52

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 12, No. 01, March 2026.

VEGA-360: VIEWPORT-AWARE HIERARCHICAL

GROUPED ALLOCATION FOR MULTI-LAYER 360°
VIDEO STREAMING

Phi Dinh Huynh and Nguyen Viet Hung

(Received: 26-Nov.-2025, Revised: 13-Jan.-2026, Accepted: 16-Jan.-2026)

ABSTRACT

Delivering multi-layer, tiled 360° video to multiple wireless users is challenging due to limited radio resources,
heterogeneous channel conditions and a strong viewport-dependent quality of experience (QoE). To address this
problem, we propose Viewport-Enhanced Grouped Allocation for 360° Video (VEGA-360), a hierarchical
viewport-aware resource allocation framework for multi-user 360° video streaming. VEGA-360 adopts a two-
stage design. On the main stage, VEGA-360 partitions users into a small number of clusters using a joint criterion
that combines spectral efficiency and viewport similarity derived from viewport weights and allocates a per-cluster
resource budget accordingly. In the fine-tuning phase, VEGA-360 solves independent optimization sub-problems
per cluster at the tile granularity, enforcing radio resource and SHVC scalability constraints while maximizing a
utility metric that accounts for viewport-weighted visual quality and the transmission overhead caused by
distributing multiple tile instances. By separating coarse-grained grouping and budgeting decisions from fine-
grained tile-layer allocation, VEGA-360 reduces the size of each optimization instance and improves
computational tractability while maintaining viewport-aware service in dense multi-user scenarios. Simulation
results show that VEGA-360 achieves competitive utility/QoE compared to a monolithic MILP baseline, with
substantially shorter solution times.
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1. INTRODUCTION

Virtual Reality (VR) and 360 -degree video technologies have enabled users to experience highly
immersive three-dimensional (3D) environments, where they can freely explore and interact with virtual
or captured real-world scenes as if they were physically present [1]. By combining head-mounted
displays (HMDs), motion tracking and interactive content, VR has been successfully adopted in
education, healthcare, manufacturing, entertainment and many other domains, where immersive visual
experiences can enhance engagement, training effectiveness and decision-making.

To deliver such immersive experiences at scale, 360 -degree videos are typically captured and rendered
in high resolutions (e.g. 4 K and beyond), which leads to extremely large data volumes and high bitrate
demands [2]. These requirements become even more stringent on mobile devices, where limited
computation capability, constrained battery and fluctuating wireless bandwidth can easily cause
playback stalls, blurry viewports or noticeable latency. To cope with these constraints, tile-based
viewport-adaptive streaming has emerged as a widely adopted approach: the spherical video is
partitioned into multiple tiles and only the tiles within the user's current Field of View (FoV) or Region
of Interest (Rol) are delivered at high quality, while the remaining tiles are sent at reduced quality [2]-

(3].

Scalable video-coding extensions, such as Scalable High-efficiency Video Coding (SHVC), further
enable flexibility by encoding each tile into a base layer and multiple enhancement layers [4]-[5]. The
base layer guarantees minimum decodable quality, whereas enhancement layers can be selectively
transmitted to refine spatial resolution or improve quality when network conditions permit. At the same
time, the evolution of mobile networks from 4G LTE to 5G brings significantly higher peak data rates,
lower latency and improved spectral efficiency, offering an attractive infrastructure for delivering
interactive 360 -degree video in real time [6]-[7]. As illustrated in Fig. 1, each selected tile is encoded
into multiple quality layers and broadcast to different user clusters. High-capability users subscribe to
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more enhancement layers, while low-capability users only receive the base layer. This layered multi-
cast structure serves as the basis for the proposed VEGA-360 optimization framework.

Despite these advances, providing high-quality 360 -degree video streaming to multiple mobile users
remains challenging. Existing solutions often optimize either viewport-adaptive tiling [2]-[3],[8] or
streaming strategies (uni-cast/multi-cast, rate adaptation) [9][10][11][12], but still face difficulties in
simultaneously handling: Firstly, heterogeneous link conditions across users; secondly, diverse viewport
dynamics and Rol preferences; and finally, limited radio resources on a single cell. Recent studies have
explored Rol-based viewport prediction [13]-[14], clustering users with similar viewing patterns [15]
and optimized tile-quality selection for multi-user scenarios [16]. However, there is still a lack of a
unified framework that jointly exploits user clustering, scalable tiling and resource allocation to
maximize Quality of Experience (QOE) under realistic bandwidth constraints.

Figure 1. SHVC-based layered multi-cast for tiled 360° video.

Motivated by these limitations, we present VEGA-360, a clustering-based optimization framework for
multi-user 360° video streaming over mobile networks. VEGA-360 groups users according to their tile-
level quality requirements and channel conditions and allocates radio resources across clusters and tile
layers to prioritize high-impact tiles within users' regions of interest (Rols) while respecting the global
bandwidth budget. By jointly leveraging scalable video encoding and intelligent user clustering,
VEGA360 effectively balances fairness and efficiency, reduces redundant transmissions and improves
overall QoE compared with existing baselines.

The following part provides an expanded overview of the key contributions presented in this paper,
highlighting the main ideas, methodological advances and practical implications derived from the study.

e We design a clustering-based system model for multi-user 360 -degree video streaming, where
users sharing similar viewport and quality demands are grouped into clusters and tiles are
encoded using scalable video coding to support flexible per-tile quality selection.

o We formulate a joint optimization problem that captures tile-layer selection and radio-resource
allocation across clusters under bandwidth and QoE constraints, explicitly focusing on tiles
lying in users' Rol.

e We develop a practical-solution algorithm to solve the optimization problem segment-by-
segment, enabling the system to adapt to time-varying network conditions and dynamic
viewports while maintaining stable QoE.

e We conduct extensive simulations using real 360 -degree video traces and head-movement
datasets and compare VEGA-360 against other state-of-the-art schemes. The results show that
our framework improves QoE and viewport quality while keeping bandwidth usage within
practical limits.

This is how the rest of the paper is structured. In Section 2, relevant research on user-clustering
techniques and 360 -degree video streaming is reviewed. The system model and problem formulation
are presented in Section 3. The suggested framework and solution algorithm are presented in Section 4.
Section 5 presents the results of the performance evaluation and Section 6 wraps up the work.
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2. RELATED WORK

The rapid growth of immersive services has driven extensive research on adaptive 360 -degree video
streaming over wireless networks. Recent work has focused on designing smarter adaptation strategies
that consider both network dynamics and user experience. Chen et al. studied streaming 360° VR video
with statistical QoS provisioning in mmWave networks, highlighting the role of wireless reliability
constraints in immersive delivery [17]. Badnava et al. formulated multi-user 360 -degree video delivery
as a multi-task decision-making problem and used a deep reinforcement-learning agent to jointly
allocate bitrate and computation resources, with the goal of maximizing long-term QoE under
fluctuating bandwidth [18]. Wang et al. adopted a multi-agent deep reinforcement learning framework
to control rate adaptation for 360-degree contents, where multiple viewpoints and fairness among users
are explicitly modelled in the optimization process [19]. In parallel, Nguyen et al. addressed robustness
to sudden throughput reductions and proposed a scalable and resilient 360-degree HTTP/2 streaming
solution that exploits stream prioritization and independence to mitigate stalls and quality drops [20].
Other recent studies explored joint optimization of streaming and enhancement. For example, Guo et al.
investigated coordinated control of coding parameters and super-resolution filters for mobile 360 -
degree delivery [21], while Feng et al. designed a stochastic multi-window adaptation scheme that
couples viewport prediction and bitrate assignment [22]. These approaches, however, operate mostly on
a per-user basis and do not fully exploit the potential of multi-cast gains when users share similar
viewports and quality requirements. FoV overlap has also been explicitly exploited in wireless VR
delivery in order to improve robustness and efficiency when users share similar viewing regions [23].
Relatedly, Abedini and Nickray employed reinforcement learning to tune transport-layer congestion
control for real-time delivery, indicating that cross-layer adaptation can help stabilize end-to-end
performance under time-varying bandwidth [24].

Viewport prediction and user-behavior modeling form another active line of research for 360 -degree
video. Wahba et al. provided a recent survey of learning-based viewport-prediction techniques and
identified open problems related to latency, generalization and device heterogeneity in practical systems
[25]. Building on data-driven prediction, Wang et al. introduced an edge-assisted clustered-learning
framework, CoLive, that groups users based on their viewing behaviour and trains cluster-specific
models to improve prediction accuracy and streaming efficiency in live scenarios [26]. Zhang et al.
proposed a mobile-friendly viewport prediction method for live 360 -degree streaming in which
attention-aware features and device constraints are jointly exploited [27]. Besides, Nguyen et al.
developed a GRU-LSTM-based viewport-estimation method tailored to 360 -degree video streaming
[28]-[29] and more recent work explores reinforcement-learning based viewport estimation that fuses
head and eye-movement information (HEVERL) for VR applications [30]. These works clearly show
that exploiting correlations between users and leveraging clustering at the prediction layer can improve
performance, but they stop short of incorporating clustering directly into a global multi-cast resource-
allocation problem.

User clustering for multi-user 360° streaming can be broadly categorized into channel-based and
behavior-based clustering. Channel-based clustering groups users according to wireless channel
conditions (e.g. spectral efficiency or SNR), which is attractive for multi-cast, because the cluster
transmission rate is typically constrained by the worst-channel user. However, clustering solely by
channel may ignore viewport heterogeneity and enlarge the union of requested tiles, reducing multi-cast
efficiency. In contrast, behavior-based clustering groups users by viewing behaviour (viewport/FoV
similarity or predicted viewport trajectories) to maximize tile reuse and reduce redundant transmissions.
Representative behavior-aware works emphasized viewport prediction and viewport-adaptive delivery,
including SPA360 [31], Meta360 [32], FoV prediction-assisted viewport delivery [33] and utility-driven
optimization in JUST360 [34]. While these studies highlighted the benefits of behavior awareness, they
generally did not integrate channel heterogeneity into the clustering decision for multi-cast resource
allocation. Our work bridges this gap by explicitly combining channel information and viewport
similarity in the clustering stage and coupling them with hierarchical per-cluster resource allocation for
multi-cast tiled SHVC delivery.

Accurate QoE modeling for immersive media has also received increased attention. More recently,
physiological-signal-driven QoE optimization has been investigated for wireless VR transmission,
providing an alternative direction for modeling user-perceived experience beyond traditional quality
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metrics [35]. Nguyen et al. proposed a retina-inspired objective quality-assessment model for tile-coded
360 -degree videos, in which spatial weights are aligned with the non-uniform sensitivity of the human
visual system across the field of view [36]. Elwardy et al. presented a pilot study on the consistency of
subjective quality assessment for 360 -degree contents, introducing the RQA360 dataset and analyzing
repeated tests in both standing and seated viewing conditions [37]. Complementary evidence is reported
by Qananwah et al., who explored physiological cues (EEG signals) to guide video-compression
decisions, reinforcing the value of human-centric information when constructing QoE-aware streaming
and coding strategies [38]. These studies highlighted the importance of QOE metrics that not only reflect
the delivered quality level, but also account for viewport importance, spatial-quality variations across
tiles and the impact of experimental settings such as viewing posture and device. Such insights motivate
the use of viewport-weighted utility functions and penalty terms in the design of optimization-based
streaming frameworks. Closer to the present work, clustering-based optimization for 360-degree multi-
cast has been investigated from a cross-layer perspective. Nguyen et al. proposed a clustering-based
framework for scalable multi-cast of tiled 360-degree videos in multi-cell wireless networks, in which
a mixed-integer linear program jointly selects SHVC layers and user clusters under resource constraints
[39]. That monolithic approach demonstrates notable QoE and bandwidth gains compared with uni-cast
and heuristic baselines, but its computational complexity grows rapidly with the number of users, tiles
and available resource blocks, which limits scalability in dense deployments. In contrast, the VEGA-
360 framework studied in this paper adopts a hierarchical two-stage design: a first-stage viewport- and
channel-aware clustering step groups users and allocates a per-cluster resource budget based on users'
spectral efficiencies and viewport similarity (derived from tile weights) and independent second-stage
sub-problems allocate tile versions and radio resources within each cluster.

3. SYSTEM MODEL AND DESIGN OVERVIEW

A group of users User1 . User2 &

% aaninn

Grid tile video
VERERE

Figure 2. Overall architecture of the proposed VEGA-360 system. The server performs tiling and
SHVC encoding, the base station groups users into clusters according to channel quality and viewport
similarity and a joint user/tile allocation model maps SHVC layers to resource blocks.

The system model of the suggested VEGA-360 framework for QoE-aware 360-degree video multi-cast,
as seen in Fig. 2 and Fig. 3, is described in this section.

We consider a wireless downlink scenario in which a video server stores several 360° videos and
communicates with a group of heterogeneous users through a base station (BS). All users request the
same 360° video segment at a given time. The processing begins by dividing the video into spatial tiles
and temporal segments. Let

U={1,..,ULT =(1,..,T} (1)
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represent the sets of users and tiles within a single segment, respectively. Each tile is encoded by SHVC
into C scalable layers, indexed by c € {0, ...,C — 1}, where ¢ = 0 is the base layer and ¢ > 1 are
enhancement layers. The c-th layer provides an objective video quality Q. (e.g. PSNR) and requires
bitrate (or bandwidth) B,.

Video tiling &
SHVC method \
Request 3 ! !
ser’s ViewPo —
& Channel Info, ! !
Determine /
pumber of use

Loop
Proces;
- Perform cluster-level optimization
>Group Users into Clusters

>Select quality layer per Cluster
- Perform tile-level optimization
>Assign tile versions for users
>Ensure BW limits per cluster

>Prepare transmission content (RB
mapping)

Send every tile's basic layer

Request Unicast or Multicast

Unicast tile data '
Multicast tile data '
' QoE feedback

Figure 3. Sequence diagram of the VEGA-360 streaming workflow between server and client sides for
one video segment.

For each user u € U, we model the importance of tile ¢t € 7" by a weight w,, . € [0,1], which reflects
how likely tile t lies inside the viewport of user u. The weights are normalized as:

Z wye =1,YVu € U. 2)

Here, large w,, , means that tile ¢ contributes more to the perceived QoE of user u. The wireless channel
of user u is characterized by an average spectral efficiency o,, (bit/s/Hz), which captures path loss,
fading and the selected modulation and coding scheme.

The BS is allocated a total downlink resource budget R per segment, measured, for instance, in OFDM
resource blocks (RBs). As depicted in Fig. 2, each RB occupies a certain time-frequency area and can
carry coded bits of one or several tile layers. The overall resource constraint is expressed as:

K C-1
Z Z Ric <R, 3)
k=1 c=0
where K is the number of user clusters and Ry . denotes the number of RBs used to transmit the c-th

layer that is multi-cast to cluster k. This constraint couples the decisions of quality selection and user
grouping across all clusters.

To exploit multi-cast gain while preserving individual QoE, VEGA-360 partitions users into K clusters
based on a joint criterion that combines spectral efficiency and viewport similarity derived from {Wu,t}-
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K ={1,..,K}, (4)

Users in the same cluster are served by a common multi-cast stream and thus tend to receive similar
quality layers, whereas different clusters may receive different numbers of SHVC layers depending on
their channel conditions and the global budget R. Clustering reduces the signaling overhead and makes
the subsequent optimization scalable when the number of users grows.

The end-to-end operation for one video segment is summarized in Fig. 3. First, the users send a request
for a 360° video and the server performs tiling and SHVC encoding of the current segment. Second, the
BS collects viewport statistics (to update the weights w,,, ) and channel information (to update the
spectral efficiencies a,, ) and determines the current number of active users U. Based on this information,
the BS groups users into clusters and allocates a per-cluster resource budget R, under the total budget
R. Next, for every cluster, the BS refines the decision at tile level by assigning, for each tile t and user
u in that cluster, which tile version (i.e., which layer index c) should be transmitted, so that all users
decode at least the base layer and the per-cluster bandwidth limits are satisfied. Afterwards, the BS
prepares the actual transmission content by mapping the selected tile layers onto RBs and delivers them
over the air interface. When the same coded tile layer is requested by multiple users in a cluster, it is
sent via multi-cast; otherwise, individual tiles can be complemented via uni-cast when necessary.
Finally, after playback, the system may collect QoE-related feedback from users, which can be exploited
for long-term adaptation of clustering and resource allocation.

Algorithm 1 summarizes the main-stage clustering of VEGA-360. Unlike purely channel-based
grouping, VEGA-360 jointly considers users' spectral efficiencies and viewport similarity derived from
the tile-weight vectors w,, = [Wu,o: ---qu,T—l]- This design prevents grouping users who have similar
channel conditions, but request disjoint viewports, which would otherwise reduce multi-cast gain and
waste bandwidth due to union-tile transmissions. After forming clusters, VEGA-360 allocates a per-
cluster budget R;, and then performs tile-level optimization within each cluster.

Algorithm 1 Viewport and channel-aware clustering in VEGA-360

1: Collect users’ viewport weights {w,, .} and spectral efficiencies {o,}.

2: Initialize K clusters {U, } ¥Z3} with capacities {L,}.

3: Initialize each cluster’s centroid viewport vector Wy, and average channel @, (e.g., using seed users).
4: for each user u (in descending order of a,, or in any fixed order) do

5: for each cluster k with |U,| < L, do

6: Compute viewport similarity s, «— sim(wy, Wy).
7: Compute channel similarity sﬁf}c — | oy — Okl

8: Compute joint score S, < asg, + (1 —a) syh. .
9: end for

10: Assign user u to the cluster k™ = argmaxy.S;, x.

11: Update w,~ and .

12: end for

13: Allocate per-cluster budgets {R, } under the total budget R.
14: return {U, } and {R, }.

4. PROPOSED VEGA-360 METHOD

4.1 Overview of Tile Transportation

In this sub-section, we present the proposed VEGA-360 framework for QoE-driven multi-cast and uni-
cast delivery of tiled 360° video. We first use Fig. 4 to explain how VEGA- 360 jointly handles SHVC
layers, tiles and time segments. Then, we formulate the main optimization problem and highlight the
key constraints that govern user clustering, layer selection and tile-level allocation.

Fig. 4 illustrates the scheduling structure of VEGA-360. The original 360° frame is divided into a grid
of tiles, indexed by t € T ={1,..,T}. Each tile is encoded into ¢ SHVC layers, denoted by
{vo, ..., vc_1}, Where v, is the base layer and higher indices correspond to higher visual quality and
higher bitrate.
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Figure 4. The VEGA-360 structure illustrated with user clusters on the right, time segments on the
horizontal and tiles on the vertical.
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On the user side, we denote the user set by U = {1, ..., U}. For each user u € U and eachtile t € T, we
pre-compute a weight w,, . that reflects how likely tile ¢ falls into the user's viewport. Tiles that
frequently appear in the viewport are assigned larger weights, while tiles rarely watched by user u have
very small weights. Along the horizontal axis in Fig. 4, time is divided into segments (chunks) of equal
duration. For every segment, VEGA-360 first groups users into clusters and allocates a per-cluster
resource budget R, and then decides which SHVC layer is transmitted for each user-tile pair within each
cluster.

Users with similar channel conditions and viewport characteristics are dynamically grouped into
clusters. In Fig. 4, the right-hand side shows two such clusters. Inside each cluster, the base layer v, of
the required tiles is always transmitted to guarantee decodability, while enhancement layers vy, ..., vo_4
are selectively delivered depending on viewport weights and channel conditions, as depicted by the blue
arrows.

4.2 Main Formulae Contribution

For each useru € Uy, tilet € {0, ..., T — 1} and version index ¢ € {0, ..., C, — 1}, we introduce a binary
decision variable

_ {1, if version c of tile t is delivered to user u, (5)
Yute =10, otherwise .
The per-cluster viewport quality for one segment is computed as:
T-1 Cx—1
VQy = z z Z Wu,thYu,t,cr (6)
u€ely t=0 c=0

where V@, measures the accumulated quality perceived by all users in cluster k, w,, ; is the normalized
importance of tile t in the viewport of user u and Q.. denotes the objective quality (e.g. PSNR) of version
C.

In parallel, we keep track of how many tile versions are transmitted in cluster :

T-1 Cx—1

=D > > Yure @

uely t=0 c¢=0

where TV, acts as a proxy for transmission overhead and decoding complexity, since each selected
version corresponds to an additional bitstream that must be sent and decoded.

The global QoE metric of VEGA-360 combines viewport quality and transmission cost as:
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d 2 segz ZZ()’utc ZutC)B @)

uely t
Tu = dk(u) bu!ru =0 (9)
K-1 U
TV, — —— 10
10002 VO, = 1000 — k1000 ] (10)
u:

where a > 0 weights viewport quality and y > 0 penallzes transmission cost (number of delivered tile
versions). dy, is the effective delivery time of cluster k for one segment and r,, denotes the rebuffering
time of user u, modelled by the linear constraints in Eq. (9) (i.e., r, = [dk(u) — bu]+). B > 0 weights

the stalling penalty. We set@ = 1,y = 1 and f = 1.85 and apply a normalization factor of 1/1000 for
numerical stability.

Each cluster is subject to its own radio-budget constraint. The resource consumption of cluster k is upper
bounded by Ry,:
T-1 Cx—1
Bc
DD e <R (11)
Uu
uely t=0 c¢=0

where B, is the bitrate of version c, g;, denotes the spectral efficiency of user u and Ry, is the share of
available radio resources allocated to cluster k. This constraint guarantees that the cumulative bandwidth
of the selected tile versions does not surpass the cluster's allocated budget.

In our implementation, the per-cluster budget R, is obtained by splitting the total budget R
proportionally to the minimum base-layer delivery cost of each cluster. Specifically, we compute

W, Z o p =R .k (12)
k=) —Rk=R g
UEU %u Zj:O VVJ

where B, is the bitrate of the base layer. This allocation assigns more resources to clusters with poorer
channel conditions (smaller o, ), ensuring base-layer feasibility and avoiding starvation of low-
capability users before the tile-level optimization in Eq. (16).

Due to the hierarchical structure of SHVC, an enhancement version can only be decoded if all lower
versions of the same tile are also available. VEGA-360 enforces this dependency through

Yute < Yute-1, VU € Uy, Vt,c=1,...,C — 1, (13)
which ensures that whenever version c is selected, version ¢ — 1 is selected as well. Moreover, the basic
visibility of the 360° scene is always guaranteed by forcing the base layer of every tile to be sent:

Yuro = 1,Vu € Uy, Vt. (14)
Finally, all decision variables are binary,
Yure €1{0,1},Vu € Uy, Vt, Ve, (15)

so that each wversion of each tile is either fully selected or not transmitted.
Putting everything together, the tile-level optimization in cluster k is written as

max aVQy — yTV, s.t. Eq.11-15, (16)
Yut,c
and is solved for every cluster under its corresponding budget R,,. To further exploit the heterogeneity
of viewports inside a cluster, VEGA-360 refines the solution of Eq. (16) by imposing a QoE-aware
ordering across users, as summarized in Algorithm 2. For each tile ¢, the users in U, are first sorted in
descending order of their viewport weights w,, ., obtaining a sequence (uo,ul, ...,u|uk|_1) from the

most to the least-interested user. Then, for every adjacent pair ( u;, u;4, ) and every admissible version
c, the inequality

:Vuiﬂ,t,c - Yultc <0
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is enforced. This simple rule guarantees that a user with lower importance for tile t never receives a
higher version than a user with higher importance in the same cluster. As a result, VEGA-360 creates a
staircase pattern of tile versions inside each cluster: central viewports are upgraded first, while the multi-
cast structure is preserved, leading to a better QoE-bandwidth trade-off.

Algorithm 2 QoE-aware ordering of tile versions in cluster k

l:fort=0toT—1do

2: Sort users in u; by descending w,, , obtain the sequence (uy, Uy, . . ., Ujyy|-1)
3 fori=0to |u,| —1do

4 ifi +1<]|u| then

5 forc=0toCx—1do

6: Yuippte ~ Yuyte <0

7: end for

8 end if

9 end for

10: end for

5. PERFORMANCE EVALUATION

In this section, we first describe the 360 -degree video dataset, encoding configuration and simulation
parameters used to evaluate VEGA-360 and then discuss the obtained performance in comparison with
existing baselines.

5.1 Experimental Setup

Our performance evaluation is carried out in a custom simulator implemented in Python, where we
replay the clustering and scheduling decisions of VEGA-360 together with the baseline algorithms. All
mixed integer programs are solved by the Gurobi optimizer on a standard workstation equipped with an
Intel Core i7 CPU and 32 GB of RAM, with a moderate time limit per instance.

We reuse a public 360 -degree video dataset introduced in [40], which contains five omni-directional
sequences: Rollercoaster, Diving, Venice, Paris and Rhino. Following the original dataset, the videos
are grouped into two content categories: "less-feature™ (mostly static scenes) and "more-feature"
(dynamic scenes with many moving objects and camera motion). Each raw video is projected to the
equirectangular format with a resolution of 2890 x 1920 pixels and partitioned into T = 24 tiles of size
480 x 480 pixels per tile. To support scalable streaming, every tile is encoded with the SHVC extension
of HEVC into one base layer and four enhancement layers, i.e., C = 5 quality versions per tile. Table 1
summarizes the average viewport PSNR (in dB) and bitrate (in kbps) of the five versions for the two
content categories, averaged over all videos in the dataset.

We consider a single cell serving U = 70 mobile users requesting the same 360 -degree video. User-
specific viewport trajectories are obtained from the head-movement traces. For each segment, we project
the viewport field-of-view onto the tiled equirectangular plane and compute tile weights by the
normalized viewport-tile overlap ratios, so that the weights reflect how much each user watches each
tile in that segment. Following the COSMN setting, we generate U = 70 users by sampling traces with
replacement and randomizing the starting segment index to avoid synchronized viewing patterns. The
wireless downlink is abstracted by a total resource budget per segment shared by all users and clusters
and the budget is swept from 10000 to 120000 (arbitrary resource units) to emulate different congestion
levels. Users' spectral efficiencies follow the same channel abstraction as COSMN [39] and are used to
determine per-user transmission cost in the optimization. For the rebuffering term, we use a fixed
segment duration and a fixed initial playback buffer as Eq. (17):

Teg = 15,b, = by =25s,Vu € {1,...,U}. 17)

For each value of R, we run VEGA-360 and four baseline schemes under the same w,, , and encoding
parameters:

e COSMN [39]: the original clustering-based optimization that solves a single global MILP over
all users, tiles and versions.
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e LVSUM [9]: a greedy layer-by-layer strategy that upgrades tile versions sequentially according
to the remaining budget.

e Multi-cast All [41]: a multi-cast-only scheme that delivers the same version of each tile to every
user, without exploiting viewport diversity.

e Multi-cast Sca [10]: a scalable multi-cast scheme that uses the SHVC layers, but still ignores
fine-grained viewport heterogeneity.

Table 1. Average viewport PSNR and bitrate of the encoded tile versions.

Values Ver. 0 Ver. 1 Ver. 2 Ver. 3 Ver. 4
Less-feature videos

PSNR (dB) 36.79 41.09 42.89 45.64 48.30

Bitrate (kbps) 58.57 148.37 281.69 560.84 995.61
More-feature videos

PSNR (dB) 35.30 38.70 41.45 44.71 47.34

Bitrate (kbps) 177.40 417.32 741.89 1357.76 2143.49

All schemes are evaluated using the QoE metric defined in Eq. (10), which linearly trades-off viewport
quality against the number of transmitted tile versions. In addition, we also report the average viewport
PSNR (VQ) and the average number of transmitted tile versions per segment (TV) as auxiliary
indicators.

5.2 Results and Discussion

On the one hand, Table 2 displays the average quality of experience measured for the video with fewer
features. VEGA-360 achieves consistently strong QoE across feasible bandwidth budgets and it remains
competitive (often best) when the bandwidth budget increases. This behavior indicates that VEGA-360
can sustain user-perceived quality even when user population grows, while still respecting the available
radio resources. In addition, the performance gap among optimization-based methods becomes small at
medium-to-high budgets, suggesting that QoE gradually saturates once most viewport-important tiles
can be delivered at adequate quality.

Table 2. Average QoE for the "less-feature™ video under different bandwidth budgets and numbers of

users.
Bandwidth budget (kRBs)
Method Users
20 30 45 55 65 75 80
35 - - 1.949 | 1.955 | 1.969 | 1.966 | 1.971
VEGA-360
70 - - 2.610 | 2.614 | 2.632 | 2.625 | 2.637
35 1.924 | 1.936 | 1.947 | 1.954 | 1.960 | 1.965 | 1.967
COSMN
70 2.584 | 2596 | 2.607 | 2.613 | 2.620 | 2.624 | 2.626
35 1917 | 1.927 | 1.943 | 1.949 | 1.957 | 1.962 | 1.964
LVSUM
70 2577 | 2.586 | 2.602 | 2.609 | 2.616 | 2.621 | 2.623
. 35 - - - - - 1.873 | 1.880
Multicast All
70 - - - - - 2.532 | 2.540
. 35 - - - - - 1.880 | 1.891
Multicast Sca
70 - - - - - 2.540 | 2.550

On the other hand, Table 3 summarizes the results for the more-feature video. Compared to the less-
feature case, the more-feature content typically requires higher delivery effort to maintain the same
perceived quality, which makes the bandwidth budget more influential. VEGA-360 remains robust
across a broader range of budgets and user scales, demonstrating stable QoE when scaling from 35 users
to 70 users.
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Overall, the results highlight that the proposed design maintains competitive QoE under heterogeneous
user demands and richer visual details.

To better illustrate the resource aspect, Fig. 5 and Fig. 6 visualize the bandwidth consumption under
different user populations. In general, as the number of users increases, purely unicast-oriented strategies
tend to incur higher bandwidth usage. By contrast, VEGA-360 is designed to exploit multi-cast
opportunities through QoE-aware ordering and reuse of tile versions, thereby limiting redundant
transmissions while preserving viewport quality. This multicast-aware behavior is more evident in the
more-feature setting, where the content complexity and quality requirements amplify the benefit of
coordinated version delivery.

Finally, Fig. 8 and Fig. 7 present the PSNR comparison across bandwidth budgets for each method.
Overall, VEGA-360 achieves competitive (and often higher) reconstruction quality, especially in the
low-to-medium budget region where bandwidth scarcity makes tile/version prioritization critical. As the
budget increases, the PSNR gap among optimization-based schemes becomes smaller, indicating a
saturation effect: once most viewport-relevant tiles can be delivered at sufficiently high quality,
additional bandwidth yields marginal visual gains. These results support the main goal of VEGA-360,
i.e., improving visual fidelity (PSNR) while avoiding unnecessary bandwidth inflation in 360° tiled
streaming.

Table 3. Average QoE for the "more-feature" video under different bandwidth budgets and numbers of

users.
Bandwidth budget (kRBs)
Method Users
50 80 120 180 250 280 300
35 - 1.901 | 1.905 | 1.922 | 1.929 | 1.935 | 1.932
VEGA-360
70 - 2516 | 2.541 | 2.547 | 2,570 | 2.576 | 2.576
35 1.870 | 1.889 | 1.902 | 1.919 | 1.929 | 1.931 | 1.931
COSMN
70 2515 | 2533 | 2.547 | 2.564 | 2.573 | 2575 | 2.576
35 1.858 | 1.879 | 1.896 | 1.915 | 1.926 | 1.929 | 1.930
LVSUM
70 2503 | 2.524 | 2,541 | 2.560 | 2.571 | 2574 | 2.575
. 35 - - - - 1.828 | 1.835 | 1.840
Multicast All
70 - - - - 2473 | 2.480 | 2.484
. 35 - - - - 1.838 | 1.849 | 1.855
Multicast Sca
70 - - - - 2483 | 2.494 | 2.500

Bandwidth usage vs Users | Less-feature video
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Figure 5. Bandwidth consumption versus number of users for the "less-feature” video. VEGA-360
consistently requires lower bandwidth than COSMN and other baselines under the same user load.
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We also present Table 4 that reports the average solver runtime of our method and the baselines under
different total radio budgets R. Overall, our method consistently achieves lower runtime than COSMN
across all tested R values (bold entries). In particular, while COSMN requires about 0.55 — 1.00 second,
our method finishes within 0.28 — 0.55 second, showing a clear reduction in decision latency as the
budget increases. The runtimes of the other baselines (LMSUM, Mul_all and Mul_sca) lie between
COSMN and our method in most cases.

After analyzing the outcomes, we identify several practical remarks emerging from the experimental
evaluation:

o First, the benefits of VEGA-360 are most evident in the low-to-medium bandwidth region,
where resource scarcity forces strict prioritization between tiles and instances; in such regimes,
coordinated instance reuse and multi-cast distribution avoid redundant transmissions while
maintaining image quality.

e Second, the PSNR curves tend to saturate as bandwidth budgets increase, which suggests
diminishing returns once the majority of view-relevant tiles are already delivered at sufficiently
high quality; thus, pursuing aggressive upgrades at high budgets is less beneficial than
improving efficiency at tight budgets.

e Third, scaling the number of users amplifies the advantages of multi-directional awareness
designs: while unidirectional-focused strategies will generate bandwidth growth that is roughly
proportional to the number of users, VEGA-360 can limit additional bandwidth by reusing cell
instances within groups whenever users share similar viewing preferences.

Bandwidth usage vs Users | More-feature video

—8— VEGA-360
~&— COSMN
—~8— LVSUM

200 A

1754

—&— Multicast All

—@— Multicast Sca
150 A

125 1

100 A

Bandwidth usage (Mbps)

75 1

50 4

254

T T T T T T T
10 20 30 40 50 60 70
Number of users

Figure 6. Bandwidth consumption versus number of users for the "more-feature™ video. The proposed
VEGA-360 maintains the best bandwidth efficiency across all evaluated user scales.
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Figure 7. Viewport-quality comparison for the "more-feature™ video in terms of PSNR. Results are
shown for 35 users and 70 users, highlighting VEGA-360's advantage over COSMN and multi-cast
baselines.
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Figure 8. Viewport quality comparison for the "less-feature” video in terms of PSNR. VEGA360
achieves the highest PSNR for both 35- and 70-user scenarios.

o Finally, these observations indicate that VEGA-360 is particularly well-suited to scenarios with
multiple users and bandwidth-constrained wireless systems, where improving the quality-
efficiency trade-off has a larger impact than marginal quality gains at resfource-rich levels.

Table 4. Runtime comparison (second) under different total radio budgets R.

R [ COSMN | LMSUM | Mul all | Mul_sca | Our method
20000 0.55 0.48 0.30 0.44 0.28
30000 0.62 0.54 0.33 0.48 0.31
45000 0.71 0.61 0.47 0.53 0.36
55000 0.82 0.70 0.51 0.57 0.41
65000 0.90 0.78 0.64 0.68 0.46
75000 0.96 0.83 0.66 0.73 0.52
80000 1.00 0.86 0.78 0.85 0.55

6. CONCLUSION

In this paper, we present VEGA-360, a QoE-aware delivery framework for tile-based 360° video
streaming over bandwidth-constrained wireless networks. VEGA-360 is designed to balance image
guality and transmission performance by coordinating tile-based version selection and leveraging multi-
cast opportunities across user groups. Experimental results on representative 360° content across
different bandwidth budgets and user sizes show that VEGA-360 achieves competitive performance
compared to baseline schemes, especially in bandwidth-constrained regimes where efficient reuse of
delivered versions is crucial. As a two-stage framework, VEGA-360 trades global optimality for
computational tractability and the clustering decision may introduce a small performance gap compared
to a monolithic formulation in certain cases. In addition, our current setting assumes a shared-content
scenario where users request the same 360° video; multi-cast gains may decrease in heterogeneous on-
demand scenarios.

In the future, we plan to extend VEGA-360 in three directions: first, integrating online-view prediction
and prediction-fault tolerance; next, exploring adaptive clustering and dynamic update intervals under
rapidly changing channel and mobile user conditions; and finally, deploying a real-time prototype to
evaluate end-to-end delay and system overhead in real networks. We will also investigate more flexible
grouping mechanisms (e.g. adaptive or soft cluster-size constraints) to further improve robustness and
efficiency.
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