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ABSTRACT 

The electroencephalogram (EEG) signal is used as biometric modality, because it is proven to be unique, universal 

and collectable. This work aims to assess the performance of fuzzy-based techniques for brainprint authentication 

modelling. We benchmark the performance of Fuzzy-Rough Nearest Neighbour (FRNN) technique to the 

Discernibility Nearest Neighbour (D-kNN) and the Fuzzy Lattice Reasoning (FLR) techniques using the selected 

samples of brainwaves’ data from the original UCI EEG dataset. All the three classifiers are available in the 

fuzzy-rough version of WEKA implementation tool. Selected 9 EEG channels located at the midline and lateral 

regions were used in the experimentation. The coherence, mean of amplitudes and cross-correlation feature 

extraction methods were used to extract the EEG signals. The area under ROC curve (AUC) measurement of 

FRNN was promising against the D-kNN and FLR techniques. The FRNN model has achieved the best 

performance of AUC measure at 0.904 in opposition to the D-kNN and FLR models, where both recorded 0.770 

and 0.563, respectively. However, the classification accuracy shows significantly no difference among the three 

classifiers. The results confirmed that the classification accuracy of D-kNN and FLR techniques is not reliable, 

because they are highly contributed by the true negative cases. Hence, we conclude that the FRNN model is less 

biased to imbalance data problem as compared to the D-kNN and FLR models. Future work of this research should 

focus on optimizing the EEG channel and feature selection in order to obtain a better data representation of 

biometric brainprint for more efficient authentication in imbalance data problem. 
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1. INTRODUCTION 

The aim of brainprint authentication is to accept or reject the identity claimed by an individual. There 

are numerous types of person authentication methods, such as knowledge-based, token-based and 

biometric methods. The commonly used Personal Identification Number (PIN) and password are 

examples of knowledge-based authentication and signature is an example of token-based authentication. 

However, password and signature are considered the weakest authentication models, because the 

password can be stolen, while the signature can be forged easily. Biometric systems such as fingerprint, 

iris, face, voice and hand geometry authentication systems were introduced to overcome the security 

incompetency of the traditional authentication methods. Among all, fingerprint and face recognition are 

common modalities in today’s biometric authentication systems. Fingerprint scheme [1] is widely used, 

but is still prone to forgery. This technology recognizes only the ridge arrangement on the finger surface, 

where intruders can easily replicate the fingerprint using silicon or gelatine to infringe the security 

systems. Facial recognition is also less promising, because the human face structure will change as a 

person ages. The above mentioned limitations can be overcome using a more secure biometric modality; 

the human brainprint. The brainprint extracted through electroencephalogram (EEG) signals is a highly 

secure biometric modality for person authentication. Over the recent years, EEG-based person 

authentication is catching much researchers’ attention [2]-[3].  

Various types of soft computing techniques have been applied in EEG signal classification. Artificial 

neural networks (ANNs), fuzzy logic, K-Nearest Neighbour (kNN), linear discriminant analysis (LDA) 

and support vector machine (SVM) are examples of soft computing techniques for EEG signal 

classification. Gui et al. [4] investigated visual evoked potential (VEP) data collection using a low-cost 

sensor system. ANNs were used for EEG-based biometric authentication and the classification accuracy 

achieved was around 90%. Back-propagation NN, SVM and LDA were used to classify the EEG signals 
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for biometric authentication and the accuracy ranged from 80.8% to 89.5% [5]. Fuzzy logic is an 

outstanding model, because it can solve real-world classification problems, since there is no precise 

boundary existing between the categories of problems [6]. Furthermore, the fuzzy set theory is very 

flexible and allows simple computation of evidences in complex relations.  

Due to that EEG signals are non-stationary, a combination of fuzzy set theory, rough set theory and kNN 

called Fuzzy-Rough Nearest Neighbour (FRNN) is chosen to classify EEG signals. It is because the 

uncertainty of fuzzy rough set is able to deal with this problem. The classification results will be 

compared with those of other fuzzy-rough approaches, such as Discernibility Nearest Neighbour (D-

kNN) and Fuzzy Lattice Reasoning (FLR).  

The rest of the paper is organized as follows: Section 2 provides a literature review on EEG signals for 

person authentication, feature extraction and soft computing techniques. Section 3 describes the 

classification techniques. Section 4 outlines the experimentation, which includes data pre-processing 

and preparation, feature extraction, experimental setting, performance measures and statistical tests. 

Section 5 depicts experimental results and discussion. Last but not least, Section 6 draws the conclusions 

and indicates the direction of future work. 

2. RELATED WORK 

Berger was the first who recorded the EEG signals in 1929 [7]. EEG is defined as the electrical activity 

recorded from the scalp surface [8]. EEG signals are the electromagnetic waves that are emitted from 

the human brain’s neurons. EEG is the most practical capturing method that can be used in biometrics 

due to the advances in its hardware devices. The EEG recording is a completely non-invasive procedure 

that can be repeatedly applied to normal adults, patients and children with virtually no risk or limitation 

[8]. The main advantages of using brain electromagnetic waves are: the uniqueness and liveness of the 

EEG signals, in addition to that the recorded brain responses cannot be replicated and the individual’s 

identity cannot be stolen. A research work [9] showed that the individual’s EEG signals vary from every 

individual to another, even though they performed similar task or thought. Conditions of stress, anxiety, 

fatigue, medication, drowsiness, environment, …etc. can increase the difficulty of reproducing similar 

pattern of EEG signals [10]. For example, a person that has been under the influence of stress will 

generate different EEG signals when compared to his/her normal state.  

EEG recording electrodes and their function are critical for obtaining high-quality data for interpretation 

[8]. One important problem of EEG signal recording is the artifacts. Examples of artifacts occurring in 

EEG signal recording are: eye blinking, head movements, muscle activities and electrocardiogram 

(ECG). Due to the very low amplitude of EEG signals, artifacts often contaminate the recordings, 

restricting or making difficult analysis or interpretation. Therefore, the position of the subject during 

EEG recording should be very comfortable to avoid unnecessary activities; a lying position diminishes 

the existence of some artifacts caused by feeble motion. One of the ideas that combined EEG signals 

with authentication systems was proposed by Thorpe et al. [11]. The studied authentication system was 

designed by using pass-thought, which is reliable due to the uniqueness of EEG signals. Apart from that, 

a consumer grade of EEG headset was used in Ashby et al. [12] for authentication purpose.  

Marcel and Millán [13] achieved a high authentication performance of 93.4% in terms of accuracy. A 

total of 9 normal subjects were asked to perform 3 tasks (i.e., left-hand movement, right-hand movement 

and generation of words that begin with the same random letter) during 12 non-feedback sessions in 3 

days, which means 4 sessions per day. The classification accuracy reached around 80% in the research 

work [14]. They analyzed the 8-channel EEG signals from a group of 40 volunteers who performed a 

simple experiment (i.e., relaxing with opened and closed eyes). In addition, the research work by Jian-

Feng [15] used the BCI competition 2003 EEG dataset that was recorded from a total of 64 channels 

and sampled at 250 Hz. The authentication classification result ranged from 75% to 85%. Biometric 

authentication based on EEG signals conducted in [16] covered three tasks of classification accuracy of:  

reading task (97.3%), relax task (94.4%) and multiplication task (97.5%). The research work in [17] 

combined EEG headsets with the smartphone for EEG-based person authentication purpose. Besides, 

an EEG-based biometric authentication system was developed in [18]. The EMOTIV Epoch+ EEG 

headset was used to collect the EEG signals and the classification accuracy achieved was 96.97%.  

Mean corresponds to the centre of a set of values. It is a time domain feature, which is calculated for the 
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reconstructed EEG signal amplitude and time duration. Mean has been used in [19] as one of the features 

for the filtered signals. The extracted signals are then distinguished to be normal or epileptic by using 

artificial neural network technique. Other than that, time domain features, such as mean, median, mode, 

standard deviation, minimum and maximum, were used in [20] in the analysis of EEG signals to detect 

brain abnormalities. Correlation is very similar to convolution, which is a mathematical operation. Then, 

cross-correlation is the measurement of the extent of similarity relationship between two signals. It is 

able to detect non-stationarity and is widely used for the analysis of time series of EEG signals. A set of 

five features is extracted and then utilized for training an SVM classifier to generalize the results. In this 

research, a healthy subject sample signals are acquired to represent a reference signal for data 

comparison. Cross-correlation has been aided to Support Vector Machine (SVM) classifier in EEG 

signal classification [21]. With the aid of cross-correlation, SVM is able to perform better in pattern 

recognition. The accuracy achieved was 94.5%. Hence, cross-correlation is a very useful technique to 

gain insight in EEG signals for feature extraction. Coherence is one of the feature extraction methods 

that is widely used for EEG signal analysis. Coherence is a linear correlation measure between two 

signals at different frequencies. It was first used as a feature in [22] for measuring the mean coupling 

between signals recorded from an electrode and its neighbours. In addition, mutual information, 

coherence and cross-correlation have been used in [23] for an EEG biometric system. The features 

extracted from the EEG signals have been proven unique enough among subjects for biometric 

applications. Research work in [23] used an unobtrusive authentication method that uses 2 frontal 

electrodes and 1 reference electrode placed at the left ear lobe only. 

Due to low signal-to-noise ratio and non-stationarity of EEG signals, uncertainty modelling tools, such 

as fuzzy set and rough set, are needed to handle the related problems. Fuzzy set theory [24] and rough 

set theory [25] are good solutions in handling uncertainty and manipulating incomplete data. Fuzzy-

rough set provides a higher degree of flexibility in dealing with imprecision and vagueness existing in 

real-world data [26]–[30]. Fuzzy-Rough Nearest Neighbour (FRNN) model introduced by Jensen and 

Cornelis [31] is hybridized with the strength of fuzzy-rough set and Fuzzy Nearest Neighbour (FNN) 

approach to complement each other. The constructed fuzzy lower and upper approximations are used to 

avoid the use of fuzzy logical connectives altogether. However, fuzzy-rough set allows that the element 

belongs to more than one class. In addition, FNN model is an extension version of kNN algorithm to 

fuzzy set theory and it is proved that FNN model outperforms the standard nearest neighbour model 

[32]. FNN model allows partial membership of an object in different classes and takes into account the 

closeness of each neighbour with respect to the test instance. Unfortunately, FNN algorithm is found 

out to have a problem when dealing with imperfect data. Therefore, the hybridization of the strength 

between fuzzy-rough set and FNN algorithm, which is fuzzy-rough nearest neighbour (FRNN) 

algorithm, can allow both to complement each other in order to gain good performance.  

FRNN algorithm uses nearest neighbours to compute fuzzy lower and upper estimations in order to 

predict the test objects [31]. With the existing of the fuzzy approximations, the FRNN algorithm 

outperforms other nearest neighbour approaches and Naïve Bayes prediction models in classification 

problems. This is proven from the experiment done in Sarkar [33]. Three nearest neighbour approaches; 

namely, conventional kNN algorithm, the FNN algorithm and the FRNN algorithm, were used to 

classify Wisconsin Breast Cancer problem [34]. The dataset consisted of 699 samples and each sample 

provided ten numerical attributes. A total of 16 samples with missing attributes were removed from the 

dataset. From this experiment, FRNN algorithm gained the highest classification performance among 

the three algorithms. Moreover, the time complexity of FRNN algorithm is the same as those of the 

conventional kNN algorithm and the FNN algorithm. Furthermore, the FRNN algorithm was applied in 

China Stock Market Distressed Company for prediction problems [34]. The FRNN algorithm is able to 

use unbalanced and unmatched training and testing datasets in prediction. The prediction accuracy 

achieved was 78.37% which is better than that of the FNN classification approach. This study concluded 

that the FRNN approach performs better than the conventional kNN approach and the FNN approach. 

FRNN approach not only can deal with unbalanced data, but also performs well when dealing with 

incomplete data.  

D-kNN approach is an extension of the kNN algorithm which uses the concept of discernibility. D-kNN 

computes the discernibility of the neighbours and the distances from the test objects. The main benefit 

in D-kNN approach is that it does not allow the classes of dataset to overlap. D-kNN algorithm considers 

the structural properties of the neighbours. A comparison of performance among three classifiers with 
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nearest neighbour approach was carried out by using Bupa Liver dataset [35]. The classifiers are 

conventional kNN algorithm, Weighted kNN (W-kNN) algorithm and D-kNN algorithm. By comparing 

the classifiers, D-kNN yields the best classification accuracy and net reliability. However, the processing 

time is slightly longer than in the conventional kNN and W-kNN algorithms. W-kNN yields the worse 

in terms of accuracy, because the dataset only contains six features and all of these are equally 

importance. W-kNN performed well when the dataset contains a larger number of features. 

FLR is a rule-based classifier. The term “fuzzy lattice” was introduced by Naseem in 1994 [36] on the 

concept of fuzzy partial-order relation. The benefit of the lattice theory is capability of tackling with 

uncertain information and dealing with missing data [37]. Fuzzy lattices can be used in classification 

and clustering algorithms and have been successfully implemented in real-time problems, such as 

pattern recognition [38], air quality assessment and ambient ozone estimation [39]. FLR classifier was 

successfully applied in ambient ozone estimation [39] and the results with missing values and without 

missing values were compared. The FLR classifier gained similar values in terms of accuracy measure 

for the dataset with missing values and without missing values. The classification accuracy was 84.6% 

for dataset with missing values and 83.23% for dataset without missing values. Furthermore, the least 

time for training and testing was taken by FLR classifier. It used only around 1.5 seconds, while back-

propagation neural networks took a training and testing time between 3 minutes and 25 minutes. In 

recent years, the FLR classifier has been used for image recognition, such as human facial expressions 

[40]-[41]. However, there is still lack of research on EEG signal classification using FLR. 

Data pre-processing and feature extraction are the important steps in order to perform FLR classification. 

Seven different facial expressions; namely, neutral, angry, disgust, feared, happy, sad and surprised, 

were recorded. The dataset was divided into 75% of training data and 25% testing data. From this 

experiment, FLR classifier performed better than the conventional kNN algorithm [40].  

3. CLASSIFICATION 

In this study, FRNN, D-kNN and FLR techniques were used to accomplish brainprint authentication 

modelling. Brainprint authentication modeling consists only of 2 classes; client and impostor. The 

FRNN, D-kNN and FLR techniques can be found in fuzzy-rough version of Waikato Environment for 

Knowledge Analysis (WEKA). It is free downloaded from http://users.aber.ac.uk/rkj/book/wekafull.jar. 

3.1 Fuzzy-Rough Nearest Neighbour (FRNN) 

Fuzzy-Rough Nearest Neighbour (FRNN) was introduced by Jensen and Cornelis [31] in 2011. It is a 

hybrid model with the combination of fuzzy set, rough set and nearest neighbour classification 

approaches. In the FRNN algorithm, the lower and upper approximations are constructed by the nearest 

neighbours to allocate the decision class to the test object. The details of FRNN algorithm can be found 

in Algorithm 1 [31]. The FRNN algorithm calculates the similarity between the two objects and finally 

classifies the test objects into the most possible decision classes. FRNN classifies the test object based 

on single nearest neighbour with the highest similarity measure. Therefore, the value of k does not affect 

the classification performance. The FRNN technique captures uncertainty by using fuzzy-rough 

approximations. The construction of fuzzy upper and lower approximations is to avoid the use of fuzzy 

logical connectives completely. The connectives here are the keys in developing the fuzzy-rough set 

theory. 

3.2 Discernibility Nearest Neighbour (D-kNN) 

Discernibility Nearest Neighbour (D-kNN) classifier can handle overlapping classes of a dataset 

compared to the original kNN. The discernibility of the neighbours was first calculated, followed by 

their distances from the test objects. The algorithm of D-kNN is shown in Algorithm 2 [35]. The property 

of the neighbours is playing an important role in D-kNN prediction [35]. The ratio or distance of 

discernibility is computed for each neighbour data and the average of the ratios is taken for each class. 

D-kNN not only classifies the test elements based on the concept of nearest neighbours, but also based 

on the discernibility scores. The discernibility score of D-kNN classifier is produced for each object to 

be classified. After that, the average of the discernibility scores of the neighbouring objects and their 

distances from the objects are calculated for each one of the possible classes. Then, Sj is calculated for 

the classification score of each class. Eventually, the classification scores of the different classes are 

http://users.aber.ac.uk/rkj/book/wekafull.jar
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compared in order to classify the test objects. The higher the classification score, the higher the chance 

to be the output of the classification. 

Algorithm 1  Fuzzy-Rough Nearest Neighbour (FRNN) algorithm 

1:  Input: X, the training data; 𝒞, the set of decision classes; y, the object to be classified 

2:  Output: Classification for y 

3:    begin  

4:       𝑁 ← 𝑔𝑒𝑡𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑦, 𝑘) 

5:       𝜏 ← 0, 𝐶𝑙𝑎𝑠𝑠 ← ∅ 

6:       foreach 𝐶 ∈ 𝒞 do 

7:           if ((𝑚𝑖𝑛𝑎∈𝔸 (1 −
|𝑎(𝑥)−𝑎(𝑦)|

|𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛|
) ↓ 𝐶) (𝑦) + (𝑚𝑖𝑛𝑎∈𝔸 (1 −

|𝑎(𝑥)−𝑎(𝑦)|

|𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛|
) ↑ 𝐶) (𝑦)) 2⁄  ≥ 𝜏      

then 

8:            𝐶𝑙𝑎𝑠𝑠 ← 𝐶 

9:            𝜏 ← ((𝑚𝑖𝑛𝑎∈𝔸 (1 −
|𝑎(𝑥)−𝑎(𝑦)|

|𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛|
) ↓ 𝐶) (𝑦) + (𝑚𝑖𝑛𝑎∈𝔸 (1 −

|𝑎(𝑥)−𝑎(𝑦)|

|𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛|
) ↑ 𝐶) (𝑦)) 2⁄  

10:           end 

11       end 

12:       output 𝐶𝑙𝑎𝑠𝑠 

13:    end  

 

Algorithm 2  Discernibility Nearest Neighbour (D-kNN) algorithm 

1:  Input: Input train objects (P), labels of train objects (T), number of neighbours (k), test objects   

(PT) 

2:  Output: Classification vector of test object (y) 

3:    Initialization: set 𝑖 = 0 (index of the objects), 𝑗 = 0 (index over the classes)  

4:    n ← number of test objects (PT)  

5:    N ← number of train objects (P)  

6:    z ← discernibility vector for elements of P, using Algorithm-1 and P, T as inputs; 𝑧 = {𝑧𝑖}, 𝑖 =

 1 … 𝑁  

7:    q ← number of unique values of T (classes)  

8:    do 𝑖 ← (𝑖 + 1)  

9:       D ← vector of distances of PI (𝑖) to P 

10:      sd ← sorted values of d 

11:      dk ← 𝑘 first values of sd 

12:      v ← {𝑣𝑚: 𝑣𝑚 = 𝑧𝑚 𝑑𝑘𝑚⁄ }, 𝑚 = 1 … 𝑘 

13:      do 𝑗 ← (𝑗 + 1) for current 𝑖 

14:      𝐶𝑗 ← subset of k nearest elements of P belonging to the j-th class 

15:      Classification score 𝑆𝑗 ← 𝑚𝑒𝑎𝑛 (𝑣𝑐𝑗
), 𝑣𝑐𝑗

= {𝑣𝑚: ∀𝑚 ∈ 𝐶𝑗} 

16:   until 𝑗 = 𝑞  

17:      𝑏 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑗 

18:      𝑦𝑖 ← class 𝑏 

19:   until 𝑖 = 𝑛  
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3.3 Fuzzy Lattice Reasoning (FLR) 

Fuzzy Lattice Reasoning (FLR) is a classifier to extract rules from the input data based on fuzzy lattices. 

The sequence of the input data representation is important. FLR plays an important role in dealing with 

different types of data; for example, fuzzy sets, real vectors, images, symbols, graphs and waves. Other 

than that, FLR can deal with both points and intervals. Apart from that, FLR has the ability of knowledge 

representation and is capable of extracting implicit features beyond the data, which can represent the 

data as rules. Furthermore, FLR has the ability to combine different types of data, handle missing data 

and cope with both complete and incomplete lattices. FLR manages missing data by replacing them with 

least element O and great element I, respectively. For example, if the constituent lattice is ([0,1], ≤), 

then we can replace the missing data by intervals of O = [1,0] and I = [0,1], respectively [37]. 

Algorithm 3  Rule Induction by the Fuzzy Lattice Reasoning (FLR) algorithm 

1:  A rule base 𝑅𝐵 = {𝐴1 → 𝐶1, … , 𝐴𝐿 → 𝐶𝐿} is given – Note that 𝑅𝐵 could initially be empty, i.e. 

𝐿 = 0. 

2:  Present the next input rule 𝑎𝑖 → 𝑐𝑖, 𝑖 = 1, … , 𝑛 to the initially ‘set’ family of rules in 𝑅𝐵. 

3:  If no more rules in 𝑅𝐵 are ‘set’ then 

4:    Store input rule 𝑎𝑖 → 𝑐𝑖 in 𝑅𝐵;  

5:    L ← L + 1;  

6:    Goto 2,  

7:  Else, compute the fuzzy degree of inclusion 𝑘(𝑎𝑖 ≤ 𝐴𝑙), 𝑙 ∈ {1, … , 𝐿} of antecedent 𝑎𝑖 to the 

antecedents of all the ‘set’ rules in 𝑅𝐵  

8:  Competition among the ‘set’ rules in 𝑅𝐵. 

9:       Winner is rule 𝐴𝐽 → 𝐶𝐽 such that 𝐽 = arg max
𝑙∈{1,…,𝐿}

𝑘(𝑎𝑖 ≤ 𝐴𝑙). 

10:  The Assimilation Condition: Both 𝑑𝑖𝑎𝑔1(𝑎𝑖⋁𝐴𝐽) is less than a maximum user-defined 

threshold size Dcrit and ci = CJ. 

11:  If the Assimilation Condition is satisfied then 

12:      Replace the antecedent 𝐴𝐽 of the winner rule 𝐴𝐽 → 𝐶𝐽 by the join-interval 𝑎𝑖⋁𝐴𝐽. 

13:  Else, ‘reset’ the winner rule 𝐴𝐽 → 𝐶𝐽. 

14:  Goto 3, 

 

Algorithm 4  Generalization by the Fuzzy Lattice Reasoning (FLR) algorithm 

1:  Consider a rule base 𝑅𝐵 = {𝐴1 → 𝐶1, … , 𝐴𝐿 → 𝐶𝐿}. 

2:  Present a rule antecedent ‘𝑎0’ for classification based on the rule base 𝑅𝐵. 

3:  Calculate the fuzzy degree of inclusion 𝑘(𝑎0 ≤ 𝐴𝑙), 𝑙 ∈ {1, … , 𝐿} of antecedent ‘𝑎0’ in the 

antecedents ‘𝐴𝑙’, 𝑙 = 1, … , 𝐿 of all rules in 𝑅𝐵. 

4:  Competition among the rules in 𝑅𝐵. 

5:    Winner is rule 𝐴𝐽 → 𝐶𝐽 such that 𝐽 = arg max
𝑙∈{1,…,𝐿}

𝑘(𝑎𝑖 ≤ 𝐴𝑙).  

6:  The antecedent 𝑎0 is classified to the class with label 𝐶𝐽.  

(ai, CL) is the representation for the input datum to the FLR model, where CL represents the class label 

of datum ai and can be interpreted as a rule “if ai then CL”. An input datum (a0, C0) is presented to the 

network in the learning phase. The degree of inclusion between input and stored rules in RB will be 

calculated as k(a0, a1), … , k(a0, ac). The FLR will choose the rule with arg max
l∈{1,…,L}

k(ai ≤ Al) as the 

winner rule. If the winner rule AJ and input datum a0 have the same class label and the size of ai⋁AJ is 

less than a user-defined threshold, then the winner rule will be updated. There is only one parameter that 

can be tuned in FLR; that is the threshold size, Dcrit. Dcrit is used to indicate the maximum size of a 
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hyperbox to be learned. Larger values of Dcrit will result in more generalized rules while smaller values 

of Dcrit will result in more specific rules. 

4. EXPERIMENTATION 

EEG signal classification is a difficult task as a result of that the characteristics of EEG signals are non-

stationary, in addition to high dimensionality and low signal-to-noise ratio (SNR). Thus, data pre-

processing and data preparation steps are important.  

4.1 Data Pre-processing and Data Preparation 

In this study, a free EEG dataset is used which can be taken from UCI Machine Learning Repository 

[42]. The online available EEG dataset consists of three versions, which are small dataset, large dataset 

and full dataset. Each of the datasets contains an individual, 10 individuals and 122 individuals, 

respectively. The UCI EEG dataset was recorded for both alcoholic and non-alcoholic persons. Since 

this study focused on person authentication modeling, only non-alcoholic dataset will be used. Alcoholic 

data is not suitable for this study, because data collected from alcoholic persons might be less accurate 

due to their brains having been affected by alcohol. Large dataset will be used in this study, but one of 

the individuals from the large dataset will be replaced by an individual from the full dataset. This is 

because there are many redundant trials by the individuals which will affect the result. Each individual 

accomplished 60 trials. This EEG dataset consists of the measurements of 64 electrodes (61 active 

electrodes + 3 reference electrodes) placed on the scalps and the sampling rate was at 256Hz. 

The stimuli were composed of 90 images that were chosen from a total of 260 black-and-white 

Snodgrass and Vanderwart image set [43]. The subjects were requested to recognize the image as soon 

as the image is displayed on the computer screen. The distance of the computer screen from the subject’s 

eyes was 1 meter. The image remained on the screen for 300ms and the Inter-Stimulus Interval (ISI) for 

each test was set to 3200ms. The visual stimulus presentation is illustrated in Figure 1. 

 

Figure 1.  Visual stimulus presentation. 

In the general machine learning model building, there are some common suggestions for train/test splits, 

such as 60/40, 70/30, 80/20 or even 90/10, if the dataset is relatively large [34]. The higher percentage 

of train data tends to generate a better model, but sacrifices the objectivity of test results due to low 

number of test data. Therefore, the larger the dataset, the higher the train/test proportion which may be 

applied. However, machine learning experiment seldom implements the 90/10 proportion, unless the 

dataset used is extremely large. We used the 80/20 train/test proportion in this study, where 480 instances 

were used for model building versus 120 instances for model testing. 

In this stage, we have checked the trials in order to avoid the redundant trials between train set and test 

set. The dataset has equivalent distribution of trials between S1 object, S2 match and not-match for both 

train set and test set. In this study, we only selected 100 data points, which corresponds to approximately 

300 milliseconds (ms). This is because the VEP normally occurred within the first 300ms. Besides, the 

EEG signals of S2 were different from those of S1 due to that S2 involves brain information about the 

match or not-match analysis. Only the electrodes located at the midline and lateral sides were 

considered. This is due to that midline and lateral electrodes provide stronger strength from electrical 

signals when responding to visual stimuli [44]. The lateral electrodes are PO7, PO8, O1, O2 and OZ, 

while the midline electrodes are FPZ, FZ, CZ, PZ and OZ. 



116 

"Fuzzy-Rough Classification for Brainprint Authentication", S. H. Liew, Y. H. Choo and Y. F. Low. 

 

4.2 Feature Extraction 

A set of feature vectors were retrieved from the raw EEG dataset. The extracted feature vectors act as a 

different observation for the purpose of classification. Besides, feature extraction can reduce the 

dimensions of the input attributes as compared to the raw EEG dataset. In this study, coherence, cross-

correlation and mean of amplitudes are selected from a particular literature review. The three feature 

extraction methods are described as follows: 

a) Coherence: Coherence is used in order to compute the degree of linear correlation between two 

signals. The correlation between two signals at different operating frequencies can be revealed by 

coherence [17]. EEG-based coherence analysis is proven to be suitable for use in biometrics [45].  

Coherence is ranging from 0 to 1, where the value of 0 indicates that the two signals are independent, 

while the value of 1 indicates that the two signals are completely linearly dependent. The coherence is 

calculated as follows: 

𝐶𝑥𝑦(𝑓) =  
|𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)
 (1) 

where, 

𝐶𝑥𝑦(𝑓) is a function of the power spectral density (𝑃𝑥𝑥 and 𝑃𝑦𝑦 ) of 𝑥  and 𝑦  and the cross-power 

spectral density (𝑃𝑥𝑦) of 𝑥 and 𝑦.  

b) Cross-correlation: Cross-correlation, known as a sliding dot product, is used to compute the 

similarity between two signals. It is also frequently used to obtain the existence of a known signal 

sequence in an unknown one. It is a function of the relative delay between the signals and the application 

in pattern recognition. Two input signals will be calculated for cross-correlation: 

Channel 1 with itself: 𝜌𝑋, 

Channel 2 with itself: 𝜌𝑌, 

Channel 1 with channel 2: 𝜌𝑋𝑌. 

The correlation 𝜌𝑋𝑌  between two random variables 𝑥  and 𝑦  with expected values 𝜇𝑋  and 𝜇𝑌  and 

standard deviation 𝜎𝑋 and 𝜎𝑌 is given as: 

𝜌𝑋,𝑌 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=  
𝐸((𝑋 −  𝜇𝑋)(𝑌 −  𝜇𝑌))

𝜎𝑋𝜎𝑌

 (2) 

where, 𝐸( ) is the expectation operator and 𝑐𝑜𝑣( ) is the covariance operator. 

c) Mean of Amplitudes: Mean, also known as average, is the sum the of all EEG potential values divided 

by the number of data points. The mean is calculated as follows: 

�̅� =  
1

𝑛
∙ ∑ 𝑥𝑖

𝑛

𝑖=1

 (3) 

where, 𝑛 is the number of data points and 𝑥𝑖  is the value of the data. 

4.3 Experimental Setting 

In FRNN algorithm, fuzzy logic connectives are crucial for developing the fuzzy-rough set theory. A 

triangular norm (t-norm), 𝒯  is any increasing, associative and commutative [0,1]2 → [0,1] mapping 

satisfying 𝒯(1, 𝑥) = 𝑥, for all 𝑥 in [0,1]. On the contrary, an implicator is any [0,1]2 → [0,1] mapping 

ℓ satisfying ℓ(0,0) = 1, ℓ(1, 𝑥) = 𝑥, for all 𝑥 in [0,1]. Based on the [31], the Kleene-Dienes implicator 

for 𝑥, 𝑦 value in [0,1] was implemented. In addition, the experimental setting for D-kNN was the same 

with FRNN classifier. Kleene-Dienes was chosen for both t-norm and implicator. Moreover, there is 

only one parameter that can be tuned in FLR algorithm; that is the threshold size 𝜌. We have set 𝜌 =
0.1 [38] in our experiment. 

4.4 Performance Measures and Statistical Test 

The experimental result is analyzed based on the accuracy and the area under the receiver operating 

characteristics (ROC) curve (AUC). The AUC measure is used as one of the performance measures in 
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this study, because it is more reliable and statistically consistent as compared to the accuracy measure 

in [46]. The accuracy and AUC of FRNN will be compared with the results obtained from D-kNN and 

FLR. The purpose of this comparison is to test whether FRNN can perform better than other 

classification algorithms, such as D-kNN and FLR.  

Beforehand, the normality distribution of data is verified by using the Anderson-Darling test. The 

Anderson-Darling test [47] is modified from Kolmogorov-Smirnov (K-S) test. By comparing to the (K-

S) test, Anderson-Darling test contributes more weights to the distribution tails. The critical value is 

calculated for the specific distribution. The Anderson-Darling test is calculated as: 

𝑊𝑛
2 = 𝑛 ∫ [𝐹𝑛(𝑥) −  𝐹∗(𝑥)]2𝜓 (𝐹∗(𝑥)𝑑𝐹∗(𝑥)

∞

−∞

 (4) 

where, 𝜓 = non-negative weight function which can be defined from: 

𝜓 =   𝐹∗(𝑥)(1 − 𝐹∗(𝑥))−1 (5) 

The normality distribution of data must be determined before performing a statistical test. A statistical 

test is performed in order to determine the confidence level of the dataset which lead to reaching 

conclusions. Parametric test is chosen when data is normally distributed, while non-parametric test will 

be chosen when data is not normally distributed. Parametric tests, such as Z-test, paired-sample t-test or 

F-test, will yield higher accuracy when data is normally distributed. Simultaneously, if data is normally 

distributed and a non-parametric test is performed, then the results will not be as accurate as in the case 

of parametric test.    

From the normality test using Anderson-Darling test, the accuracy of FRNN, accuracy of D-kNN and 

AUC of D-kNN are normally distributed, while the accuracy of FLR, AUC of FRNN and AUC of FLR 

are not normally distributed. Therefore, a paired-sample t-test is performed between accuracy of FRNN 

and accuracy of D-kNN. In contrast, Wilcoxon signed-rank test is performed when the results are not 

normally distributed.  

A paired-sample t-test is performed to compare the differences of means between paired observations 

by using the IBM SPSS Statistics 22. The paired-sample t-test is a statistical validation method which 

is used to compare the means from different sources in a dataset [48]. The reason behind this is to 

investigate the significance differences between two groups. The null hypothesis of paired-sample T-

test states that the difference between two mean values is zero, which is represented as: 

𝐻0: 𝜇1 − 𝜇2 = 0 (6) 

On the other hand, Wilcoxon signed-rank test is frequently used for non-parametric testing. It is an 

alternative method for paired-sample t-test. The Wilcoxon signed-rank test is used to evaluate the 

difference of medians between paired data. Wilcoxon signed-rank test is more powerful in 

distinguishing the differences between two samples [49]. The nominal data cannot be analyzed with 

Wilcoxon signed-rank test, because the difference of the nominal data points has no specific value. 

In statistical test, the null hypothesis is rejected if and only if the 𝑝-value is less than 0.05, which means 

that there are statistically significant differences between the two samples. On the contrary, the null 

hypothesis is accepted if and only if the 𝑝-value is larger than 0.05, which means that there are no 

statistically significant differences between the two samples. A statistical test was performed to test the 

differences between the two classifiers for different cases of use at 95% confidence level. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

Table 1 shows the individual EEG signals’ authentication performance for 10 subjects. D-kNN model 

ranked first with an accuracy of 92.09%, while the FLR model came second with an accuracy of 90.67%. 

Meanwhile, the FRNN model had the lowest classification accuracy, recorded to be 90.17%, as 

compared to the D-kNN model and the FLR model. The highest accuracy recorded for FRNN model 

was up to 99.17%, while the lowest accuracy was 80.83% only. On the other hand, the accuracy of D-

kNN model was considerably high, where the highest value recorded was 98.33% and the lowest was 

89.17%. Besides, the accuracy of FLR model was between 88.33% and 94.17%. In overall, the accuracy 

of FRNN model, D-kNN model and FLR model indicated good classification results. 
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Table 1.  Comparison of accuracy and AUC between FRNN, D-kNN and FLR. 

Subject  
FRNN D-kNN FLR 

Accuracy AUC Accuracy AUC Accuracy AUC 

Subject 1 87.50 0.924 91.67  0.735 92.50 0.773 

Subject 2 86.67 0.788 89.17 0.661 90.83 0.579 

Subject 3 88.33 0.922 91.67 0.758 90.00 0.500 

Subject 4 80.83 0.704 89.17 0.488 88.33 0.491 

Subject 5 93.33 0.954 94.17 0.880 90.00 0.500 

Subject 6 88.33 0.924 90.00 0.814 90.00 0.500 

Subject 7 99.17 1.000 98.33 1.000 94.17 0.708 

Subject 8 90.83 0.895 91.67 0.733 90.00 0.500 

Subject 9 90.00 0.936 90.83 0.758 90.00 0.500 

Subject 10 96.67 0.990 94.17 0.875 90.83 0.579 

Average 90.17 0.904 92.09 0.770 90.67 0.563 

The FRNN model has achieved the highest average AUC with 0.904. However, the average AUC has 

been found to be 0.770 in D-kNN model followed by FLR model with 0.563. Thus, it was shown that 

the FRNN model outperformed the D-kNN model and the FLR model. In the FRNN model, the highest 

AUC achieved was a perfect 1.00 score, while the lowest was 0.704. Comparatively, the highest AUC 

for D-kNN model also achieved the perfect score 1, but 0.488 was the lowest AUC in this model. Lastly, 

0.773 was the highest AUC in FLR model, while 0.491 was the lowest AUC in FLR model. 

From the performance measure in terms of accuracy, D-kNN model is slightly higher than FRNN and 

FLR models. On the other hand, FLR model showed the worst result in AUC. From Table 1, we can 

visually observe that most of the results are around 0.5, which is rated as worst classification 

performance. The model is not capable of distinguishing between positive class and negative class. This 

result explained that the FLR model is not suitable to classify EEG signals for person authentication. 

The possible reason is the parameter setting of FLR model. As previously described, there is only one 

parameter which can be tuned; that is the size of threshold. As the parameter setting for FLR model is 

0.1 [38], therefore it will affect the AUC obtained, since the perspective of AUC is different from that 

of accuracy. The larger values of threshold will result in more generalized rules [39]. The threshold used 

in this project is small, which is 0.1; therefore, the rules are more specific as smaller values of threshold 

will result in more specific rules. Thus, the AUC of FLR models is lower than in FRNN and D-kNN 

models.   

By observing the overall classification results above, FRNN gained good performance in terms of 

accuracy and AUC compared to D-kNN and FLR models. As previously described, FRNN algorithm is 

a fusion model that combines the strength fuzzy-rough set and the FNN approach. The decision class is 

determined by using the fuzzy lower and upper approximations to compute the membership value of a 

test object [31]. The fuzzy lower and upper approximations play a crucial role in dealing with noisy data 

such as EEG signals. Hence, the FRNN is able to perform better. 

Table 2.  Statistical test for comparison of accuracy and AUC between FRNN, D-kNN and FLR. 

Performance Measure Mean p - Value Statistical Test 

FRNN  Accuracy 90.17 
0.071 

No significant 

differences D-kNN  Accuracy 92.09 

FRNN  Accuracy 90.17 
0.767 

No significant 

differences FLR  Accuracy 90.67 

FRNN  AUC 0.904 
0.004 

Significant 

differences D-kNN  AUC 0.770 

FRNN AUC 0.904 
0.006 

Significant 

differences FLR  AUC  0.563 
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Table 2 shows the statistical test for the comparison of accuracy and AUC among FRNN, D-kNN and 

FLR models. The paired-sample t-test was only used for the comparison between the accuracy of FRNN 

model and the accuracy of D-kNN model. The p-value of this comparison is 0.071, which is greater than 

0.05. Thus, we can conclude that the FRNN model and the D-kNN model are not significantly different. 

On the contrary, Wilcoxon signed-rank test was used for the rest of the comparisons. The p-value for 

the comparison between the accuracy of FRNN model and that of FLR model was recorded at 0.767, 

which is greater than 0.05. Hence, there are also no significant differences between the FRNN model 

and the FLR model. In summary, accuracy comparisons did not show significant differences among the 

models. 

Comparatively, the statistical test for the comparison between the AUC of FRNN model and D-kNN 

model showed significant differences with a p-value of 0.004. From the mean values in Table 2, it is 

clearly proved that the AUC of FRNN model is higher than the AUC of D-kNN model. Thus, we can 

conclude that the FRNN model performed better than the D-kNN model. Furthermore, a statistical test 

was also carried out for the comparison between the AUC of FRNN model and that of FLR model. The 

p-value was recorded at 0.006 and indicating significant differences in the paired set. The AUC of FRNN 

model achieved a value of 0.904, while the AUC of FLR model achieved only 0.563, which is considered 

a poor result. In other words, the FRNN model significantly performed better than the D-kNN model 

and the FLR model. 

6. CONCLUSIONS 

Among the fuzzy set and rough set approaches, the FRNN model is proven to be significantly better 

than D-kNN model and FLR model in EEG signal classification for brainprint authentication modeling. 

The AUC of FRNN model is 0.904, which is considered an excellent classification result. However, 

further work should be done on the FRNN model to improve the accuracy and AUC, since a good 

authentication system should have a perfect classification. The classification results gained from the 

FRNN model are more stable and consistent as compared to the classification results of D-kNN model 

and FLR model. This study showed the importance and capability of fuzzy-rough approximations of 

handling uncertain and non-stationary signals. 
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 ملخص البحث:

تسُتتتتتتتارات التتتتتتتلكهر هئارلتتتتتتتكو هئة قيتتتتتتتلجي ئ تتتتتتتاتعل     تتتتتتتك    كتتتتتتتل  يك ئ  كتتتتتتت      تتتتتتتل تا اتتتتتتت  

تقكتتتتتكء تلهي تققكتتتتتلر  لج تتتتت    تتتتت  يتتتتتلئ قهلع وهئة  عكتتتتت  و لي كتتتتت  هئل تتتتت     تتتتتا   تتتتت ه هئة تتتتت  هئتتتتت  

ج عتتتتتتتص ت تتتتتت      تتتتتت  ا أتتتتتتتلر ت تتتتتتلئ  هئ تتتتتت ك يل تتتتتتتاراهت ي تتتتتت لر تلع تتتتتتت   هئ قلتتتتتتو هئ نتتتتتت ذ

( ه  تتتتتت ك  ئ  قلك تتتتتت  يتتتتتتكص  تتتتتت    UCI EEGه لتتتتتترلخ  ه تتتتتتاراعن عل   تتتتتت  يكل تتتتتتلر  

ج   خاكتتتتتتلك تستتتتتت   قتتتتتت هر ت اتتتتتت   هتتتتتتتء عتتتتتتص تققكتتتتتتلر هئا تتتتتتقكط هئقلج تتتتتت    تتتتتت  هئ قلتتتتتتو هئ نتتتتتت ت

لتتتتتتتلكهر هئارلتتتتتتتكو هئة قيتتتتتتتلجي ئ تتتتتتتاتعل  وتا   تتتتتتت   قتتتتتتتا ختتتتتتتو هئ  تتتتتتتو وهئ قتتتتتتتل و ا  تتتتتتت  

و قاتتتتتتقح هئأتتتتتتل ا ب تب  ق تتتتتت  هئأ تتتتتت  هئ ستتتتتتاقأ ي هئلل أكتتتتتت  م تتتتتتاراهع ل جتتتتتتي ا تتتتتتقهي هئالتتتتتتلك   

تتتتت لر هئ اة قتتتتت  ي تتتتتل عتتتتتص ت تتتتت  هئ  تتتتت      تتتتت  هخاكتتتتتلك  قتتتتتلع هئارلتتتتتكو هئة قيتتتتتلجي ئ تتتتتاتعل  وهئستل

  هئا  تتتتتت  هئتتتتتت    تتتتتت  ت اكتتتتتت   تجاتتتتتت  ئ أكل تتتتتتلر هئرل تتتتتت  يأ تتتتتت لر تلع تتتتتت  ه لتتتتتترلخ ي تتتتتتا

 تتتتاك  ت أتتتتق عتتتتص هئا تتتت  جتتتتي ا أتتتتلر ت تتتتلئ   تتتت ك و تتتت   ه لتتتترلخ ئ ا  تتتت    تتتت  عنتتتتة    تتتتات 
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