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ABSTRACT 

This paper addresses the negative transfer problem in cross-domain graph pre-training under few-shot learning 

scenarios, it proposes a multi-component pre-training framework called Graph External Attention-enhanced 

Coordinators for Pre-training (GEA-CoPe). This framework integrates multi-head external attention with a graph 

coordinator. Tackling the structural and semantic discrepancies between cross-domain graphs is crucial for 

mitigating negative transfer; however, conventional methods often lack adaptability to complex, dynamic inter-

domain variations and explicit constraints for intermediate feature-distribution consistency. The proposed 

framework leverages an external attention-based coordinator to mediate between different graph datasets, 

dynamically generating cross-graph semantic-alignment strategies to alleviate negative transfer induced by 

structural heterogeneity. It employs a dual-feature normalization strategy that incorporates a cross-layer 

distribution alignment loss on top of intra-layer node-similarity constraints, effectively suppressing feature drift. 

Furthermore, Kolmogorov-Arnold Networks (KANs) are introduced, whose parameter-adaptive activation 

functions better capture non-linear topological dependencies and enhance model interpretability. Experiments on 

ten real-world graph datasets demonstrate that GEA-CoPe exhibits superior cross-domain generalization 

capability and significantly improves performance in few-shot node classification tasks, with an average 

improvement of about 13.3% compared to other methods. The model can more accurately focus on critical graph 

structures, providing a theoretical foundation and practical paradigms for deploying graph neural networks in 

complex scenarios. 
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1. INTRODUCTION

In recent years, in the fields of natural-language processing and computer vision, foundation models 

based on the Transformer architecture have acquired powerful general representation capabilities 

through pre-training on massive unlabeled data [1]. Subsequently, they can quickly adapt to various 

downstream tasks with minimal annotated data via fine-tuning, establishing a new "pre-training + fine-

tuning" paradigm [2]. The success of this paradigm reveals the great potential of learning universal 

knowledge from large-scale data and transferring it to specific tasks. Inspired by this, the graph-learning 

community has also embarked on exploring the construction of "graph-foundation models," with cross-

domain graph pre-training as their core component [3]. Cross-domain graph learning aims to train a 

universal graph encoder by integrating graph data from multiple sources with diverse structures and 

features, enabling it to learn transferable graph structural patterns and semantic knowledge transcending 

individual domains [4]. 

However, achieving this vision faces severe challenges. Real-world graph data exhibits extremely high 

heterogeneity. First, structurally, graphs from different domains may possess entirely distinct 

topological properties. For example, citation networks are typically homophilic [5], where connected 

nodes tend to belong to similar categories, whereas molecular networks or fraud-detection networks are 

often heterophilic, with connected nodes likely belonging to different categories. Second, at the feature 

level, node feature dimensions, physical meanings and distributions can vary significantly across 

different graphs [6]. This dual discrepancy in both structure and features makes effective knowledge 

transfer across different graph domains exceptionally difficult. Models are highly prone to learning 

knowledge on the source domain that cannot be applied to the target domain or even resulting in negative 

transfer [7]-[8]. Therefore, conducting research on cross-domain graph pre-training, exploring how to 

overcome the heterogeneity of graph data and building graph representation models capable of capturing 

universal patterns across domains, not only holds significant theoretical value, but is also an urgent 
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requirement for advancing graph intelligence technologies toward real-world applications. 

Despite significant advances in cross-domain graph learning, existing methods still exhibit limitations 

when dealing with complex real-world graph data. Structure-oriented approaches [9]-[10] focus on 

mining commonalities in graph topology to achieve transferability through contrastive learning or 

structure generation. However, they often overlook the rich semantic information carried by node and 

edge features. When both the structure and the feature semantics differ significantly between the source 

and target domains, relying solely on structural similarity can lead to severe negative transfer. Feature-

oriented methods [11]-[12] aim to align the feature spaces of different graph domains. Yet, they typically 

require consistent feature dimensions or depend on textual descriptions, which greatly restricts their 

applicability. For graph data with different feature dimensions or lacking explicit semantic annotations, 

feature alignment becomes particularly challenging. Hybrid approaches [13]-[15] often combine 

structure and feature information in a simple, sequential manner, failing to achieve deep and organic 

integration of both aspects. Furthermore, they struggle to effectively model global semantic 

relationships across graphs during training and are susceptible to feature-distribution shifts in deep 

networks, resulting in inefficient knowledge transfer and unstable model performance. 

To address the aforementioned challenges, this paper proposes GEA-CoPe- an effective multi-

component pre-training framework designed to alleviate negative transfer and feature drift in cross-

domain graph learning. The framework demonstrates exceptional cross-domain generalization 

capability and significantly improves performance in few-shot node-classification tasks, achieving an 

average performance gain of approximately 13.3% compared to existing methods. It can be directly 

applied to cross-domain few-shot learning scenarios, such as transferring knowledge from a well-

annotated citation network to classify nodes in a new social network or adapting a model from one e-

commerce platform to another for user-interest recognition. Moreover, the framework serves as a robust 

foundational model for various downstream graph analytical tasks, particularly in target domains with 

limited supervisory signals. The main contributions of this work can be summarized as follows: 

 An effective cross-domain graph pre-training framework is proposed. By leveraging a dynamic

coordinator mechanism based on graph external attention, the model can implicitly learn deep 

semantic relationships across different graph domains. Through the dynamic interaction between 

coordinator nodes and external memory, it adaptively generates cross-graph semantic-alignment 

strategies, thereby effectively bridging domain gaps while preserving unique structural information 

of each graph, fundamentally mitigating negative transfer. 

 A dual contrastive normalization module is designed to address feature drift in deep graph networks.

It constrains feature smoothness among nodes within the same layer and ensures feature consistency 

during propagation through cross-layer distribution-alignment loss, enhancing the domain 

robustness and stability of pre-trained representations. 

 In the downstream task-adaptation phase, Kolmogorov-Arnold Networks are introduced to replace

traditional classification heads in cross-domain graph learning. With their superior non-linear fitting 

capability and higher parameter efficiency, KANs can better capture complex graph patterns and 

feature interactions, further improving the model's adaptability and generalization performance on 

target domains. 

 Experiments were conducted on 10 datasets and the results proved the model’s superiority.

The remainder of this paper is structured as follows. Section 2 reviews related work. Section 3 elaborates 

on the proposed GEA-CoPe framework, which is structured into the pre-training phase and the transfer-

learning phase. Section 4 describes the experimental setup and evaluation metrics, followed by a detailed 

presentation of the results. Finally, Section 5 concludes the paper and discusses its limitations along 

with potential directions for future research. 

2. RELATED WORK

2.1 Graph Pre-training 

Graph pre-training has emerged as a promising paradigm in graph machine learning. Its core idea is to 

leverage self-supervised learning on large-scale unlabeled graph data to capture universal structural and 

attribute patterns, thereby providing a well-initialized model with rich knowledge and strong 



33

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 12, No. 01, March 2026. 

generalization capability for downstream tasks. Typical pre-training strategies include node-level tasks, 

such as masked attribute reconstruction and context prediction, as well as graph-level objectives, like 

graph structure contrastive learning and property prediction. These tasks are designed to enable the 

model to deeply comprehend the complex dependencies among graph elements. Through such pre-

training, the model can learn inherent and transferable domain knowledge, which significantly reduces 

dependence on labeled data in downstream tasks and effectively enhances generalization performance, 

convergence speed and final task performance. Current research primarily focuses on the following 

directions: 

Contrastive Learning-based Graph Pre-training. Maximizes mutual information (MI) between graph 

structures or node sub-graphs to enhance the model's understanding of local and global feature 

correlations. For example, GraphCL [16] employs graph-augmentation strategies to generate multi-view 

contrastive samples, while SimGRACE [17] constructs positive-negative sample pairs via parameter 

perturbation to optimize node-level contrastive loss. These methods exhibit strong generalizability in 

molecular-property prediction and social-network analysis, but remain limited in modeling topological 

invariance for heterophilic graphs. 

Generative Graph Pre-training. Forces models to learn the distribution patterns of graph data by 

reconstructing masked node attributes, edge connections or sub-graph structures. Representative 

methods include GPT-GNN [18], which adopts an auto-regressive approach to generate nodes and edges 

and GraphMAE [19], which introduces a masked auto-encoder to reconstruct node features. These 

methods excel in protein-interaction prediction but show low efficiency in reconstructing complex high-

order relationships. 

Cross-domain Universal Graph Pre-training Frameworks. For unified representation learning on multi-

source heterogeneous graphs, recent studies proposed hierarchical contrastive pre-training [20], which 

separate domain-specific and shared features to enhance transferability in cross-domain tasks, like 

biomedicine and recommendation systems. However, challenges remain in integrating knowledge from 

large-scale heterogeneous graphs and adapting to temporal evolution in dynamic graphs. 

2.2 Graph Transfer Learning 

Graph transfer learning aims to transfer structural knowledge and semantic patterns learned from a 

source-graph domain to a target-graph domain to mitigate performance degradation caused by target-

domain data scarcity or domain shifts. Its core challenge lies in aligning cross-domain topological 

heterogeneity and extracting domain-invariant representations. Recent research directions include: 

Domain Adaptation-based Graph Transfer. Reduces structural discrepancies between source and target 

domains via adversarial training or distribution alignment. For instance, [21] introduced a graph 

convolutional adversarial framework that jointly aligns node features and topological structures by 

minimizing domain divergence through Wasserstein distance constraints, while [22] formalized Fused 

Gromov-Wasserstein distance for structured graph alignment, providing theoretical foundations for 

minimizing inter-domain Wasserstein distances. These methods perform robustly in cross-social 

network user-behavior prediction, but struggle to adapt to temporal dynamics in dynamic graphs. 

Heterogeneous Graph Representation Transfer. Meta-path-aware transfer frameworks address 

node/edge type heterogeneity. The Heterogeneous Graph Transformer [23] dynamically adjusts relation-

specific attention weights through meta-relation aware mechanisms, while [24] employs reinforcement 

learning for automated meta-path discovery across domains. These methods demonstrate effectiveness 

in cross-platform recommendation tasks without relying on predefined-schema constraints, as validated 

in Amazon eBay product alignment experiments. 

Dynamic Graph Temporal Transfer. Recent advances handle structural evolution through temporal 

modeling. [25] decouples graph-convolution parameters into temporal trajectories using RNNs, 

capturing both topological persistence and variation patterns. [26] implements continuous-time graph 

representation learning via temporal point processes, effectively addressing domain shifts in financial-

transaction networks with adaptive computation. 

Unsupervised Cross-graph Transfer. Domain-invariant feature-learning methods achieve progress 

through novel objectives. DANE [27] disentangles domain-specific variations via adversarial alignment 

of graph embeddings, while Graph Optimal Transport [28] maximizes feature correspondence through 
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Wasserstein-distance minimization. These approaches show superior performance in cross-organism 

protein network analysis with explicit geometric-alignment constraints. 

3. METHOD

Our pre-training dataset consists of 𝑀 graphs, represented as 𝒢(𝑖) = (𝒱(𝑖), ℰ(𝑖)), where 𝑖 ∈ {1,2,… ,𝑀},

respectively. 𝒱(𝑖) = {𝑣1
(𝑖)
, 𝑣2

(𝑖)
, … , 𝑣

|𝒱(𝑖)|

(𝑖)
} and ℰ(𝑖) = 𝒱(𝑖) × 𝒱(𝑖) represent the node sets and edge sets,

respectively. Each 𝒢(𝑖) graph is associated with a feature matrix 𝑋(𝑖) ∈ ℝ|𝒱(𝑖)|×𝑑𝑖 , 𝐸(𝑖) ∈ ℝ|ℰ(𝑖)|×𝑑𝑖 and

an adjacency matrix 𝐴(𝑖) ∈ ℝ|𝒱(𝑖)|×|𝒱(𝑖)|. The main goal is to train a graph neural network(GNN) ℎ(⋅)
with learnable parameter Θ that captures domain-agnostic knowledge for adaptation to downstream 

applications. The downstream dataset is represented as 𝒢(𝑡) = (𝑉(𝑡), ℰ(𝑡)) with the feature matrix 𝑋(𝑡)

and adjacency matrix 𝐴(𝑡).

3.1 Overview of Our Framework 

In this sub-section, the proposed GEA-CoPe model is described in detail, which consists of two phases. 

In the first phase, pre-training is conducted on multiple cross-domain graph datasets and the established 

pre-training frameworks GraphCL [16] and SimGRACE [17] are used to guide the entire process. The 

second phase implements transfer learning to adapt the pre-trained knowledge to downstream tasks for 

addressing diverse applications. Several novel techniques are introduced to address the aforementioned 

issues and challenges, with the overall framework illustrated in Figure 1. 

Figure 1. Overall framework of GEA-CoPe model. The first half is the graph pre-training stage and the 

second half is the graph transfer-learning stage. 

3.2 Aligning Graphs by Coordinators 

To address the heterogeneous feature representations and topological disparities across graph data, this 

paper uses an alignment framework. This architecture comprises two core stages: First, feature-space 

standardization transforms heterogeneous node features into a unified dimensional space through linear 

projections. Subsequently, a dynamic coordinator mechanism introduces learnable virtual nodes to 

establish cross-graph semantic correlations, enabling dual-level adaptive alignment of structural patterns 

and semantic relationships. This phased methodology systematically resolves both shallow feature-

distribution discrepancies and deep pattern-expression variations in cross-domain graph datasets. 

3.2.1 Data Pre-processing 

During the data pre-processing stage, a series of crucial steps is performed to ensure the effectiveness 

of cross-domain graph pre-training. First, raw graph data is loaded from ten standard graph datasets and 

uniformly converted into a data object format, achieving standardized integration of multi-source data. 

Subsequently, data-cleaning operations are executed to remove pre-defined data-split masks (including 

training, validation and test-set identifiers) from the datasets. This step effectively prevents potential 

data-leakage risks and provides a clean data foundation for subsequently constructing a unified cross-

dataset pre-training paradigm. Next, unified dimensionality processing is applied to each graph. When 

the original feature dimensionality (e.g. 1433 dimensions for Cora) is higher than the target 

dimensionality (100 dimensions), Singular Value Decomposition (SVD) is employed for dimensionality 

reduction, preserving over 95% of the variance. When the original feature dimensionality is lower than 
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the target, zero-padding is performed to ensure consistent node feature dimensions across all graphs. 

Following this, multiple independent graphs are merged into a unified large graph. For each original 

graph, a learnable coordinator node is added, generating learnable features. Edge-connection strategies 

include static full connection (increasing the edge count by 57.1% ) and dynamic similarity-based 

connection. When dynamically adding edges based on node feature cosine similarity, only edges with a 

similarity above a threshold (default 0.1) are retained to control sparsity (resulting in edge-count 

increases ranging from 7.6% to 56.8%). Finally, sub-graphs are sampled from the large graph via a 

random walk algorithm, with a walk length of 30 and starting nodes comprising 10% of the total, 

covering 70%− 85% of all nodes. Sub-graphs with fewer than 5 nodes are filtered out to ensure sample 

quality, forming the final collection of sub-graphs for subsequent learning. 

Figure 2. Data pre-processing flowchart. 

The data pre-processing flowchart is illustrated in Figure 2. These pre-processing steps collectively form 

a systematic pipeline that transforms multiple graph datasets into a structurally unified and feature-

aligned collection of sub-graphs. This pipeline provides a solid data foundation for the subsequent cross-

domain graph pre-training model, ensuring the model's robustness and generalization capability when 

processing graph data. 

3.2.2 Feature Projection 

In the first stage of the method; namely, the pre-training phase, the initial step involves processing the 

data to align the feature dimensions across different domains, as shown in Figure 3. This is achieved 

through a projection module, with the specific implementation as follows: 

𝑋̃(𝑖) = Proj(𝑋(𝑖)) ∈ ℝ|𝜈(𝑖)|×𝑑𝑝, (1) 

where Proj() denotes the projection operation and 𝑑𝑝 denotes the pre-defined projected dimension. In

this paper, the widely-addressed singular value decomposition (SVD) is employed for the projection 

operation. However, to address the feature-alignment problem, merely applying feature projection to the 

data is insufficient; additional calibration processes are required to further calibrate the data. 
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Figure 3. SVD feature projection. 

3.2.3 Graph Coordinators 

Following the feature-projection stage described above, a "coordinator" - virtual node is introduced, 

which is designed to bridge graphs from different domains and enhance feature and structural alignment. 

Coordinator-Graph Connection. Considering that datasets originate from distinct domains where each 

graph exhibits unique structural properties and information flows, in order to preserve the intrinsic 

structural characteristics of individual graphs while enabling their participation in cross-graph 

information exchange, a dedicated coordinator is established for each dataset. Rather than being isolated 

from the graph data, each coordinator is fully connected to all nodes within its associated graph, forming 

a new sub-graph that becomes an integral part of the original graph. This design creates direct and 

efficient communication pathways between the coordinator and nodes, allowing the coordinator to 

effectively gather node-level information and facilitate coordinated interactions. 

Coordinator-Coordinator Connection. Since our objective focuses on enabling cross-domain knowledge 

sharing rather than enhancing individual graph representations, inter-coordinator connections are 

established to serve as bridges for inter-graph communication. Specifically, edges are introduced 

between coordinators originally assigned to different graph datasets, thereby constructing inter-

connected channels for global information exchange. This eliminates data isolation and creates a unified 

platform for comprehensive knowledge sharing across all domains. Through these operations, a joint 

adjacency matrix is constructed, including the original graph adjacency matrix and the newly added 

coordinator connection. The formula is: 

𝐴̃ = [
𝐴diag 𝑅𝐴

𝑇

𝑅𝐴 𝑅𝑅
] (2) 

where 𝐴diag = Diag(𝐴(1), 𝐴(2), … , 𝐴(𝑀)), 𝑅𝐴 = Stack (𝑅𝐴
(1)
, 𝑅𝐴

(2)
,⋯ , 𝑅𝐴

(𝑀)
) , 𝑅𝑅 = 1𝑀×𝑀. Diag means

concatenating matrices diagonally and Stack means stacking row-vectors into a matrix. 𝑅𝐴
(𝑖)

∈ ℝ𝑁, the

𝑗 th value of 𝑅𝐴
(𝑖)

: 

𝑁 =∑ 

𝑀

𝑘

  |𝜈(𝑘)|, (3)

𝑅𝐴
(𝑖)
(𝑗) = {

1,∑

𝑖

1

  |𝜈(𝑘)| ≤ 𝑗 <∑  

𝑖+1

1

  |𝜈(𝑘)|,

0, otherwise .

(4)

The coordinator representation serves as a learnable parameter that can be trained jointly with GNNs. 

Through an end-to-end collaborative training design, adaptive units dynamically calibrate their 

topological connection weights and feature-aggregation patterns according to the underlying data 

distribution. This collaborative training mechanism ensures that the coordinator continuously self-

improves as an information bridge, enabling more effective transmission of cross-domain graph 

knowledge. 

Generate Graph Batches for Efficient Training. By strategically leveraging coordination mechanisms to 

bridge disparate graph structures, this framework implements cross-graph node sampling during training 

iterations. Such synergistic processing enhances pre-training through batch-level knowledge 

amalgamation while promoting cross-dataset feature alignment. The co-optimization paradigm compels 

the model to distill topological regularities transcending individual graph boundaries, thereby deriving 

unified latent representations that comprehensively synthesize graph information from diverse domains. 

The cross-fusion of graph characteristics during parameter updates establishes an inductive bias favoring 

http://training.by/
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the extraction of fundamental relational patterns while simultaneously facilitating the advancement of 

cross-domain graph-learning frameworks through coordinated structural integration. 

3.3 Graph External Attention 

The self-attention mechanism assumes that the input graph is fully connected. Initially, each element of 

the input sequence is transformed into vector representations via an embedding layer. Each input vector 

is then linearly projected to generate three vectors: the query (Q), which explores correlations with other 

positions; the key (K), which is matched by queries from other positions; and the value (V), which stores 

the actual information to be aggregated. These operations are formally expressed as: 

ASelf = softmax(
QK𝑇

√𝑑out
) ∈ ℝ|𝜈(𝑖)|×|𝜈(𝑖)| (5)

Self − Attn(X) = ASelf V ∈ ℝ|𝜈(𝑖)|×𝑑out (6)

where, 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 represent trainable parameters and 𝑑out  denotes the dimension of Q. Subsequently,

attention scores are computed to perform weighted aggregation, where positions with higher relevance 

are assigned greater weights. However, conventional self-attention mechanisms predominantly focus on 

node features within a single graph and capture only superficial associations between nodes, which 

limits their functional capabilities. 

Inspired by [29], a graph external attention network is introduced, which not only attends to node 

features within individual graphs, but also incorporates external units. By computing attention between 

these external units and the node features of the input graph, the proposed method enhances graph 

representation learning. This approach achieves: 

A𝐺𝐸 = norm(XU𝑇) ∈ ℝ|𝜈(𝑖)|×𝑆, (7)

GE − Attn(X) = A𝐺𝐸U ∈ ℝ|𝜈(𝑖)|×𝑑𝑖 , (8)

where, U ∈ ℝ𝑆×𝑑𝑖 as external units, is designed as learnable parameters containing 𝑆 nodes, with the

information being shared across all input graph data. A𝐺𝐸 denotes the similarity between the input-graph

nodes and the external units. Subsequently, normalization operations [47] are applied to A𝐺𝐸,

specifically performing row-wise and column-wise normalization, respectively. To elaborate, the 

normalization is implemented by: 

𝛼̃𝑖,𝑗 = (𝐗𝐔𝑇)𝑖,𝑗, (9)

𝛼̂𝑖,𝑗 =
exp⁡(𝛼̃𝑖,𝑗)

∑  𝑛
𝑘=0  exp⁡(𝛼̃𝑘,𝑗)

, (10)

𝛼𝑖,𝑗 =
𝛼̂𝑖𝑗

∑  𝑆
𝑘=0   𝛼̂𝑖,𝑘

. (11)

In specific implementations, to achieve enhanced performance, two external modules are used to store 

keys and values respectively. Furthermore, a separate external module is utilized to process edge features 

within the input graph, while node-edge connectivity information is incorporated into a shared module. 

X𝑜𝑢𝑡 ⁡= norm(XU𝑠U𝑛𝑘
𝑇 )U𝑛𝑣, (12)

E𝑜𝑢𝑡 ⁡= norm(EU𝑠U𝑒𝑘
𝑇 )U𝑒𝑣 , (13)

where U𝑠 ∈ ℝ|𝑣(𝑖)|×|𝑣(𝑖)| represents shared units; U𝑛𝑘, U𝑛𝑣 ∈ ℝ𝑆×𝑑𝑖 is the external unit for storage nodes,

while U𝑒𝑘, U𝑒𝑣 ∈ ℝ𝑆×𝑑𝑖 is the external unit for storage edges.

The multi-head self-attention mechanism serves as the core component of Transformer models, with its 

fundamental principle being the processing of input sequences through multiple parallel self-attention 

modules followed by result integration to enhance the model's expressive power. For instance, both the 

node-node relationships within a graph and the node-external unit relationships exhibit complex 

diversity. Therefore, the processing analogous to the multi-head self-attention mechanism is adopted: 

ℎ𝑖 = GE − Attn(X𝑖, U𝑛𝑘, U𝑛𝑣) (14)

X𝑜𝑢𝑡 =  MultiHeadGEA (X, U𝑛𝑘, U𝑛𝑣) = Concat(ℎ1, … , ℎ𝐻)W𝑜 (15)
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where 𝐔𝑛𝑘 , 𝐔𝑛𝑣 ∈ ℝ𝑆×𝑑𝑖 denotes the memory unit shared by all heads. ℎ𝑖 represents the 𝑖-th head, 𝐻
represents the total number of heads and 𝑊𝑜 is a linear transformation matrix Finally, a skip connection

is applied to the output. 

3.4 Pre-training on Multi-domain Graphs 

This paper proposes a universal cross-domain graph pre-training framework compatible with various 

pre-training methods, which generates more expressive embeddings at both node and graph levels. 

Existing works predominantly focus on paradigms utilizing homogeneous data domains for pre-training 

[30]. GraphCL [16] systematically constructs positive sample pairs through structured graph data-

augmentation strategies, explicitly enhancing data diversity to guide models in learning invariant 

features while maximizing mutual information between augmented and original samples through 

contrastive loss. SimGRACE [17] directly generates positive sample pairs by applying subtle 

perturbations to GNN encoder parameters. Since parameter perturbations preserve the topological 

connectivity of original graph structures, they comprehensively retain global graph attributes. Based on 

these considerations, GraphCL and SimGRACE were selected as our pre-training methods. 

During pre-training, significant mean and variance discrepancies in node features across different GNN 

layers lead to gradual dilution of shallow semantic information in deeper layers. Traditional methods 

exacerbate feature-distribution oscillation in few-shot scenarios due to biased mini-batch statistical 

estimations. To address these issues, ContraNorm [31] is introduced, which is a systematic solution. 

Conventional normalization techniques solely focus on single-layer feature distributions, whereas our 

dual contrastive-normalization method incorporates dual optimization objectives: intra-layer feature 

smoothness and cross-layer distribution consistency. By synchronously implementing feature-space 

compactness and inter-layer distribution alignment after each GNN layer, expressed as: 

𝐻𝑡 =  LayerNorm (𝐻𝑏 −
𝑠

𝜏
× softmax(𝐻𝑏𝐻𝑏

⊤)𝐻𝑏) , (16)

Where 𝐻𝑏 and 𝐻𝑡 represent the feature matrices before and after the update, respectively, 𝑠 denotes the

step size of gradient descent and 𝜏 is the temperature. 

To ensure the integrity of graph structural information, this framework introduces an auxiliary feature-

reconstruction loss. The loss is measured through Mean Squared Error (MSE), which quantifies the 

preservation of node-feature information by computing the MSE between linearly transformed raw 

node-feature vectors and reconstructed feature vectors. Specifically, the framework employs MLP to 

decode low-dimensional node embeddings, generating reconstructed features aligned with the original 

feature space. This mechanism aims to achieve dual objectives: at the single-graph level, it preserves 

crucial node characteristics during dimensionality reduction; at the multi-graph alignment level, it 

enhances compatibility among different graph-embedding spaces through feature-fidelity constraints, 

thereby mitigating information redundancy caused by feature-distribution discrepancies in cross-graph 

tasks. Taking GraphCL as an example, the pre-training objective is formulated as: 

ℒ = −log⁡
exp⁡(sin⁡(ℎ (PS(𝑋̃, 𝐴̃, 𝑎𝑖)) , ℎ (PS(𝑋̃, 𝐴̃, 𝑎𝑗)) /𝜏)

∑ ⁡ exp⁡(sin⁡(ℎ (PS(𝑋̃, 𝐴̃, 𝑎𝑖)) , ℎ (NS(𝑋̃, 𝐴̃, 𝑎𝑗)) /𝜏)
+ ‖𝑋̃ − 𝑋̂‖2, (17)

where 𝑋̃ denotes the feature matrix formed by concatenating all pre-training datasets, 𝐴̃ represents the

adjacency matrix connected via the coordinator, PS and NS correspond to Positive Sampling and 

Negative Sampling, respectively, sim indicates the similarity measurement, 𝑎𝑖 and 𝑎𝑗 are two distinct

graph-augmentation methods, 𝜆 serves as the reconstruction loss coefficient governing the emphasis on 

the reconstruction task. 

3.5 Applying Knowledge to Downstream Data 

Our pre-training method GEA-CoPe demonstrates compatibility with diverse techniques through its task 

agnostic nature and task-space adaptability. During the transfer phase, the node classification is selected 

as the downstream task, where conventional approaches typically employ MLP as classification heads. 

This paper proposes replacing MLP with KAN, the core advantage of which lies in dynamically 

capturing complex non-linear relationships between node features through a kernel attention 

mechanism. KAN [32] explicitly models node similarity through this mechanism, proving particularly 
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effective for heterophilic graphs. The incorporation of sparse attention mechanisms reduces 

computational overhead while maintaining suitability for large-scale graph data. During cross-domain 

transfer, attention weights adaptively adjust feature importance to mitigate inter-domain distribution 

discrepancies. 

Building upon recent advancements in graph neural networks [33], a graph-level framework is 

constructed for downstream tasks. Since knowledge-transfer efficiency improves when pre-training 

tasks and downstream applications maintain topological-space alignment, both stages employ graph-

level representations. Specifically, adjacency-matrix reconstruction techniques are implemented to lift 

node-level tasks to the graph space, as detailed in Algorithm 1. 

3.6 Complexity Analysis 

The feature complexity of the coordinator is 𝑂(𝑀𝑑A), exhibiting a linear relationship with the number

of pre-training datasets. In practical scenarios, situations with a large number of pre-training datasets 

are rare. Assuming that the employed GNN comprises 𝐿 layers with a maximum layer width of 𝑑 and 

letting 𝑁 = ∑  𝑀
𝑘=1 |𝒱

(𝑘)| and 𝐸 = ∑  𝑀
𝑘=1 |ℰ

(𝑘)|, the computational cost of GEANet scales linearly with

the number of nodes and edges, with a complexity of 𝑂(𝑁 + 𝐸). It is noteworthy that the time 

complexity of a typical graph model (e.g. Graph Convolutional Network, GCN) is 𝑂(𝐿𝑁𝑑2 + 𝐿𝐸𝑑 +
𝑁𝑑). After incorporating the coordinator, the time complexity becomes (𝐿(𝑁 +𝑀)𝑑2 + 𝐿(𝐸 + 𝑁 +
𝑀)𝑑 + (𝑁 +𝑀)𝑑 + (𝑁 + 𝐸)) , with an additional time complexity of 𝑂(𝐿𝑀𝑑2 + 𝐿(𝑁 +𝑀)𝑑 +𝑀𝑑 +
(𝑁 + 𝐸)). When 𝑀 ≪ 𝑁, the 𝑂(𝑁 + 𝐸) term from GEANet is incorporated into the linear terms of the 

coordinator. The dominant term remains 𝑂(𝐿𝑁𝑑2) from the GNN layers and the supplementary time

cost exhibits an approximately linear relationship with the original number of nodes. 

4. EXPERIMENTS

In this section, experiments are conducted on various graph datasets to evaluate the methods proposed 

in this paper and the baseline methods and analyze the experimental results. All experiments were 

conducted on a server equipped with a single NVIDIA GeForce RTX 3080 GPU ( 10 GB memory), an 

Intel Xeon Platinum 8352 V CPU ( 12 cores @ 2.10 GHz ) and 48 GB of RAM. The software 

environment consisted of the Ubuntu 22.04 operating system, PyTorch 2.1.2 deep-learning framework, 

Python 3.10 programming language and CUDA 11.8 parallel-computing platform. During the training 

phase, a batch size of 100 was used, with training proceeding for 100 epochs and a total training time of 

approximately 1.5 hours. 

4.1 Experimental Setup 

4.1.1 Dataset 

To evaluate the accuracy of the assessment, experiments were conducted on ten real-world benchmark 

Algorithm 1: GEA-CoPe 

1: Input: Source graphs {𝒢(𝑖)}𝑖=1
𝑀 , target graph 𝒢(𝑡), GNN parameters Θ, projection operation Proj(⋅),  pre-

training objective ℒ(⋅), learning rate 𝛼, transferring pipeline Trans(⋅) 

2: Output: The optimal model on the target graph 𝑔𝑡(⋅)

3: for 𝑖 ← 0 to 𝑀 do 

4: 𝑋̃(𝑖) = Proj(𝑋(𝑖))

5:  end for 

6: 𝑋̃ = Cat(𝑋̃(1), 𝑋̃(2), … , 𝑋̃(𝑀))

7: 𝐴̃ = [
𝐴diag 𝑅𝐴

𝑇

𝑅𝐴 𝑅𝑅
]

8: while not converge do

9: 𝛩 ← 𝛩 − 𝛼∇𝛩ℒ(𝑋̃, 𝐴̃, 𝛩)

10: end while

11:  𝑔𝑡(⋅) = Trans(𝒢(𝑡), 𝛩)

12:  return 𝑔𝑡(⋅)
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datasets. These datasets include five homophilic datasets: Cora [34], Citeseer [34], Pubmed [35], 

Computers and Photos [36]-[37], as well as five heterophilic datasets: three sub-datasets from WebKB 

[38] (Cornell, Texas and Wisconsin) and two page networks extracted from Wikipedia [38] (Chameleon

and Squirrel). Detailed information is presented in Table 1, where the values from [39] are used to 

measure the degrees of homophily and heterophily. As shown in the table, the first five datasets exhibit 

strong homophily, while the latter five demonstrate significant heterophily [39]-[40]. The varying 

degrees of homophily and heterophily reflect distinct semantic representations in graph structures. 

Table 1. Statistics of datasets. 

Homophilic Data Cora Citeseer Pubmed Computers Photos 

#Nodes 2,708 3,327 19,717 13,752 7,650 

#Edges 10,556 9,104 88,648 491,722 238,162 

#Features 1,433 3,703 500 767 745 

#Labels 7 6 3 10 8 

ℎ(𝐺) 0.810 0.736 0.802 0.777 0.827 

Heterophilic Data Wisconsin Texas Cornell Chameleon Squirrel 

#Nodes 251 183 183 2,277 5,201 

#Edges 515 325 298 62,792 396,846 

#Features 1,703 1,703 1,703 2,325 2,089 

#Labels 5 5 5 5 5 

ℎ(𝐺) 0.196 0.108 0.305 0.231 0.222 

4.1.2 Baselines 

To evaluate the performance of GEA-CoPe, the framework is compared with the following baselines, 

which are broadly categorized into three groups and briefly summarized. 

Supervised Methods: These approaches typically train GNN models on downstream tasks for direct 

inference. In this study, two widely-used GNN architectures are implemented: GCN [41] and FAGCN 

[42]. These models are selected as the backbone of our proposed GEA-CoPe method, because FAGCN 

is specifically tailored for both homophilic and heterophilic graphs [39], while GCN serves as a widely-

used foundational GNN model that underpins FAGCN. 

Isolated Pre-training with Fine-tuning: These methods leverage multiple cross-domain datasets as source 

datasets, which are combined in an isolated manner to pre-train GNN models in a self-supervised fashion 

(e.g. GraphCL [16] and SimGRACE [17]). Here, "isolated" indicates that the datasets are merged into a 

single batch object, resulting in an adjacency matrix composed of distinct blocks. Subsequently, the pre-

trained model is fine-tuned for new downstream tasks. 

Graph Coordinator for Pre-training (GCOPE) [45]: This methodology integrates disconnected source 

datasets into a unified large-scale graph through a coordination mechanism that establishes cross-dataset 

dependencies during pre-training. The resulting model is then transferred to downstream applications. 

External Attention-Augmented Graph Coordinator for Pre-training (GEA-CoPe): Our proposed method 

employs an external attention-augmented learnable coordinator to act as a bridge for information 

interaction across diverse graph datasets. The pre-trained GNN model is then transferred to downstream 

tasks through fine-tuning or prompting, alleviating the negative-transfer problem [15]. 

4.1.3 Metrics and Implementations 

Three universally adopted metrics were selected for evaluating node-classification tasks [39], [43]-[44]: 

classification accuracy (Acc), mean AUC-ROC value (AUC) and mean F1-score (F1). A 10-fold 

partition strategy was applied to divide ten real-world benchmark datasets, with nine serving as cross-

domain source datasets for model pre-training and the remaining one designated as the target domain 

for transfer learning. To harmonize feature-distribution discrepancies across multiple cross-domain 

sources, SVD was employed for dimensionality reduction, compressing original features to 100 

dimensions. Subsequently, an independent coordination module is assigned to each source dataset, with 

the default reconstruction-weight coefficient set to 0.2. For the external-attention module, the number 

of attention heads is set to 4. 

In the pre-training phase, a contrastive learning framework is adopted. The number of graph neural 
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network layers is set to 8 and the hidden dimension is set to 128. Standard dropout regularization is 

applied to prevent overfitting; a dropout rate of 0.2 is used to enhance model robustness to some extent 

while avoiding excessive loss of information flow [46]. All networks are optimized with the Adam 

optimizer, with a base learning rate uniformly set to 0.0001 to ensure stable learning of general 

representations. Weight decay is set to 0.00001, which prevents overfitting without unduly weakening 

the model's expressive power. 

In the transfer-learning phase, node classification serves as the primary downstream task and the training 

sets are constructed following the C-way-K-shot few-shot learning paradigm described in reference [48]. 

The remaining data is randomly split into validation and test sets in a 1: 9 ratio. The split_ratio is set to 

0.1, indicating that 10% of all nodes are randomly selected as starting nodes for random walks, with 

each random walk length set to 30. A split ratio of 0.1 better simulates the scarcity of labeled data in 

real-world scenarios, thereby more effectively evaluating the model's generalization ability. 

Table 2. Hyper-parameter settings. 

Hyper-parameter Value 

Node Feature Dimension 100 

Reconstruction Loss Weight 0.2 

Number of Attention Heads 4 

Number of Convolutional Layers 8 

Hidden Dimension 128 

Dropout Rate 0.2 

Optimizer(Learning Rate) Adam(1e-4) 

Optimizer(Weight Decay) Adam(1e-5) 

Random Walk Split Ratio 0.1 

Random Walk Length 30 

The hyper-parameter settings are listed in Table 2. To ensure robust performance across datasets and 

avoid performance degradation, the pre-training phase prioritizes tuning the learning rate and batch size 

to guarantee stable convergence, then gradually introduces reconstruction loss weight and dynamic edge 

pruning thresholds to enhance generalization. During fine-tuning, the learning rate is adjusted 

dynamically according to the sample size of the downstream task; in few-shot scenarios, the batch size 

is reduced and the number of training epochs is increased. The number of neural-network layers is 

adjusted based on the graph diameter and signs of overfitting are monitored to regulate the dropout rate. 

The Adam optimizer is employed throughout the experiments. Only 1-2 hyper-parameters are adjusted 

at a time, with evaluation via cross-validation. When transferring across datasets, adaptive adjustments 

are made according to differences in graph scale and feature distribution between the source and target 

domains. 

4.2 Few-shot Performance Evaluation 

The GEA-CoPe was compared with three baseline groups on node-classification tasks under the C-way-

1shot setting. Results on homophilic graph datasets are presented in Table 3, while those on heterophilic 

graphs are shown in Table 4. By analyzing the performance of supervised-learning methods, the 

effectiveness of pre-training GNN transfer is verified and the necessity of knowledge transfer is 

demonstrated. Undoubtedly, the core objective of pre-training lies in learning universal features or 

knowledge from large-scale data to provide foundational models for downstream tasks, thereby 

enhancing model performance, efficiency and generalization capabilities, particularly under few-shot 

conditions. 

Based on our findings, the performance of supervised methods is notably inferior, with negative transfer 

being particularly prominent. The primary issue stems from the substantial divergence in data structures 

and distributions across datasets from different domains. During pre-training, samples contain 

information from only a single dataset and remain isolated; consequently, they fail to integrate 

comprehensive graph information. This consequently leads to compromised effectiveness in GNNs' 

learning of graph representations. It is observed that IP with fine-tuning often fails to achieve 

performance comparable to supervised methods, manifesting as the negative-transfer phenomenon. This 

is attributed to significant distribution shifts across different source domains. Under the IP strategy, each 

graph sample originates from one of nine distinct data distributions. As a result, graph neural networks 
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struggle to reconcile these disparate distributions into a unified representation space, thereby limiting 

their ability to learn generalizable graph features. Although the GCOPE method with graph coordinator 

connects cross-domain graphs into a unified framework, enabling better representation learning across 

graphs, its lack of effective feature-enhancement modules for node and edge attributes constrains model 

expressiveness, resulting in unstable feature distributions and weak generalization. In contrast, our 

proposed GEA-CoPe method significantly outperforms these baselines. The incorporated multi-head 

self-attention mechanism enhances data representation by enabling simultaneous focus on diverse 

feature sub-spaces, distributing attention focus and mitigating single-attention bias. Through attention-

driven feature enhancement and structured computational optimization, our method improves both 

accuracy and efficiency, upgrading the coordinator from a basic parameter-matching framework to an 

efficient universal processor suitable for complex graph-structured data. Therefore, during pre-training, 

our approach enables more effective integration of multi-dataset information and enhances graph 

representations for downstream applications. 

Figure 4. Node-classification confusion matrix of GEA-CoPe (c-way-1-shot). (a)Confusion matrix of 

node classification on Cora. (b)Confusion matrix of node classification on Texas. (c)Confusion matrix 

of node classification on Citeser. 

Figure 5. Node-classification accuracy and loss of GEA-CoPe on PubMed (c-way-1-shot). 

(a)Accuracy curve. (b)Loss curve.

Additionally, to more intuitively demonstrate the framework's performance, partial confusion matrices 

are plotted. As shown in Figure 4, which displays the classification results on the Cora, Texas and 

Citeseer datasets from left to right, the distribution within the confusion matrices reveals that the 

framework demonstrates significant advantages in multi-class classification tasks, particularly 

exhibiting strong robustness when handling complex feature interactions and ambiguous class 

boundaries. In the diabetes-type classification task, the framework's high accuracy for Gestational 

Diabetes ( 69.6% ) reflects its strong ability to identify categories with distinct feature differences. In 

the user-role classification task, the perfect identification of the Staff category (100%) indicates the 

framework's effectiveness in capturing the unique patterns of minority or distinctively featured classes, 

showcasing its adaptability to extremely distributed data. In the academic-domain classification task, 

the high accuracy for the Theory category ( 84.0% ) confirms the framework's capability for hierarchical 

modeling of classes with clear semantic features. Overall, through multi-dimensional feature-decoupling 

and contextual-relationship modeling, the framework efficiently identifies well-separated categories 

while clearly exposing bottlenecks related to feature overlap and label ambiguity. The accuracy and loss 

variations of the framework in node classification on PubMed are shown in Figure 5. 

Furthermore, to evaluate the framework's competitiveness in cross-domain graph learning, four state-of 
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Table 3. Transfer learning performance (mean±std Acc/AUC/F1) on homophilic datasets (C-way-1-

shot). GCL and Sim respectively represent GraphCL and SimGRACE. 

Table 4. Transfer learning performance (mean±std Acc/AUC/F1) on heterophilic datasets (C-way-1-

shot).GCL and Sim respectively represent GraphCL and SimGRACE. 

-the-art methods (MDGPT [49], MDGFM [50], SAMGPT [51] and UniPrompt [52]) were selected for

comparison. As shown in Table 5. Compared to MDGPT, which employs domain tokens for explicit 
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Cora Citeseer Pubmed Computers Photos 

Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 
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GCN 0.3027±.06 0.6436±.06 0.2783±.07 0.3760±.04 0.7230±.03 0.3280±.04 0.3959±.01 0.5443±.02 0.3575±.08 0.2537±.07 0.6602±.01 0.2289±.04 0.4092±.04 0.7817±.04 0.3849±.07 

FAGCN 0.3359±.02 0.6401±.10 0.2839±.10 0.5351±.02 0.8335±.01 0.4867±.02 0.4730±.03 0.5638±.04 0.3828±.08 0.4084±.06 0.7194±.05 0.2731±.06 0.5335±.01 0.8231±.02 0.4489±.01 

IP

GCL 

+GCN
0.2507±.06 0.6320±.03 0.2230±.03 0.3157±.02 0.6631±.04 0.2597±.02 0.4282±.02 0.5297±.05 0.2994±.07 0.2356±.04 0.6347±.03 0.1693±.06 0.4093±.01 0.7767±.01 0.3754±.01 

GCL 
+FAGCN

0.3749±.05 0.7224±.03 0.3616±.05 0.4472±.02 0.7682±.01 0.4493±.02 0.4517±.02 0.5725±.03 0.4137±.04 0.4071±.06 0.7116±.01 0.2694±.03 0.5407±.01 0.8472±.01 0.5138±.03 

Sim 

+GCN

0.2492±.02 0.5779±.03 0.1597±.04 0.2980±.06 0.6273±.06 0.2074±.06 0.3993±.01 0.5082±.02 0.2807±.01 0.2466±.10 0.6248±.01 0.1603±.03 0.4293±.04 0.7645±.02 0.3967±.02 

Sim 

+FAGCN 
0.3763±.03 0.7246±.02 0.3561±.01 0.5161±.03 0.7984±.01 0.4625±.04 0.4386±.01 0.5547±.01 0.4018±.02 0.3983±.01 0.7118±.02 0.3020±.02 0.5411±.02 0.8549±.02 0.4955±.01 

G
C
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GCL 

+GCN
0.3482±.07 0.6701±.05 0.3051±.07 0.3856±.04 0.7221±.04 0.3052±.06 0.4805±.04 0.6517±.04 0.4562±.03 0.2479±.01 0.6567±.00 0.2204±.01 0.4101±.03 0.7846±.01 0.3887±.03 

GCL 
+FAGCN

0.3803±.01 0.7314±.01 0.3900±.01 0.5714±.00 0.8382±.01 0.5214±.02 0.4755±.02 0.5804±.03 0.4464±.03 0.4015±.01 0.7278±.03 0.2736±.03 0.5778±.05 0.8650±.02 0.5156±.07 

Sim 

+GCN
0.3465±.04 0.6529±.03 0.2809±.03 0.3428±.02 0.6809±.02 0.3102±.02 0.3968±.00 0.5430±.01 0.3595±.08 0.2388±.01 0.6466±.01 0.2240±.02 0.4592±.02 0.8160±.01 0.4548±.03 

Sim 

+FAGCN 
0.3867±.00 0.7345±.00 0.3774±.00 0.5645±.01 0.8457±.00 0.5169±.01 0.4654±.02 0.5676±.02 0.3913±.04 0.4079±.00 0.7356±.02 0.3070±.03 0.5511±.01 0.8642±.02 0.5332±.02 

G
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GCL 

+GCN
0.4513±.02 0.7712±.01 0.4413±.01 0.5129±.06 0.7968±.02 0.4580±.06 0.6091±.04 0.7818±.02 0.6037±.04 0.3510±.08 0.6776±.01 0.2932±.01 0.4613±.04 0.8253±.02 0.4440±.03 

GCL 

+FAGCN
 

0.4799±.03 0.7767±.02 0.4296±.01 0.5878±.02 0.8409±.01 0.5425±.02 0.4922±.02 0.5952±.03 0.4482±.03 0.3951±.04 0.6763±.04 0.2705±.03 0.6179±.03 0.8804±.01 0.5544±.03 

Sim 

+GCN
0.4186±.05 0.7482±.02 0.4142±.06 0.5056±.04 0.7905±.02 0.4559±.03 0.5542±.03 0.7040±.01 0.5442±.04 0.3550±.05 0.6749±.03 0.3155±.03 0.4642±.03 0.8377±.02 0.4382±.03 

Sim 

+FAGCN 
0.4526±.03 0.7717±.01 0.4364±.04 0.5990±.01 0.8546±.00 0.5605±.01 0.4975±.04 0.6966±.03 0.4799±.03 0.4427±.02 0.7363±.03 0.2956±.03 0.6156±.04 0.8727±.01 0.5199±.02 
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Wisconsin Texas Cornell Chameleon Squirrel 

Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 
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GCN 0.4878±.08 0.7890±.05 0.4334±.07 0.6000±.06 0.6699±.02 0.4787±.05 0.3650±.16 0.5881±.09 0.2821±.07 0.2271±.00 0.5311±.01 0.1863±.03 0.2180±.00 0.5169±.00 0.1518±.02

FAGCN 0.5303±.06 0.8108±.04 0.4919±.09 0.6700±.04 0.6173±.05 0.4909±.08 0.4188±.17 0.6260±.08 0.3579±.11 0.2675±.02 0.5568±.00 0.1959±.01 0.2165±.00 0.5264±.00 0.1595±.03 
IP

GCL 

+GCN
0.5273±.03 0.7836±.03 0.4417±.05 0.6350±.01 0.6593±.02 0.4936±.09 0.3772±.04 0.6251±.02 0.3035±.04 0.2249±.02 0.5224±.00 0.1423±.04 0.2117±.01 0.5092±.01 0.1103±.03 

GCL 
+FAGCN 0.6049±.04 0.8362±.01 0.5588±.07 0.7433±.03 0.7038±.03 0.6141±.09 0.2688±.04 0.6267±.04 0.3642±.04 0.2412±.00 0.5470±.01 0.1845±.01 0.2143±.00 0.5086±.00 0.1728±.02

Sim 

+GCN
0.5058±.04 0.7749±.05 0.4610±.06 0.5938±.05 0.6425±.07 0.4257±.14 0.3638±.05 0.5852±.09 0.2768±.09 0.2237±.01 0.5293±.02 0.1569±.03 0.2063±.01 0.5103±.02 0.1550±.02 

Sim 

+FAGCN 
0.6215±.02 0.8575±.00 0.5830±.04 0.6754±.12 0.6582±.02 0.4906±.04 0.2725±.06 0.6159±.04 0.3417±.04 0.2401±.01 0.5303±.00 0.1801±.00 0.2137±.00 0.5247±.00 0.1715±.01 

G
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P
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GCL 

+GCN
0.5783±.06 0.8230±.01 0.4850±.04 0.6425±.08 0.6516±.07 0.5061±.14 0.3675±.03 0.6302±.02 0.2785±.08 0.2266±.00 0.5405 ±.03 0.2092±.03 0.2205±.01 0.5256±.01 0.1713±.01 

GCL 
+FAGCN

0.6317±.04 0.8417±.01 0.5799±.06 0.7787±.03 0.7359±.01 0.6202±.05 0.5413±.06 0.7959±.02 0.4465±.01 0.2597±.01 0.5523±.01 0.1982±.03 0.2029±.00 0.5098±.00 0.1779±.01 

Sim 

+GCN
0.4932±.08 0.7885±.05 0.4344±.07 0.6025±.13 0.6976±.01 0.4232±.11 0.3800±.02 0.6142±.03 0.3066±.05 0.2264±.00 0.5309 ±.01 0.1855±.03 0.2171±.00 0.5249±.01 0.1561±.03 

Sim 

+FAGCN 
0.6670±.04 0.8684±.04 0.6287±.07 0.6800±.02 0.6677±.01 0.4850±.06 0.4200±.17 0.6265±.08 0.3582±.11 0.2786±.01 0.5589 ±.02 0.1997±.02 0.2093 ±.00 0.5206±.00 0.1792±.00 

G
E
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GCL 

+GCN
0.6000±.05 0.8210±.00 0.5885±.05 0.6590±.04 0.6591±.02 0.5788±.06 0.3812±.08 0.6344±.05 0.2848±.04 0.2371±.00 0.5440±.00 0.2028±.00 0.2464±.00 0.5474±.00 0.2203±.01 

GCL 

+FAGCN
 

0.7484±.01 0.9058±.00 0.7222±.01 0.8100±.03 0.7359±.01 0.7375±.05 0.6337±.01 0.8281±.02 0.4786±.01 0.2794±.02 0.5671±.02 0.2306±.01 0.2230±.00 0.5253±.00 0.1868±.00 

Sim 

+GCN
0.6262±.04 0.8215±.01 0.5539±.04 0.7225±.05 0.7066±.01 0.6257±.06 0.4087±.08 0.6688±.03 0.2981±.03 0.2382±.02 0.5363±.02 0.1801±.01 0.2109±.00 0.5193±.01 0.1910±.00 

Sim 

+FAGCN 
0.7774±.00 0.9243±.01 0.7469±.01 0.7475±.00 0.6810±.00 0.5957±.03 0.5237±.06 0.7996±.03 0.3814±.05 0.2407±.02 0.5324±.01 0.1993±.01 0.2204±.00 0.5342±.00 0.2073±.01 
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feature semantic alignment, our model implicitly enhances the discriminative power and domain 

invariance of features by introducing contrastive-learning signals during the normalization process, 

thereby avoiding potential semantic bias caused by explicit token alignment. While MDGFM relies on 

complex graph-structure learning for explicit topological reconstruction, our model utilizes the more 

lightweight ContraNorm to implicitly improve robustness, maintaining efficiency while avoiding the 

significant overhead and potential structural distortion risks associated with graph topology-aware 

alignment. Unlike SAMGPT, which depends on structural tokens for layer-wise topological alignment, 

our model achieves dynamic, attention-weighted fusion of multi-source domain contributions via 

GEANet within the coordinator, eliminating the need for introducing fixed structural parameters. In 

contrast to the general prompt framework UniPrompt, our model is specifically designed for cross-

domain graph learning. The dynamic domain-adaptation capability provided by GEANet is significantly 

superior to UniPrompt's static task templates. Simultaneously, the powerful function-approximation 

capability of the KAN classifier head far exceeds that of commonly used linear or shallow classifiers in 

few-shot scenarios. 

Overall, through the synergistic design of "dynamic fusion, contrastive enhancement and strong-fitting 

classification," our model demonstrates excellent performance across three key aspects: adaptive 

integration of multi-domain knowledge, robustness of representations and adaptation to downstream 

tasks. The best reported node-classification performance of these methods across ten datasets was 

compared with the best performance achieved by our proposed framework. As shown in Table 6, the 

best performance of our proposed framework clearly surpasses that of the other methods, demonstrating 

its effectiveness. 

Table 5. Cross-domain graph methods. 

Method Core Architecture 
Alignment 

Mechanism 
Domain Adaptation Classification Head 

MDGPT [48] 
Domain Tokens 

+Dual Prompts

Domain Token 

Explicit Alignment 

Unified Prompt 

+Mixed Prompt

Linear Classifier or 

Prototypical 

Classifier 

MDGFM [49] 

Graph Structure 

Learning 

+Dual Prompts

Graph Structure 

Learning 

Explicit Alignment 

Meta Prompt 

+Task Prompt

Prototypical 

Classifier or Linear 

Classifier 

SAMGPT [50] 
Structure Tokens 

+Dual Prompts

Structure Token 

Explicit Alignment 

Global Prompt 

+Specific Prompt

Prototypical 

Classifier 

UniPrompt [51] 

Unified Task 

Template+Learnable 

Prompts 

Task Template 

Alignment 
General Prompting 

Linear Classifier or 

Shallow MLP 

GEA-CoPe 
External Attention 

Enhanced Coordinator 

Coordinator Implicit 

Semantic Alignment 

Coordinator 

Adaptive Weighting 

Prompt 

/Fine-tuning 

KAN: Strong 

Nonlinear Function 

Approximation 

4.3 Reconstruction Loss Analysis 

On the Citeseer dataset, the proposed method was systematically evaluated for its impact on downstream 

node classification tasks under different reconstruction loss coefficients, with a comparative analysis of 

supervised-learning methods used to assess the effectiveness of the reconstruction module. In the 

specific experimental setup, FAGCN was adopted as the backbone network architecture and GraphCL 

was employed as the graph contrastive-learning pre-training strategy. To ensure a fair comparison, all 

other hyper-parameter configurations were kept identical across the compared methods. A detailed 

comparison of the experimental results is shown in Figure 6, with a comprehensive analysis conducted 

based on three evaluation metrics: node-classification accuracy (Acc), area under the ROC curve (AUC) 

and F1-score. 

Based on the experimental data, the following conclusions can be drawn: First, without the 

reconstruction module (𝜆 = 0.0), the framework already outperforms supervised pre-training, 

demonstrating the effectiveness of the coordinator design. Second, when the reconstruction module is 

introduced and 𝜆 is set to 0.2, the model achieves optimal performance, surpassing not only supervised 

pre-training, but also the framework without reconstruction (𝜆 = 0.0). This improvement benefits from 

the reconstruction module's ability to align graph features across datasets, enabling the graph neural 

network to more effectively learn common information from multi-source cross-domain data. However, 
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when 𝜆 exceeds 0.2, model performance begins to decline, eventually falling below both supervised pre-

training and the performance without reconstruction. This is attributed to excessively large 𝜆 values 

causing the model to over-prioritize the reconstruction task, thereby weakening the learning 

effectiveness of the primary pre-training task. In summary, introducing the reconstruction module with 

a relatively small 𝜆 value is a key factor in ensuring the effectiveness of the framework method. 

Table 6. Node-classification accuracy for cross-domain graph pre-training methods. 
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MDGPT [48] 0.4226±.10 0.4240±.09 0.4982±.08 0.4216±.11 0.5496±.10 0.5040±.15 0.5976±.12 0.5419±.13 0.2804±.04 0.2441±.07 

MDGFM [49] 0.4483±.07 0.4218±.06 0.4684±.07 - - - - 0.4077±.05 0.2836±.03 0.2430±.03 

SAMGPT [50] 0.4680±.11 0.3638±.09 0.5025±.10 0.4522±.08 0.5871±.08 0.5229±.14 0.6679±.10 0.5934±.09 0.2812±.08 0.2475±.06 

UniPrompt[51] 0.4537±.09 0.4325±.09 0.5501±.03 - - - - 0.5158±.09 0.2514±.05 0.2429±.03 

GEA-CoPe 0.4799±.03 0.5990±.01 0.6091±.04 0.4427±.02 0.6179±.03 0.7774±.00 0.8100±.03 0.6337±.01 0.2794±.00 0.2464±.00 

* “——” denotes that the official code has not been released for implementation on these datasets.

Figure 6. Node-classification performance of GEA-CoPe on Citeseer under C-way-1-shot setting. 

(a)Variation of Acc with reconstruction loss coefficient. (b)Variation of AUC with reconstruction loss

coefficient. (c)Variation of F1-score with reconstruction loss coefficient. 

4.4 Transferring by Graph Prompt 

To transfer and apply knowledge learned from upstream tasks to downstream tasks, two methods are 

selected: fine-tuning and graph-prompting techniques. Next, the feasibility of knowledge transfer via 

graph prompting techniques is tested. More specifically, ProG [17] method is adopted, which is a 

revolutionary graph neural network transfer-learning paradigm. It constructs a lightweight, learnable 

"prompt graph" relevant to the downstream task and structurally integrates this prompt graph with the 

original input graph, thereby effectively "prompting" the frozen pre-trained GNN model with task 

information. 

The downstream datasets Cora, citeseer, Wisconsin and Texas were selected for the node classification 

task, including two homophilic and two heterophilic datasets, to evaluate model performance. The 

experimental results are shown in Table 7. To rigorously and intuitively assess the viability of the ProG 

method, the results were compared with the results of supervised methods and the results of GEA-CoPe 

using fine-tuning. 

By comparing the experimental results, the following conclusions can be drawn: GEA-CoPe 

demonstrates superior performance compared to other methods, regardless of whether knowledge is 

transferred using fine-tuning or the ProG method. Particularly in the node-classification task, GEA-

CoPe utilizing ProG achieves positive transfer with the fewest tunable parameters. However, the model 

using ProG performs slightly worse than the model using fine-tuning. Models employing these two 

methods generally outperform supervised methods. Through analysis of the results, it can be concluded 

that our proposed framework is favorable for prompt learning on downstream tasks. 

4.5 Impact of Attention Heads 

To investigate the impact of the number of external attention heads on GEA-CoPe, the performance of 

GEA-CoPe method with varying numbers of attention heads in downstream node-classification task was 
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Table 7. Cross-domain transfer-learning performance (mean ± std Acc/AUC/F1) of GEA-CoPe with 

ProG (C-way-1-shot). GCL and Sim, respectively, representing GraphCL and SimGRACE. 

Training 

schemes 
Methods 

Cora Pubmed 

Acc AUC F1 Acc AUC F1

Supervised FAGCN 0.3359±.02 0.6401±.10 0.2839±.10 0.4730±.03 0.5638±.04 0.3828±.08

GEA-CoPe 

+ProG 

GCL-FAGCN 

Sim-FAGCN 
0.3419±.01
0.4015±.02

0.7230±.02
0.7265±.01

0.3041±.08
0.3700±.03

0.4750±.02
0.4450±.00

0.6732±.04
0.5922±.01

0.4205±.01
0.4384±.01

GEA-CoPe 

+finetuning 

GCL-FAGCN 

Sim-FAGCN 

0.4699±.03
0.4526±.03

0.7767±.02
0.7717±.01

0.4296±.01
0.4364±.04

0.4922±.02
0.4975±.04

0.5952±.03
0.6966±.03

0.4482±.03
0.4799±.03

Training 

schemes Methods 
Wisconsin Texas 

Acc AUC F1 Acc AUC F1 

Supervised FAGCN 0.5303±.06 0.8108±.04 0.4919±.09 0.6700±.04 0.6173±.05 0.4909±.08

GEA-CoPe 

+ProG 

GCL-FAGCN 

Sim-FAGCN 

0.5467±.00
0.7394±.00

0.8216±.00
0.8944±.01

0.4863±.02
0.6982±.02

0.7712±.03
0.7400±.03

0.6847±.00
0.6645±.00

0.6412±.07
0.6420±.07

GEA-CoPe 

+finetuning 

GCL-FAGCN 

Sim-FAGCN 

0.7484±.01
0.7774±.00

0.9058±.00
0.9243±.01

0.7222±.01
0.7469±.01

0.8104±.03
0.7475±.00

0.7359±.01
0.6810±.00

0.7375±.05
0.5957±.03

Figure 7. Node-classification performance (mean ± std) of GEA-CoPe on Cora under C-way-1shot 

setting. (a)Variation of Acc with the number of attention heads. (b)Variation of AUC with the number 

of attention heads. (c)Variation of F1-score with the number of attention heads. 

compared. Specifically, FAGCN is selected as the backbone model, GraphCL is selected as the pre-

training strategy, all other super-parameters are consistent and the node-classification task is performed 

on the Cora dataset. The experimental results, presented in Figure 7, primarily demonstrate the Acc, 

AUC and F1-score metrics. 

From the figure, it can be observed that performance initially increases and then decreases with the 

growing number of attention heads: An insufficient number of attention heads leads to lower 

performance due to insufficient representation capacity. Increasing the number of heads enables the 

model to capture richer neighborhood information, significantly improving the Acc, AUC and F1-score. 

However, when the number of attention heads becomes excessive, performance declines as the model 

suffers from over-fitting or noise interference. When the external number of attention heads is 4, all 

metrics reach their peaks, resulting in the best node-classification performance. 

4.6 Analysis of Neural Network Layers 

To systematically evaluate the impact of neural-network depth on model performance, a controlled 

variable experiment was designed. While keeping the hidden-layer dimensionality and other hyper-

parameters fixed, the number of graph neural-network layers was progressively increased. Experiments 

were conducted uniformly using the GraphCL and FAGCN methods on the Photos and Texas datasets 

to assess the influence of GNN depth on framework performance, with evaluation metrics including 

Accuracy, AUC and F1-score. The results are shown in Figure 8.  

The experimental results clearly demonstrate that as the number of layers increases, the model 

performance shows an upward trend. When the number of layers is less than 8, the node-classification 
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Figure 8. Node-classification performance of GEA-CoPe on Photos and Texas under C-way-1shot 

setting. (a) The variation of Acc with the number of layers in GNNs. (b) The variation of AUC with 

the number of layers in GNNs. (c) The variation of F1-score with the number of layers in GNNs. 

performance increases markedly, whereas beyond 8 layers, the improvement becomes more gradual. 

This occurs, because excessively deep network structures are prone to issues, such as gradient vanishing 

or over-smoothing during propagation, which can impair the model's ability to discriminate local node 

features. While too few layers may lead to under-fitting, too many layers significantly increase 

computational time. Selecting 8 GNN layers achieves an optimal balance between node-classification 

accuracy and runtime. 

4.7 Ablation Experiments 

To thoroughly investigate the impact of individual components in GEA-CoPe on the overall model 

performance, multiple ablation studies were conducted, analyzing the effects of the graph external-

attention mechanism, dual contrast normalization and the KAN classification head. Under the unified 

framework employing both SimGRACE and FAGCN, four variants were constructed: Variant 1 

incorporates only graph external attention, excludes dual contrast normalization and uses a traditional 

classification head; Variant 2 removes the external attention from the base model; Variant 3 utilizes 

traditional graph neural networks for data processing; Variant 4 adopts a traditional classification head. 

Experiments were performed on the base model and all variants, as shown in Table 8 and Table 9. 

Table 8. Node-classification performance on homophilic datasets (C-way-1-shot). 

Methods 
Cora Pubmed Photos 

Acc AUC F1 Acc AUC F1 Acc AUC F1 

Base 

Model 
0.3867±.00 0.7345±.00 0.3774±.02 0.4654±.02 0.5676±.02 0.3913±.04 0.5541±.01 0.8342±.02 0.5012±.02 

Variant 1 0.4023±.02 0.7419±.03 0.3948±.01 0.4763±.03 0.6192±.01 0.4358±.02 0.5924±.03 0.8671±.00 0.5136±.01 

Variant 2 0.4186±.02 0.7463±.02 0.4292±.02 0.4792±.02 0.6271±.04 0.4030±.06 0.6030±.02 0.8460±.03 0.5163±.02 

Variant 3 0.4072±.03 0.7128±.02 0.4037±.03 0.4629±.00 0.5716±.04 0.4559±.01 0.5943±.02 0.8654±.01 0.5276±.03 

Variant 4 0.4012±.01 0.7427±.01 0.4009±.01 0.4886±.01 0.6401±.02 0.4689±.01 0.6120±.03 0.8686±.01 0.5047±.03 

GEA-

CoPe 
0.4526±.03 0.7717±.01 0.4364±.04 0.4975±.04 0.6966±.03 0.4799±.03 0.6156±.04 0.8727±.01 0.5199±.02 

As evidenced by the table, the base model performs the worst across all datasets, while the variant 

methods exhibit certain advantages in specific scenarios, but demonstrate inconsistent performance. 

GEACoPe achieves particularly marked improvements on heterophilic datasets, indicating its 

effectiveness in handling class-distribution imbalance and complex connectivity patterns. The proposed 

framework outperforms both the base model and the variants in the vast majority of cases, highlighting 

its comprehensive superiority, especially on heterophilic datasets where it shows significant 

enhancements. This demonstrates the framework's strong generalization capability in effectively 

addressing node-classification tasks across diverse graph structures. 

4.8 Robustness Analysis 

To evaluate the robustness of the model, three typical types of feature perturbation-Gaussian noise 

injection, feature sparsification and node-feature masking - were introduced to simulate common data- 
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Table 9. Node-classification performance on heterophilic datasets (C -way-1-shot). 

Methods 
Wisconsin Texas Squirrel 

Acc AUC F1 Acc AUC F1 Acc AUC F1 

Base 

Model 
0.6070±.04 0.8284±.04 0.5287±.07 0.6800±.02 0.6477±.01 0.4850±.06 0.2093±.00 0.5106±.00 0.1692±.01 

Variant 1 0.7153±.02 0.8914±.03 0.7140±.02 0.7092±.05 0.6526±.03 0.5413±.02 0.2146±.01 0.5283±.01 0.1892±.00 

Variant 2 0.7285±.01 0.8987±.01 0.7206±.01 0.6525±.17 0.6739±.05 0.5308±.13 0.2133±.00 0.5219±.00 0.1751±.01 

Variant 3 0.6100±.04 0.8317±.00 0.5398±.05 0.7125±.06 0.6509±.04 0.4995±.02 0.2174±.00 0.5279±.00 0.1604±.01 

Variant 4 0.5919±.02 0.8278±.04 0.4861±.10 0.7300±.03 0.6686±.03 0.5738±.05 0.2142±.00 0.5265±.00 0.1719±.02 

GEA-

CoPe 
0.7774±.00 0.9243±.01 0.7469±.01 0.7475±.00 0.6810±.00 0.5957±.03 0.2197±.00 0.5302±.00 0.1806±.01 

quality issues in real-world applications, such as noise, sparse node features or partially missing 

attributes. The experiments were conducted on both homophilic and heterophilic datasets as target 

domains under a 1-shot learning setting. Methods including GraphCL and FAGCN were employed, with 

pre-training performed on the remaining nine datasets and downstream tasks carried out on the target 

dataset. Perturbations of the same type and intensity were applied in both stages to comprehensively 

assess the model's robustness under impaired feature conditions. 

Table 10. Node-classification performance with Gaussian noise on GEA-CoPe (C-way-1-shot). 

Standard 

deviation 

Cora Texas 

Acc AUC F1 Acc AUC F1 

0.0 0.4799±.03 0.7767±.02 0.4296±.01 0.8100±.03 0.7359±.01 0.7375±.05 

0.3 0.4648±.01 0.7628±.02 0.4055±.01 0.7875±.05 0.7047±.03 0.6563±.09 

0.5 0.4512±.03 0.7514±.03 0.3921±.03 0.7650±.06 0.6925±.04 0.6314±.11 

0.7 0.4326±.04 0.7398±.04 0.3787±.04 0.7412±.07 0.6783±.05 0.6059±.12 

The experimental results are shown in Tables 10, 11 and 12. Overall, the model demonstrates notable 

robustness and superiority when facing various feature perturbations. Under Gaussian-noise 

interference, the model achieves cross-graph feature smoothing through its coordinator. Even under 

high-intensity noise, it maintains high accuracy, indicating its strong filtering capability against random 

errors. In the feature-sparsification experiments, when 90% of features are zeroed out, the model 

exhibits only a slight drop in accuracy, benefiting from the cross-graph information compensation and 

structural enhancement enabled by the coordinator and external-attention mechanism. Particularly in 

heterophilic graphs, the rich topological structure provides critical information compensation, resulting 

in significantly better performance retention compared to homophilic graphs. In the most challenging 

scenario of node-feature masking, where 70% of node features are completely absent, the accuracy on 

the Texas dataset remains at 72.64%. This suggests that the model does not simply rely on complete 

feature inputs, but can effectively capture key patterns from partially masked features and integrate 

graph structural information for reliable inference. Comprehensive analysis indicates that the model's 

robustness stems from its dynamic adaptive mechanism: the external attention and coordinator can 

intelligently adjust the weights of intra- and inter-graph information flow according to the type and 

intensity of interference, achieving synergy among feature smoothing, missing feature compensation 

and structural enhancement. Moreover, multi-graph pre-training endows the model with more 

generalized feature invariance. This enables the model not only to perform well under ideal data 

conditions, but also to maintain stable performance with low-quality and incomplete feature data 

commonly encountered in real-world scenarios. 

Table 11. Node-classification performance with feature sparsification on GEA-CoPe (C-way-1shot). 

Sparse 

scale 

Cora Texas 

Acc AUC F1 Acc AUC F1 

0% 0.4799±.03 0.7767±.02 0.4296±.01 0.8100±.03 0.7359±.01 0.7375±.05 

50% 0.4646±.02 0.7678±.01 0.4181±.03 0.7737±.04 0.7252±.02 0.6485±.09 

70% 0.4482±.03 0.7543±.03 0.4027±.04 0.7419±.05 0.7128±.03 0.6184±.10 

90% 0.4185±.04 0.7326±.04 0.3789±.05 0.7013±.07 0.6934±.04 0.5742±.12 



49

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 12, No. 01, March 2026. 

Table 12. Node classification performance with node feature masking on GEA-CoPe (C-way-1shot). 

Mask 

scale 

Cora Texas 

Acc AUC F1 Acc AUC F1 

0% 0.4799±.03 0.7767±.02 0.4296±.01 0.8100±.03 0.7359±.01 0.7375±.05 

30% 0.4324±.02 0.7716±.03 0.4094±.04 0.7925±.04 0.7263±.01 0.7278±.07 

50% 0.4018±.03 0.7582±.04 0.3876±.05 0.7637±.05 0.7129±.02 0.6843±.09 

70% 0.3685±.04 0.7427±.05 0.3621±.06 0.7264±.06 0.6985±.03 0.6328±.10 

5. CONCLUSION

This study addresses the negative-transfer problem in cross-domain graph pre-training under few-shot 

learning scenarios by proposing a novel multi-component framework named GEA-CoPe. The inherent 

structural and semantic discrepancies between graph domains significantly hinder effective knowledge 

transfer, while existing methods often fail to resolve this issue due to their limited adaptability and lack 

of explicit constraints on feature consistency. The proposed framework innovatively integrates multi-

head external attention with a graph coordinator, enabling dynamic and adaptive cross-graph semantic 

alignment to bridge domain gaps while preserving unique structural information. The introduced dual 

feature-normalization strategy, which combines intra-layer node-similarity constraints with a cross-

layer distribution-alignment loss, effectively mitigates feature drift and enhances the robustness and 

stability of pre-trained representations. Furthermore, by incorporating Kolmogorov-Arnold Networks 

(KAN) with parameter-adaptive activation functions, the model gains superior non-linear representation 

capability and improved interpretability, allowing it to better capture complex topological dependencies. 

Extensive experiments conducted on ten real-world graph datasets demonstrate that GEA-CoPe 

significantly outperforms existing methods in both cross-domain generalization and few-shot node-

classification tasks. The model's ability to focus on critical graph structures while maintaining consistent 

feature distributions throughout propagation highlights its practical potential in complex and resource-

constrained environments. 

Despite the encouraging results, the proposed framework has certain limitations. Its performance still 

partially depends on the quality and diversity of the pre-training data. Moreover, the increased model 

complexity may require additional computational resources during training. Future work will focus on 

extending the framework to handle more dynamic and heterogeneous graph structures, optimizing its 

efficiency for large-scale deployment and exploring its integration with other advanced pre-training 

paradigms. 
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ملخص البحث:

ااااااّ    اااااا     اااااا ن باااااالب     ه  ااااااّ   ااااااا تعُااااااه ا وااااااكل   لنّااااااّ بيااااااتّّ      اااااا       يب   م اااااا س  ّا 

ّّ اااااا   باااااا    ب ّااااااّ   ت  ااااااا    ااااااهن  ماااااا     مجااااااهظل  اااااا  ااااااا   باااااا  هنيلوهل   اااااا  عّرح إعاااااا   

َّ    اااااااهب ت  ااااااا س     ااااااا نيب   م ااااااا س   معااااااا     ّ  ااااااا نيب   م ااااااا س ب عااااااا      متل  اااااااهل يُ ااااااام 

ب عااااااا   إهظ   اااااااهل   لاااااااهنا   ّابااااااالب     ه  اااااااّلخ  يااااااا با واااااااك     اااااااهن  ظ   اااااااهل   لاااااااهنا  

باااااالب  ااااااس   ار ي إاااااايد    بااااااه  ب      ّ  يااااااّ ت   ااااااا  ّ اُااااا ن  ّااااااَّ  ااااااا   ن بااااااس ب        ه  ااااااّ   ّمااااااه

 اااااااهل   و تّ اااااااّ      ظ  اااااااّيه    ي هب ت اااااااّ  لد  بعه جاااااااّ          ت ااااااات باااااااس      اااااااه  ل   مع  ااااااا   

بلب     ه  ّ   ا   مجهظل تعُ   لبا ي إه غ   وم ّخ إ     ا 

بااااالب     ه  اااااّ ت  مااااا   ّعاااااه ح       ااااا  ّااااا  إ  ااااا      جاااااهن ب  ّاااااَّ  ياااااا بجمل اااااهل إ ه اااااهل   ّا 

 ّااااااَّ    عماااااا ح   ااااااا   مجااااااهظل   ل  اااااا   ااااااهد ق  ل      هئ ااااااّي  لد      ماااااالقت   م  ااااااا  لاوااااااا ّاُااااا ن ي 

ااااابُ    ّ   ّ  مااااالقت       ااااا  بواااااهب      لااااا  ت   م عّ  اااااّ إاااااه   عّرح إعااااا    ّّ ااااا ي بااااا    ب ّاااااّ  باااااس ل  اااااّ 

اق   خااااااا خ ك ااااااا يمتاااااا   ّ   ااااااهب   م  ااااااا     ا   اااااا ب هن ااااااّي إااااااه  ر  %3خ13  م  ااااااا  إّ اااااا  

ي  ي   مّ ااااااه ي   ايااااااه باااااالب     ه  ااااااّ  باااااال  لا ي إااااااك   لبهبااااااه إلاااااالن   ل ق   ّااااااَّ    ل ااااااَّ    ااااااااّ  ّا 

بلب     ه  ّ          هنيلوهل   مع    خ    لا ت   ي  تهل   عل  ّ  ّا 
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