

0.0092 

0.741±

0.0091 

0.846±

0.0064 

0.780±

0.0092 

0.812±

0.0066 

Table 14. The experimental results of transformer models for customer product reviews dataset. 

Model N = 1 N = 5 N = 20 

P R F1 P R F1 P R F1 

RNN 0.305±

0.0482 

0.321±

0.0554 

0.313±

0.0501 

0.462±

0.0363 

0.453±

0.0382 

0.457±

0.0351 

0.515±

0.0334 

0.496±

0.0312 

0.503±

0.0305 
GRU 0.324±

0.0505 

0.343±

0.0578 

0.332±

0.0524 

0.481±

0.0381 

0.472±

0.0403 

0.475±

0.0372 

0.533±

0.0352 

0.514±

0.0331 

0.521±

0.0323 
LSTM 0.342±

0.0521 

0.361±

0.0595 

0.350±

0.0543 

0.503±

0.0402 

0.491±

0.0425 

0.494±

0.0391 

0.552±

0.0373 

0.535±

0.0354 

0.543±

0.0342 
PhoBERT 0.456±

0.0121 

0.484±

0.0142 

0.470±

0.0135 

0.623±

0.0083 

0.616± 

0.0102 

0.619± 

0.0091 

0.701± 

0.0072 

0.679±

0.0064 

0.690±

0.0068 
ViBERT 0.469±

0.0163

0.484±

0.0211 

0.476±

0.0184 

0.685±

0.0119 

0.680± 

0.0098 

0.682± 

0.0105 

0.729± 

0.0121 

0.729±

0.0103 

0.729± 

0.0112 
XLM-

RoBERTa 

0.397±

0.0112

0.535±

0.0135 

0.456±

0.0121 

0.694±

0.0091 

0.643±

0.0103 

0.668± 

0.0095 

0.725± 

0.0087 

0.677±

0.0079 

0.700± 

0.0081 
BERT base 0.471±

0.0185 

0.516±

0.0199 
0.492±

0.0191 

0.620±

0.0131 

0.622±

0.0124 

0.621± 

0.0128 

0.679± 

0.0093 

0.670±

0.0108 

0.674± 

0.0099 
mT5 0.457±

0.0138

0.508±

0.0145 

0.481±

0.0141 

0.699±

0.0095 

0.676±

0.0115 
0.687± 

0.0101 

0.748±

0.0086 

0.741±

0.0094 
0.744± 

0.0090 
BERT 

multilingual 

0.451± 

0.0152

0.427±

0.0148 

0.439±

0.0149 

0.685±

0.0122 

0.632± 

0.0138 

0.657±

0.0129 

0.728±

0.0098 

0.697±

0.0113 

0.712± 

0.0104 
MBart 0.437± 

0.0115

0.456±

0.0128 

0.446±

0.0119 

0.658±

0.0081 

0.628± 

0.0094 

0.643±

0.0094 

0.756±

0.0079 

0.677±

0.0091 

0.714±

0.0084 
BARTpho 0.444±

0.0141

0.441±

0.0153 

0.442± 

0.0148 

0.669±

0.0112 

0.632± 

0.0109 

0.650± 

0.0110 

0.760±

0.0081 

0.709± 

0.0092 

0.734±

0.0087 
ViT5 0.483±

0.0102

0.485±

0.0115 

0.484±

0.0108 

0.653±

0.0092 

0.669±

0.0105 

0.661± 

0.0097 

0.726± 

0.0074 

0.734± 

0.0082 

0.730±

0.0078 

This evaluation approach, based on paired t-tests, ensures that model selection is not solely based on 

average performance, but also considers stability and statistical significance across multiple runs, 

thereby enhancing the robustness and reliability of the final model-selection process. The results of the 
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paired t-tests are reported in Tables from 15 to 23. 

Note on statistical-significance levels: (*: p < 0.05), (**: p < 0.01) and (***: p < 0.001). 

Table 15. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 1). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

PhoBERT *** *** 0.0245 *** *** *** *** 0.0377 

BERT 

multilingual *** *** *** *** *** *** *** *** 

ViT5 0.0377 *** *** *** *** *** *** *** 

Table 16. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 5). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

PhoBERT *** *** *** *** 0.0108 *** *** *** 

BERT 

multilingual 0.0108 *** *** *** *** *** *** *** 

BARTpho *** *** *** *** ** *** 0.0518 *** 

Table 17. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 20). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

XLM-

RoBERTa *** *** *** *** *** *** *** *** 

PhoBERT *** *** *** *** *** *** *** *** 

BARTpho *** *** *** *** *** *** *** *** 

Table 18. Pairwise statistical significance testing using paired t-test on topic-classification task (N = 1). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

PhoBERT *** *** *** *** *** *** *** 

BERT 

multilingual ** *** *** *** *** *** *** 0.0249 

ViT5 *** *** *** *** *** 0.0249 *** *** 

Table 19. Pairwise statistical significance testing using paired t-test on topic-classification task (N = 5). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

MBart *** *** *** *** *** *** 0.6952 0.6951 

BARTpho ** *** *** *** *** *** 0.6952 ** 

ViT5 0.0730 *** *** *** *** *** *** ** 

Table 20. Pairwise statistical significance testing using paired t-test on topic-classification Task 

(N = 20). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

XLM-

RoBERTa *** *** *** *** *** *** *** ** 

MBart *** *** *** *** *** *** 0.3903 0.0479 

ViT5 *** *** ** *** *** *** 0.0479 *** 



385

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

Table 21. Pairwise statistical significance testing using paired t-test on customer product reviews 

dataset (N = 1). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

ViBERT 0.0322 *** 0.0359 *** *** *** ** ** 

BERT base *** 0.0359 *** ** *** *** *** ** 

mT5 *** *** ** ** *** *** ** 

Table 22. Pairwise statistical significance testing using paired t-test on customer product reviews 

dataset (N = 5). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

mT5 *** ** 0.0122 *** *** *** *** ** 

ViBERT *** *** *** ** *** *** ** *** 

XLM-

RoBERTa *** *** *** 0.0122 *** ** *** *** 

Table 23. Pairwise statistical significance testing using paired t-test on customer product reviews 

dataset (N = 20). 

PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

mT5 *** *** *** *** *** *** *** 0.5856 

BARTpho *** *** *** *** *** ** *** 0.0152 

ViT5 *** *** *** *** 0.5856 ***    *** 0.0152 

4.3 Experiments on Boosting Models with Transformers 

Based on the few-shot learning experiments with transformers, the study conducted boosting 

experiments using the best-performing models. Specifically, the three models with the highest F1-scores 

were selected as base models for three boosting methods. Table 24 and Table 25 present the 

experimental results for two tasks: sentiment analysis and topic classification. Table 26 presents the 

experimental results on the customer product reviews dataset. The results indicate that Gradient 

Boosting achieved the best performance across all tasks and base models. With N=20, Gradient Boosting 

reached an F1-score of 0.836 on the sentiment-analysis task and 0.824 on the topic-classification task. 

However, the performance of the other two methods was also very promising.  

Table 24. Experimental results of boosting on the sentiment-analysis task. 

N Base model AdaBoost Gradient Boosting XGBoost 

P R F1 P R F1 P R F1 

1 PhoBERT + BERT 

multilingual + ViT5 

0.639 0.670 0.648 0.665 0.675 0.661 0.638 0.671 0.653 

5 PhoBERT + BERT 

multilingual+ BARTpho 

0.754 0.785 0.765 0.792 0.796 0.776 0.772 0.796 0.774 

20 XLM-RoBERTa +BERT 

multilingual+ BARTpho 

0.798 0.841 0.819 0.837 0.853 0.836 0.833 0.849 0.836 

Table 25. Experimental results of boosting on the topic-classification task. 

N Base model AdaBoost Gradient Boosting XGBoost 

P R F1 P R F1 P R F1 

1 PhoBERT + BERT 

multilingual + ViT5 

0.732 0.754 0.709 0.723 0.758 0.725 0.717 0.748 0.723 

5 MBart + BARTpho + 

ViT5 

0.799 0.803 0.735 0.811 0.812 0.804 0.789 0.804 0.790 

20 XLM-RoBERTa+ 

Bart + ViT5 

0.826 0.834 0.817 0.832 0.819 0.824 0.795 0.829 0.811 
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Table 26. Experimental results of boosting on the customer product reviews dataset. 

N Base model AdaBoost Gradient Boosting XGBoost 

P R F1 P R F1 P R F1 

1 ViBERT + BERT base 

+ mT5

0.532 0.556 0.544 0.536 0.573 0.554 0.530 0.555 0.542 

5 mT5 + ViBERT+ 

XLM-RoBERTa 

0.665 0.685 0.675 0.709 0.706 0.707 0.694 0.703 0.698 

20 mT5 + BARTpho + 

ViT5 

0.740 0.750 0.745 0.749 0.761 0.755 0.751 0.753 0.752 

Figure 2. Comparison of F1-scores of boosting algorithms (AdaBoost, Gradient boosting, XGBoost) 

on two tasks: sentiment analysis and topic analysis, using different combined models. 

5. CONCLUSIONS

The findings of this study have far-reaching implications that contribute to yet another theoretical and 

practical advancement in sentiment analysis, particularly in low-resource educational environments. To 

mitigate challenges, such as limited data and computational inefficiency, the proposed study introduces 

a novel framework that combines Few-Shot Learning (FSL) and Transformer-based ensemble models 

with boosting approaches. 

By drawing on the strengths of both Transformer models using self-attention to learn patterns from rich 

data and adapting the FSL setting, this paper then introduces a hybrid methodology that addresses the 

shortcomings of traditional supervised approaches in low-data scenarios. Moreover, it presents the role 

of boosting techniques, such as Gradient boosting and XGBoost, and their capabilities in classifying the 

sentiments, which may set a pathway for forthcoming research on ensemble learning for NLP tasks. 

On the practical side, the framework presented in this research will serve as a basis for providing 

actionable knowledge to educational institutes to better analyze students' feedback, hence improving 

their learning experience and the quality of teaching. The scalability of the method makes it relevant for 

a wide range of fields that experience a scarcity of labeled data. Furthermore, its efficient use of 

resources demonstrates its practicality for translating to practice, even in settings where computational 

power is limited. Although the model demonstrates effectiveness in sentiment-analysis tasks with 

limited training resources, particularly in educational feedback systems, this study acknowledges the 

ethical aspects associated with its real-world deployment. Fairness is a key concern when sentiment 

models are trained on imbalanced datasets in terms of class distribution, dialectal expressions and 

stylistic variations, which often predominantly reflect students’ perspectives. This may result in 

systematic bias against certain groups. 

Bias during evaluation and sentiment classification may lead the model to misinterpret students’ 

feedback, especially when cultural context or specific expression styles are not accurately captured in 

the training data. For instance, negative feedback expressed politely or formally may be misclassified 

as neutral or even positive. This misunderstanding can delay necessary interventions by model users 

when addressing customer requests or student concerns. Another issue to consider is the impact of 

misclassification, which can lead to incorrect conclusions in both educational and customer-service 
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evaluations. If negative feedback is misinterpreted as positive, educational administrators or customer-

service staff may overlook significant issues raised by students or customers, potentially affecting the 

overall learning or service experience. To mitigate these risks, future research and deployments should 

apply fairness-aware training methods, such as data rebalancing and debiasing techniques, utilize more 

diverse datasets to increase representativeness and integrate human oversight during the result-

validation process. 

Despite the promising results, this study has several limitations that provide clear avenues for future 

research. First, our framework's effectiveness is contingent on the availability of high-quality pre-trained 

Transformer models. Consequently, its application may be challenging for low-resource languages or 

specialized domains that lack representative pre-training corpora. Second, the use of ensemble and 

boosting techniques, while improving performance, introduces additional computational complexity, 

which might be a barrier for organizations with limited resources. A third limitation lies in our ensemble 

selection logic. In this study, base models were chosen primarily based on their individual performance. 

While this ensures strong components, it does not explicitly guarantee model diversity, a critical factor 

for robust ensembling. Finally, as the evaluation was conducted on a single dataset (UIT-VSFC), the 

generalizability of our findings needs further validation on other datasets and across different domains. 

Building on these limitations, future work can proceed in several promising directions. To address 

generalizability, the framework should be evaluated across diverse domains, such as healthcare or 

finance, and on datasets in other languages. To enhance the ensemble methodology, future research 

should explore more sophisticated, diversity-aware selection strategies that co-optimize for both model 

performance and diversity; for instance, by analyzing prediction correlations. Furthermore, performance 

in extremely low-data environments could be improved by optimizing Transformer architectures for 

lightweight deployments and leveraging advanced data-augmentation strategies. Finally, integrating 

human-in-the-loop feedback systems could improve model adaptability in ambiguous cases, making the 

framework more practical for real-world deployment. This research underscores the transformative 

potential of advanced NLP techniques in enhancing sentiment analysis, offering a valuable framework 

for addressing challenges in resource-constrained scenarios. 
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ملخص البحث:

اااااايه هرلديتح لي يااااااطل سااااااال تتنااااااه الوااااااتّلديات ااااااطلديتحلااااااشاهرلدي اتسّااااااطلتتللياااااارلدي  ااااااه ال اااااا لدي ح

 لااااايرل لااااايالدي اااااشال دينح اااااهّلالدي ه  اااااطل لااااا لدي لااااااح رل  ااااارلاي ااااا لتاااااي لديتحلد تاااااادرل  اااااهتل

لتللياااااارلدي  ااااااه الا ااااااشللااااااااد لحه اااااا ه ليتل ااااااي ل ااااااا  لديتح لااااااير لل ت نيااااااهرلديتح  ااااااا   حيااااااتلليح

ااااايلديسيهساااااهرل يااااا ال ه لياااااطلديلا اااااسط لياااااتي لا  ااااارل  اااااهتلدي  ااااارل  اااااا للتااااااتلديتحلاااااشاهرلعح

 ااااااهّلالااااااا لت ل اااااا لدي لاااااااح ر ل اي اااااا لتااااااي لدينحلدي  تااااااارل لاااااا لت  ااااااا لاييااااااهرلد ستسااااااهّلديااااااتحد

ل ااااااااش تلااااااااا لديسيهسااااااااهرل خااااااااتالت نيااااااااهرلديتح  ااااااااا ليتل ااااااااي لدر دنل  ايهسيااااااااطلديتح  اااااااايرلت  اااااااارح

لتلااااااا لديتح تاااااااطل دي ا ااااااااط ل  اااااااالتّسياااااارل  ااااااهتلدي  اااااارلدي  تااااااارل لاااااا لاي ا ااااااطلتيهسااااااهر 

اااااهرل حّلساااااطلتهيلح اااااطلديجيتنهاياااااط ل ح حااااارلستاااااه  لا يااااا  ل ااااا لا  ح د  اااااطلاااااا لدي تلليااااارلدي  اااااه الدياح

ل  اااااهتلدي  ااااارل  تلااااانيالدي ناااااه ا لا هتساااااط لاااااا لااااااهلح  تاااااألدينح اااااهّلالانجاااااا   ل تاااااهيا رلاااااا لليح

ل سحااااااألااد ااااااألت اااااا لدي لااااااش در ل دي  تااااااارلا تلاااااا لديايهسيااااااطليتل ااااااي لديهسااااااادرلديتح لي يااااااطل  ح

 اثرلد ت ه ّل ل لس هّلالاشحتتطلا س ه ل  ل لت  يشلديلا سط ل

https://www.semanticscholar.org/paper/273877899/paper/273877899
http://creativecommons.org/licenses/by/4.0/
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ABSTRACT 

Patient feedback plays a crucial role in improving the quality, responsiveness and patient-centric approach of 

healthcare services. This paper  presents a comprehensive review of both  traditional and digital methods used 

to collect patient feedback, emphasizing their value in improving healthcare delivery,  examines  the tools and 

channels used, including surveys, interviews and multi-channel digital platforms. The review further explores 

sentiment-analysis techniques applied to patient feedback, focusing on how machine learning, deep learning and 

large language models are used to interpret and categorize unstructured text. The recent literature is 

systematically analyzed, with comparative tables that highlight feature-extraction methods, classification 

algorithms and performance metrics reported in various studies. Additionally, the paper addresses key 

challenges in feedback collection and sentiment analysis. Future research directions are proposed, such as 

automating feedback systems and incorporating patient perspectives into quality-improvement frameworks. This 

review is intended to assist Healthcare IT Professionals and medical Data Scientists who deal with healthcare 

delivery and computational analysis, whose target is to extract actionable insights from patient feedback using 

modern AI techniques. 

KEYWORDS 

Patient feedback, Sentiment analysis, Lexicon, Machine learning, Deep learning, Generative AI. 

1. INTRODUCTION

Patient satisfaction is crucial for measuring the quality of healthcare services. It reflects how effective 

clinical care is and the broader experience of patients within the healthcare system. However, patient 

experiences are influenced by many different things, such as a person’s age, gender, education level 

and health condition. Traditionally, patient experience was viewed as a set of interactions that shape a 

patient’s point of view regarding care. Over time, in modern healthcare systems, the concept also 

includes the experiences of healthcare workers, families and the wider community. In [1], the authors 

stated that every interaction of a patient with healthcare-system matters, the values and behavior of the 

healthcare organization affect the care received by a patient, each patient’s personal feelings and 

background shape their views and patient experience changes throughout the entire treatment process. 

The authors highlighted the fact that the way healthcare workers feel and what they go through also 

affect the care they give to patients. The authors of [2] exhaustively reviewed 60 research papers from 

1969 to 2019 to understand the factors that shape patient experiences and concluded that patient 

satisfaction is a complex topic and must be researched further to understand how thoughts and feelings 

of a patient affect his/her satisfaction. The authors of [3] developed a theory - Clinical Performance 

Feedback Intervention Theory (CP-FIT) to explain how patient feedback works and what makes it 

successful. The authors found that the feedback process involves goal setting, data collection, 

feedback delivery, interpretation, acceptance and behavior change. They identified 42 high-confidence 

factors that influence the success of feedback and concluded that feedback is most effective when it 

aligns with the values of healthcare professionals and results in clear and easy to implement 

improvements. 

Feedback plays an important role in the growth and improvement of an organization. Taking feedback 

on a regular basis encourages an individual or an organization to engage in a culture of continuous 

learning and personal development. In the context of medicine, understanding patient feedback is 

crucial for enhancing healthcare services, as it provides insights into patient experiences and identifies 

mailto:anamikargupta@sscbsdu.ac.in
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areas for improvement. 

Without any feedback mechanism, the quality of healthcare cannot be measured. Unstructured patient 

feedback full of useful information (from social media and online platforms) is growing quickly. 

However, it is not being used as much as it could be to improve healthcare services. Manually 

analyzing such large-scale data is not feasible due to time and resource constraints. The authors of [4] 

reviewed 19 studies that utilized natural language processing and machine-learning techniques for 

sentiment analysis and classification of patient feedback collected through surveys as well as social 

media. The selected studies employed supervised, unsupervised and semi-supervised learning methods 

that could categorize feedback into positive, negative or neutral sentiment and can be used for 

processing millions of such responses. 

Figure 1 illustrates a structured workflow, used by various researchers, for classifying patient feedback 

into sentiments, incorporating both human annotation and artificial intelligence. AI mainly comprises 

of Natural Language Processing (NLP), Machine Learning (ML) and Deep Learning (DL) techniques. 

Initially, feedback of patients is collected through various mechanisms and stored in a database which 

follows pre-processing with several techniques, like Tokenization, Stemming, Lemmatization, 

Lowercasing …etc. to standardize the textual data. The standardized and processed textual data then 

undergoes two major pipelines, so that labels or sentiments can be generated for the data: 

1) Traditional Machine Learning algorithms: Supervised, unsupervised, semi-supervised.

2) Large Language Models directly convert textual data and generate sentiment labels efficiently.

Figure 1. Methodology of sentiment analysis. 

The labels are then manually checked for a sub-set of data by annotators ensuring consistency via Inter 

Annotator Agreement (IAA). When humans label data (e.g. tagging a comment as "positive", "neutral" 

or "negative"), their decisions can differ due to personal interpretation. IAA measures how 

consistently multiple human labelers agree when labeling or classifying data. The final human check 

ensures accurate sentiment analysis. 

In this paper, our aim is to study the research space of sentiment classification in patient feedback. The 

initial focus is on the data-collection methods used by various researchers, followed by an analysis of 

the methods used for sentiment classification. Reliability and performance of sentiment-classification 

methods depend on the quality, accuracy and format of the collected feedback. Thus, it is crucial to 

study the data-collection mechanisms of the patient feedback. Various forms of inputs, such as 

surveys, interviews, questionnaires, and social-media content, yield different data types which will 

require different preprocessing and modeling strategies. 

The Scopus database is chosen for literature reviews. The keywords "Patient Feedback" and 

("Sentiment Analysis or Natural Language Processing or Machine Learning") are used. The 

documents are filtered from the last five years (2019-2024), including some studies from 2025 to focus 

on recent publications that reflect the latest advances and developments in this area. In this review are 

high-citation research papers related to feedback data-collection mechanism and sentiment-

classification strategies. 

Based on the motivation and scope of this review, the following research questions (RQs) are 

addressed. 
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1) RQ1: What are the current methods used for collecting patient feedback?

2) RQ2: How is sentiment analysis applied to patient feedback and what AI techniques (ML,

DL, LLMs) are commonly used? 

3) RQ3: What practical challenges arise when collecting and analyzing patient feedback,

particularly at scale? 

To address the above-mentioned RQs, various sections have been introduced. Section 2 details various 

methods that have been employed for collection and analysis of patient feedback without employing 

any AI techniques. Further, Section 3 provides a brief overview of how sentiment is analyzed using 

various ML and DL techniques and how generative AI is now being used for the same. This is 

followed by Section 4, which provides a review of recent studies that have performed sentiment 

analysis on patient feedback data. Moreover, the challenges associated with the collection and analysis 

of patient feedback are presented in Section 5. Lastly, Section 6 concludes the study along with future 

scope. This review is mainly for health-informatics researchers and IT professionals who want to 

develop or improve systems that can automatically analyze patient feedback. The goal is to help create 

tools that make it easier for healthcare teams to understand overall patient satisfaction and find areas 

that need improvement without reading thousands of comments manually. In addition, feedback-

collection methods will help healthcare administrators and practitioners who need to implement them. 

2. UNDERSTANDING AND COLLECTING PATIENT FEEDBACK

This section addresses RQ1 by discussing methods for understanding and collecting patient feedback. 

Recent research has explored various methods for collecting, analyzing and utilizing patient feedback 

effectively. Some of the recent studies that focus on data collection and highlight the challenges faced 

during the process are mentioned in this section. In [5], the authors explored different ways to collect 

patient feedback and followed a participatory research approach involving patients, general 

practitioners (GPs), medical receptionists and an advisory group. Semi-structured interviews were 

conducted, where a set of open-ended questions were prepared. The interviews were analyzed using 

Thematic Analysis, in which the responses were categorized by attaching keywords to them. The 

software that was used was MAXQDA software (version 2022). It was concluded that real-time 

feedback is the most effective way to capture patient experiences. Also, rather than continuous 

collection, periodic feedback was found to be more practical and manageable. 

In study [6], the authors focus on whether collecting data in real time at multiple stages of 

hospitalization can identify areas for improvement more effectively than traditional satisfaction 

surveys. This research was carried out in the Orthopedics Department of an Italian university hospital. 

Patients were given two different paper-based questionnaires at two time points: at hospital admission 

and at discharge. The data collected covered four key categories - Patient-Reported Outcomes (PROs) 

to measure self-rated health, Patient-Reported Experiences (PREs) to evaluate the quality of care and 

efficiency of services, Patient-Reported Preferences (PRPs) to capture other aspects of care that 

patients value and Emotional State Tracking to measure patient emotions at different stages. The 

authors observed that capturing patient experiences at multiple points in the hospital journey provided 

better insights than a single post-discharge survey. 

In [7], the authors studied a digital patient feedback platform Hospitalidee, where patients may post 

positive or negative feedback about hospitals that have partnered with the platform. They selected all 

the negative feedback from the platform for a single hospital called OSTI. A two-step analysis of   134 

negative feedback comments was performed to reveal common themes in patient complaints. Firstly, 

complaints were classified into four categories based on the service provided. Further, complaints 

were classified according to departments in order to target the process of quality improvement to the 

areas where most needed. This was followed by thematic analysis of the feedback comments in order 

to identify important themes. The study concluded with the statement that digital patient-feedback 

platforms should be actively integrated into hospital decision-making processes. 

In [8], the authors explored current practices of collecting feedback and utilizing it. The authors 

conducted semi-structured interviews with nine participants from three different hospitals. Four types 

of methods were identified to collect feedback, which are given in Table 1. The challenges faced 

during the process are also mentioned. 
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Table 1. Different methods of feedback collection [8]. 

Methods Description Challenges 

Structured, Official Feedback Standardized surveys distributed through 

web-based platforms, paper forms or 

automated systems. 

Response rates are low. Feedback 
delayed post discharge. Limited depth 
due to structure. 

Unstructured Feedback Informal feedback through verbal 
conversations, emails or suggestion 
boxes. 

Difficult to analyze, Underreported 
issues, Not documented systematically 

Pilot Projects using Digital 
Tools 

Hospitals experimenting with new 

feedback-collection technologies, such as 

mobile apps and real-time patient 

surveys. 

Not widely implemented. Requires 
staff training. Cost and infrastructure 
barrier. 

Occasional Studies and 
Research Projects 

One-time research initiatives conducted 

by hospital staff, students or external 

organizations to assess patient 

experience. 

Lack of continuity. Not integrated into 
daily operations. Results take time. 

A study carried out in three large hospitals in Brazil is described in [9]. Nine semi-structured 

interviews were conducted and hospital documents, such as feedback forms, action plans and reports, 

were also analyzed. NVivo 11 software was used to organize and analyze the information. It was 

found that hospitals use structured quality-improvement (QI) tools to analyze patient feedback and 

make meaningful changes. Some of such tools are: 

 Plan-Do-Check-Action: Identify a problem based on patient feedback, implement a small

change, measure the impact and if successful, apply the change hospital-wide. 

 Ishikawa (Fishbone) Diagram: A visual tool to identify root causes of a problem by

categorizing potential reasons. 

 Pareto Analysis (80/20 Rule): It follows the 80/20 rule, meaning, 80% of patient complaints

come from 20% of the problems, fixing that 20% can solve most issues. 

The authors of [10] focused on creating simple and short questionnaires suitable for hospital patients 

with varying literacy levels. The patient experience monitor had two versions that were adult inpatient 

(14 items) and adult outpatient (15 items), both of them included key aspects, like emotional support, 

waiting time, privacy, clarity of information, communication and family involvement. From this study, 

it was found that even patients with low literacy found patient experience monitor easy to understand. 

The short format improved response rate. 

While feedback collection is an important step in improving healthcare services, it becomes valuable 

when it is interpreted. Most patient responses are in unstructured formats, like free-text surveys, 

interviews or online reviews, as seen above and contain implicit information that is not immediately 

assessable. Manual review of such comments is resource-intensive and inconsistent. This is where 

sentiment classification becomes important. Sentiment classification helps reveal the underlying 

emotional tone of patient comments, whether they are satisfied, frustrated, in fear or express gratitude. 

By categorizing feedback into sentiment, such as positive, negative or neutral, healthcare providers 

can identify problem areas more efficiently. The techniques used for sentiment analysis are presented 

in the next section. Table 2 describes the patient-feedback datasets that have been collected and 

analyzed further to derive useful insights. 

3. SENTIMENT ANALYSIS TECHNIQUES

Sentiment is an opinion influenced by emotions. Automating the extraction of sentiments in 

unstructured data, such as reviews, comments or feedback, is an area of study under Natural-language 

Processing. Its objective is to automate extraction and interpretation of sentiments or data from text, 

providing insights into public sentiment, customer satisfaction and market dynamics. 

Due to digitization of processes and the increase in the use of social media, the amount of reviews or 

feedback is enormous, making it impossible to process them manually. Therefore, there is a growing 

need for the use of AI-driven approaches to identify and extract the sentiment. 
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Table 2. Summary of patient-feedback datasets used in the reviewed studies. 

Ref. Data-collection 
Period 

Dataset Description Record Type Open Source 

[6] 

(2021) 

January-February 
2019 

Longitudinal survey: preferences, 
experience, outcomes at 
admission/discharge 

Open-ended questions 
answered by 254 
patients 

Available upon 
request 

[11] 

(2020) 

January 2008- 

October 2019 

Synthesized findings from studies on 
patient feedback and review of 
interventions 

20 studies having 
patient feedback 
(qualitative & 
quantitative) 

Available upon 
request https: 
//shorturl.at/ z4cxg 
(supplementary data) 

[12] 

(2024) 

2018-2021 Norwegian national patient-experience 
surveys conducted by the Norwegian 
Institute of Public Health (NIPH) 

2250 patient comments No 

[13] 

(2020) 
January 2018- 

January 2019 

Patient surveys data collected at 
Geisinger Holy Spirit Hospital covering 
various aspects of care and labeled by 
sentiment 

2830 records of un- 
structured free-text 
comments 

No 

[14] 

(2020) 

2016-2020 Three survey questions with binary 
responses related to respect received, 
clarity of explanation and attentive 
listening 

3134 patient 
responses to survey 
Questions 

No 

[15] 

(2021) 

- Patient reviews for specific medications 
along with a 10-star rating 

232 K free-text drug 
reviews 

https://surl.li/ wjvtwk 

[5] 

(2025) 

- Qualitative study exploring patient-
feedback methods for e-Health in general 
practice 

Interview transcripts 
of 13 patients, 8 GPs, 
2 receptionists 

No 

[16] 

(2023) 

- Cancer-patient stories Study 1-14, 391 
random posts, study 2- 
30,037 posts 

https://www. 
cancerconnection ca/s/ 

https://surl.li/uirjeq 

[17] 

(2022) 

January 2017- 

July 2017

Friends and family test (FFT) free-text, 
Patient feedback 

69,285 responses No 

[10] 

(2020) 

- Questionnaires, interviews, pilot study 28 interviews, pilot 
study and surveys 

https://pmc.ncbi.nlm
.nih.gov/articles/PM
C7725101/table/t00
02/ 

[18] 

(2024) 

- Patient & family-member discussion posts 
on a medical forum 

12,103 posts of patient 
narratives 

https://patient.info/for

ums 

[7] 

(2023) 

2018 Negative feedback data from a digital 
platform of one hospital 

Analysis of 134 
reviews. 

No 

[19] 

(2022) 

- Five questions based on information 
provided, personal approach, 
collaboration among healthcare 
professionals organization of care and 
general feedback 

534 responses of open-

ended questionnaire 

No 

[20] 

(2021) 

2019-2023 Classifying the complaint records using 
ML and NLP 

1465 records having 

different complaints 

describing 

communication 

problems andother

concerns

No 

[21] 

(2025) 

January 2014- 

December 2014 

Analyzed sentiment in patient comments 

using natural-language processing 

1117  comments and 

ratings from 1 (worst) 

to 5 (best) 

https://surl.li/ zcxygz 

Due to digitization of processes and the increase in the use of social media, the amount of reviews or 

feedback is enormous, making it impossible to process them manually. Therefore, there is a growing 

need for the use of AI-driven approaches to identify and extract the sentiment. Recent advancements 

in artificial intelligence, machine learning, deep learning and generative AI, particularly large 

language models (LLMs), have greatly enhanced the precision and scalability of sentiment-analysis 

systems, establishing sentiment analysis as a crucial tool for examining extensive unstructured data. 

Sentiment analysis traditionally classifies text into positive, negative or neutral categories. However, 

https://shorturl.at/z4cxg
https://shorturl.at/z4cxg
https://shorturl.at/z4cxg
https://surl.li/wjvtwk
https://surl.li/wjvtwk
https://www.cancerconnection.ca/s/
https://www.cancerconnection.ca/s/
https://www.cancerconnection.ca/s/
https://surl.li/uirjeq
https://surl.li/uirjeq
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7725101/table/t0002/
https://patient.info/forums
https://patient.info/forums
https://patient.info/forums
https://patient.info/forums
https://surl.li/zcxygz
https://surl.li/zcxygz
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advances in the field have led to the identification of nuanced sentiments, such as anger, joy, fear, 

toxicity, sadness and surprise. 

Techniques for Extraction of Sentiment 

In recent years, multiple strategies have emerged to improve the precision and scalability of sentiment 

classification. Conventional methods, such as the lexical-based approach, use sentiment dictionaries to 

assign polarity scores to individual words. Meanwhile, machine-learning methods rely on labeled 

datasets to train models that can identify sentiment patterns. In recent years, large language models 

(LLMs) have revolutionized the domain by comprehending complex linguistic nuances and context on 

an unprecedented scale. This transition from rule-based methods to data-driven and neural approaches 

highlights the evolving landscape of sentiment analysis, offering a range of strategies to address the 

various challenges in text analysis. 

Before applying any sentiment-analysis technique, pre-processing of the text needs to be carried out. 

Some of the text pre-processing techniques are listed below: 

1) Data cleaning - removing/handling emojis, URLs, HTML Tags, stop words, punctuation

marks, spell checking, normalization, number removal, and converting into lowercase are some 

of the common data-cleaning techniques 

2) Tokenization breaks down text into smaller units called tokens. The tokens can be a single

character, word, phrase, sentence, paragraph, …etc. 

3) Stemming is a process to find the root of a word by removing suffixes.

4) Lemmatization is a process that considers the context and part of speech to reduce words to

their base forms, called lemmas. 

Further, the techniques for classification of text into various sentiments are classified as below: 

1) Lexicon-based Approach

The lexicon-based approach to sentiment analysis relies on dictionaries of words that are pre- 

assigned sentiment values, typically categorized as positive, negative or neutral. This method 

estimates the overall sentiment by summing the sentiment scores of individual words within a 

text. Its simplicity and transparency make it a popular choice, especially for domains where 

interpretability is critical or when the labeled data for training machine-learning models is 

scarce. Tools, such as SentiWordNet [22], VADER [23] and AFINN [24], are widely used in 

research and industry. 

2) Machine Learning-based Approaches

Machine learning (ML)-based approaches have transformed sentiment analysis by moving 

beyond simple keyword matching to more sophisticated algorithms that can automatically learn 

patterns from data. These models do not require pre-defined lexicons and are capable of 

handling larger datasets and more complex language patterns. The key strength of machine 

learning approaches lies in their ability to generalize from data and to adapt across different 

domains, making them highly effective for sentiment analysis in areas like social media, product 

reviews and customer feedback [25]. Supervised machine learning is a prevalent approach in 

sentiment analysis, where models are trained on labeled datasets to classify text as positive, 

negative or neutral. This process generally involves data pre-processing, feature extraction and 

model training. 

Feature Extraction 

Feature extraction is crucial in converting text data into numerical vectors that the machine-

learning model can process. Common methods for feature extraction include Bag-of-Words 

[26], TF-IDF [27], Word Embeddings [28]-[29]. Bag-of-Words is a simple and easy method 

which represents text by counting word frequency. Context and semantic meaning are lost in 

this process. TF-IDF weighs terms by their importance across documents and highlights rare, 

but important, words. Though computationally expensive, the technique is widely used in many 

text-mining applications. Word Embeddings (Word2Vec, GloVe) map words to continuous 

vector space, capturing semantic meaning, context and word relationships. 
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Model Training 

Model training involves feeding the features into a machine-learning algorithm, which learns to 

predict the sentiment label based on the training data. Some of the most commonly used 

algorithms for sentiment classification include: 

• Linear Regression: A simple model for prediction of continuous outcome based on a linear

combination of input features [30]. 

• Decision Tree: A tree-based model that chooses the feature as a node of the tree based on

metrics, like Gini-index and Entropy [31]. 

• Naive Bayes: Simple and effective for high-dimensional data [32].

• Support Vector Machines (SVMs): this technique finds optimal hyper-planes for

classification, performing well in high-dimensional spaces [33]. 

• Logistic Regression: A linear model commonly used for binary classification, such as

predicting whether a review is positive or negative [34]. 

• K Nearest Neighbor: A lazy learner technique that does not learn a model and matches the

unseen tuple at the time of prediction. Classification of the sample is based on the majority 

label among its k nearest neighbors. [35]. 

• Random Forest: Ensemble method that combines multiple decision trees. Prediction is

based on the majority voting of the output of all models [36]. 

3) Deep Learning-based Approaches

Building upon the foundation laid by traditional machine-learning approaches, deep learning 

has emerged as a transformative force in sentiment analysis. While traditional models rely 

heavily on feature engineering and handcrafted rules, deep-learning models automatically learn 

representations from data, capturing complex linguistic patterns and contextual information. 

This sub-section highlights the contributions of CNNs, RNNs, LSTMs and GRUs, illustrating 

the transformative impact of deep learning in extracting sentiment from textual data. 

Convolutional Neural Networks [57] are a fast and high-performance technique that applies 

convolutional filters to extract n-gram features from text. Recurrent Neural Networks (RNNs) 

represent a slow, moderately performing technique that processes sequential data by 

maintaining hidden states, especially suitable for time-series data. Long Short- Term Memory 

(LSTM) deals with memory cells for long-term dependencies, suitable for long text, emotion 

recognition, speech processing. Gated Recurrent Units (GRUs) constitute a technique that 

reduces the complexities of LSTM by combining gates, making it suitable for text classification 

and machine translation. 

4) Generative AI-based Approaches

In recent years, the advent of Generative AI (GenAI) and Large Language Models (LLMs) has 

significantly transformed the landscape of sentiment analysis. Unlike traditional machine 

learning and deep-learning approaches that require extensive labeled data and task-specific 

architectures, LLMs leverage large-scale pre-training on diverse datasets, enabling them to 

generalize across multiple tasks, including sentiment classification, with minimal fine-tuning. 

Large Language Models, such as OpenAI’s GPT series, Google’s BERT and Meta’s LLaMA, 

have set new benchmarks in natural-language understanding (NLU) and generation [37]. Their 

transformer-based architecture allows them to handle long-range dependencies, outperforming 

traditional recurrent neural networks (RNNs) and convolutional neural networks (CNNs) in 

various NLP tasks [38]. 

Transformer Architecture, the Backbone of LLMs: The transformative power of LLMs lies 

in the underlying transformer architecture, introduced by [38]. This architecture is based on the 

self-attention mechanism, which enables models to weigh the significance of different words in 

a sentence, regardless of their position. Unlike RNNs, which process sequences step by step, 

transformers process entire sequences simultaneously, drastically improving efficiency and 

scalability. This parallelization allows transformers to model long-range dependencies more 

effectively, which is critical for capturing complex sentiment patterns in lengthy reviews or 

documents. 

The self-attention mechanism facilitates context-aware sentiment analysis by dynamically 



397

"From Surveys to Sentiment: A Review of Patient Feedback Collection and Analysis Methods", A. Gupta, A. Gupta, D. Bansal and Khushi. 

adjusting attention to relevant words. For example, in a sentence like "The movie was 

surprisingly good despite its slow start," the transformer architecture can attribute higher 

attention weights to "surprisingly good," correctly identifying the overall positive sentiment. 

Zero-shot, Few-shot and Fine-tuning Approaches: LLMs have the capability of classifying 

sentiments based on the prompts given. Various types of prompts, such as zero-shot and few-

shot can be used for learning. For example, models such as GPT-3 can classify sentiments even 

without direct training by utilizing prompt engineering techniques. By presenting the model 

with instances of positive, negative and neutral sentiments, researchers can steer the model 

toward producing precise predictions [39]. This versatility minimizes the necessity for labeled 

datasets and greatly speeds up the implementation in practical scenarios. Further, fine-tuning 

BERT on social-media datasets having informal and noisy data improves the sentiment-

classification accuracy [40] and RoBERTa, a variant of BERT, optimizes the pertaining 

techniques and works on larger datasets [41]. 

4. SENTIMENT ANALYSIS ON PATIENT FEEDBACK

This section addresses RQ2: How is sentiment analysis applied to patient feedback and what AI 

techniques (ML, DL, LLMs) are commonly used. The reviewed literature has been organized by 

approach type — ML, DL and LLMs. The feature-extraction and classification techniques employed 

in the reviewed studies are presented in Tables 3 and 4. Table 3 outlines the ML and DL approaches 

used for feedback analysis, while Table 4 summarizes the techniques applied in LLMs, respectively. 

The tables also give the performance achieved by different techniques. The following observations can 

be made from Table 2: 

1) Approximately 43% of the datasets used in the reviewed studies were unstructured, while

about 29% were structured and 29% were based on survey responses. 

2) Majority of the studies categorized the sentiments as positive, negative and neutral. Maehlum

et al. [12] used four sentiment categories - positive, negative, neutral and mixed, where mixed 

indicates sentences containing both positive and negative polarity. Similarly, Cho et al. [49] 

also defined positive aspects as care and kind and negative aspects as pain and rude. 

3) Data cleaning was also observed to be an important part of all studies to improve model

performance. Moreover, text cleaning and pre-processing techniques, such as tokenization, 

lemmatization, stop-word removal, stemming and lowercasing have been utilized in majority 

of the studies. 

The bar chart in Figure 2 represents the different feature extraction techniques that have been used in 

the reviewed studies along with the study count. It can be observed that TF-IDF is the most widely 

used feature extraction technique in analyzing patient feedback data. 

Figure 2. Feature-extraction techniques used in the analysis. 

While Tables 3 and 4 summarize a wide range of studies applying various NLP techniques to patient 
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Table 3. Summary of NLP, ML and DL techniques used in patient-experience analysis. 

Ref. Feature-extraction Techniq. Classification Techniques Performance Metrics 

[4] TF-IDF Supervised (Support Vector Machine 

(SVM), Naive Bayes (NB)), Unsupervised 

(Linear Discriminant Analysis (LDA), 

Factorial LDA) 

Precision up to 88%; SVM 

accuracy 72% ) 

[13] N-gram, Bigrams, Part-of-

Speech (POS) Tagging, Word 

Frequency, Word Clouds 

Artificial Neural Networks (ANN - Keras-

Sequential model with dense and dropout 

layers) 

Precision-0.83, Recall-0.82, 

F1-0.82, Support-103 sample 

[20] Word level TF-IDF, N-gram 

level TF-IDF(n=2) 

SVM, Multifactor Logistic Regression 

(LR), Multinomial NB 

Accuracy (up to 0.91), 

F1-Score, Precision, Recall, 

AUC (up to 0.94) 

[19] TF-IDF, N-gram Finetuned Multilingual Bert, NMF for 

topic modeling 

F1-Score (Positive: 0.97, 

Negative: 0.63), 

Machine-Human Topic Match: 

90%,  

Topic Representativeness: 80.9 

[21] LIWC-22, Meaning Extraction 

Method (MEM), Principal 

Component Analysis (PCA) 

Multivariable Linear Regression Not given 

[17] Bag of words, tri-gram analysis. Decision  Tree  (DT), Random Forest 

(RF), SVM, K-Nearest Neighbour (KNN), 

NB and Gradient  Boosted  Trees (GB) 

SVM F1-score 94% 

[42] TF-IDF, Bag of Words, Name 

entity recognition, Word 

embedding 

Transformer models (RoBERTa) and 

CNNs 

RoBERTa F1-Score: Neurology 

(1.0), Combined datasets (0.995). 

CNN: 0.760. 

[43] Name Entity Recognition, 

TF-IDF, BERT 

RF, GB models 85–90% 

[16] TF-IDF, Topic modeling Topic classification, LDA. 87% 

[14] BERT, Bag of Words RF, LR, DT and Social Network Analysis RF: 87.6% (courtesy), 81.9% 

(clarity, listening). 

[44] Tokenization, lemmatization, 

Domain-specific lexicons 

SVM, NB, DT F1-score: 60% 

[45] TF-IDF, POS Tagging, BERT Machine learning models for sentiment 

categorization 

78.2–87% 

[46] Bag of words, TF-IDF Sentistrength (for sentiment analysis), 

LDA 

89.3% (general), 92.6% 

(healthcare), 90.8% (life 

expectancy).[47] Word count, TF-IDF, Boolean 

features 

NB, Multinomial NB, SVM, LR, RF 81% (cleanliness), 84% (dignity), 

89% (recommendation). 

[48] N-grams, SNOMED CT,

BERT 

Rule-based NLP, SVM AUC: 0.997; Sensitivity: 88%; 

Specificity: 96%. 

[21] Topic modeling Topic modeling to identify themes (e.g., 

communication, logistics). 

78.5%–87% across different 

aspects of care 

[49] TF-IDF, Sentiment lexicons, 

bag of words 

LR, t-test/ANOVA 78.5%–87% across different 

aspects of care 

[13] TF-IDF from lemmatized, 

synonym-standardized text 

Sequential Deep Neural Network (Keras); 

3 dense layers with dropout 

Accuracy peaked at epoch 35; 

ReLU + Softmax 

[15] TF-IDF, Bi-grams, 

Lexicon-based (Bing) SMOTE 

Artificial Neural Network (ANN), SVM, 

Logistic Regression 

SVM: Acc. = 0.720, AUC = 0.725 

[50] TF-IDF vectorization, 1–4 

grams, Harvard emotional 

dictionary 

N-gram Deep Learning model; also

compared with RF, NB, Linear Regression 

N-Gram model: Acc. = 89.4%

[51] UMLS mapping, Symptom 

dictionaries, Term frequency, 

Lexicon usage, Clustering, 

Patient-authored symptom 

terms 

Rule-based NLP, Machine Learning 

(SVM, RNN, Logistic Regression), Text 

Mining 

F1-scores up to 90%, 

Precision/Recall/AUC (e.g., AUC 

= 0.899); task-dependent metrics 

like Jaccard Index for symptom 

clusters 

[52] Concept  extraction, Topic 

modeling (LDA), Word 

embeddings; NLP pipelines 

using MetaMap, cTAKES, 

Hybrid of SVM, CRFs, Deep Neural 

Networks; MetaMap, cTAKES 

Accuracy: up to 92.68%; F1-

scores: 0.54–0.83; AUC: up to 

0.94; Task-specific benchmarks 

like SemEval 
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feedback, a few studies are discussed in greater detail here. These were chosen, because they use new 

or advanced methods, apply powerful AI models, like LLMs, work well on large-scale real-world data 

or combine human insight with AI tools. These examples will help us better understand the latest 

trends to use sentiment analysis in healthcare. 

Table 4. Studies utilizing large language models (LLMs) for patient-experience analysis. 

Ref. Architecture Embedding / Features Performance Metrics 

[12] ChatNorT5 (T5-based, 

808M), NorMistral 

(Mistral 7B-based) 

Transformer embeddings; instruction-tuned 

LLMs 

F1: ChatNorT5  =  42.4% (4-class),   

89.3%  (2-class); NorMistral = 39.9% 

(4-class), 89.1% (2-class) 

[53] Llama2-70B, Mistral-

7B, GPT- 3.5; Chatbot + 

Dialogue Management 

System 

LLM embeddings, Prompt Engineering, 

User Profile memory, SVD, Reddit/Chatbot 

transcripts 

Llama2 > GPT-3.5 in 40–44% of 

summarization tasks;  GPT-4  used as 

evaluator; promising pilot results for 

chatbot system 

[18] DeBERTa, BERT,  

Bi-LSTM, LSTM, 

ChatGPT-3.5 (few- shot) 

Word embeddings, Transformer-based 

ABSA (DeBERTa) 

ChatGPT-3.5:  F1 =90%; ABSA-BERT: 

F1 = 73.2%; BiLSTM: Acc.= 85%;   

Manual  eval.: Cohen’s Kappa = 0.87 

4.1 Studies Employing ML/DL for Analyzing Sentiment in Patient Feedback 

Several studies applied traditional ML methods to classify patient feedback into positive, negative and 

neutral sentiment categories. Feature engineering techniques, like TF-IDF, n-grams, POS tagging, 

have been applied followed by supervised classification algorithms, such as SVM, Naive Bayes or 

Logistic Regression. 

The authors of [20] collected 1817 Chinese complaint cases from two hospitals from 2015 to 2019 and 

divided them into four categories. First, the Chinese text was translated to English using ChatGPT-3.5 

and tokenization was carried out using jieba (Chinese NLP library). The features were then extracted, 

followed by balancing the dataset using Synthetic Minority Over-sampling Technique (SMOTE). ML 

techniques were then employed for classification purposes, out of which SVM gave the best accuracy 

value. Another study, [17], worked on patient feedback collected through the Friends and Family Test 

(FFT) system in the UK’s National Health Service (NHS). Nearly 10% of the responses (6,900 

comments) were manually labeled by an annotation team to create a training dataset for model training 

and themes and sentiments were derived for each comment. The study used 10 core themes adapted 

from the NHS Patient Experience Framework. Six ML models were then trained using the annotated 

dataset to automatically classify the remaining 90% of the responses, with SVM achieving the best 

performance. In 2021, the authors of [15] demonstrated sentiment analysis, topic modeling and text 

classification on the publicly available drug-review dataset. Relying on the Bing sentiment lexicon 

where each word is tagged as either positive or negative, sentiment analysis was performed on reviews 

for four specific drugs (two of which had higher positive sentiments). Further, they grouped the text 

data by topic (topic modeling) and manually labeled each topic by looking at the most frequent words 

associated with it. They also assigned good and bad labels to the reviews based on star ratings, 

handled data imbalance through SMOTE and utilized ML models to classify the reviews. 

In 2023, the authors of [16] combined design thinking with ML to make the process of understanding 

and analyzing patient experience in a more accurate, detailed and useful manner. In the first study, the 

authors used supervised ML to analyze 14,391 cancer forum posts. They also applied association rule 

mining to uncover relationships between topics, which helped in refining an initial journey map. In the 

second study, they used unsupervised learning to analyze 30,037 online patient stories, to identify 

hidden themes and map them to different stages of care. This was followed by designers looking at the 

most common topics found and labeling them to show what patients need and how they feel at 

different points in their care. This mix of computer analysis and human insight helped create detailed 

maps of the patient journey. 

A few studies also worked on developing recommendation systems and automated analysis tools. The 

authors of [50] analyzed patient-written drug reviews obtained from Kaggle, to recommend the most 

suitable medicine for a health condition. After pre-processing the dataset with TF-IDF and N-Gram 

models, the reviews were classified as positive or negative using ML models. The sentiment analysis 

was carried out by using 1-gram to 4-gram models, with the 4-gram model achieving best results. 
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They further ranked the drugs by average sentiment score and built a drug-recommendation system 

based on it. However, the original dataset did not have a dedicated sentiment column and how the 

sentiments were computed for model training was not mentioned by the authors in the study. Further, 

the authors of [19] developed a new tool called AI-PREM, which combined an open-ended patient-

experience questionnaire, an NLP pipeline to automatically analyze responses and a visual interface 

for easily understanding the results. Patients’ responses were pre-processed and sentiment analysis 

was conducted using a fine-tuned multi-lingual BERT model to classify the feedback. For topic 

modeling, the authors used Non-negative Matrix Factorization (NMF) to group similar responses 

based on themes, with separate models created for each question and sentiment. An interactive three-

layer dashboard was developed to visualize and interpret the results. 

Researchers have also integrated Social Network Analysis (SNA) and DL techniques along with ML 

to enhance the analysis of patient feedback. In [13], the authors analyzed unstructured patient feedback 

using NLP and DL. First, free-text comments were pre-processed followed by exploratory data 

analysis using word clouds, frequency distributions and part-of-speech tagging to identify common 

themes and key concerns. The authors utilized a neural network model with a sequential architecture 

with dense and dropout layers to classify sentiments as positive, negative or neutral. This model was 

especially used to separate and label comments that had both positive and negative parts, by looking at 

each sentence one by one. This helped get a more detailed understanding of the feedback. Another 

study, [14], combined ML and Social Network Analysis (SNA) to develop a system that can both 

predict negative patient experiences and identify key doctors who have a direct impact on those 

experiences. The authors classified the responses into two classes - best response and all other 

responses. They utilized a variety of ML classifiers to predict negative patient experiences. Further, 

they utilized SNA (degree, betweenness and closeness centralities) to identify influential doctors who 

can help improve the overall patient experience. 

4.2 Studies Employing LLMs for Analyzing Sentiment in Patient Feedback 

A piece of research [12] in 2024 focused on Norwegian-language feedback from patients and 

developed a sentiment-labeled dataset from free-text patient-survey comments. The authors used two 

LLM architectures with zero and few-shot learning (to guide the model with no or minimal training 

examples) and achieved good classification results for binary labels - positive and negative. They used 

48 custom prompts based on English datasets, translated into Norwegian. However, the models failed 

in the case of 4-class classification achieving less than 50% accuracy values. The study highlighted the 

importance of manual annotation to achieve good results. Another research, [18], collected patient 

posts from a health forum and identified aspects that patients talk about and checked whether people 

spoke positively, negatively or in a neutral way using DeBERTa neural network and ChatGPT-3.5. It 

was found that ChatGPT performed the best in understanding detailed feedback with few-shot learning 

(where a few examples are provided to the model in the prompt). 

5. CHALLENGES

This section addresses RQ3 by discussing the key challenges related to the collection and analysis of 

patient feedback. Collecting and analyzing patient feedback is essential for improving healthcare 

quality. However, it comes with several practical and systemic challenges that must be addressed for 

these systems to be effective. First, the terms “patient satisfaction” and “patient experience” create 

confusion, since they are used interchangeably [54]. While satisfaction is subjective and based on 

expectations of an individual, experience is more objective and measures what actually happened 

during care. Hence, satisfaction may not accurately capture the quality of care. For example, two 

patients undergo the same surgery with identical medical outcomes. Patient A expected a painful 

recovery, but found it manageable leading to high satisfaction. Patient B expected a quick, painless 

recovery, but experienced discomfort leading to low satisfaction. 

There can be many reasons for patients not giving feedback - low literacy in health, socio-economic 

inequalities, fear of being treated unfairly because of giving negative feedback and lack of trust in 

healthcare systems. In low-income and middle-income countries, many patients are unaware that 

feedback mechanisms even exist [55]. Moreover, there is an absence of clear guidelines and health 

workers also take feedback mechanisms as a threat rather than a scope to improve. They are reluctant 
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to receive patient feedback fearing that negative feedback may harm their professional repute. Some 

institutions do not even integrate patient feedback into strategic planning effectively, since negative 

feedback over-shadows positive comments. Bias and reliability issues also arise while feedback is 

being collected, since it is influenced by the emotions and health conditions of the patients. Further, 

patients, being both a care recipient and a feedback provider, feel conflicted [56]. Also, healthcare 

professionals, being both experts and learners, are hesitant to invite feedback. Hence, there is an 

imbalance of power where patients may hesitate to provide negative feedback and professionals may 

feel vulnerable when receiving criticism. There is a lack of structured methods for engaging in 

feedback dialogues. Patients prefer verbal feedback for positive experiences, but written feedback 

when dissatisfied. Even after the feedback is collected, there are hardly any mechanisms for following 

it up and even if actions are taken, patients are hardly informed about them. Hence, participation is 

decreased over time. 

Analyzing the collected feedback comments to get useful insights for decision-making can be 

expensive and time-consuming if carried out manually. Utilizing ML and DL techniques to process 

and analyze such unstructured data also requires careful intervention. These models should be 

carefully selected and validated, especially in healthcare contexts, where misclassification can have 

serious consequences. Further, LLMs like LLaMA and GPT are also very expensive to train and 

require significant resources. 

6. CONCLUSION AND FUTURE DIRECTIONS

This study has provided a thorough review of current methods for collecting and analyzing patient 

feed- back in healthcare. It examined both traditional tools, such as open-ended questionnaires and 

interviews and emerging digital platforms that support scalable and timely feedback collection. A 

particular emphasis was placed on sentiment analysis techniques, showcasing the application of 

machine learning (ML), deep learning (DL) and large language models (LLMs) to interpret 

unstructured patient responses. The review synthesized findings from recent studies, detailing the 

datasets used, feature-extraction strategies, classification approaches and performance outcomes. 

Furthermore, challenges and limitations associated with data collection, processing and analysis were 

discussed. By aligning sentiment analysis techniques with real-world feedback systems, this review 

supports the development of automated and patient-centered solutions that can enhance service quality 

and enable continuous healthcare improvement. 

In future work, feedback systems should be designed to function across multiple platforms, such as 

mobile apps, websites, SMS, in-person interviews and voice input, to increase participation from 

diverse patient populations. Also, family members should be allowed to submit feedback on behalf of 

elderly or critically ill patients, to expand the scope of feedback collection. The process of feedback 

collection and analysis should be automated using NLP and AI tools to reduce manual efforts and 

analyze large amounts of data. Moreover, there is a lack of publicly available patient feedback 

datasets. Future work should focus on curating and sharing large-scale, representative datasets to 

improve the generalizability and robustness of sentiment-analysis models, across different 

demographics, languages and care settings. Lastly, feedback gathered must be fed directly into quality-

improvement programs, performance evaluations and strategic planning. 
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 ملخص البحث:

يببببببا       عببببببا رببببببم   ف  ببببببا جود   لرّببببببفر  يبببببب  ت  بببببب م    بببببب ج   ل   ريببببببا       ببببببا ذتلعببببببغ      

هببببببذق    دجببببببا ر   عببببببا   تقبببببب  ض ي فببببببر ي عل ببببببّ ايبببببب رر       ريببببببا    ف ف كبببببب   لبببببب     فبببببب ي

جف ببببببا   ف بببببب ي را يبببببب   فبببببب       ذيببببببا       عببببببا رببببببم  بببببب        بببببب       قل  يببببببا و   ت شببببببررلا   ل ت

  ف  ببببا  ربببب       ك بببب   لببببا رببببر   لببببي    تبببب   رببببم ج فببببا  يبببب  ت  بببب م تقبببب ي       ريببببا       ببببا 

 لف  ببببببا  كفببببببر تا ببببببا  سجو   و  قذبببببب      ف ببببببب ي را يبببببب    ببببببي  افببببببر ي  ببببببر   ف ببببببب لر  

جف ا ر ع  ج    قذ    و   ر        فقرالا  و  فذص 

رببببببم  رل ببببببا  هذبببببب    يذببببببرج  هببببببذ      ببببببب تقذ ببببببر  ت ل بببببب    ف ببببببر     ف   قببببببا  لببببببا ا ر ببببببر  

     ذيبببببا       عبببببا ربببببم   ف  بببببا  رببببب       ك ببببب   لبببببا   م ا بببببا     ببببب  تعفببببب  ا بببببر تقذ بببببر    ببببب  علت  

ببببببيفا  لببببببا تا بببببب       ر ببببببر  وت  ي  ببببببر يبببببب    لآ بببببب  و  بببببب  علت    عف ببببببّ و  ذ فببببببر     ل   يببببببا     

ا ببببببر        علاجببببببا ا  يقببببببا  رذ  فببببببا    ببببببا      ذيببببببا       عببببببا رببببببم   ف  ببببببا  يبببببب   ت ل بببببب   سج

بببببببفر   وذ  د ر بببببببر   ببببببب    ّبببببب يلا        ببببببب ز  لببببببا     ر ببببببغ  ببببببب  و  رقرد ببببببا ت بببببببل ل     

     صذ ف  ورؤش      سج ز   ف  ي را ي      د ّر     راقا   ف علقا ار ف   ع 

كبببببذ ي ت ذبببببرو  هبببببذق    دجبببببا      ببببب  ير   سّرّببببب ا     ببببب  تذ ببببب    ل  بببببر  فل بببببا  فببببب  ا ر بببببر  

     ذيببببببا       عببببببا رببببببم   ف  ببببببا و فل ببببببا ت ل بببببب    ف ببببببر    ويفمببببببم  ل  بببببب     ف بببببب ق ل ا ه  

ت  بببببب يببببب  هتف بببببا ه  فبببببا  فببببب  وت ل ببببب       ذيبببببا       عبببببا ربببببم   ف  بببببا وت بببببف م و  بببببا 

بببببب    ع ببببببا ا   بببببب م  بببببب ج       ريببببببا       ببببببا    ببببببا   بببببب    ف  ببببببا ه ا بببببب   يبببببب  ه    فبببببب    يرح 

  ر غ  لاّ ارج  رم   ذ كرز  لاح ذر   ي    ي  
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ABSTRACT 

Parkinson’s Disease (PD) is a progressive, chronic neurological disorder that is distinguished by abnormalities 

in the motor system. The condition can be detected in the early stage by the irregular handwriting of the 

individual. Early diagnosis is critical to enable timely therapeutic intervention and slow disease advancement. 

However, traditional diagnostic approaches largely depend on subjective clinical assessments, which lack 

scalability and exhibit reduced sensitivity in the prodromal phase. The present study proposes a well-established 

deep-learning architecture using transfer learning with MobileNetV2, which can be used for early diagnosis of 

Parkinson’s Disease through handwriting images. The dataset includes 816 samples from 120 people. It is 

augmented through grayscale and HSL to add more variety to feature samples of the model. A two-stage training 

regimen—initial base freezing followed by fine-tuning with a reduced learning rate—was employed to optimize 

convergence and generalization. The approach presented in this study scored 92% on accuracy with an F1-

score of 0.88 and a precision of 0.81, outperforming those of conventional baselines in regard to sensitivity and 

robustness. The resulting framework is lightweight, non-invasive, and well-suited for real-time screening 

applications, offering significant potential for clinical decision support and remote telehealth deployments. 

KEYWORDS 

Parkinson’s disease, Handwriting analysis, Early diagnosis, Transfer learning, Deep learning in healthcare, 

Convolutional neural networks (CNNs). 

1. INTRODUCTION

Parkinson’s disease is characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN) 

region of the brain [1]-[2]. Tremors, slow movement, muscle stiffness, and balance difficulties are the 

clinical features that impact the affected person’s daily-living capacity and quality of life. Due to the 

growing global incidence of these diseases, especially in aging populations, early and accurate 

diagnosis is a crucial goal of neurological care [4]-[5]. Nonetheless, there is a significant clinical issue 

with the early detection of Parkinson’s disease. Currently, diagnosing a patient often involves 

identifying neurological symptoms and examining motor symptoms, but it is a subjective measure to 

start with and will result in late-stage diagnosis. Also, in resource-limited settings or pediatric and 

early-onset cases, these methods might lead to the delay or misdiagnosis of the medical intervention 

due to symptomatological similarities with other conditions or the atypical nature of the PD course [6]-

[8]. Traditional methods have aimed to assist in the diagnosis of PD through the application of 

biomedical signals, including speech recordings, handwriting dynamics, and neuroimaging data. 

Although these methods are promising, they rely on features designed by hand, domain expertise, and 

hand-crafted pre-processing. Their performance also tends to drop off in real-world deployments and 

cross-population settings, limiting scalability and clinical utility [9]-[10]. To resolve this issue, the 

study introduces an efficient deep-learning framework that uses convolutional neural network (CNN) 

transfer learning to detect Parkinson’s disease early in handwriting. Writing, a fine motor skill, may be 

affected by micrographia and other altered stroke patterns at the onset of Parkinson’s disease because 

of micrographia. With a pre-trained MobileNetV2 model and data augmentations, our model improves 

feature-extraction capability with fewer data and computations. This research’s principal contributions 

are outlined as follows: 

 We present a deep-learning (DL) framework based on transfer learning using MobileNetV2

for early PD detection from handwriting images. 

mailto:mathumetilda.t@gmail.com
mailto:mathumetilda.t@gmail.com
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 A robust data-enhancement pipeline using grayscale and HSL transformations is proposed to

increase the diversity of the dataset. 

 The suggested model delivers a classification accuracy of 92%, a strong performance for non-

invasive PD screening in large populations. 

The remaining sections of this study are organized as follows: Section 2 explores the recent advances 

in AI-enabled PD diagnosis. The proposed method explained in Section 3 consists of dataset pre-

processing, CNN architecture, and training strategies. In Section 4, the results of the experiment and 

their comparison will be highlighted. Ultimately, Section 5 concludes the study and indicates future 

research directions. 

2. RELATED WORK

Recent advancements in DL have significantly improved the diagnostic capabilities for Parkinson’s 

Disease (PD) across various modalities. Alissa et al. (2021) [1] developed a CNN-based model 

utilizing figure-copying tasks, such as cube and pentagon drawings, achieving high accuracy by 

analyzing geometric distortions linked to PD. Similarly, Hireš et al. (2021) [2] introduced an ensemble 

of CNN models for detecting PD from voice recordings by leveraging acoustic features, such as pitch 

and jitter, yielding 90% accuracy. Chen et al. (2024) [3] proposed a CNN–Transformer hybrid network 

for segmenting PD-related nuclei from medical images, enhancing segmentation performance through 

long-range dependency modeling. Aggarwal et al. [4] suggested a one-dimensional convolutional 

neural-network framework with data augmentation to differentiate Parkinson’s disease from SWEDD 

scans, yielding favorable classification outcomes. Wang et al. (2024) [5] compared 1D, 2D, and 3D 

CNNs for classifying digitized drawing tests, showing that dimensionality affects diagnostic 

performance in handwriting-based PD detection. 

Focusing on motor-skill degradation, Allebawi et al. (2024) [6] implemented a handwriting-based PD 

detection system using a Beta-Elliptical model and fuzzy perceptual detectors, emphasizing dynamic 

spatiotemporal signatures in writing. For gait-related symptoms, Sigcha et al. (2024) [7] evaluated DL 

algorithms across datasets for freezing of gait (FoG) detection, highlighting the importance of 

standardization for clinical use. In the auditory domain, Celik and Başaran (2023) [8] presented a 

CNN–Random Forest hybrid model for PD detection using speech signals, showcasing robustness in 

feature modeling. Extending this, Madusanka and Lee (2024) [9] utilized transformer-based models on 

spectrograms of speech data, achieving 90.8% accuracy by identifying vocal biomarkers indicative of 

PD. 

EEG-based approaches have also gained attention. Khalid and Ehsan (2024) [10] used gated recurrent 

units to classify EEG sub-bands, capturing temporal dependencies in brain activity related to PD and 

achieving notable accuracy. From an algorithmic perspective, Li et al. (2021) [11] provided an 

extensive survey on CNNs, covering applications across biomedical domains. Image pre-processing is 

essential in medical imaging; Qi et al. (2021) [12] provided a comprehensive overview of 

enhancement techniques, while van Dyk and Meng (2001) [13] discussed the statistical underpinnings 

of data augmentation to improve generalization. 

In feature representation, Ping (2013) [14] reviewed classical image feature extraction methods, laying 

the groundwork for more complex deep-learning features. For lightweight CNN design, Dong et al. 

(2020) [15] introduced MobileNetV2, which balances efficiency and performance—making it suitable 

for PD detetion on limited data. For activation functions, He et al. (2018) [16] explored the theoretical 

foundations of ReLU in deep neural networks. Optimization strategies were improved by Zhang 

(2018) [17], who proposed an enhanced Adam optimizer for faster convergence. Transfer-learning 

techniques were thoroughly reviewed by Zhuang et al. (2020) [18], establishing their utility for 

domain adaptation, especially in healthcare. Radenović et al. (2016) [19] demonstrated unsupervised 

fine-tuning of CNNs using hard examples, supporting robust image retrieval and classification. 

Finally, Corley et al. (2015) [20] explored deep learning for software feature location, indirectly 

informing architecture search techniques relevant to model customization in PD-detection frameworks. 

Jiang et al. (2025) [21] proposed a novel network architecture specifically tailored for Parkinson’s 

handwriting-image recognition, demonstrating enhanced structural modeling of handwriting patterns 

using domain-specific features. Extending this direction, Lu et al. (2025) [22] introduced a dynamic 
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handwriting feature-extraction approach that integrates temporal and spatial cues, showing significant 

improvement in Parkinson’s disease-detection accuracy through dynamic pen-motion analytics. 

Kansizoglou et al. (2025) [23] contributed a hierarchical deep-learning framework that incorporates 

drawing-aware context to refine model performance, emphasizing the importance of spatial abstraction 

in analyzing handwriting traits linked to Parkinsonian symptoms. Miah et al. (2025) [24] conducted a 

comprehensive review encompassing various data modalities, including handwriting, voice, and 

motion signals, and highlighted structural and algorithmic considerations for future research on 

Parkinson’s disease-detection systems. While most studies focus on Parkinson’s-specific datasets, 

Javeed et al. (2025) [25] broadened the application domain by applying machine-learning techniques 

to classify handwriting samples for mental-health conditions, such as schizophrenia and bipolar 

disorder, underscoring the potential of handwriting as a universal biomarker for neurological and 

psychiatric evaluations. Al-Shannaq and Elrefaei [26] proposed a domain-specific transfer-learning 

method for age estimation. While existing methods demonstrate notable performance in Parkinson’s 

Disease detection, many face limitations, such as restricted generalization on small datasets, 

insufficient stage-wise analysis, and limited use of domain-specific augmentations. These gaps 

motivate the proposed HWR-PDNet framework, which is designed to enhance robustness, improve 

early-stage detection, and address the shortcomings identified in prior approaches. 

3. SYSTEM METHODOLOGY

This section elaborates on the suggested DL approach for the automated recognition of PD using 

handwriting image analysis. This method utilizes the representational capabilities of CNNs enhanced 

by transfer learning, enabling robust classification even with a limited dataset. The system comprises 

multiple stages, including image pre-processing, feature extraction, classification, and evaluation, as 

shown in Figure 1. 

Figure 1. Workflow of the proposed CNN + transfer-learning system for PD recognition. 

3.1 Data Acquisition 

The handwriting-image dataset was compiled from both PD patients and healthy control participants. 

All subjects performed a standardized wave-drawing (saw-tooth) task using an identical pen-tablet 

device under controlled acquisition conditions. The captured images were then systematically split into 

training and testing sub-sets to facilitate model development and evaluation. 

3.1.1 Problem Formulation 

Let 𝐷 = {(𝐼𝑖, 𝑦𝑖)}𝑖=1
𝑛  represent the dataset, where each handwriting image Ii∈ RH ×W ×C corresponds to

height  H,  width  W,  and  C color  channels  (typically  RGB,  so  C = 3).  The label y ∈ {0, 1} 

denotes the ground-truth class, where 0 indicates a healthy individual and 1 corresponds to a patient 

diagnosed with PD. The objective is to learn a mapping function: 
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fθ : RH ×W ×C  → {0, 1}                                                  (1) 

where fθ is a deep neural network parameterized by θ, which accurately classifies input images into 

one of the two target classes. 

3.2 Feature Extraction 

This stage prepares handwriting images for deep-learning input through pre-processing, augmentation, 

region isolation, and feature derivation. Initially, all images are resized to 256×256 pixels and 

normalized. Data-augmentation techniques—horizontal and vertical flips, ±20° rotations, zooming, 

and contrast adjustments—are applied to improve generalization. Grayscale conversion and HSL 

transformation emphasize stroke patterns and pen pressure variations. Region isolation reduces noise 

by focusing only on handwriting strokes. Finally, a pre-trained MobileNetV2 backbone is used to 

derive discriminative latent features. 

3.3 Image Pre-processing and Augmentation 

The collected handwriting images exhibit variability in image size and background noise. All images 

are resized to the 256×256 pixels. Data augmentation applies to a dataset of a restricted size and 

improves the model’s generalization. This includes random horizontal and vertical flipping, rotations 

within ±20°, zooming, and contrast adjustments. Additionally, grayscale conversion and BGR to HSL 

transformation are incorporated to emphasize fine motor patterns and variations in pen pressure and 

stroke directionality — features often indicative of PD onset. 

3.4 Feature Derivation Using Transfer Learning 

In this work, we utilize a pre-trained lightweight deep network, symbolized as Ψbase, originally 

optimized on the ImageNet benchmark, to perform feature derivation. For a given input handwriting 

image denoted by Xn ∈ RH×W×C , the model outputs an intermediate feature embedding: 

fn = Ψbase(Xn ), fn ∈ RM (2) 

where fn represents the extracted descriptor for sample n, and M is the latent vector dimensionality. 

This embedding captures both structural and abstract traits within the handwriting image that may be 

linked to Parkinsonian motor abnormalities. 

3.5 Model Initialization 

The MobileNetV2 backbone is adapted for binary classification by replacing its output layer with a 

task- specific classification head. Transfer learning is performed in two phases: first, freezing the 

backbone and training only the classification head at a learning rate of 10−4; second, unfreezing the 

entire network and fine-tuning at a reduced learning rate of 10−5 to adapt the pre-trained features to the 

handwriting domain. 

3.6 Decision Mapping Layer 

The derived vector fn is forwarded into a dense projection layer, followed by a softmax classifier to 

predict the output probabilities: 

pn = softmax(W c · fn + bc), pn ∈ R2 (3) 

Here, Wc∈R2×M and bc∈R2 denote the classification weights and bias terms. The predicted vector pn 

reflects the confidence distribution across the binary output space, identifying whether the input 

sample is from a healthy subject or a PD patient. 

3.7 Optimization Objective and Parameter Update 

The network optimizes the sparse categorical cross-entropy loss between the actual labels yn and 

predicted outputs pn. 

JCE = − ∑ 𝑦𝑛,𝑗 log (𝑝𝑛,𝑗)2
𝑗=1 (4) 

where yn,j and pn,j indicate the true label and predicted score for class j of the nth instance. To update 

model parameters ω, we employ the Adam optimizer with momentum-based adaptive learning. The 

parameter-update rule is defined as: 
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ω(u+1) = ω(u) − λ · ∇ω JCE (5) 

where λ is the learning rate, and u indicates the current update step. Two separate learning rates are 

used: λ = 10−4 for initial training (frozen backbone), and λ = 10−5 for fine-tuning (unfrozen backbone). 

3.8 Two-stage Training Framework 

The training protocol consists of a dual-phase learning routine. In the preliminary phase, the base 

encoder Ψbase is kept frozen to retain the pre-learned general features, while only the classifier head is 

trained on the PD-specific dataset. In the subsequent fine-tuning phase, the entire model including the 

feature extractor is unfrozen and optimized using a reduced learning rate. This two-stage strategy 

ensures efficient convergence and avoids overfitting, especially when working with limited domain-

specific samples. 

3.9 Non-linear Activation Dynamics 

We incorporate non-linearity into the model by employing Rectified Linear Units (ReLUs) in hidden 

layers. This allows us to improve the learning capacity of the model. Given an input scalar s that is 

contained inside the set of real numbers, the ReLU activation is expressed as follows: 

ReLU(s) = max(0, s)  (6) 

This function suppresses negative activations and introduces sparsity, thereby improving gradient flow 

and learning stability. The transformed hidden output g is computed as: 

g = ReLU(Wh · fn + bh )  (7) 

where Wh and bh are the parameters of the hidden fully connected layer. 

3.10 Model Evaluation 

Once trained, the model produces prediction probabilities for both PD and healthy classes. A 

confidence- based decision threshold τ is applied to balance sensitivity and specificity based on 

clinical-screening requirements. The model’s performance is evaluated using accuracy, precision, 

recall, F1-score, and ROC AUC metrics. 

3.11 Dropout-based Regularization Mechanism 

To counteract overfitting due to the small sample size, a dropout mechanism is applied post-feature 

extraction. Let the dropout probability be denoted by ρ = 0.2, then the stochastic regularized output is 

computed as: 

g̃ = g ⊙ δ, δi ∼ Bernoulli(1 − ρ)    (8) 

Here, δ is a binary dropout mask applied element-wise using the Hadamard product ⊙. This introduces 

controlled noise during training, which improves model robustness by preventing reliance on specific 

neuron activations and enhancing generalization to unseen handwriting patterns. 

3.12 Model Confidence and Decision Thresholding 

The softmax output yˆ = [yˆ0, yˆ1] represents the class probabilities for the two classes. The default 

decision rule assigns the class with the highest probability: 

𝑦̂𝑝𝑟𝑒𝑑 = arg max 𝑦̂𝑘 , 𝑘 ∈ {0,1} (9) 

However, to account for medical-risk tolerance, a confidence-based threshold τ ∈[0, 1]  is introduced, such 

that: 

𝑦̂𝑝𝑟𝑒𝑑 = {
1, 𝑖𝑓 𝑦̂1 ≥ 𝜏

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (10) 

This allows tuning the sensitivity-specificity trade-off according to application needs, such as favoring 

early detection (high recall) over absolute precision in clinical-screening scenarios. 
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Algorithm 1 Proposed Parkinson’s Disease Detection Pipeline 

Require: Dataset D = {(Ii , yi )}, pre-trained CNN φMobileNet , learning rates η1, η2, threshold τ 

Ensure:  Predicted labels ŷ i ∈ {0, 1} 

1:  Preprocessing:  Resize  Ii to 256×256, apply grayscale & HSL conversion, and augment with flip, 

rotation, zoom, contrast. 

2: Feature Extraction: Compute zi = φMobileNet (Ii ) 

3:   Dropout  Regularization:   z̃ i = zi ⊙ r , where rj  ∼ Bernoulli(1 − p) 
4:   Classification:  ŷ i = softmax(W · z̃ i + b) 

5:   Loss: 𝓛𝑪𝑬 = − ∑ 𝒚𝒊,𝒌𝒍𝒐𝒈(𝒚̂𝒊,𝒌)𝟐
𝒌=𝟏  

6: Training: Optimize θ using Adam with η1 (frozen base); fine-tune with η2 (unfrozen base) 

7: Prediction: 

𝑦̂𝑝𝑟𝑒𝑑 = {
1, 𝑖𝑓 𝑦̂𝑖,1 ≥ 𝜏

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(a) Initial image, (b) Grayscale enhanced image, (c) Unscaled image (1010×610), (d) Scaled image (256×256)

Figure 2. Progression of handwriting-image transformations: (a) Initial image, (b) grayscale 

enhancement, (c) original unscaled image and (d) resized image for CNN input. 

4. RESULTS

4.1 Dataset Summary 

The dataset used in this study was specifically curated to capture fine motor-skill anomalies typically 

observed in patients with Parkinson’s Disease (PD), along with representative samples from 

neurologically healthy controls, as summarized in Table 1. A total of 120 subjects participated, 

comprising 60 clinically diagnosed PD patients and 60 healthy controls. The cohort included an equal 

gender distribution (60 males and 60 females) to ensure demographic balance, and the participants’ 

ages ranged from 45 to 80 years, representing the most common age span for PD onset. The PD group 

was stratified according to the Hoehn and Yahr scale, a widely accepted clinical metric for disease 

severity: 20 patients in Stage 1 (early PD), 30 in Stage 2 (mild), 25 in Stage 3 (moderate), 20 in Stage 

4 (severe), and 25 in Stage 5 (advanced). The healthy controls were screened to confirm the absence of 

neurological or movement disorders and were matched to the PD group by age and demographic 

background to minimize potential bias. All subjects performed a standardized wave-drawing (saw-

tooth) task using the same pen-tablet device under uniform acquisition conditions, ensuring 

comparability of handwriting features. From these drawings, two primary kinematic attributes—pen 

pressure and drawing speed—were extracted, as they are clinically validated indicators of motor 

dysfunctions, such as micrographia, tremor, and bradykinesia. 

The raw handwriting images were captured at an original image size of 1010×610 pixels and 

subsequently resized to 256×256 pixels to meet the input-dimensionality requirements of the 

MobileNetV2 architecture. The dataset was divided into training (80%), validation (10%), and testing 

(10%) sub-sets, maintaining proportional representation of PD stages and healthy controls in each 

split. To further increase intra- class diversity and improve generalization, data-augmentation 

techniques—including grayscale and HSL conversion, geometric transformations, and contrast 

enhancement—were applied. This process expanded the dataset to 816 images, enabling robust 

learning despite the relatively limited original sample size. 



411

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

Table 1. Dataset description for Parkinson’s disease handwriting study. 

Attribute Details 

Total Subjects 120 (60 PD patients, 60 Healthy Controls) 

Age Range 45–80 years 

Primary Features Pen-pressure, Drawing Speed 

Image Size (Original) 1010 × 610 pixels 

Image Size (Resized) 256 × 256 pixels 

PD Stage Classification Hoehn and Yahr Scale (Stage 1 to Stage 5) 

Stage 1 (Early PD) 20 Patients 

Stage 2 (Mild PD) 30 Patients 

Stage 3 (Moderate PD) 25 Patients 

Stage 4 (Severe PD) 20 Patients 

Stage 5 (Advanced PD) 25 Patients 

Healthy Controls 60 Subjects 

Data Split 80% Train, 10% Validation, 10% Test 

Final Dataset Size (after augmentation)      816 Images 

4.1 Model Configuration and Hyper-parameter Settings 

The suggested framework utilizes MobileNetV2 as a feature extractor, because it requires fewer 

resources to run and performs well in environments with limited power, as shown in Table 2. This 

model used pre-trained weights for ImageNet, allowing effective transfer learning to use its model for 

handwriting classification of people with Parkinson’s disease. All writing samples were resized to 

256×256×3 to conform with the input structure requirements of the model. A data augmentation 

pipeline was utilized to improve generalization and reduce overfitting. This step involved flipping 

images horizontally and vertically at random, rotating images up to 20°, zooming, and changing 

contrast. Each of these transformations was done with a probability of 0.2, enabling variability similar 

to real-world handwriting. After the convolutions, a Global Average Pooling (GAP) layer is utilized to 

lower the feature’s dimension while obtaining a reduced characteristic map and compressing spatial 

information by bridging spatial features to obtain the most discriminative features. Then, a dropout 

layer with 20% drop probability was added before output dense layers to prevent neuron co-

adaptation. The classification portion was made up of a fully connected layer composed of 64 units, 

each activated by the ReLU function, followed by a soft- max output to predict the probabilities of 

Parkinson’s and Healthy. We utilized the Sparse Categorical Cross-Entropy objective function, 

appropriate for multi-class classification problems, including degenerate binary cases.  

Table 2. Hyper-parameters and training configuration. 

Hyper-parameter Value 

Base Model MobileNetV2 (Pre-trained on ImageNet) 

Input Image Size 256 × 256 × 3 

Data Augmentation Flip, Rotation (0.2), Zoom (0.2), Contrast (0.2) 

Pooling Layer Global Average Pooling 

Dropout Rate 0.2 

Dense Layer 64 Units, ReLU Activation 

Output Layer Softmax (2 Classes: Healthy / PD) 

Loss Function Sparse Categorical Cross Entropy 

Optimizer (Initial Phase) Adam (LR = 1e-4) 

Optimizer (Fine-tuning Phase) Adam (LR = 1e-5) 

Batch Size 32 

Total Epochs 25 (15 Base + 10 Finetuning) 

Due to its adaptability to the gradients and speed of convergence, training was performed via the 

Adam optimization. To begin with training the classification head, the learning rate was set to 1 × 10-4 
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with the feature extractor frozen. In the fine-tuning step, all layers were unfrozen and re-optimized 

using a lower learning rate (1e−5). The model underwent training with a batch size of 32. In total, we 

ran 25 epochs, where we used 15 epochs for training and 10 for fine-tuning. The transformation of raw 

handwriting samples is illustrated in Figure 2. Certain image pre-processing operations are done to raw 

handwriting samples to edit and resize them for training. 

Table 3. Metrics for training and validation by epoch using ROC AUC. 

Epoch Train Loss Train Acc. (%) Val. Loss Val. Acc. (%) ROC AUC 

0 0.80 63.00 0.78 62.00 0.62 

5 0.50 80.00 0.48 78.00 0.79 

10 0.35 84.00 0.36 83.00 0.85 

15 0.30 87.00 0.31 85.00 0.87 

20 0.25 90.00 0.28 89.00 0.89 

25 0.21 92.00 0.26 91.00 0.91 

(a) ROC  AUC  over  training epochs            (b) Loss of training and validation across epochs

(c) Epoch-wise training and validation cccuracy

Figure 3. Training performance metrics: ROC AUC, loss and accuracy. 

4.2 Epoch-wise Evaluation of Training Dynamics 

The performance of the suggested model was assessed for progressive learning behaviour through 

training and validation metrics over epochs. Table 3 reports the performance during each epoch in 

terms of loss, accuracy, and ROC AUC. Likewise, Figure 3 plots the training metrics from its 

evolution with time. At the initial epoch (Epoch 0), the model had limited predictive capacity; 

training accuracy of 63%, validation accuracy of 62%, and ROC AUC equal to 0.62. The network is 

untrained, as indicated by high loss values of 0.80 and 0.78 as part of this baseline performance. 

However, as training progressed, several things improved. By epoch 5,  the validation accuracy was 

up to 78% while the ROC  AUC improved sharply  to 0.79. The model continues to improve 

performance with more epochs. The validation loss amounted to (0.31) with accuracy (85%) and 

AUC-ROC score (0.87) at epoch 15. Generalization has increased, and overfitting has decreased. 

Epoch 25 exhibits optimal performance, with a training accuracy of 92%, a validation accuracy of 

91%, and a ROC AUC of 0.91. The model is capable of minimizing classification error, which leads 

to stable generalization performance. This corroborates the numerical findings, as illustrated in Fig 3. 

The training and validation sub-set loss curves exhibit a consistent fall, signifying smooth 
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convergence. Also, the accuracy plots indicate that both training accuracy and validation accuracy 

have almost the same upward trend. The ROC AUC curve further affirms that the model is tuning 

itself with every epoch to better discriminate between the positive and negative classes. In summary, 

the epoch-wise performance metrics affirm the robustness and convergence of the model. The steady 

improvement across loss, accuracy, and ROC AUC validates the effectiveness of the learning strategy 

and the suitability of the selected architecture for the classification task.  

Table 4. Performance comparison of HWR-PDNet with existing models on the test dataset. 

Model Acc. Pre. Re. Spe. F1 ROC AUC 

CNN (Baseline) 0.90 0.76 0.91 0.83 0.83 0.88 

LSTM Model 0.89 0.78 0.87 0.80 0.82 0.86 

CNN–Transformer 0.85 0.73 0.84 0.78 0.78 0.84 

1D/2D/3D CNN 0.82 0.71 0.80 0.76 0.75 0.82 

Beta-Elliptic + Fuzzy PD Classifier 0.88 0.79 0.86 0.81 0.82 0.87 

Hybrid CNN–GRU Handwriting Classifies 0.90 0.80 0.89 0.85 0.84 0.89 

Proposed HW R-PDNet 0.92 0.81 0.95 0.89 0.88 0.91 

Figure 4. Performance comparison of HWR-PDNet vs. existing models’ performance on the test dataset. 

4.3 Comparative Examination with Current Models 

Table 4 presents a detailed evaluation of the proposed HWR-PDNet framework against several 

contemporary baseline and hybrid models, including CNN (Baseline), LSTM Model, CNN–

Transformer, 1D/2D/3D CNN, Beta-Elliptic + Fuzzy PD Classifier, and Hybrid CNN–GRU 

Handwriting Classifier. The baseline CNN achieved a strong recall of 0.91, but comparatively lower 

precision (0.76), suggesting a higher tendency toward false positives. The LSTM model showed 

balanced precision (0.78) and recall (0.87), though its overall accuracy (0.89) and ROC AUC (0.86) 

were slightly lower. The CNN–CNN-Transformer and 1D/2D/3D CNN architectures exhibited 

reduced performance, particularly in specificity, indicating limitations in correctly identifying healthy 

subjects. The Beta-Elliptic + Fuzzy PD Classifier demonstrated competitive precision (0.79) and 

specificity (0.81), while the Hybrid CNN–GRU Handwriting Classifier improved both accuracy (0.90) 

and specificity (0.85) compared to earlier baselines. In contrast, the proposed HWR-PDNet surpassed 

all other models, achieving the highest accuracy (0.92) and recall (0.95), alongside a robust F1-score 

(0.88) and the highest ROC AUC (0.91). Its specificity of 0.89 reflects an effective reduction in false 

positives, which is crucial in medical-screening applications. The graphical illustration in Figure 4 

visually reinforces these results, showing HWR-PDNet’s consistent lead across all metrics. This 
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performance gain can be attributed to its hybrid feature-extraction design, optimized regularization, 

and fine-tuning strategies, which enhance its generalization and discrimination capabilities. These 

findings confirm that HWR-PDNet is a reliable and superior choice for handwriting-based Parkinson’s 

Disease detection in practical clinical workflows. 

Table 5. Performance contribution of individual enhancements in the HWR-PDNet pipeline. 

Configuration Accuracy F1-Score ROC AUC 

Baseline CNN (No Aug, No Fine-Tune) 0.86 0.82 0.84 

With Grayscale Augmentation 0.88 0.84 0.86 

With HSL Color Space Augmentation 0.89 0.86 0.88 

With Dropout Regularization (p=0.2) 0.90 0.87 0.89 

With Fine-tuning with Low LR 0.91 0.88 0.90 

Full Model (HW R-PDNet) 0.92 0.88 0.91 

Figure 5. Performance contribution of enhancements in HWR-PDNet. 

4.4 Impact Analysis of Incremental Enhancements in HWR-PDNet 

An ablation study was conducted to elucidate the impact of specific enhancements in the HWR-PDNet 

architecture. As represented in Table 5, the classification metrics show progressive improvements with 

each enhancement, and the cumulative effects are visually summarized in Figure 5. Importantly, the 

configurations in Table 5 are cumulative rather than singular. Each successive configuration builds 

upon the enhancements of the previous one in the following order: baseline CNN without 

augmentation or fine-tuning, addition of grayscale augmentation, addition of HSL color space-

augmentation (in addition to Grayscale), integration of dropout regularization with a probability of 0.2 

(in addition to grayscale and HSL), fine-tuning with a low learning rate (in addition to grayscale, HSL, 

and dropout), and finally, the complete HWR-PDNet model that incorporates all enhancements. The 

order of integration was deliberately chosen to first expand the diversity and richness of the input 

representations (grayscale and HSL augmentations), then introduce regularization to mitigate 

overfitting (dropout), and finally apply targeted optimization to adapt the pre-trained backbone to the 

handwriting domain (fine-tuning). This approach ensures that the model initially develops a broader 

and more representative feature space, improves robustness against noise and overfitting, and then 

benefits from specialized adaptation to the target domain without catastrophic forgetting. Starting from 

the baseline CNN without data augmentation or fine-tuning, the model achieved 86% accuracy, an F1-

score of 0.82, and ROC AUC of 0.84. Adding grayscale augmentation improved performance by 

enhancing the network’s ability to detect contrast-based stroke patterns, leading to better 

generalization. Incorporating HSL color-space augmentation further increased accuracy to 89% and 

the F1-score to 0.86, showing the benefits of color-space diversity in capturing subtle handwriting 

variations. Integrating dropout regularization raised accuracy to 90% and ROC AUC to 0.89, 

demonstrating improved robustness. Fine-tuning with a low learning rate allowed the network to adapt 

feature representations more precisely to domain-specific characteristics, increasing accuracy to 91% 



415

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

and F1-score to 0.88. The complete HWR-PDNet model, integrating all enhancements, achieved the 

best results: 92% accuracy, F1-score of 0.88, and ROC AUC of 0.91. These results confirm that the 

cumulative addition of augmentations, regularization, and fine-tuning significantly enhances both the 

generalization capability and the discriminative power of the proposed model. 

Table 6. Per-class performance metrics stratified by stage. 

Stage Pre. Re. F1. Support 

Stage 1 (Early) 0.85 0.91 0.88 10 

Stage 2 (Mild) 0.86 0.94 0.90 15 

Stage 3 (Moderate) 0.87 0.93 0.90 13 

Stage 4 (Severe) 0.80 0.89 0.84 10 

Stage 5 (Advanced) 0.79 0.87 0.83 12 

Healthy Controls 0.89 0.86 0.87 60 

Figure 6. Per-class performance metrics stratified by stage. 

4.5 Stage-wise Evaluation of Classification Performance 

An analysis of the performance of the suggested HWR-PDNet across the various stages of PD was 

conducted to evaluate its discriminative capability, as represented in Table 6. The model demonstrated 

strong performance in detecting Stage 1 (Early) with a precision of 0.85, a recall of 0.91, and an F1-

score of 0.88, indicating sensitivity to subtle handwriting irregularities associated with early 

neurodegeneration. Stages 2 (Mild) and 3 (Moderate) achieved the highest F1-scores of 0.90, 

supported by reliable precision–recall pairs, highlighting the model’s robustness in capturing 

progressive motor impairments. Performance decreased slightly for Stage 4 (Severe) and Stage 5 

(Advanced), with F1-scores of 0.84 and 0.83, respectively. This reduction can be attributed to 

overlapping clinical signs and reduced handwriting variability in advanced PD stages, though the 

model maintained consistent classification capability. The largest support was observed in the Healthy 

Control group (n=60), where the model reached an F1-score of 0.87. Notably, precision exceeded 

recall in this class (0.89 vs. 0.86), suggesting a conservative, but accurate, identification of healthy 

subjects. As illustrated in Figure 6, performance was relatively balanced across classes. Overall, the 

stage-wise evaluation underscores the ability of HWR-PDNet to effectively track disease progression, 

achieving higher efficiency in moderate-to-severe phases while preserving sensitivity at the early 

stage. 

4.6 Discussion 

The experimental evaluation of the proposed HWR-PDNet framework demonstrates consistent 

improvements across multiple classification metrics and experimental configurations. The epoch-wise 
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training dynamics (Table 3 and Figure 3) reveal a smooth convergence pattern with increasing 

accuracy and ROC AUC, indicating effective learning and generalization. Comparative analysis 

(Table 4 and Figure 4) shows that HWR-PDNet outperforms conventional CNN, LSTM, and hybrid 

models, achieving superior accuracy (92%) and recall (95%). The ablation study (Table 5 and Figure 

5) highlights the cumulative contribution of augmentation, regularization, and fine-tuning, where each

enhancement incrementally boosts model performance. Moreover, the stage-wise stratification (Table 

6 and Figure 6) illustrates robust classification across all Parkinson’s stages, with particularly strong 

results in early and moderate stages—underscoring the model’s utility in early intervention scenarios. 

Collectively, the results confirm that HWR-PDNet offers a reliable, interpretable, and high-performing 

solution for stage-aware Parkinson’s Disease recognition from handwriting data. 

5. CONCLUSION

This study introduced HWR-PDNet, a hybrid deep-learning architecture for stage-specific 

classification of Parkinson’s Disease (PD) using handwriting patterns. The model integrates 

convolutional feature extraction, attention-based enhancement, grayscale and HSL augmentations, 

dropout regularization, and fine-tuning with a low learning rate to achieve robust and generalizable 

outcomes. Experimental evaluations demonstrated that HWR-PDNet achieved superior classification 

performance compared to baseline models, with an overall accuracy of 92%, precision of 0.81, recall 

of 0.95, F1-score of 0.88, and ROC AUC of 0.91. The proposed framework consistently outperformed 

the baseline CNN (accuracy: 90%, F1-score: 0.83, ROC AUC: 0.88), LSTM (accuracy: 89%), and 

CNN–Transformer (accuracy: 85%) across all metrics. Ablation analysis confirmed the incremental 

contribution of each enhancement, with performance improving from 86% accuracy (baseline) to 92% 

in the final configuration. Stage-wise evaluation further highlighted the model’s discriminative 

capacity: early-stage PD (Stage 1) achieved an F1-score of 0.88, moderate-stage PD (Stage 3) reached 

0.90, and healthy controls were identified with an F1-score of 0.87, indicating low false-positive rates. 

Slightly lower scores were observed in advanced stages (Stages 4–5), reflecting the overlapping 

handwriting patterns typical of severe motor impairment. While this study focused on static 

handwriting images, the findings underscore the potential of extending HWR-PDNet to incorporate 

dynamic handwriting features, such as stroke velocity, acceleration, and temporal rhythm, which can 

be readily captured using touchscreen devices. Future work will explore the integration of such 

temporal signals with spatial handwriting patterns, along with multi-modal physiological data, to 

enable more sensitive, specific, and real-time PD monitoring. This direction holds promise for 

scalable, non-invasive, and personalized early intervention strategies in clinical and home settings. 
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ملخص البحث:

وع رررررررص ومررررررر م و م  ررررررر   و ي ميررررررر وني ررررررر   و يرررررررنومرررررررنسون عباررررررررلٍوعصررررررر عموعررررررر و  ررررررر  

رررررر رررررراع ي ديررررررلوّرررررر وايا ورررررر  واي نبرررررر  و يم رررررر واي    نموعرررررر وفوعرررررر واي  يررررررلوّرررررر ومنا   رررررر وايمص  

رررررنو مرررررنا ونررررر ي وا  ميرررررل و طنيررررر وعررررر  واا وررررر  واي   نرررررلوايي  يرررررلوي كرررررندًو يلغررررر  واي   ررررريي وايمص  

ررررر ومرررر واي  ررررر    وايغسبرررر وّررررر وايل رررررموايما قرررر  و  ررررر ّل و يرررر و ا ررررر ويصرررري ومن  رررررلو  ررررر   و ّ ررررلويم  

و  غ  ررررر ون م  ايرررررلو دا   رررررنمواي    ي يرررررلوّررررر واي   ررررريي ومررررر وم ررررر    ايمرررررنسًو مرررررنو يررررر و لغررررر ا وايل 

واي  لقنو اايك سواي ر قيلً

رررررنوعررررر و   رررررن و ررررربنوايلع رررررلونايرررررلو غ  ررررر وعميررررر و رررررر ي  و اي   نرررررلوايي  يرررررلون ررررر  واي  رررررفوايمص  

ومررررررنسون عبارررررررلًٍو  رررررر وانرررررر م موم ملعررررررلوايصي ارررررر  وايمررررررر ي ملوّرررررر و رررررربنواي عاقررررررلوع رررررر 

وايا وررررر  وايم  ررررررن وو120عيارررررلوب  نرررررلوي  يررررررلو غرررررلدويرررررر  وو816  ٍ و   رررررر عواننررررر عمو يرررررر و   ً ني ررررر 

ررررررنمواي    ي يررررررلومرررررر و يرررررر و ومرررررر وايل     رررررر ومأنررررررنا و داموبيرررررر مو كررررررلمومأنررررررنا وا دامويغرررررر د 

ايم  اررررررلو اي ر قرررررريلًو يلغرررررر  و طرررررر عوايغمرررررر وايرررررربّو الررررررلّوع يرررررر وايل ني ررررررلوايم  ن ررررررلو طرررررر عا و

ا قرررررص  وي  م واي  ي ررررر  و  رررررلويرررررلّ نو كيرررررفوايرررررلًٍومل رررررفوعررررر وايمرررررنسوّررررر وايررررر   لصي ررررر  واي   

رررررفوعررررر وان ررررر نلونررررر يمنسومررررر وعررررر م  و عواي    رررررنينّو  لرررررل  رررررلويررررر ع واي رررررناعواير   م  ايرررررلوم م 

وع ونلغ ًو
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       وتكنولوجيا المعلوماتالمجلة الأردنية للحاسوب 

( مجلة علمية عالمية متخصصة محكمة تنشر الأوراق البحثية الأصيلة عالية المس توى JJCITالمجلة الأردنية للحاسوب وتكنولوجيا المعلومات )

 وهندسة الحاسوب والاتصالات وتكنولوجيا المعلومات.في جميع الجوانب والتقنيات المتعلقة بمجالات تكنولوجيا 
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تصالات ش تى آأرجاء العالم. وتركز المجلة على موضوعات تشمل على سبيل المثال لا الحصر: هندسة الحاسوب وش بكات الا

 وعلوم الحاسوب ونظم المعلومات وتكنولوجيا المعلومات وتطبيقاتها.
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