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ABSTRACT 

Malware threat is a major hindrance to efficient information exchange on the Internet of Things (IoT). Modelling 

malware propagation is one of the most imperative applications aimed at understanding mechanisms for 

protecting the Internet of Things environment. Internet of Things can be realized using agent-based modelling 

over complex networks. In this paper, a malware propagation model using agent-based approach and deep-

reinforcement learning on scale free network in IoT (SFIoT) is assiduously detailed. The proposed model is named 

based on transition states as Susceptible-Infected-Immuned-Recovered-Removed (SIIRR) that represents the states 

of nodes on large-scale complex networks. The reliability of each node is investigated using the Mean Time To 

Failure (MTTF). The factors considered for MTTF computations are: degree of a node, node mobility rate, node 

transmission rate and distance between two nodes computed using Euclidean distance. The results illustrate that 

the model is comparable to previous models on effects of malware propagation in terms of average energy 

consumption, average infections at time (t), node mobility and propagation speed. 
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1. INTRODUCTION 

Today, any device connected to communication systems may be subject to unscrupulous and malicious 

individuals, whose main purpose is to access sensitive information. To achieve their goals, they use 

different specimens of malware [1]. This malware often goes unnoticed for a period long enough to 

study the behavior of the internal network and its elements, in order to extract valuable information. 

Considering that there are large numbers of nodes deployed on communication systems and, in many 

cases, they are usually deployed on hostile unattended environments without human supervision, they 

become a principal target for malware attacks [2]. Agent-based modelling and simulation (ABMS) is an 

effective way to model and analyze complex networks [3]. Network consists of agents and the activities 

of these agents are monitored concurrently. ABMS offers the set of transition rules with consideration 

to individual device characteristics thus appropriate for malware modelling, where individual device 

variability is a key consideration [4]-[5]. This paper postulates the malware propagation process on 

scale-free networks by proposing agent-based model and simulation. In scale-free networks, nodes are 

added with maximum probability node. Agent-based modelling and simulation are instigated for 

modelling the dynamics of malware propagation scale-free networks. The diversity of nodes in scale-

free network by varying parameters, such as node mobility, energy consumption and propagation speed 

that affect the malware spread in the network. The proposed model is further compared with analytical 

results obtained from previous agent-based modelling and simulation schemes [6]–[9]. The major 

contributions of this paper are outlined as follows: 

1) Creation of an agent-based model and simulation with a decision maker for modelling the 

malware propagation on large networks using a deep-reinforcement learning algorithm. 

2) The node state transition model Susceptible-Infected-Immuned-Recovered-Removed (SIIRR) 

is developed and the individual node performance measurement is estimated for computing the 

node reliability using mean-time-to-failure metric. 
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The rest of the paper is structured as follows: The related literature on malware propagation is explored 

in section 2. In section 3, the proposed model is presented and the succinct details on the application of 

deep-reinforcement learning in modelling malware propagation are given. The experimental set-up and 

simulation of the proposed scheme are discussed in section 4. Analysis is performed to compute the 

metrics, such as average energy consumption, average infections over time, node mobility and 

propagation speed. The simulation results are validated and compared with analytical results obtained 

from previous agent-based modelling and simulation schemes. Finally, the conclusion of this paper and 

future research directions are given in section 5. 

2. RELATED  LITERATURE 

The rise in use of IoT devices to launch malware attacks in the recent past has invoked researchers’ interest 

in understanding IoT malware propagation and control. In this section, we review recent literature in 

malware propagation with a bias towards agent-based modelling which is the approach taken in the our 

proposed model. 

A Markov Random Filed (MRF)-based spatio-stochastic framework is applied in complex 

communication networks, where malicious threats spread through direct interactions and follow the SI 

state model proposed by Karyotis [8]. It also combines Gibbs sampling with simulated annealing to 

analyze the behaviour of the systems under various topological and malware-related metrics. The 

disadvantage of MRF is that it is not isotropic, since it varies in magnitude according to the direction 

of measurement. Besides, the reliability of individual nodes is not assessed. The rumor diffusion 

process is proposed to model the outbreak of malware in [7]. The limitation of this agent-based 

analytical model is that it is difficult to prove the validity of the malware-free equilibrium stability 

(global and local). 

In [10], the four aspects of malware propagation modelled were; user mobility, application-level 

interactions among users, local network structure and network coordination of malware (Botnets). The 

model was tested for a malicious virus like Cabir spreading among the cellular network subscribers 

using Bluetooth. A queuing-based malware propagation modelling approach was proposed in complex 

networks with churn [11]. Churn refers to dynamic node variation which captures the dynamics of SIS-

type malware in time- varying networks. It quantified network reliability and improved the robustness 

of the network against some generic malware attacks. With the dynamic nature of node variation, it 

does not consume less energy and also the spreading speed is high. Malware propagation over wireless 

sensor networks has been proposed in [12], where the network topologies are based on complete or 

regular graphs. The first disadvantage of this network model is that it does not consider the individual 

characteristics of sensor nodes which form an important attribute in modelling heterogeneity of nodes 

and the second disadvantage involved in this model is that parameters such as transmission rate and 

recovery rate are not explicitly defined. 

Batool et al. [9] demonstrates that Internet of Things networks can be modelled using a hybrid approach 

of using complex network and agent-based models. The construction of IoT elaborated models 

addressing the emergence and individual characteristics represent an existing research challenge. To 

model the IoT as a scale-free network, when a new node wants to join the network, it requires the 

degree and distance of all nodes (centrality measures) in the whole network in order to compute the 

probability of connecting to each existing node. The centrality measure is a critical measure of how 

central the node is to communication and connectivity. Betweenness and closeness centralities are 

calculated in each subnet. Betweenness centrality of a node is the probability for the shortest path 

between two randomly selected nodes to go through that node and is calculated as: 

𝐶𝐵(𝑖) =
1

(𝑛 − 1)(𝑛 − 2)
∑

𝑁𝑠𝑝(𝑗
𝑖

→ 𝑘)

𝑁𝑠𝑝(𝑗 → 𝑘)
                                                (1)

𝑗≠𝑖,𝑘≠𝑖,𝑗≠𝑘

 

where, Nsp(j → k) is the number of shortest paths from node i to node k and Nsp(j →
i  

k) is the 

number of shortest paths from j to node k that pass through i. 

Closeness centrality is a measure of how accessible a node is from other nodes and is calculated as: 

𝐶𝑐(𝑖) = (
∑ 𝑑(𝑖 → 𝑗)𝑗

𝑛 − 1
)−1                                                                  (2) 
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which is an inverse of the average distance from node i to all other nodes. If Cc(i) =1, then you can reach 

each other node in the network via one step. The centrality measures are key to determine the influence 

of malware propagative and spreading nodes. 

The inherent weakness of the deterministic and stochastic models surveyed in our previous work in 

literature is the full mix assumption [13]. The full mix assumption holds that every node has equal 

chances of coming into contact with others in the network, which is not necessarily the case in malware 

propagation on IoT networks where heterogeneity is a key factor. The introduction of the decision maker 

in the model overcomes the key challenge of arriving at an infection decision based on individual node 

interaction and individual node parameters, not just contact. 

3. THE PROPOSED MODEL 

In this section, a model is formulated to model malware propagation over large-scale-free 

communication networks. A scale-free network environment for heterogeneous IoT devices is visually 

illustrated in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Scale-free Internet of Things networks. 

The notion for modelling of malware propagation on large-scale-free networks is as follows; mitigate 

effects of malware over large-scale-free IoT networks, set flexible simulation parameters (number of 

nodes/devices are high and transmission range is also high), reduce the malware propagation speed in 

SFIoT networks and analyze regular changes in the subnets due to the node mobility rate between 

subnets within a time-varying environment. We consider a network as a graph with N nodes and M 

edges. The total population of N nodes is divided into T subnets, with ni nodes where i=1,2,. . . , m nodes. 

The total population of nodes is given by Equation 3: 

∑ 𝑛𝑖 = 𝑁                                                                                       (3)

𝑚

𝑖=1

 

For each subnet T, the probability Pi is used to add a link between two nodes that should satisfy 

Equation 4: 

∑ 𝑛𝑖𝑃𝑖.
1

2
𝑛𝑖(𝑛𝑖 − 1) =

𝑁(𝐾)

2
                                                                    (4)

𝑚

𝑖=1

 

where, K denotes average degree of nodes in the entire network. When a new node is announced to the 

network to be attached to N nodes with high degree K, the announcement of the new node and 

preferential attachment continue until a network with !=t+N has been deployed. The principle of the 

decision maker-based model of malware propagation on sub-netting-based scale-free networks is based 

on the SIIRR model states. Decision maker is denoted as an agent considered for modelling malware 

propagation. Each node in the network has defined heterogeneity behaviour and set of rules is used for 

modelling the node behaviour. While modelling the malware propagation, nodes are classified into five 

states. In each time stamp, a node transits to one of the five possible states as listed below.The state 

transition diagram for SIIRR model is depicted in Figure 2. 
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Figure 2. SIIRR model transition diagram. 

1) Susceptible (S): It is the first state of a node or hub and it often refers to infected in future. 

2) Infected (I): The node attracted by malware is called the infected node. In this state, a node propagates 

the malware infections to all their neighbours. 

3) Immune (I): The node that is unable to become infected by any node is called immune. This type of 

nodes has an immunization scheme, such as an anti-malware solution, to detect and block malware. 

4) Recovered (R): It refers to infection removed state and does not get infected again. 

5) Removed (R): The node or hub is attracted by the malware and can spread malware at time, t. 

The flowchart in Figure 3 shows the steps in model formulation. Algorithm 1 shows the detailed 

procedure for sub-netting-based network construction. 

3.1 Modelling Deep-reinforcement Learning in Malware Propagation 

A Deep-reinforcement Learning (DRL) scheme is adopted to illustrate the variables used for a 

Continuous Markov Chain Model (CMCM). The main goal of the CMCM in a DRL problem is to 

increase the obtained rewards. The tuples of DRL are as follows: 

𝑇 = 𝑆, 𝐴, 𝑅, 𝐸, 𝐻, 𝛾                                                                       (5) 

where, S denotes the set of states, A is a possible set of actions, E is the environment, R is the reward 

function for state and action. In DRL, the agent has the ability to act where each action influences its  



30 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 01, March 2020. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Figure 3. Scale-free Internet of Things (SFIoT) malware propagation model. 

future state of the agent and success can be estimated using scalar reward signal. Q-learning-based 

reinforcement learning algorithm solves the decision making problems. Q-learning is defined as the 

quality of action in given state S at time t. 

Environment (E): The environment is the area in which agents communicates with each other. 

Agents (A): In a given environment, an agent receives information and performs the corresponding 

action. The main goal of agents is to pick the best policy that increases the total reward. 

States (S): This is the condition defined by agent characteristics within the defined transitions.  

Actions (A): A state transition from one state St to another state S(t+1)at time t+1 is called action. 

Reward (R): It represents the closeness of the current state to the true class. It is formulated by Equation 

6. 

𝑅(𝑆𝑡𝐴𝑡𝑆(𝑡+1) 𝑌) = 𝐶 (𝑆(𝑡+1), 𝑌)                                                             (6) 

Rewards depend on the current state and the action performed. 

Discount factor (γ): The discount factor controls the importance of future rewards (γ ∈ [0, 1]). 

State transition distribution: It is the transition probability that action A in state S at time t will lead 

to state S
t 

at time t + 1: PA(S, S
t 
) = P R(S

t 
| S, A). The policy (π) where (π)= At and the policy for a 

state is denoted (π)(S) −→ A which changes with the reward policy as: 

ℜ𝑡 = ∑ 𝛾𝑡

𝑡=0

 𝑅𝑡  𝛾                                                                            (7) 

where 0 ≤ γ < 1. 

In the Q-learning approach, an approximate reinforcement machine learning algorithm is presented for 

IoT devices. Consider the Q-value updated equation as formulated in Equation 8. 

𝑄(𝑆𝑡+1, 𝐴𝑡+1) ⇐ (1 − 𝛼)𝑄(𝑆𝑡 , 𝐴𝑡) +  𝛼 [ℜ (𝑆𝑡 , 𝐴𝑡) + 𝛾 max
𝑎′

𝑄(𝑃(𝑆𝑡 , 𝐴𝑡), 𝑎′)]                 (8) 
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where, Q(St, At) is the Q-value of current state St when action At is selected at time t, α is the learning 

rate, γ is the discount factor, where γ is set between 0 and 1, max
𝑎′

𝑄(𝑃(𝑆𝑡 , 𝐴𝑡), 𝑎′) is the maximum possible 

Q-value in the next state S( +1) if selects possible action 𝑎′. ℜ (𝑆𝑡 , 𝐴𝑡) denotes the reward function when 

state St selects At. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Deep-reinforcement learning. 
 

Figure 4 visually illustrates the deep-reinforcement learning approach adopted in the model. The Q-

learning model is used to classify the nodes as part of five possible transition states. It specifies transition of 

nodes between states from S → I, I → R and R → S, where the recovered state and removed state 

are terminal. The nodes do not transition to another state after being in the removed state or the 

recovered state. It is represented as the SIIRR model and mathematically formulated as: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜎

𝑆(𝑡) 𝐼(𝑡)

𝑁
                                                                  (9) 

𝑑𝐼(𝑡)

𝑑𝑡
= −𝜎

𝑆(𝑡) 𝐼(𝑡)

𝑁
− 𝛼 𝐼(𝑡)                                                        (10) 

𝑑𝐼(𝑡)

𝑑𝑡
=  𝛽 𝐼(𝑡)                                                                       (11) 

 
𝑑𝑅(𝑡)

𝑑𝑡
=  𝛼 𝐼(𝑡)                                                                       (12) 

 
𝑑𝑅(𝑡)

𝑑𝑡
=  𝜎 𝐼(𝑡)                                                                       (13) 

where, _ is the infection rate S ! I, _ is the recovery rate I ! R, _ is the removed rate. The total population 

N (network size) at time t is computed as: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + (𝑅(𝑡)                                               (14) 

After the scale-free network formation, all the hubs, decision makers and ordinary nodes are set to 

susceptible state. At time slot t = 1, one or more nodes are set into infected state and each time slot t = 

2, 3 or 4 . . . n, malware propagates from infected nodes to their adjacent nodes through communication 

links. The node state changes continuously at each time slot. 

3.1.1 Reliability Computation 

The reliability function for a node is computed by using Mean Time To Failure (MTTF). However, 

most of the previous schemes in malware modelling have not considered the reliability factor. Specifically, 

reliability is the probability that the system will perform its intended function according to the specified 

design. To improve the network performance, we consider several metrics for computing the reliability. 

These are; node degree, node mobility rate, node transmission rate and distance between two nodes. 
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Node degree is the number of links (in degree and out degree) that lead into or out of the node. For 

each sub-net, the mobility of the node (i) is computed as follows: 

𝑀 (𝑖) = ∑
𝑁𝐶𝑃 − 𝑁𝑂𝑃

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑝𝑒𝑒𝑑
                                                                  (15)

𝑛

𝑖=1

 

where NCP is the Node Current Position and NOP is the Node Origin Position. A transmission rate 

(in Kbps) between two nodes depends on the message size (Ds) and distance between two nodes (DN) 

given as: 

𝑇 𝑅(𝑖) =  𝐶1 ×  𝐷𝑆 + 𝐶2 𝐷𝑁                                                                (16) 

where C1 and C2 are constant variables. The distance between two nodes is computed using the Euclidean 

distance metric, which is calculated as: 

𝑑(𝑎, 𝑏)2 =  (𝑏1 − 𝑎1)2 + (𝑏2 − 𝑎2)2                                                       (17) 

The reliability of a node R(N (t)) is the probability that the node will be successful in the interval 

between time 0 and t as shown in Equation 18: 

𝑅(𝑁(𝑡)) = 𝑃(𝑟 > 𝑡)    𝑡 ≥ 0                                                                (18) 

In Equation 18, r is a random variable that denotes the time-to-failure or failure time. The mean time 

to failure is computed by Equation 19: 

𝑀𝑇𝑇𝐹 = ∫ 𝑡 𝑓(𝑡)𝑑𝑡, 𝑇ℎ𝑒𝑛 𝑓(𝑡) = −
𝑑𝑥

𝑑𝑡

∞

0

[𝑅(𝑡)]                                        (19) 

Performing integration operation yields; 

𝑀𝑇𝑇𝐹 = ∫ 𝑡𝑑
∞

0

[𝑅 (𝑁(𝑡))] = ∫ 𝑡
∞

0

[𝑅 (𝑁(𝑡))]  + ∫ 𝑅 (𝑁(𝑡))𝑑𝑡
∞

0

                             (20) 

In Equation 20, t(R(N (t) → 0 and x → ∞. It yields the second term, which equals: 

𝑀𝑇𝑇𝐹 = ∫ 𝑅 (𝑁(𝑡)) 𝑑𝑡
∞

0

                                                                 (21) 

 

For each sub-net in a scale-free network, the reliability of a sub-net at time t can be computed by: 

𝑅(𝑆(𝑡)) = 1 − ∏ (1 − 𝑅(𝑁(𝑡))                                            (22)
𝑠𝑢𝑏−𝑛𝑒𝑡∈𝑝𝑎𝑡ℎ

 

Moreover, any path composed of sub-nets in a scale-free network R(P(t)) at time t can be computed as: 

𝑅(𝑃(𝑡)) = ∏ (1 − 𝑅(𝑁(𝑡))                                            (23)
𝑠𝑢𝑏−𝑛𝑒𝑡∈𝑝𝑎𝑡ℎ

 

As a result, a sub-net-based scale-free network consists of reliable paths. Hence, the reliability of the 

network (R(t)) is computed by; 

𝑅(𝑡) = 1 − ∏ (1 − 𝑅(𝑃(𝑡))                                                  (24)
𝑝𝑎𝑡ℎ

 

The topology of a scale-free network is constructed based on the actual parameters (node degree and 

maximum probability of a node) in a sub-net. The proposed scheme is implemented in the field of 

Internet of Things. The reliability for each node in the scale-free network is under malware propagation 

situation. 

4. SIMULATION 

In this section, the modelled propagation algorithm is simulated. The proposed scheme was compared to 

analytical results obtained from published works as follows: for energy consumption, to the work of 

Batool et al. [9]; for average infection rate, to the works of [6], [7]-[14]; for propagation speed and node 

mobility to the work of [8] based on the performance metrics described in sub-section 4.2. 

4.1 Experimental Set-up 

The model is implemented using NS-3 (version 3.26) for simulation. NS-3 is a network simulator which 
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is mainly supported for Linux and written using C++. But, the binding of NS-3 is written in Python. 

In our experiment, the Gaussian Markov (GM) mobility model is used. Gauss-Markov (GM) mobility 

model is used to simulate mobility of device agents. Gauss-Markov mobility model caters for temporal 

dependency; i.e., it has a memory to correlate previous states. In Gauss-Markov, the velocity of the 

device i s  modeled as a Gauss- Markov stochastic process, as it is assumed to be correlated over time. 

In this model, node speed and direction are considered with respect to time, taking into account the 

previous speed sn−1, previous direction dn − 1, the mean speed s̄  and direction d̄ . The randomness 

parameter α has a Gaussian distribution. Current speed and direction are given by: 

𝑠𝑡 = 𝛼 𝑠𝑡−1 + (1 − 𝛼) �̅� + √(1 − 𝛼2)𝑠𝑥𝑛−1 

𝑑𝑡 = 𝛼 𝑑𝑡−1 + (1 − 𝛼) �̅� + √(1 − 𝛼2)𝑑𝑠𝑥𝑛−1                                         (25) 

where, sxn−1 and dxn−1 are random variables from a Gaussian distribution. The simulation of the proposed 

scheme uses 200 node moves in a 5000 m × 5000 m rectangular region for 100 seconds of simulation. 

These nodes are vehicles deployed along the road perimeters and 20 sensors are used for sensing 

information. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5. Scale-free network formation visualization. 

Four traffic lights for each road lane entering the intersection are considered. The blue circle in the 

upper right section represents the decision maker entity that manages the traffic light timing. Assume 

that each node moves independently with the same average speed. All nodes in the network have the 

same transmission range of 250 m. The simulated traffic is of a Constant Bit Rate (CBR). The proposed 

scheme is implemented in a single intersection-based road traffic system, then the sub-net construction 

process is performed. The process is based on the node residual energy and degree of nearest node. In 

each sub-net, decision maker is selected. All nodes are connected into hub. If the node is not connected  

Table 1. Simulation settings and parameters. 

Simulation parameters Values 

Network simulator NS-3.26 

Area size 5000 m×5000 m 

No.of nodes 200 

Communication range 250m 

Simulation time 100 seconds 

Packet size 1024 bytes 

Mobility model Gauss-Markov Model 

Node speed 2, 4, 6, 8 and 10 m/s 

Pause time 5 seconds 

No. of runs 100 

No. of packets 100 packets /simulation 
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to hub, the route between the node and hub is found using FIFO rule. Next, the node sense data and 

decision maker classify the node state as susceptible, infected, immune, recovered and removed using 

Deep-Reinforcement Learning (DRL). A visualization showing the formation of a scale-free network 

can be seen in Figure 5. The simulation settings and parameters are summarized in Table 1. 

4.2 Simulation Performance Metrics 

The proposed scheme is evaluated for performance based on the following metrics: 

1) Energy consumption: It is the rate of energy used for packet transmission. Energy conservation 

is an important issue while communicating with other nodes. 

2) Average infection rate: It is the number of nodes found to be infected during packet transmission. 

3) Propagation speed: It can be computed by finding the number of infected nodes at time t and 

is based on the threshold value for different states. 

4) Node mobility: It has long been recognized as an efficient metric for modeling malware 

propagation in Internet of Things; e.g. road traffic systems and smart office application 

systems. It causes major issues, such as increased energy consumption and connectivity 

failure. Hence, it needs to be considered in complex networks, so that it brings benefits of 

reduced energy consumption and reduced spread of malware over communication networks. 

4.3 Comparative Analysis 

The statistical analysis of the obtained simulation raw data is carried out. Average (means) and the 

confidence intervals are calculated. The confidence interval of the data realized from the simulation is 

calculated as follows. Simulations x1, x2, ..., x5 are carried out for each set of network size in the simulation. 

Since the number of sample simulations is less than 30, that is n = 5, the t distribution with n-1 degrees 

of freedom is adopted as the statistical test. In order for the the t distribution to be applied, the data 

needs to follow normal distribution. The test for normality is carried out to provide evidence that the 

simulation data is normally distributed. The normal probability plots are used to depict the outcome 

of the normality test. Shapiro-Wilk normality measure is also applied, since simulation instances are 

less than 2000. Shapiro-Wilk test is carried out at all network sizes. The confidence interval is given as 

[L, U], where L is the lower bound and U is the upper bound of the interval. This can be expressed as 

[L, U] = [average – margin of error, average + margin of error]. The confidence interval is calculated 

as: 

[𝐿, 𝑈] = [�̅� − 𝑡𝑐

𝑠

√𝑛
, �̅� + 𝑡𝑐

𝑠

√𝑛
]                                                     (26) 

where, tc is the critical value from the t distribution depending on the confidence level. The confidence 

level of 95% is used in this study. 

The simulation results are subject to the test of normality for each of the network sizes and parameters. 

Shapiro-Wilk test statistics and the normal probability plots are derived for each of the network sizes 

and parameters. The normal probability plot is a visual illustration showing whether the data fits a 

normal probability distribution. The simulation raw results are plotted against the theoretical quantiles. 

If the data lies along the straight, that data fits the normal probability distribution. The test proved 

that the results on all network sizes were normally distributed as required for the use of Student t 

distribution in the calculation of confidence interval. For illustration purposes, the example of the 

normal probability plots for network size of 60 nodes is shown here. Figure 6 shows the normal 

probability plots for a network of 60 nodes. 

Shapiro-Wilk test statistics are calculated based on the following hypotheses: 

H0: The population is normally distributed. 

H1: The population is not normally distributed. 

If the significance level Sig. = α > 0.05, we can’t reject H0, thus the population is normally distributed. 

Shapiro-Wilk test statistics indicate that all the data from the simulations is normally distributed at 95% 

confidence interval.For example, the network size of 60 nodes shown in Figure 6 yielded Shapiro-Wilk 

test statistics and confidence levels as shown in Table 2. 
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Figure 6. Normal probability plots for network size = 60 nodes for (a) Energy consumption (b) Infection 

rates (c) Node mobility and (d) Propagation speed. 

From Table 2, the significance level Sig. = α > 0.05 satisfies H0 and the data is normally distributed. The 

95% confidence level upper and lower bounds are also calculated. 

Table 2. Test on network size of 60 nodes. 

 Shapiro-Wilk test significant levels Mean 

Difference 

95% confidence level of the 

difference 

If (Sig.>0.05), Accept H0 Upper (U) Lower (L) 

Propagation 0.871 5.902200 5.8525 5.95915 

Energy 0.706 16.034200 15.44065 16.62775 

Mobility 0.995 0.40220 0.39705 0.40735 

Infection Rate 0.55 16.080600 1544065 16.2865 

4.3.1 Energy Consumption 

First, we examine the energy consumption for our proposed scheme and then compare with the previous 

scheme. Energy consumption is the practice of quantity of energy used. It can be achieved through 

efficient energy use over complex communication environment. The tasks that are considered for energy 

consumption include: sensing, transmission and communication. The total energy consumption was 

estimated in milli joule (mJ). It is formulated as follows: 

𝐸𝑐 = 𝐸𝑇 + 𝐸𝑅 + 𝐸𝐼                                                                   (27) 

Energy consumption for transmission, ET is computed by: 

𝐸𝑇 = (𝛼1 + 𝛼2𝐷𝜎)𝑚                                                                (28) 
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Energy consumption for reception ER is computed by: 

𝐸𝑅 = (𝛼3) 𝑚                                                                      (29) 

Energy consumption for idle state EI is computed by: 

𝐸𝐼 = 𝛼4𝑡𝐼 𝑃𝑚                                                                      (30) 

In Equations from (27) to (30), D is the transmission distance, m is the packet length, α1 -  α4 are 

the system dependent parameters, tI is the idle time and Pm is the packet processing rate of the node. 

Five simulations were carried out for each network size and energy consumption measurements were 

noted for each run. Figure 7 shows the average energy consumption comparative analysis. Sub-Figure 

7(a) shows the energy consumption rates at varied network sizes on the proposed scheme and in Sub-

Figure 7(b), the average rate of energy consumption for the proposed scheme and that of HM-CN [6] 

are compared. 

Figure 7. Energy consumption analysis. 

Previous work; namely, HM-CN [6], noted that sensing and communication are the most energy-

consuming tasks. Transmission and reception cost is high, especially for short-range communication. 

These drawbacks are solved and our proposed scheme provides a realistic estimation of energy 

consumption in networks. The proposed scheme is simulated for N=200 nodes (nodes varying as 20, 

40,...,200). The decision maker isolated malware-infected nodes which are not allowed for 

communication and sensing. Furthermore, we follow FIFO rule for packet transmission. Hence, we 

obtained minimum energy consumption. 

4.3.2 Average Infection Rate 

Infection rate is an important parameter in modelling malware dynamics and propagation. During 

malware behaviour modelling, there is a need to examine the effect of the infection rate of each 

node and compute the average infection rate for various network sizes. Simulations were taken for 

network size variations. Figure 8(a) illustrates the infection rates at varied network sizes. The proposed 

scheme infection rates are based on the scale (threshold) of malware prevalence and the scheme is 

compared to the scheme with Dynamic Analysis and Control (DAC) scheme [6], Rumour Spreading 

Process-Scale Free Networks (RSP-SFN) [14] and Markov Random Field-Complex Communication 

Networks (MRF-CCN) [8]. A snapshot of the proposed vs. previous schemes in terms of infection rate 

is depicted in Figure 8(b). 

From the simulation results, the proposed scheme gave less number of infections per given number of 

nodes. The threshold of α is directly proportional to the malware infections. If α is small, the number of 

infected hosts will largely increase. In Dynamic Analysis and Control (DAC) [6], the propagation control 

strategies did not perform well, hence decreasing the real-time immunity rate and increasing the proportion 

of infected nodes. In Rumour Spreading Process-Scale Free Networks (RSP-SFN) [14], the density of 

infected nodes varied and increased under different vaccination rates, such as λ=0.3, ε=0.21, γ = 0.1, 

δ=0.05 and Λ = µ=0.07. In Markov Random Field-Complex Communication Networks (MRF- CCN) [8],  
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Figure 8. Average infection rate. 

the nodes are not reliable for long time. This leads to increasing the number of infection hosts. In our 

proposed scheme, the reliability is computed each time interval and also during packet transmission to 

monitor infection rates of the nodes in each sub-net. 

4.3.3 Propagation Speed 

Propagation speed was computed based on the density of nodes. The network topology greatly affects the 

modelling of malware propagation on IoT-based communication networks. In malware propagation, 

characterization of propagation speed is important. Understanding how propagation speed impacts the 

network is also necessary. The network size was varied in each simulation and the results of the five 

simulations are shown in Figure 9(a). The proposed scheme propagation speed was compared with those 

of the previous schemes with respect to number of nodes on varied network size as shown in Figure 10(b). 

In Agent-based Simulation- Scale-Free Networks (ABS-SFN) [7], the following analytical values were 

considered for the parameters α(k) = k−3, k = 1, 2, ...n, β = 0.3, ε = 0.01, γ = 0.08 and µ = 0.008. In 

addition, the reproductive ratio R0 = 3.9245 was used. If the density of infected nodes increases, the 

malware propagation speed also increases. The number of infected nodes increases in the ABS-SFN, 

whereas in our proposed scheme, the decision maker on each sub-net reduces the number of infected 

nodes. The proposed decision maker monitors each sub-net to determine whether it is attracted by the 

malware or not. 

Figure 9. Propagation speed analysis. 
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4.3.4 Node Mobility 

In agent-based simulation modelling, the node mobility is managed by three factors: movement detection, 

network connectivity or structure and location tracking. To observe node mobility, the performance at 

iterations i to i + 1 (between 2-4 seconds) was set in the proposed scheme. When the mobility increases 

above its threshold level, hub fails as noted by the decision maker and data packet transfer times between 

intermediate nodes are increased. In the proposed scheme, five simulations on the influence of node 

mobility on malware propagation were carried out. Figure 10(a) plots the mobility of nodes in a malware 

prone simulation against time for the five simulations. In Agent-based Simulation- Scale-Free Networks 

(ABS-SFN) [7], if the node mobility increases beyond the threshold, the scale-free network may 

disconnect. The time of the malware on the network and the malware outbreak in the sub-nets are 

dependent on the mobility rate. Mobility rate highly influences the spreading of network malware. When 

the mobility rate is smaller than the threshold value, the node in the sub-network dies. A performance 

comparison for node mobility between the proposed scheme and Scale-Free Networks (ABS-SFN) [7] 

can be seen in Figure 10. 

Figure 10. Malware effect on node mobility. 

5. CONCLUSION AND FUTURE WORK 

Agent-based modelling simulation in complex networks is a challenging issue. In this paper, we developed 

a malware propagation model using agent-based approach and deep-reinforcement learning on a scale-free 

network in IoT. In the modelled system, Susceptible-Infected-Immuned-Recovered-Removed (SIIRR) 

transitions were formulated. The effect of malware propagation on the model was evaluated based on 

performance metrics, such as average energy consumption vs. number of nodes, average infections over 

time, node mobility over time period t and spreading/propagation speed. Our simulations showed that the 

introduction of a DRL-based decision maker results in a more versatile IoT model, where malware 

propagation is not just based on contact. 

As future work, we intend to explore model stability analysis and the effect of immunization on different 

devices in IoT. The stability analysis will entail global and local model equilibrium. For the effect of 

immunization, we plan to incorporate mechanisms, such as targeted and proportional immunization, in the 

model. Employing immunization and quarantine mechanisms can offer a promising approach to make the 

model more realistic and resilient. 
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 ملخص البحث:

ددددددربا لرالددددددر  بالٍددددددلر    ددددددر  ا ددددددر   ضي ع   ددددددرئ   دددددد     عدددددددر    دددددد   يعُدددددديد الاييددددددي ضّارةضعددددددرئ ضياد

دددددّ إنرةندددددي ض. دددددلر    دددددربا   دددددي   ددددد  ضير  للدددددرئ ضي   د ويعددددديد   مددددد خ ن قادددددّ ضّارةضعدددددرئ ضياد

ضيلار  ددددددّ ضيددددددح  لادددددد  نيلددددددرئ   ريددددددّ  لاددددددّ إنرةنددددددي ض. ددددددلر   وي  دددددد  ا للدددددد  ضي  ريددددددّ ضي     ددددددّ 

لإنرةندددددي ض. دددددلر   رجدددددرةيض  ن قادددددّ عرا دددددّ ل دددددح ضّجدددددر ر ا  ددددد  وجدددددرا  ضي  ريدددددّ  ددددد  ضي ددددد  رئ 

 ضي علديا 

 رع لدددددددّ  ددددددد   ن ددددددد لاخ  لردددددددة  ي   ريدددددددّ  ددددددد  ضّارةضعدددددددرئ الُدددددددي   دددددددقت ضي بعدددددددّ ا  دددددددل ئ  

ددددربا يلدددد   ل ددددح ضجددددرةيض  وجددددرا    ريددددّ إمدددددر ّ ضيددددح الملددددّ ضيددددرع   ضي ٍددددرمي ضيددددح ضيرع يددددد  ‘ ضياد

 ضيع ل ،       ّ غلة   ي ا ضي ج        رئ إنرةني ض. لر  

ويٍُددددددد ح ضيم ددددددد لاخ ضي لردددددددة   ددددددد   دددددددقض ضي  ددددددد    لدددددددر  ي دددددددرّئ ضّنرلدددددددر  ضيرددددددد  يراددددددد ملار  

دددددد ر  د  مدددددد وخ  ، و دددددد  ضي ددددددرّئ   دددددد  ؛   لددددددعد   ددددددر    ريعدددددديو ) دددددد د  ر رلدددددد   "ي  دٌ د    َّ

ضيردددد  اع ددددة لدددد   ددددرّئ ضيعلُددددي  دددد  ضي دددد  رئ ضي علدددديا ة لددددةا ضي جدددد   ويددددر  ضجرل ددددر    ل علددددّ 

دددددر ضيع ض ددددد  ضيرددددد  الاادددددق  عدددددل  ضّلر دددددرب  ةددددد  لُلددددديا  رجدددددرةيض   ر جدددددم ضي عدددددي  ردددددح ضي  ددددد     د

ضي  دددددد   لادددددد    باددددددّ ضيعلدددددديا، و عددددددي   ةةلددددددّ ضيعلُدددددديا،   دددددد   ٍددددددر   ر جددددددم ضي عددددددي  رددددددح

 و عي  ضلإبجر   ريمٍ ّ ي علُيا، وضي ٍر ّ  ل  غليال    ٍ  ّ  و   ضي ٍر ّ ضلإع لييّ 

ويراددددددل  دددددد  ضيمرددددددرار  ف ضيم دددددد لاخ ضي لرددددددة   دددددد   ددددددقت ضييبضجددددددّ عر دددددد   ي  لربنددددددّ  دددددد  ن ددددددرلاخ 

ددددددربا  دددددد   لدددددد   عددددددي  ضجددددددرلا ؛  جددددددر لّ   رل ددددددّ ارع دددددد   ردددددداللةضئ ضنر ددددددرب ضّارةضعددددددرئ ضياد

    ز     عل ، و ةةلّ ضيعلُي، وجةلّ ضّنر رب  ضي رعّ، و عي  ضيعيَْو 
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