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ABSTRACT 

Delivering multi-layer, tiled 360∘ video to multiple wireless users is challenging due to limited radio resources,

heterogeneous channel conditions and a strong viewport-dependent quality of experience (QoE). To address this 

problem, we propose Viewport-Enhanced Grouped Allocation for 360∘ Video (VEGA-360), a hierarchical

viewport-aware resource allocation framework for multi-user 360∘ video streaming. VEGA-360 adopts a two-

stage design. On the main stage, VEGA-360 partitions users into a small number of clusters using a joint criterion 

that combines spectral efficiency and viewport similarity derived from viewport weights and allocates a per-cluster 

resource budget accordingly. In the fine-tuning phase, VEGA-360 solves independent optimization sub-problems 

per cluster at the tile granularity, enforcing radio resource and SHVC scalability constraints while maximizing a 

utility metric that accounts for viewport-weighted visual quality and the transmission overhead caused by 

distributing multiple tile instances. By separating coarse-grained grouping and budgeting decisions from fine-

grained tile-layer allocation, VEGA-360 reduces the size of each optimization instance and improves 

computational tractability while maintaining viewport-aware service in dense multi-user scenarios. Simulation 

results show that VEGA-360 achieves competitive utility/QoE compared to a monolithic MILP baseline, with 

substantially shorter solution times. 
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1. INTRODUCTION

Virtual Reality (VR) and 360 -degree video technologies have enabled users to experience highly 

immersive three-dimensional (3D) environments, where they can freely explore and interact with virtual 

or captured real-world scenes as if they were physically present [1]. By combining head-mounted 

displays (HMDs), motion tracking and interactive content, VR has been successfully adopted in 

education, healthcare, manufacturing, entertainment and many other domains, where immersive visual 

experiences can enhance engagement, training effectiveness and decision-making. 

To deliver such immersive experiences at scale, 360 -degree videos are typically captured and rendered 

in high resolutions (e.g. 4 K and beyond), which leads to extremely large data volumes and high bitrate 

demands [2]. These requirements become even more stringent on mobile devices, where limited 

computation capability, constrained battery and fluctuating wireless bandwidth can easily cause 

playback stalls, blurry viewports or noticeable latency. To cope with these constraints, tile-based 

viewport-adaptive streaming has emerged as a widely adopted approach: the spherical video is 

partitioned into multiple tiles and only the tiles within the user's current Field of View (FoV) or Region 

of Interest (RoI) are delivered at high quality, while the remaining tiles are sent at reduced quality [2]-

[3]. 

Scalable video-coding extensions, such as Scalable High-efficiency Video Coding (SHVC), further 

enable flexibility by encoding each tile into a base layer and multiple enhancement layers [4]-[5]. The 

base layer guarantees minimum decodable quality, whereas enhancement layers can be selectively 

transmitted to refine spatial resolution or improve quality when network conditions permit. At the same 

time, the evolution of mobile networks from 4G LTE to 5G brings significantly higher peak data rates, 

lower latency and improved spectral efficiency, offering an attractive infrastructure for delivering 

interactive 360 -degree video in real time [6]-[7]. As illustrated in Fig. 1, each selected tile is encoded 

into multiple quality layers and broadcast to different user clusters. High-capability users subscribe to 
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more enhancement layers, while low-capability users only receive the base layer. This layered multi-

cast structure serves as the basis for the proposed VEGA-360 optimization framework. 

Despite these advances, providing high-quality 360 -degree video streaming to multiple mobile users 

remains challenging. Existing solutions often optimize either viewport-adaptive tiling [2]-[3],[8] or 

streaming strategies (uni-cast/multi-cast, rate adaptation) [9][10][11][12], but still face difficulties in 

simultaneously handling: Firstly, heterogeneous link conditions across users; secondly, diverse viewport 

dynamics and RoI preferences; and finally, limited radio resources on a single cell. Recent studies have 

explored RoI-based viewport prediction [13]-[14], clustering users with similar viewing patterns [15] 

and optimized tile-quality selection for multi-user scenarios [16]. However, there is still a lack of a 

unified framework that jointly exploits user clustering, scalable tiling and resource allocation to 

maximize Quality of Experience (QoE) under realistic bandwidth constraints. 

Figure 1. SHVC-based layered multi-cast for tiled 360∘ video.

Motivated by these limitations, we present VEGA-360, a clustering-based optimization framework for 

multi-user 360∘ video streaming over mobile networks. VEGA-360 groups users according to their tile-

level quality requirements and channel conditions and allocates radio resources across clusters and tile 

layers to prioritize high-impact tiles within users' regions of interest (RoIs) while respecting the global 

bandwidth budget. By jointly leveraging scalable video encoding and intelligent user clustering, 

VEGA360 effectively balances fairness and efficiency, reduces redundant transmissions and improves 

overall QoE compared with existing baselines. 

The following part provides an expanded overview of the key contributions presented in this paper, 

highlighting the main ideas, methodological advances and practical implications derived from the study. 

 We design a clustering-based system model for multi-user 360 -degree video streaming, where

users sharing similar viewport and quality demands are grouped into clusters and tiles are 

encoded using scalable video coding to support flexible per-tile quality selection. 

 We formulate a joint optimization problem that captures tile-layer selection and radio-resource

allocation across clusters under bandwidth and QoE constraints, explicitly focusing on tiles 

lying in users' RoI. 

 We develop a practical-solution algorithm to solve the optimization problem segment-by-

segment, enabling the system to adapt to time-varying network conditions and dynamic 

viewports while maintaining stable QoE. 

 We conduct extensive simulations using real 360 -degree video traces and head-movement

datasets and compare VEGA-360 against other state-of-the-art schemes. The results show that 

our framework improves QoE and viewport quality while keeping bandwidth usage within 

practical limits. 

This is how the rest of the paper is structured. In Section 2, relevant research on user-clustering 

techniques and 360 -degree video streaming is reviewed. The system model and problem formulation 

are presented in Section 3. The suggested framework and solution algorithm are presented in Section 4. 

Section 5 presents the results of the performance evaluation and Section 6 wraps up the work. 
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2. RELATED WORK

The rapid growth of immersive services has driven extensive research on adaptive 360 -degree video 

streaming over wireless networks. Recent work has focused on designing smarter adaptation strategies 

that consider both network dynamics and user experience. Chen et al. studied streaming 360∘ VR video

with statistical QoS provisioning in mmWave networks, highlighting the role of wireless reliability 

constraints in immersive delivery [17]. Badnava et al. formulated multi-user 360 -degree video delivery 

as a multi-task decision-making problem and used a deep reinforcement-learning agent to jointly 

allocate bitrate and computation resources, with the goal of maximizing long-term QoE under 

fluctuating bandwidth [18]. Wang et al. adopted a multi-agent deep reinforcement learning framework 

to control rate adaptation for 360-degree contents, where multiple viewpoints and fairness among users 

are explicitly modelled in the optimization process [19]. In parallel, Nguyen et al. addressed robustness 

to sudden throughput reductions and proposed a scalable and resilient 360-degree HTTP/2 streaming 

solution that exploits stream prioritization and independence to mitigate stalls and quality drops [20]. 

Other recent studies explored joint optimization of streaming and enhancement. For example, Guo et al. 

investigated coordinated control of coding parameters and super-resolution filters for mobile 360 -

degree delivery [21], while Feng et al. designed a stochastic multi-window adaptation scheme that 

couples viewport prediction and bitrate assignment [22]. These approaches, however, operate mostly on 

a per-user basis and do not fully exploit the potential of multi-cast gains when users share similar 

viewports and quality requirements. FoV overlap has also been explicitly exploited in wireless VR 

delivery in order to improve robustness and efficiency when users share similar viewing regions [23]. 

Relatedly, Abedini and Nickray employed reinforcement learning to tune transport-layer congestion 

control for real-time delivery, indicating that cross-layer adaptation can help stabilize end-to-end 

performance under time-varying bandwidth [24]. 

Viewport prediction and user-behavior modeling form another active line of research for 360 -degree 

video. Wahba et al. provided a recent survey of learning-based viewport-prediction techniques and 

identified open problems related to latency, generalization and device heterogeneity in practical systems 

[25]. Building on data-driven prediction, Wang et al. introduced an edge-assisted clustered-learning 

framework, CoLive, that groups users based on their viewing behaviour and trains cluster-specific 

models to improve prediction accuracy and streaming efficiency in live scenarios [26]. Zhang et al. 

proposed a mobile-friendly viewport prediction method for live 360 -degree streaming in which 

attention-aware features and device constraints are jointly exploited [27]. Besides, Nguyen et al. 

developed a GRU-LSTM-based viewport-estimation method tailored to 360 -degree video streaming 

[28]-[29] and more recent work explores reinforcement-learning based viewport estimation that fuses 

head and eye-movement information (HEVERL) for VR applications [30]. These works clearly show 

that exploiting correlations between users and leveraging clustering at the prediction layer can improve 

performance, but they stop short of incorporating clustering directly into a global multi-cast resource-

allocation problem. 

User clustering for multi-user 360∘  streaming can be broadly categorized into channel-based and

behavior-based clustering. Channel-based clustering groups users according to wireless channel 

conditions (e.g. spectral efficiency or SNR), which is attractive for multi-cast, because the cluster 

transmission rate is typically constrained by the worst-channel user. However, clustering solely by 

channel may ignore viewport heterogeneity and enlarge the union of requested tiles, reducing multi-cast 

efficiency. In contrast, behavior-based clustering groups users by viewing behaviour (viewport/FoV 

similarity or predicted viewport trajectories) to maximize tile reuse and reduce redundant transmissions. 

Representative behavior-aware works emphasized viewport prediction and viewport-adaptive delivery, 

including SPA360 [31], Meta360 [32], FoV prediction-assisted viewport delivery [33] and utility-driven 

optimization in JUST360 [34]. While these studies highlighted the benefits of behavior awareness, they 

generally did not integrate channel heterogeneity into the clustering decision for multi-cast resource 

allocation. Our work bridges this gap by explicitly combining channel information and viewport 

similarity in the clustering stage and coupling them with hierarchical per-cluster resource allocation for 

multi-cast tiled SHVC delivery. 

Accurate QoE modeling for immersive media has also received increased attention. More recently, 

physiological-signal-driven QoE optimization has been investigated for wireless VR transmission, 

providing an alternative direction for modeling user-perceived experience beyond traditional quality 



55

“VEGA-360: Viewport-aware Hierarchical Grouped Allocation for Multi-layer 360∘ Video Streaming”, P. D. Huynh and N. V. Hung. 

metrics [35]. Nguyen et al. proposed a retina-inspired objective quality-assessment model for tile-coded 

360 -degree videos, in which spatial weights are aligned with the non-uniform sensitivity of the human 

visual system across the field of view [36]. Elwardy et al. presented a pilot study on the consistency of 

subjective quality assessment for 360 -degree contents, introducing the RQA360 dataset and analyzing 

repeated tests in both standing and seated viewing conditions [37]. Complementary evidence is reported 

by Qananwah et al., who explored physiological cues (EEG signals) to guide video-compression 

decisions, reinforcing the value of human-centric information when constructing QoE-aware streaming 

and coding strategies [38]. These studies highlighted the importance of QoE metrics that not only reflect 

the delivered quality level, but also account for viewport importance, spatial-quality variations across 

tiles and the impact of experimental settings such as viewing posture and device. Such insights motivate 

the use of viewport-weighted utility functions and penalty terms in the design of optimization-based 

streaming frameworks. Closer to the present work, clustering-based optimization for 360-degree multi-

cast has been investigated from a cross-layer perspective. Nguyen et al. proposed a clustering-based 

framework for scalable multi-cast of tiled 360-degree videos in multi-cell wireless networks, in which 

a mixed-integer linear program jointly selects SHVC layers and user clusters under resource constraints 

[39]. That monolithic approach demonstrates notable QoE and bandwidth gains compared with uni-cast 

and heuristic baselines, but its computational complexity grows rapidly with the number of users, tiles 

and available resource blocks, which limits scalability in dense deployments. In contrast, the VEGA-

360 framework studied in this paper adopts a hierarchical two-stage design: a first-stage viewport- and 

channel-aware clustering step groups users and allocates a per-cluster resource budget based on users' 

spectral efficiencies and viewport similarity (derived from tile weights) and independent second-stage 

sub-problems allocate tile versions and radio resources within each cluster. 

3. SYSTEM MODEL AND DESIGN OVERVIEW

Figure 2. Overall architecture of the proposed VEGA-360 system. The server performs tiling and 

SHVC encoding, the base station groups users into clusters according to channel quality and viewport 

similarity and a joint user/tile allocation model maps SHVC layers to resource blocks. 

The system model of the suggested VEGA-360 framework for QoE-aware 360-degree video multi-cast, 

as seen in Fig. 2 and Fig. 3, is described in this section. 

We consider a wireless downlink scenario in which a video server stores several 360∘  videos and

communicates with a group of heterogeneous users through a base station (BS). All users request the 

same 360∘ video segment at a given time. The processing begins by dividing the video into spatial tiles

and temporal segments. Let 

𝒰 = {1, … , 𝑈}, 𝒯 = {1, … , 𝑇} (1)
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represent the sets of users and tiles within a single segment, respectively. Each tile is encoded by SHVC 

into 𝐶 scalable layers, indexed by 𝑐 ∈ {0, … , 𝐶 − 1}, where 𝑐 = 0 is the base layer and 𝑐 ≥ 1 are 

enhancement layers. The 𝑐-th layer provides an objective video quality 𝑄𝑐 (e.g. PSNR) and requires

bitrate (or bandwidth) 𝐵𝑐.

Figure 3. Sequence diagram of the VEGA-360 streaming workflow between server and client sides for 

one video segment. 

For each user 𝑢 ∈ 𝒰, we model the importance of tile 𝑡 ∈ 𝒯 by a weight 𝑤𝑢,𝑡 ∈ [0,1], which reflects

how likely tile 𝑡 lies inside the viewport of user 𝑢. The weights are normalized as: 

∑  

𝑡∈𝒯

 𝑤𝑢,𝑡 = 1, ∀𝑢 ∈ 𝒰. (2) 

Here, large 𝑤𝑢,𝑡 means that tile 𝑡 contributes more to the perceived QoE of user 𝑢. The wireless channel

of user 𝑢 is characterized by an average spectral efficiency 𝜎𝑢 (bit/s/Hz), which captures path loss,

fading and the selected modulation and coding scheme. 

The BS is allocated a total downlink resource budget 𝑅 per segment, measured, for instance, in OFDM 

resource blocks (RBs). As depicted in Fig. 2, each RB occupies a certain time-frequency area and can 

carry coded bits of one or several tile layers. The overall resource constraint is expressed as: 

∑

𝐾

𝑘=1

  ∑

𝐶−1

𝑐=0

 𝑅𝑘,𝑐 ≤ 𝑅, (3) 

where 𝐾 is the number of user clusters and 𝑅𝑘,𝑐 denotes the number of RBs used to transmit the 𝑐-th

layer that is multi-cast to cluster 𝑘. This constraint couples the decisions of quality selection and user 

grouping across all clusters. 

To exploit multi-cast gain while preserving individual QoE, VEGA-360 partitions users into 𝐾 clusters 

based on a joint criterion that combines spectral efficiency and viewport similarity derived from {𝑤𝑢,𝑡}.
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𝒦 = {1, … , 𝐾}, (4) 

Users in the same cluster are served by a common multi-cast stream and thus tend to receive similar 

quality layers, whereas different clusters may receive different numbers of SHVC layers depending on 

their channel conditions and the global budget 𝑅. Clustering reduces the signaling overhead and makes 

the subsequent optimization scalable when the number of users grows. 

The end-to-end operation for one video segment is summarized in Fig. 3. First, the users send a request 

for a 360∘ video and the server performs tiling and SHVC encoding of the current segment. Second, the

BS collects viewport statistics (to update the weights 𝑤𝑢,𝑡 ) and channel information (to update the

spectral efficiencies 𝜎𝑢 ) and determines the current number of active users 𝑈. Based on this information,

the BS groups users into clusters and allocates a per-cluster resource budget 𝑅𝑘 under the total budget

𝑅. Next, for every cluster, the BS refines the decision at tile level by assigning, for each tile 𝑡 and user 

𝑢 in that cluster, which tile version (i.e., which layer index 𝑐) should be transmitted, so that all users 

decode at least the base layer and the per-cluster bandwidth limits are satisfied. Afterwards, the BS 

prepares the actual transmission content by mapping the selected tile layers onto RBs and delivers them 

over the air interface. When the same coded tile layer is requested by multiple users in a cluster, it is 

sent via multi-cast; otherwise, individual tiles can be complemented via uni-cast when necessary. 

Finally, after playback, the system may collect QoE-related feedback from users, which can be exploited 

for long-term adaptation of clustering and resource allocation. 

Algorithm 1 summarizes the main-stage clustering of VEGA-360. Unlike purely channel-based 

grouping, VEGA-360 jointly considers users' spectral efficiencies and viewport similarity derived from 

the tile-weight vectors w𝑢 = [𝑤𝑢,0, … , 𝑤𝑢,𝑇−1]. This design prevents grouping users who have similar

channel conditions, but request disjoint viewports, which would otherwise reduce multi-cast gain and 

waste bandwidth due to union-tile transmissions. After forming clusters, VEGA-360 allocates a per-

cluster budget 𝑅𝑘 and then performs tile-level optimization within each cluster.

Algorithm 1 Viewport and channel-aware clustering in VEGA-360 

1: Collect users’ viewport weights {𝑤𝑢,𝑡} and spectral efficiencies {𝜎𝑢}.

2: Initialize K clusters {𝑈𝑘} 𝑘=0
𝑘−1} with capacities {𝐿𝑘}.

3: Initialize each cluster’s centroid viewport vector 𝑤𝑘̅̅ ̅̅  and average channel 𝜎𝑘̅̅ ̅ (e.g., using seed users).

4: for each user u (in descending order of 𝜎𝑢 or in any fixed order) do

5:  for each cluster k with |𝑈𝑘 | < 𝐿𝑘  do

6:       Compute viewport similarity  𝑠𝑢,𝑘
𝑣𝑝

  ← sim(𝑤𝑢, 𝑤𝑘̅̅ ̅̅ ).

7:       Compute channel similarity 𝑠𝑢,𝑘
𝑐ℎ  ← | 𝜎𝑢 − 𝜎𝑘̅̅ ̅|.

8:        Compute joint score 𝑆𝑢,𝑘 ← 𝛼𝑠𝑢,𝑘
𝑐ℎ  + (1 − 𝛼) 𝑠𝑢,𝑘

𝑣𝑝
 .

 9: end for 

10: Assign user u to the cluster 𝑘∗ = argmax𝑘𝑆𝑢,𝑘 .
11: Update 𝑤𝑘∗̅̅ ̅̅ ̅ and 𝜎𝑘∗̅̅ ̅̅ .

12: end for 

13: Allocate per-cluster budgets {𝑅𝑘} under the total budget R.

14: return {𝑈𝑘} and {𝑅𝑘}.

4. PROPOSED VEGA-360 METHOD

4.1 Overview of Tile Transportation 

In this sub-section, we present the proposed VEGA-360 framework for QoE-driven multi-cast and uni-

cast delivery of tiled 360∘ video. We first use Fig. 4 to explain how VEGA- 360 jointly handles SHVC

layers, tiles and time segments. Then, we formulate the main optimization problem and highlight the 

key constraints that govern user clustering, layer selection and tile-level allocation. 

Fig. 4 illustrates the scheduling structure of VEGA-360. The original 360∘ frame is divided into a grid

of tiles, indexed by 𝑡 ∈ 𝒯 = {1, … , 𝑇}. Each tile is encoded into 𝐶 SHVC layers, denoted by 
{𝑣0, … , 𝑣𝐶−1}, where 𝑣0 is the base layer and higher indices correspond to higher visual quality and

higher bitrate. 
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Figure 4. The VEGA-360 structure illustrated with user clusters on the right, time segments on the 

horizontal and tiles on the vertical. 

On the user side, we denote the user set by 𝒰 = {1, … , 𝑈}. For each user 𝑢 ∈ 𝒰 and each tile 𝑡 ∈ 𝒯, we 

pre-compute a weight 𝑤𝑢,𝑡 that reflects how likely tile 𝑡 falls into the user's viewport. Tiles that

frequently appear in the viewport are assigned larger weights, while tiles rarely watched by user 𝑢 have 

very small weights. Along the horizontal axis in Fig. 4, time is divided into segments (chunks) of equal 

duration. For every segment, VEGA-360 first groups users into clusters and allocates a per-cluster 

resource budget 𝑅𝑘 and then decides which SHVC layer is transmitted for each user-tile pair within each

cluster. 

Users with similar channel conditions and viewport characteristics are dynamically grouped into 

clusters. In Fig. 4, the right-hand side shows two such clusters. Inside each cluster, the base layer 𝑣0 of

the required tiles is always transmitted to guarantee decodability, while enhancement layers 𝑣1, … , 𝑣𝐶−1

are selectively delivered depending on viewport weights and channel conditions, as depicted by the blue 

arrows. 

4.2 Main Formulae Contribution 

For each user 𝑢 ∈ 𝒰𝑘, tile 𝑡 ∈ {0, … , 𝑇 − 1} and version index 𝑐 ∈ {0, … , 𝐶𝑘 − 1}, we introduce a binary

decision variable 

𝑦𝑢,𝑡,𝑐 = {
1, if version 𝑐 of tile 𝑡 is delivered to user 𝑢,
0, otherwise .

(5) 

The per-cluster viewport quality for one segment is computed as: 

𝑉𝑄𝑘 = ∑

𝑢∈𝒰𝑘

  ∑

𝑇−1

𝑡=0

∑

𝐶𝑘−1

𝑐=0

 𝑤𝑢,𝑡𝑄𝑐𝑦𝑢,𝑡,𝑐 , (6) 

where 𝑉𝑄𝑘 measures the accumulated quality perceived by all users in cluster 𝑘, 𝑤𝑢,𝑡 is the normalized

importance of tile 𝑡 in the viewport of user 𝑢 and 𝑄𝑐 denotes the objective quality (e.g. PSNR) of version

𝑐. 

In parallel, we keep track of how many tile versions are transmitted in cluster  : 

𝑇𝑉𝑘 = ∑

𝑢∈𝒰𝑘

  ∑

𝑇−1

𝑡=0

∑

𝐶𝑘−1

𝑐=0

 𝑦𝑢,𝑡,𝑐 , (7) 

where 𝑇𝑉𝑘 acts as a proxy for transmission overhead and decoding complexity, since each selected

version corresponds to an additional bitstream that must be sent and decoded. 

The global QoE metric of VEGA-360 combines viewport quality and transmission cost as: 
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𝑑𝑘  ≜
𝜏seg

𝑅𝑘
∑

𝑢∈𝑈𝑘

 ∑  

𝑡

 ∑  

𝑐

(𝑦𝑢,𝑡,𝑐 − 𝑧𝑢,𝑡,𝑐)𝐵𝑐

𝜎𝑢
(8)

𝑟𝑢  ≥ 𝑑𝑘(𝑢) − 𝑏𝑢 , 𝑟𝑢 ≥ 0 (9)

QoE =
𝛼

1000
∑

𝐾−1

𝑘=0

 𝑉𝑄𝑘 −
𝛾

1000
∑

𝐾−1

𝑘=0

 𝑇𝑉𝑘 −
𝛽

1000
∑

𝑈

𝑢=1

  𝑟𝑢 (10)

where 𝛼 > 0 weights viewport quality and 𝛾 > 0 penalizes transmission cost (number of delivered tile 

versions). 𝑑𝑘 is the effective delivery time of cluster 𝑘 for one segment and 𝑟𝑢 denotes the rebuffering

time of user 𝑢, modelled by the linear constraints in Eq. (9) (i.e., 𝑟𝑢 = [𝑑𝑘(𝑢) − 𝑏𝑢]
+

). 𝛽 > 0 weights

the stalling penalty. We set 𝛼 = 1, 𝛾 = 1 and 𝛽 = 1.85 and apply a normalization factor of 1/1000 for 

numerical stability. 

Each cluster is subject to its own radio-budget constraint. The resource consumption of cluster 𝑘 is upper 

bounded by 𝑅𝑘:

∑

𝑢∈𝒰𝑘

  ∑

𝑇−1

𝑡=0

∑

𝐶𝑘−1

𝑐=0

𝐵𝑐

𝜎𝑢
𝑦𝑢,𝑡,𝑐 ≤ 𝑅𝑘 , (11) 

where 𝐵𝑐 is the bitrate of version 𝑐, 𝜎𝑢 denotes the spectral efficiency of user 𝑢 and 𝑅𝑘 is the share of

available radio resources allocated to cluster 𝑘. This constraint guarantees that the cumulative bandwidth 

of the selected tile versions does not surpass the cluster's allocated budget. 

In our implementation, the per-cluster budget 𝑅𝑘 is obtained by splitting the total budget 𝑅
proportionally to the minimum base-layer delivery cost of each cluster. Specifically, we compute 

𝑊𝑘 = ∑

𝑢∈𝑈𝑘

𝐵0

𝜎𝑢
, 𝑅𝑘 = 𝑅 ⋅

𝑊𝑘

∑  𝐾−1
𝑗=0  𝑊𝑗

, (12) 

where 𝐵0 is the bitrate of the base layer. This allocation assigns more resources to clusters with poorer

channel conditions (smaller 𝜎𝑢 ), ensuring base-layer feasibility and avoiding starvation of low-

capability users before the tile-level optimization in Eq. (16). 

Due to the hierarchical structure of SHVC, an enhancement version can only be decoded if all lower 

versions of the same tile are also available. VEGA-360 enforces this dependency through 

𝑦𝑢,𝑡,𝑐 ≤ 𝑦𝑢,𝑡,𝑐−1, ∀𝑢 ∈ 𝒰𝑘 , ∀𝑡, 𝑐 = 1, … , 𝐶𝑘 − 1, (13) 

which ensures that whenever version 𝑐 is selected, version 𝑐 − 1 is selected as well. Moreover, the basic 

visibility of the 360∘ scene is always guaranteed by forcing the base layer of every tile to be sent:

𝑦𝑢,𝑡,0 = 1, ∀𝑢 ∈ 𝒰𝑘, ∀𝑡. (14) 

Finally, all decision variables are binary, 

𝑦𝑢,𝑡,𝑐 ∈ {0,1}, ∀𝑢 ∈ 𝒰𝑘 , ∀𝑡, ∀𝑐, (15) 

so that each version of each tile is either fully selected or not transmitted. 

Putting everything together, the tile-level optimization in cluster 𝑘 is written as 

max
{𝑦𝑢,𝑡,𝑐}

 𝛼𝑉𝑄𝑘 − 𝛾𝑇𝑉𝑘 s.t. Eq.11-15, (16) 

and is solved for every cluster under its corresponding budget 𝑅𝑘. To further exploit the heterogeneity

of viewports inside a cluster, VEGA-360 refines the solution of Eq. (16) by imposing a QoE-aware 

ordering across users, as summarized in Algorithm 2. For each tile 𝑡, the users in 𝒰𝑘 are first sorted in

descending order of their viewport weights 𝑤𝑢,𝑡, obtaining a sequence (𝑢0, 𝑢1, … , 𝑢|𝒰𝑘|−1) from the

most to the least-interested user. Then, for every adjacent pair ( 𝑢𝑖, 𝑢𝑖+1 ) and every admissible version

𝑐, the inequality 

𝑦𝑢𝑖+1,𝑡,𝑐 − 𝑦𝑢𝑖,𝑡,𝑐 ≤ 0
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is enforced. This simple rule guarantees that a user with lower importance for tile 𝑡 never receives a 

higher version than a user with higher importance in the same cluster. As a result, VEGA-360 creates a 

staircase pattern of tile versions inside each cluster: central viewports are upgraded first, while the multi-

cast structure is preserved, leading to a better QoE-bandwidth trade-off. 

Algorithm 2 QoE-aware ordering of tile versions in cluster k 

1: for t = 0 to T − 1 do 

2: Sort users in 𝑢𝑘 by descending 𝑤𝑢,𝑡 obtain the sequence (𝑢1, 𝑢2, . . . , 𝑢|𝑢𝑘|−1)

3: for i = 0 to |𝑢𝑘| − 1 do

4: if i + 1 < |𝑢𝑘| then

5:        for c = 0 to Ck − 1 do 

6: 𝑦𝑢𝑖+1,𝑡,𝑐 − 𝑦𝑢𝑖,𝑡,𝑐  ≤ 0

7:        end for 

8:       end if 

9: end for 

10: end for 

5. PERFORMANCE EVALUATION

In this section, we first describe the 360 -degree video dataset, encoding configuration and simulation 

parameters used to evaluate VEGA-360 and then discuss the obtained performance in comparison with 

existing baselines. 

5.1 Experimental Setup 

Our performance evaluation is carried out in a custom simulator implemented in Python, where we 

replay the clustering and scheduling decisions of VEGA-360 together with the baseline algorithms. All 

mixed integer programs are solved by the Gurobi optimizer on a standard workstation equipped with an 

Intel Core i7 CPU and 32 GB of RAM, with a moderate time limit per instance. 

We reuse a public 360 -degree video dataset introduced in [40], which contains five omni-directional 

sequences: Rollercoaster, Diving, Venice, Paris and Rhino. Following the original dataset, the videos 

are grouped into two content categories: "less-feature" (mostly static scenes) and "more-feature" 

(dynamic scenes with many moving objects and camera motion). Each raw video is projected to the 

equirectangular format with a resolution of 2890 × 1920 pixels and partitioned into 𝑇 = 24 tiles of size 

480 × 480 pixels per tile. To support scalable streaming, every tile is encoded with the SHVC extension 

of HEVC into one base layer and four enhancement layers, i.e., 𝐶 = 5 quality versions per tile. Table 1 

summarizes the average viewport PSNR (in dB) and bitrate (in kbps) of the five versions for the two 

content categories, averaged over all videos in the dataset. 

We consider a single cell serving 𝑈 = 70 mobile users requesting the same 360 -degree video. User-

specific viewport trajectories are obtained from the head-movement traces. For each segment, we project 

the viewport field-of-view onto the tiled equirectangular plane and compute tile weights by the 

normalized viewport-tile overlap ratios, so that the weights reflect how much each user watches each 

tile in that segment. Following the COSMN setting, we generate 𝑈 = 70 users by sampling traces with 

replacement and randomizing the starting segment index to avoid synchronized viewing patterns. The 

wireless downlink is abstracted by a total resource budget per segment shared by all users and clusters 

and the budget is swept from 10000 to 120000 (arbitrary resource units) to emulate different congestion 

levels. Users' spectral efficiencies follow the same channel abstraction as COSMN [39] and are used to 

determine per-user transmission cost in the optimization. For the rebuffering term, we use a fixed 

segment duration and a fixed initial playback buffer as Eq. (17): 

𝜏seg = 1 s, 𝑏𝑢 = 𝑏0 = 2 s, ∀𝑢 ∈ {1, … , 𝑈}. (17) 

For each value of 𝑅, we run VEGA-360 and four baseline schemes under the same 𝑤𝑢,𝑡 and encoding

parameters: 

 COSMN [39]: the original clustering-based optimization that solves a single global MILP over

all users, tiles and versions. 
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 LVSUM [9]: a greedy layer-by-layer strategy that upgrades tile versions sequentially according

to the remaining budget. 

 Multi-cast All [41]: a multi-cast-only scheme that delivers the same version of each tile to every

user, without exploiting viewport diversity. 

 Multi-cast Sca [10]: a scalable multi-cast scheme that uses the SHVC layers, but still ignores

fine-grained viewport heterogeneity. 

Table 1. Average viewport PSNR and bitrate of the encoded tile versions. 

Values Ver. 0 Ver. 1 Ver. 2 Ver. 3 Ver. 4 

Less-feature videos 

PSNR (dB) 36.79 41.09 42.89 45.64 48.30 

Bitrate (kbps) 58.57 148.37 281.69 560.84 995.61 

More-feature videos 

PSNR (dB) 35.30 38.70 41.45 44.71 47.34 

Bitrate (kbps) 177.40 417.32 741.89 1357.76 2143.49 

All schemes are evaluated using the QoE metric defined in Eq. (10), which linearly trades-off viewport 

quality against the number of transmitted tile versions. In addition, we also report the average viewport 

PSNR (VQ) and the average number of transmitted tile versions per segment (TV) as auxiliary 

indicators. 

5.2 Results and Discussion 

On the one hand, Table 2 displays the average quality of experience measured for the video with fewer 

features. VEGA-360 achieves consistently strong QoE across feasible bandwidth budgets and it remains 

competitive (often best) when the bandwidth budget increases. This behavior indicates that VEGA-360 

can sustain user-perceived quality even when user population grows, while still respecting the available 

radio resources. In addition, the performance gap among optimization-based methods becomes small at 

medium-to-high budgets, suggesting that QoE gradually saturates once most viewport-important tiles 

can be delivered at adequate quality. 

Table 2. Average QoE for the "less-feature" video under different bandwidth budgets and numbers of 

users. 

Method Users 
Bandwidth budget (kRBs) 

20 30 45 55 65 75 80 

VEGA-360 
35 - - 1.949 1.955 1.969 1.966 1.971 

70 - - 2.610 2.614 2.632 2.625 2.637 

COSMN 
35 1.924 1.936 1.947 1.954 1.960 1.965 1.967 

70 2.584 2.596 2.607 2.613 2.620 2.624 2.626 

LVSUM 
35 1.917 1.927 1.943 1.949 1.957 1.962 1.964 

70 2.577 2.586 2.602 2.609 2.616 2.621 2.623 

Multicast All 
35 - - - - - 1.873 1.880 

70 - - - - - 2.532 2.540 

Multicast Sca 
35 - - - - - 1.880 1.891 

70 - - - - - 2.540 2.550 

On the other hand, Table 3 summarizes the results for the more-feature video. Compared to the less-

feature case, the more-feature content typically requires higher delivery effort to maintain the same 

perceived quality, which makes the bandwidth budget more influential. VEGA-360 remains robust 

across a broader range of budgets and user scales, demonstrating stable QoE when scaling from 35 users 

to 70 users. 



62

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 12, No. 01, March 2026. 

Overall, the results highlight that the proposed design maintains competitive QoE under heterogeneous 

user demands and richer visual details. 

To better illustrate the resource aspect, Fig. 5 and Fig. 6 visualize the bandwidth consumption under 

different user populations. In general, as the number of users increases, purely unicast-oriented strategies 

tend to incur higher bandwidth usage. By contrast, VEGA-360 is designed to exploit multi-cast 

opportunities through QoE-aware ordering and reuse of tile versions, thereby limiting redundant 

transmissions while preserving viewport quality. This multicast-aware behavior is more evident in the 

more-feature setting, where the content complexity and quality requirements amplify the benefit of 

coordinated version delivery. 

Finally, Fig. 8 and Fig. 7 present the PSNR comparison across bandwidth budgets for each method. 

Overall, VEGA-360 achieves competitive (and often higher) reconstruction quality, especially in the 

low-to-medium budget region where bandwidth scarcity makes tile/version prioritization critical. As the 

budget increases, the PSNR gap among optimization-based schemes becomes smaller, indicating a 

saturation effect: once most viewport-relevant tiles can be delivered at sufficiently high quality, 

additional bandwidth yields marginal visual gains. These results support the main goal of VEGA-360, 

i.e., improving visual fidelity (PSNR) while avoiding unnecessary bandwidth inflation in 360∘ tiled

streaming. 

Table 3. Average QoE for the "more-feature" video under different bandwidth budgets and numbers of 

users. 

Method Users 
Bandwidth budget (kRBs) 

50 80 120 180 250 280 300 

VEGA-360 
35 - 1.901 1.905 1.922 1.929 1.935 1.932

70 - 2.516 2.541 2.547 2.570 2.576 2.576

COSMN 
35 1.870 1.889 1.902 1.919 1.929 1.931 1.931 

70 2.515 2.533 2.547 2.564 2.573 2.575 2.576 

LVSUM 
35 1.858 1.879 1.896 1.915 1.926 1.929 1.930 

70 2.503 2.524 2.541 2.560 2.571 2.574 2.575 

Multicast All 
35 - - - - 1.828 1.835 1.840 

70 - - - - 2.473 2.480 2.484 

Multicast Sca 
35 - - - - 1.838 1.849 1.855 

70 - - - - 2.483 2.494 2.500 

Figure 5. Bandwidth consumption versus number of users for the "less-feature" video. VEGA-360 

consistently requires lower bandwidth than COSMN and other baselines under the same user load. 
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We also present Table 4 that reports the average solver runtime of our method and the baselines under 

different total radio budgets 𝑅. Overall, our method consistently achieves lower runtime than COSMN 

across all tested 𝑅 values (bold entries). In particular, while COSMN requires about 0.55 − 1.00 second, 

our method finishes within 0.28 − 0.55 second, showing a clear reduction in decision latency as the 

budget increases. The runtimes of the other baselines (LMSUM, Mul_all and Mul_sca) lie between 

COSMN and our method in most cases. 

After analyzing the outcomes, we identify several practical remarks emerging from the experimental 

evaluation: 

 First, the benefits of VEGA-360 are most evident in the low-to-medium bandwidth region,

where resource scarcity forces strict prioritization between tiles and instances; in such regimes, 

coordinated instance reuse and multi-cast distribution avoid redundant transmissions while 

maintaining image quality. 

 Second, the PSNR curves tend to saturate as bandwidth budgets increase, which suggests

diminishing returns once the majority of view-relevant tiles are already delivered at sufficiently 

high quality; thus, pursuing aggressive upgrades at high budgets is less beneficial than 

improving efficiency at tight budgets. 

 Third, scaling the number of users amplifies the advantages of multi-directional awareness

designs: while unidirectional-focused strategies will generate bandwidth growth that is roughly 

proportional to the number of users, VEGA-360 can limit additional bandwidth by reusing cell 

instances within groups whenever users share similar viewing preferences. 

Figure 6. Bandwidth consumption versus number of users for the "more-feature" video. The proposed 

VEGA-360 maintains the best bandwidth efficiency across all evaluated user scales. 

Figure 7. Viewport-quality comparison for the "more-feature" video in terms of PSNR. Results are 

shown for 35 users and 70 users, highlighting VEGA-360's advantage over COSMN and multi-cast 

baselines. 
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Figure 8. Viewport quality comparison for the "less-feature" video in terms of PSNR. VEGA360 

achieves the highest PSNR for both 35- and 70-user scenarios. 

 Finally, these observations indicate that VEGA-360 is particularly well-suited to scenarios with

multiple users and bandwidth-constrained wireless systems, where improving the quality-

efficiency trade-off has a larger impact than marginal quality gains at resfource-rich levels. 

Table 4. Runtime comparison (second) under different total radio budgets 𝑅. 

R COSMN LMSUM Mul_all Mul_sca Our method 

20000 0.55 0.48 0.30 0.44 0.28 

30000 0.62 0.54 0.33 0.48 0.31 

45000 0.71 0.61 0.47 0.53 0.36 

55000 0.82 0.70 0.51 0.57 0.41 

65000 0.90 0.78 0.64 0.68 0.46 

75000 0.96 0.83 0.66 0.73 0.52 

80000 1.00 0.86 0.78 0.85 0.55 

6. CONCLUSION

In this paper, we present VEGA-360, a QoE-aware delivery framework for tile-based 360∘ video

streaming over bandwidth-constrained wireless networks. VEGA-360 is designed to balance image 

quality and transmission performance by coordinating tile-based version selection and leveraging multi-

cast opportunities across user groups. Experimental results on representative 360∘ content across

different bandwidth budgets and user sizes show that VEGA-360 achieves competitive performance 

compared to baseline schemes, especially in bandwidth-constrained regimes where efficient reuse of 

delivered versions is crucial. As a two-stage framework, VEGA-360 trades global optimality for 

computational tractability and the clustering decision may introduce a small performance gap compared 

to a monolithic formulation in certain cases. In addition, our current setting assumes a shared-content 

scenario where users request the same 360∘ video; multi-cast gains may decrease in heterogeneous on-

demand scenarios. 

In the future, we plan to extend VEGA-360 in three directions: first, integrating online-view prediction 

and prediction-fault tolerance; next, exploring adaptive clustering and dynamic update intervals under 

rapidly changing channel and mobile user conditions; and finally, deploying a real-time prototype to 

evaluate end-to-end delay and system overhead in real networks. We will also investigate more flexible 

grouping mechanisms (e.g. adaptive or soft cluster-size constraints) to further improve robustness and 

efficiency. 
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ملخص البحث:

ااويةدددددّي ال ا يددددد ا إودددددةامدددددّ  اددددددد اّدةظا  دددددّ ي  الددددد و    اادرجددددد اد عدددددّ دااو    ددددد  ا360يعُدددددّ الددددد  

اديدددددددد وا اتدددددددد   اُ دددددددد   ااو  دددددددد ا وا  دددددددد    اجدددددددد د ا   لدددددددد ا إوددددددددةاد ّ ديدددددددد اددددددددد اردااو  

اش ةددددد ال  دددددجا   ددددد ااوعددددد  فا ومع و ددددد ا ددددد  ااومكدددددح  وا   ددددد  ا ددددد ا ددددد  ا اومدددددد اّلالكدددددحجم

ااويةدددددّي اإودددددةامدددددّ  ا اوّ راسددددد ا   دددددد  او اددددددةيااومددددد اردايُ امددددد اي دددددجا   ددددد ااوعددددد  او ددددد  

درجدددددددد فا يع مددددددددّااو   دددددددد لااوم  دددددددد  ا دددددددددمةم  ا  دددددددد   ااوم ايددددددددج اا360ّدةظال ا يدددددددد ادددددددددد ا

اددددددظااوم م مددددد  ا اوم ي دددددةااه ودددددةا ددددد ااو  ةددددددة وا  ةدددددد ايددددد ج ا  ددددددةجااومدددددد اّدةظاإودددددةامدددددّدم

دددددد ااوم ي دددددد ااو   ةدددددد وا ددددددد اد ي دددددد ا اد م مدددددد ادة ا ةدددددد اددددددد اردفا د  دددددديااو   دددددد لاوحددددددج   ياد 

ددددد ّااودددددّ  ةتوا  ةدددددد ايددددد ج ا ع دددددةجاد ةددددد ددددد ر ال   ددددد   اإودددددةامددددد  اا ساوض  يُ امددددد اجددددد د ااود 

اوذا ا  ا ةدددددد م دددددد   الدددددد و ادددددددظاسددددددد و ااو ددددددد  واددددددد ااو يدددددد  ام ددددددةاتّددددددد م ا ذاي دددددد  ام اا رسدددددد  واد د ذ

اش ةفف ااوع  ا  اسة  ري    ا عّ دااومد اّدةظالكحجم

ا    ددددددددة ام وةددددددد ام دددددددّا ااو   ددددددد لااوم  ددددددد  اي   دددددددتاجددددددد د ا   لددددددد م   ُ دددددددد ا  ددددددد   ااوم  شددددددد  ا ق 

ا تدددددد دادم   دددددد ا ارد ا دددددد ا دلةدددددد  ااوم  دددددد  واددددددد ا   دددددد  ايددددددج ماد  ر  دددددد ا ا ددددددد  ال   مدددددد م

ااف    داجماحكل
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