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ABSTRACT

This paper addresses the negative transfer problem in cross-domain graph pre-training under few-shot learning
scenarios, it proposes a multi-component pre-training framework called Graph External Attention-enhanced
Coordinators for Pre-training (GEA-CoPe). This framework integrates multi-head external attention with a graph
coordinator. Tackling the structural and semantic discrepancies between cross-domain graphs is crucial for
mitigating negative transfer; however, conventional methods often lack adaptability to complex, dynamic inter-
domain variations and explicit constraints for intermediate feature-distribution consistency. The proposed
framework leverages an external attention-based coordinator to mediate between different graph datasets,
dynamically generating cross-graph semantic-alignment strategies to alleviate negative transfer induced by
structural heterogeneity. It employs a dual-feature normalization strategy that incorporates a cross-layer
distribution alignment loss on top of intra-layer node-similarity constraints, effectively suppressing feature drift.
Furthermore, Kolmogorov-Arnold Networks (KANs) are introduced, whose parameter-adaptive activation
functions better capture non-linear topological dependencies and enhance model interpretability. Experiments on
ten real-world graph datasets demonstrate that GEA-CoPe exhibits superior cross-domain generalization
capability and significantly improves performance in few-shot node classification tasks, with an average
improvement of about 13.3% compared to other methods. The model can more accurately focus on critical graph
structures, providing a theoretical foundation and practical paradigms for deploying graph neural networks in
complex scenarios.

KEYWORDS

Graph neural networks, Graph pre-training, Transfer learning, External attention.

1. INTRODUCTION

In recent years, in the fields of natural-language processing and computer vision, foundation models
based on the Transformer architecture have acquired powerful general representation capabilities
through pre-training on massive unlabeled data [1]. Subsequently, they can quickly adapt to various
downstream tasks with minimal annotated data via fine-tuning, establishing a new "pre-training + fine-
tuning" paradigm [2]. The success of this paradigm reveals the great potential of learning universal
knowledge from large-scale data and transferring it to specific tasks. Inspired by this, the graph-learning
community has also embarked on exploring the construction of "graph-foundation models," with cross-
domain graph pre-training as their core component [3]. Cross-domain graph learning aims to train a
universal graph encoder by integrating graph data from multiple sources with diverse structures and
features, enabling it to learn transferable graph structural patterns and semantic knowledge transcending
individual domains [4].

However, achieving this vision faces severe challenges. Real-world graph data exhibits extremely high
heterogeneity. First, structurally, graphs from different domains may possess entirely distinct
topological properties. For example, citation networks are typically homopbhilic [5], where connected
nodes tend to belong to similar categories, whereas molecular networks or fraud-detection networks are
often heterophilic, with connected nodes likely belonging to different categories. Second, at the feature
level, node feature dimensions, physical meanings and distributions can vary significantly across
different graphs [6]. This dual discrepancy in both structure and features makes effective knowledge
transfer across different graph domains exceptionally difficult. Models are highly prone to learning
knowledge on the source domain that cannot be applied to the target domain or even resulting in negative
transfer [7]-[8]. Therefore, conducting research on cross-domain graph pre-training, exploring how to
overcome the heterogeneity of graph data and building graph representation models capable of capturing
universal patterns across domains, not only holds significant theoretical value, but is also an urgent
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requirement for advancing graph intelligence technologies toward real-world applications.

Despite significant advances in cross-domain graph learning, existing methods still exhibit limitations
when dealing with complex real-world graph data. Structure-oriented approaches [9]-[10] focus on
mining commonalities in graph topology to achieve transferability through contrastive learning or
structure generation. However, they often overlook the rich semantic information carried by node and
edge features. When both the structure and the feature semantics differ significantly between the source
and target domains, relying solely on structural similarity can lead to severe negative transfer. Feature-
oriented methods [11]-[12] aim to align the feature spaces of different graph domains. Yet, they typically
require consistent feature dimensions or depend on textual descriptions, which greatly restricts their
applicability. For graph data with different feature dimensions or lacking explicit semantic annotations,
feature alignment becomes particularly challenging. Hybrid approaches [13]-[15] often combine
structure and feature information in a simple, sequential manner, failing to achieve deep and organic
integration of both aspects. Furthermore, they struggle to effectively model global semantic
relationships across graphs during training and are susceptible to feature-distribution shifts in deep
networks, resulting in inefficient knowledge transfer and unstable model performance.

To address the aforementioned challenges, this paper proposes GEA-CoPe- an effective multi-
component pre-training framework designed to alleviate negative transfer and feature drift in cross-
domain graph learning. The framework demonstrates exceptional cross-domain generalization
capability and significantly improves performance in few-shot node-classification tasks, achieving an
average performance gain of approximately 13.3% compared to existing methods. It can be directly
applied to cross-domain few-shot learning scenarios, such as transferring knowledge from a well-
annotated citation network to classify nodes in a new social network or adapting a model from one e-
commerce platform to another for user-interest recognition. Moreover, the framework serves as a robust
foundational model for various downstream graph analytical tasks, particularly in target domains with
limited supervisory signals. The main contributions of this work can be summarized as follows:

e An effective cross-domain graph pre-training framework is proposed. By leveraging a dynamic
coordinator mechanism based on graph external attention, the model can implicitly learn deep
semantic relationships across different graph domains. Through the dynamic interaction between
coordinator nodes and external memory, it adaptively generates cross-graph semantic-alignment
strategies, thereby effectively bridging domain gaps while preserving unique structural information
of each graph, fundamentally mitigating negative transfer.

e Adual contrastive normalization module is designed to address feature drift in deep graph networks.
It constrains feature smoothness among nodes within the same layer and ensures feature consistency
during propagation through cross-layer distribution-alignment loss, enhancing the domain
robustness and stability of pre-trained representations.

¢ In the downstream task-adaptation phase, Kolmogorov-Arnold Networks are introduced to replace
traditional classification heads in cross-domain graph learning. With their superior non-linear fitting
capability and higher parameter efficiency, KANs can better capture complex graph patterns and
feature interactions, further improving the model's adaptability and generalization performance on
target domains.

e Experiments were conducted on 10 datasets and the results proved the model’s superiority.

The remainder of this paper is structured as follows. Section 2 reviews related work. Section 3 elaborates
on the proposed GEA-CoPe framework, which is structured into the pre-training phase and the transfer-
learning phase. Section 4 describes the experimental setup and evaluation metrics, followed by a detailed
presentation of the results. Finally, Section 5 concludes the paper and discusses its limitations along
with potential directions for future research.

2. RELATED WORK

2.1 Graph Pre-training

Graph pre-training has emerged as a promising paradigm in graph machine learning. Its core idea is to
leverage self-supervised learning on large-scale unlabeled graph data to capture universal structural and
attribute patterns, thereby providing a well-initialized model with rich knowledge and strong
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generalization capability for downstream tasks. Typical pre-training strategies include node-level tasks,
such as masked attribute reconstruction and context prediction, as well as graph-level objectives, like
graph structure contrastive learning and property prediction. These tasks are designed to enable the
model to deeply comprehend the complex dependencies among graph elements. Through such pre-
training, the model can learn inherent and transferable domain knowledge, which significantly reduces
dependence on labeled data in downstream tasks and effectively enhances generalization performance,
convergence speed and final task performance. Current research primarily focuses on the following
directions:

Contrastive Learning-based Graph Pre-training. Maximizes mutual information (MI) between graph
structures or node sub-graphs to enhance the model's understanding of local and global feature
correlations. For example, GraphCL [16] employs graph-augmentation strategies to generate multi-view
contrastive samples, while SIMGRACE [17] constructs positive-negative sample pairs via parameter
perturbation to optimize node-level contrastive loss. These methods exhibit strong generalizability in
molecular-property prediction and social-network analysis, but remain limited in modeling topological
invariance for heterophilic graphs.

Generative Graph Pre-training. Forces models to learn the distribution patterns of graph data by
reconstructing masked node attributes, edge connections or sub-graph structures. Representative
methods include GPT-GNN [18], which adopts an auto-regressive approach to generate nodes and edges
and GraphMAE [19], which introduces a masked auto-encoder to reconstruct node features. These
methods excel in protein-interaction prediction but show low efficiency in reconstructing complex high-
order relationships.

Cross-domain Universal Graph Pre-training Frameworks. For unified representation learning on multi-
source heterogeneous graphs, recent studies proposed hierarchical contrastive pre-training [20], which
separate domain-specific and shared features to enhance transferability in cross-domain tasks, like
biomedicine and recommendation systems. However, challenges remain in integrating knowledge from
large-scale heterogeneous graphs and adapting to temporal evolution in dynamic graphs.

2.2 Graph Transfer Learning

Graph transfer learning aims to transfer structural knowledge and semantic patterns learned from a
source-graph domain to a target-graph domain to mitigate performance degradation caused by target-
domain data scarcity or domain shifts. Its core challenge lies in aligning cross-domain topological
heterogeneity and extracting domain-invariant representations. Recent research directions include:

Domain Adaptation-based Graph Transfer. Reduces structural discrepancies between source and target
domains via adversarial training or distribution alignment. For instance, [21] introduced a graph
convolutional adversarial framework that jointly aligns node features and topological structures by
minimizing domain divergence through Wasserstein distance constraints, while [22] formalized Fused
Gromov-Wasserstein distance for structured graph alignment, providing theoretical foundations for
minimizing inter-domain Wasserstein distances. These methods perform robustly in cross-social
network user-behavior prediction, but struggle to adapt to temporal dynamics in dynamic graphs.

Heterogeneous Graph Representation Transfer. Meta-path-aware transfer frameworks address
node/edge type heterogeneity. The Heterogeneous Graph Transformer [23] dynamically adjusts relation-
specific attention weights through meta-relation aware mechanisms, while [24] employs reinforcement
learning for automated meta-path discovery across domains. These methods demonstrate effectiveness
in cross-platform recommendation tasks without relying on predefined-schema constraints, as validated
in Amazon eBay product alignment experiments.

Dynamic Graph Temporal Transfer. Recent advances handle structural evolution through temporal
modeling. [25] decouples graph-convolution parameters into temporal trajectories using RNNs,
capturing both topological persistence and variation patterns. [26] implements continuous-time graph
representation learning via temporal point processes, effectively addressing domain shifts in financial-
transaction networks with adaptive computation.

Unsupervised Cross-graph Transfer. Domain-invariant feature-learning methods achieve progress
through novel objectives. DANE [27] disentangles domain-specific variations via adversarial alignment
of graph embeddings, while Graph Optimal Transport [28] maximizes feature correspondence through
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Wasserstein-distance minimization. These approaches show superior performance in cross-organism
protein network analysis with explicit geometric-alignment constraints.

3. METHOD

Our pre-training dataset consists of M graphs, represented as G = (V®, W) where i € {1,2, ..., M},
respectively. VO = {vl(‘), v, ., v|(117)(i)|} and €O = PO x PO represent the node sets and edge sets,

respectively. Each G® graph is associated with a feature matrix X® € RIV®1xdi f® e RIEVIxd: gng
an adjacency matrix A® € RVOXVP! The main goal is to train a graph neural network(GNN) h(-)
with learnable parameter © that captures domain-agnostic knowledge for adaptation to downstream
applications. The downstream dataset is represented as G = (V(®, £(®) with the feature matrix X ®
and adjacency matrix A®,

3.1 Overview of Our Framework

In this sub-section, the proposed GEA-CoPe model is described in detail, which consists of two phases.
In the first phase, pre-training is conducted on multiple cross-domain graph datasets and the established
pre-training frameworks GraphCL [16] and SImGRACE [17] are used to guide the entire process. The
second phase implements transfer learning to adapt the pre-trained knowledge to downstream tasks for
addressing diverse applications. Several novel techniques are introduced to address the aforementioned
issues and challenges, with the overall framework illustrated in Figure 1.

Graph pretraining & onN Graph transfer learning
GNN Layer 1
g il KAN
8 = : Pretrained Classification
= ContraNorm Contrastive Photos A GNN Head
Loss
Cora G D OR
N2 Reconstruction @ [ .
GNN Layer L Loss @ % Prenan?ed & Graph Downstream
= GNN Prompt Task
3
= ContraNorm
=
[
® Nodes Coordinators & Tuned %) Frozen

Figure 1. Overall framework of GEA-CoPe model. The first half is the graph pre-training stage and the
second half is the graph transfer-learning stage.

3.2 Aligning Graphs by Coordinators

To address the heterogeneous feature representations and topological disparities across graph data, this
paper uses an alignment framework. This architecture comprises two core stages: First, feature-space
standardization transforms heterogeneous node features into a unified dimensional space through linear
projections. Subsequently, a dynamic coordinator mechanism introduces learnable virtual nodes to
establish cross-graph semantic correlations, enabling dual-level adaptive alignment of structural patterns
and semantic relationships. This phased methodology systematically resolves both shallow feature-
distribution discrepancies and deep pattern-expression variations in cross-domain graph datasets.

3.2.1 Data Pre-processing

During the data pre-processing stage, a series of crucial steps is performed to ensure the effectiveness
of cross-domain graph pre-training. First, raw graph data is loaded from ten standard graph datasets and
uniformly converted into a data object format, achieving standardized integration of multi-source data.
Subsequently, data-cleaning operations are executed to remove pre-defined data-split masks (including
training, validation and test-set identifiers) from the datasets. This step effectively prevents potential
data-leakage risks and provides a clean data foundation for subsequently constructing a unified cross-
dataset pre-training paradigm. Next, unified dimensionality processing is applied to each graph. When
the original feature dimensionality (e.g. 1433 dimensions for Cora) is higher than the target
dimensionality (100 dimensions), Singular Value Decomposition (SVD) is employed for dimensionality
reduction, preserving over 95% of the variance. When the original feature dimensionality is lower than
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the target, zero-padding is performed to ensure consistent node feature dimensions across all graphs.
Following this, multiple independent graphs are merged into a unified large graph. For each original
graph, a learnable coordinator node is added, generating learnable features. Edge-connection strategies
include static full connection (increasing the edge count by 57.1% ) and dynamic similarity-based
connection. When dynamically adding edges based on node feature cosine similarity, only edges with a
similarity above a threshold (default 0.1) are retained to control sparsity (resulting in edge-count
increases ranging from 7.6% to 56.8%). Finally, sub-graphs are sampled from the large graph via a
random walk algorithm, with a walk length of 30 and starting nodes comprising 10% of the total,
covering 70% — 85% of all nodes. Sub-graphs with fewer than 5 nodes are filtered out to ensure sample
quality, forming the final collection of sub-graphs for subsequent learning.

Raw data loading

v

Data cleaning

Yes

original feature
dimension = target
dimension

SVD reduces feature
dimensions/Fill with zeros

v

Merge into a Batch Diagram

v

Add graph coordinator

Subgraph sampling
(random walk)

Filter out undersized subgraphs

v

Preprocessing complete

Figure 2. Data pre-processing flowchart.

The data pre-processing flowchart is illustrated in Figure 2. These pre-processing steps collectively form
a systematic pipeline that transforms multiple graph datasets into a structurally unified and feature-
aligned collection of sub-graphs. This pipeline provides a solid data foundation for the subsequent cross-
domain graph pre-training model, ensuring the model's robustness and generalization capability when
processing graph data.

3.2.2 Feature Projection

In the first stage of the method; namely, the pre-training phase, the initial step involves processing the
data to align the feature dimensions across different domains, as shown in Figure 3. This is achieved
through a projection module, with the specific implementation as follows:

£® = proj(x®) e R"lxap, €))

where Proj() denotes the projection operation and d,, denotes the pre-defined projected dimension. In
this paper, the widely-addressed singular value decomposition (SVD) is employed for the projection
operation. However, to address the feature-alignment problem, merely applying feature projection to the
data is insufficient; additional calibration processes are required to further calibrate the data.
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Figure 3. SVD feature projection.
3.2.3 Graph Coordinators

Following the feature-projection stage described above, a "coordinator" - virtual node is introduced,
which is designed to bridge graphs from different domains and enhance feature and structural alignment.

Coordinator-Graph Connection. Considering that datasets originate from distinct domains where each
graph exhibits unique structural properties and information flows, in order to preserve the intrinsic
structural characteristics of individual graphs while enabling their participation in cross-graph
information exchange, a dedicated coordinator is established for each dataset. Rather than being isolated
from the graph data, each coordinator is fully connected to all nodes within its associated graph, forming
a new sub-graph that becomes an integral part of the original graph. This design creates direct and
efficient communication pathways between the coordinator and nodes, allowing the coordinator to
effectively gather node-level information and facilitate coordinated interactions.

Coordinator-Coordinator Connection. Since our objective focuses on enabling cross-domain knowledge
sharing rather than enhancing individual graph representations, inter-coordinator connections are
established to serve as bridges for inter-graph communication. Specifically, edges are introduced
between coordinators originally assigned to different graph datasets, thereby constructing inter-
connected channels for global information exchange. This eliminates data isolation and creates a unified
platform for comprehensive knowledge sharing across all domains. Through these operations, a joint
adjacency matrix is constructed, including the original graph adjacency matrix and the newly added
coordinator connection. The formula is:

i Adia Ri

A=|700 A] (2)

R, Ri

where Agi,, = Diag(A™, 4@, ..., AM), R, = Stack (ngl),ngz),---,RflM)),RR = 1M*M_ Djag means
concatenating matrices diagonally and Stack means stacking row-vectors into a matrix. Rfli) € RV, the
j th value of R{":

M
N=) ) 3)
. k .
L i+1
RO() = 1'Z @< < Z L @
0, otherwise .

The coordinator representation serves as a learnable parameter that can be trained jointly with GNNs.
Through an end-to-end collaborative training design, adaptive units dynamically calibrate their
topological connection weights and feature-aggregation patterns according to the underlying data
distribution. This collaborative training mechanism ensures that the coordinator continuously self-
improves as an information bridge, enabling more effective transmission of cross-domain graph
knowledge.

Generate Graph Batches for Efficient Training. By strategically leveraging coordination mechanisms to
bridge disparate graph structures, this framework implements cross-graph node sampling during training
iterations. Such synergistic processing enhances pre-training through batch-level knowledge
amalgamation while promoting cross-dataset feature alignment. The co-optimization paradigm compels
the model to distill topological regularities transcending individual graph boundaries, thereby deriving
unified latent representations that comprehensively synthesize graph information from diverse domains.
The cross-fusion of graph characteristics during parameter updates establishes an inductive bias favoring
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the extraction of fundamental relational patterns while simultaneously facilitating the advancement of
cross-domain graph-learning frameworks through coordinated structural integration.

3.3 Graph External Attention

The self-attention mechanism assumes that the input graph is fully connected. Initially, each element of
the input sequence is transformed into vector representations via an embedding layer. Each input vector
is then linearly projected to generate three vectors: the query (Q), which explores correlations with other
positions; the key (K), which is matched by queries from other positions; and the value (V), which stores
the actual information to be aggregated. These operations are formally expressed as:

QK"
Agqr = softmax
out

) e RVIXM?] )

Self — Attn(X) = AgfV € R|v(i)|><d0ut (6)

where, Wy, W, Wy, represent trainable parameters and d,,,,, denotes the dimension of Q. Subsequently,
attention scores are computed to perform weighted aggregation, where positions with higher relevance
are assigned greater weights. However, conventional self-attention mechanisms predominantly focus on
node features within a single graph and capture only superficial associations between nodes, which
limits their functional capabilities.

Inspired by [29], a graph external attention network is introduced, which not only attends to node
features within individual graphs, but also incorporates external units. By computing attention between
these external units and the node features of the input graph, the proposed method enhances graph
representation learning. This approach achieves:

Age = norm(XU™) & RMPS, %
GE — Attn(X) = AgzU € RV®Ixd;, (8)

where, U € RS*4i gs external units, is designed as learnable parameters containing S nodes, with the
information being shared across all input graph data. Az denotes the similarity between the input-graph
nodes and the external units. Subsequently, normalization operations [47] are applied to Agpg,
specifically performing row-wise and column-wise normalization, respectively. To elaborate, the
normalization is implemented by:

@ ;= (XU"),;, €))
o exp(&i,j) (10)
Y Bk exp(a,)’

L (11)

Y Yo @ik

In specific implementations, to achieve enhanced performance, two external modules are used to store
keys and values respectively. Furthermore, a separate external module is utilized to process edge features
within the input graph, while node-edge connectivity information is incorporated into a shared module.

Xour = norm(XUsUZ, Uy, (12)
Eoue = norm(EUUZ, )U,,, (13)

where U € R[] represents shared units; U,;, U,,,, € RS*% is the external unit for storage nodes,
while U, U,,, € RS¥% s the external unit for storage edges.

The multi-head self-attention mechanism serves as the core component of Transformer models, with its
fundamental principle being the processing of input sequences through multiple parallel self-attention
modules followed by result integration to enhance the model's expressive power. For instance, both the
node-node relationships within a graph and the node-external unit relationships exhibit complex
diversity. Therefore, the processing analogous to the multi-head self-attention mechanism is adopted:

h; = GE — Attn(X;, Upg, Uny) (14)
Xout = MultiHeadGEA (X, Uy, U,,,) = Concat(hy, ..., hy)W, (15)
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where Uy, U,,,, € RS*4i denotes the memory unit shared by all heads. h; represents the i-th head, H
represents the total number of heads and W, is a linear transformation matrix Finally, a skip connection
is applied to the output.

3.4 Pre-training on Multi-domain Graphs

This paper proposes a universal cross-domain graph pre-training framework compatible with various
pre-training methods, which generates more expressive embeddings at both node and graph levels.
Existing works predominantly focus on paradigms utilizing homogeneous data domains for pre-training
[30]. GraphCL [16] systematically constructs positive sample pairs through structured graph data-
augmentation strategies, explicitly enhancing data diversity to guide models in learning invariant
features while maximizing mutual information between augmented and original samples through
contrastive loss. SIMGRACE [17] directly generates positive sample pairs by applying subtle
perturbations to GNN encoder parameters. Since parameter perturbations preserve the topological
connectivity of original graph structures, they comprehensively retain global graph attributes. Based on
these considerations, GraphCL and SImGRACE were selected as our pre-training methods.

During pre-training, significant mean and variance discrepancies in node features across different GNN
layers lead to gradual dilution of shallow semantic information in deeper layers. Traditional methods
exacerbate feature-distribution oscillation in few-shot scenarios due to biased mini-batch statistical
estimations. To address these issues, ContraNorm [31] is introduced, which is a systematic solution.
Conventional normalization techniques solely focus on single-layer feature distributions, whereas our
dual contrastive-normalization method incorporates dual optimization objectives: intra-layer feature
smoothness and cross-layer distribution consistency. By synchronously implementing feature-space
compactness and inter-layer distribution alignment after each GNN layer, expressed as:

H, = LayerNorm (H, - ; x softmax(H, H] }H, ), (16)

Where Hj, and H, represent the feature matrices before and after the update, respectively, s denotes the
step size of gradient descent and 7 is the temperature.

To ensure the integrity of graph structural information, this framework introduces an auxiliary feature-
reconstruction loss. The loss is measured through Mean Squared Error (MSE), which quantifies the
preservation of node-feature information by computing the MSE between linearly transformed raw
node-feature vectors and reconstructed feature vectors. Specifically, the framework employs MLP to
decode low-dimensional node embeddings, generating reconstructed features aligned with the original
feature space. This mechanism aims to achieve dual objectives: at the single-graph level, it preserves
crucial node characteristics during dimensionality reduction; at the multi-graph alignment level, it
enhances compatibility among different graph-embedding spaces through feature-fidelity constraints,
thereby mitigating information redundancy caused by feature-distribution discrepancies in cross-graph
tasks. Taking GraphCL as an example, the pre-training objective is formulated as:

exp (sin (h (PS()?, A, ai)) h (PS()?, A, aj)) /T)
Y exp (sin (h (PS()?, A, al-)) h (NS()?, A, a]-)) /T)
where X denotes the feature matrix formed by concatenating all pre-training datasets, A represents the
adjacency matrix connected via the coordinator, PS and NS correspond to Positive Sampling and
Negative Sampling, respectively, sim indicates the similarity measurement, a; and a; are two distinct

graph-augmentation methods, A serves as the reconstruction loss coefficient governing the emphasis on
the reconstruction task.

L= —log + 11X = Xll2, (17)

3.5 Applying Knowledge to Downstream Data

Our pre-training method GEA-CoPe demonstrates compatibility with diverse techniques through its task
agnostic nature and task-space adaptability. During the transfer phase, the node classification is selected
as the downstream task, where conventional approaches typically employ MLP as classification heads.
This paper proposes replacing MLP with KAN, the core advantage of which lies in dynamically
capturing complex non-linear relationships between node features through a kernel attention
mechanism. KAN [32] explicitly models node similarity through this mechanism, proving particularly
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effective for heterophilic graphs. The incorporation of sparse attention mechanisms reduces
computational overhead while maintaining suitability for large-scale graph data. During cross-domain
transfer, attention weights adaptively adjust feature importance to mitigate inter-domain distribution
discrepancies.

Building upon recent advancements in graph neural networks [33], a graph-level framework is
constructed for downstream tasks. Since knowledge-transfer efficiency improves when pre-training
tasks and downstream applications maintain topological-space alignment, both stages employ graph-
level representations. Specifically, adjacency-matrix reconstruction techniques are implemented to lift
node-level tasks to the graph space, as detailed in Algorithm 1.

Algorithm 1: GEA-CoPe

1. Input: Source graphs {G @} ,, target graph G, GNN parameters ©, projection operation Proj(-), pre-
training objective L(+), learning rate a, transferring pipeline Trans(:)
2. Output: The optimal model on the target graph g.(-)

3 fori<OtoMdo
i XO =Proj(x®)

5. end for
6 X =Cat(XW,X®, .. x0n)
7 AZ Adiag R;I{]

Ry Rp

g While not converge do

o  0<0-—aVyL(X,40)
10 end while

11 g¢(:) = Trans(G®, 9)

122 return g.(+)

3.6 Complexity Analysis

The feature complexity of the coordinator is 0(Mdy), exhibiting a linear relationship with the number
of pre-training datasets. In practical scenarios, situations with a large number of pre-training datasets
are rare. Assuming that the employed GNN comprises L layers with a maximum layer width of d and
letting N = X3, [Vv®]and E = ¥}, |€®)], the computational cost of GEANEet scales linearly with
the number of nodes and edges, with a complexity of O(N + E). It is noteworthy that the time
complexity of a typical graph model (e.g. Graph Convolutional Network, GCN) is O(LNd? + LEd +
Nd). After incorporating the coordinator, the time complexity becomes (L(N + M)d? + L(E + N +
M)d + (N + M)d + (N + E)) , with an additional time complexity of 0(LMd? + L(N + M)d + Md +
(N +E)).When M < N, the O(N + E) term from GEANet is incorporated into the linear terms of the
coordinator. The dominant term remains O(LNd?) from the GNN layers and the supplementary time
cost exhibits an approximately linear relationship with the original number of nodes.

4. EXPERIMENTS

In this section, experiments are conducted on various graph datasets to evaluate the methods proposed
in this paper and the baseline methods and analyze the experimental results. All experiments were
conducted on a server equipped with a single NVIDIA GeForce RTX 3080 GPU ( 10 GB memory), an
Intel Xeon Platinum 8352 V CPU ( 12 cores @ 2.10 GHz ) and 48 GB of RAM. The software
environment consisted of the Ubuntu 22.04 operating system, PyTorch 2.1.2 deep-learning framework,
Python 3.10 programming language and CUDA 11.8 parallel-computing platform. During the training
phase, a batch size of 100 was used, with training proceeding for 100 epochs and a total training time of
approximately 1.5 hours.

4.1 Experimental Setup
4.1.1 Dataset

To evaluate the accuracy of the assessment, experiments were conducted on ten real-world benchmark
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datasets. These datasets include five homophilic datasets: Cora [34], Citeseer [34], Pubmed [35],
Computers and Photos [36]-[37], as well as five heterophilic datasets: three sub-datasets from WebKB
[38] (Cornell, Texas and Wisconsin) and two page networks extracted from Wikipedia [38] (Chameleon
and Squirrel). Detailed information is presented in Table 1, where the values from [39] are used to
measure the degrees of homophily and heterophily. As shown in the table, the first five datasets exhibit
strong homophily, while the latter five demonstrate significant heterophily [39]-[40]. The varying
degrees of homophily and heterophily reflect distinct semantic representations in graph structures.

Table 1. Statistics of datasets.

Homophilic Data Cora Citeseer Pubmed Computers Photos
#Nodes 2,708 3,327 19,717 13,752 7,650
#Edges 10,556 9,104 88,648 491,722 238,162

#Features 1,433 3,703 500 767 745
#Labels 7 6 3 10 8
h(G) 0.810 0.736 0.802 0.777 0.827

Heterophilic Data Wisconsin Texas Cornell Chameleon Squirrel
#Nodes 251 183 183 2,277 5,201
#Edges 515 325 298 62,792 396,846

#Features 1,703 1,703 1,703 2,325 2,089
#Labels 5 5 5 5 5
h(G®) 0.196 0.108 0.305 0.231 0.222

4.1.2 Baselines

To evaluate the performance of GEA-CoPe, the framework is compared with the following baselines,
which are broadly categorized into three groups and briefly summarized.

Supervised Methods: These approaches typically train GNN models on downstream tasks for direct
inference. In this study, two widely-used GNN architectures are implemented: GCN [41] and FAGCN
[42]. These models are selected as the backbone of our proposed GEA-CoPe method, because FAGCN
is specifically tailored for both homophilic and heterophilic graphs [39], while GCN serves as a widely-
used foundational GNN model that underpins FAGCN.

Isolated Pre-training with Fine-tuning: These methods leverage multiple cross-domain datasets as source
datasets, which are combined in an isolated manner to pre-train GNN models in a self-supervised fashion
(e.g. GraphCL [16] and SImGRACE [17]). Here, "isolated" indicates that the datasets are merged into a
single batch object, resulting in an adjacency matrix composed of distinct blocks. Subsequently, the pre-
trained model is fine-tuned for new downstream tasks.

Graph Coordinator for Pre-training (GCOPE) [45]: This methodology integrates disconnected source
datasets into a unified large-scale graph through a coordination mechanism that establishes cross-dataset
dependencies during pre-training. The resulting model is then transferred to downstream applications.

External Attention-Augmented Graph Coordinator for Pre-training (GEA-CoPe): Our proposed method
employs an external attention-augmented learnable coordinator to act as a bridge for information
interaction across diverse graph datasets. The pre-trained GNN model is then transferred to downstream
tasks through fine-tuning or prompting, alleviating the negative-transfer problem [15].

4.1.3 Metrics and Implementations

Three universally adopted metrics were selected for evaluating node-classification tasks [39], [43]-[44]:
classification accuracy (Acc), mean AUC-ROC value (AUC) and mean F1-score (F1). A 10-fold
partition strategy was applied to divide ten real-world benchmark datasets, with nine serving as cross-
domain source datasets for model pre-training and the remaining one designated as the target domain
for transfer learning. To harmonize feature-distribution discrepancies across multiple cross-domain
sources, SVD was employed for dimensionality reduction, compressing original features to 100
dimensions. Subsequently, an independent coordination module is assigned to each source dataset, with
the default reconstruction-weight coefficient set to 0.2. For the external-attention module, the number
of attention heads is set to 4.

In the pre-training phase, a contrastive learning framework is adopted. The number of graph neural
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network layers is set to 8 and the hidden dimension is set to 128. Standard dropout regularization is
applied to prevent overfitting; a dropout rate of 0.2 is used to enhance model robustness to some extent
while avoiding excessive loss of information flow [46]. All networks are optimized with the Adam
optimizer, with a base learning rate uniformly set to 0.0001 to ensure stable learning of general
representations. Weight decay is set to 0.00001, which prevents overfitting without unduly weakening
the model's expressive power.

In the transfer-learning phase, node classification serves as the primary downstream task and the training
sets are constructed following the C-way-K-shot few-shot learning paradigm described in reference [48].
The remaining data is randomly split into validation and test sets in a 1: 9 ratio. The split_ratio is set to
0.1, indicating that 10% of all nodes are randomly selected as starting nodes for random walks, with
each random walk length set to 30. A split ratio of 0.1 better simulates the scarcity of labeled data in
real-world scenarios, thereby more effectively evaluating the model's generalization ability.

Table 2. Hyper-parameter settings.

Hyper-parameter Value

Node Feature Dimension 100
Reconstruction Loss Weight 0.2

Number of Attention Heads 4

Number of Convolutional Layers 8

Hidden Dimension 128
Dropout Rate 0.2
Optimizer(Learning Rate) Adam(le-4)
Optimizer(Weight Decay) Adam(1e-5)
Random Walk Split Ratio 0.1

Random Walk Length 30

The hyper-parameter settings are listed in Table 2. To ensure robust performance across datasets and
avoid performance degradation, the pre-training phase prioritizes tuning the learning rate and batch size
to guarantee stable convergence, then gradually introduces reconstruction loss weight and dynamic edge
pruning thresholds to enhance generalization. During fine-tuning, the learning rate is adjusted
dynamically according to the sample size of the downstream task; in few-shot scenarios, the batch size
is reduced and the number of training epochs is increased. The number of neural-network layers is
adjusted based on the graph diameter and signs of overfitting are monitored to regulate the dropout rate.
The Adam optimizer is employed throughout the experiments. Only 1-2 hyper-parameters are adjusted
at a time, with evaluation via cross-validation. When transferring across datasets, adaptive adjustments
are made according to differences in graph scale and feature distribution between the source and target
domains.

4.2 Few-shot Performance Evaluation

The GEA-CoPe was compared with three baseline groups on node-classification tasks under the C-way-
1shot setting. Results on homophilic graph datasets are presented in Table 3, while those on heterophilic
graphs are shown in Table 4. By analyzing the performance of supervised-learning methods, the
effectiveness of pre-training GNN transfer is verified and the necessity of knowledge transfer is
demonstrated. Undoubtedly, the core objective of pre-training lies in learning universal features or
knowledge from large-scale data to provide foundational models for downstream tasks, thereby
enhancing model performance, efficiency and generalization capabilities, particularly under few-shot
conditions.

Based on our findings, the performance of supervised methods is notably inferior, with negative transfer
being particularly prominent. The primary issue stems from the substantial divergence in data structures
and distributions across datasets from different domains. During pre-training, samples contain
information from only a single dataset and remain isolated; consequently, they fail to integrate
comprehensive graph information. This consequently leads to compromised effectiveness in GNNs'
learning of graph representations. It is observed that IP with fine-tuning often fails to achieve
performance comparable to supervised methods, manifesting as the negative-transfer phenomenon. This
is attributed to significant distribution shifts across different source domains. Under the IP strategy, each
graph sample originates from one of nine distinct data distributions. As a result, graph neural networks
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struggle to reconcile these disparate distributions into a unified representation space, thereby limiting
their ability to learn generalizable graph features. Although the GCOPE method with graph coordinator
connects cross-domain graphs into a unified framework, enabling better representation learning across
graphs, its lack of effective feature-enhancement modules for node and edge attributes constrains model
expressiveness, resulting in unstable feature distributions and weak generalization. In contrast, our
proposed GEA-CoPe method significantly outperforms these baselines. The incorporated multi-head
self-attention mechanism enhances data representation by enabling simultaneous focus on diverse
feature sub-spaces, distributing attention focus and mitigating single-attention bias. Through attention-
driven feature enhancement and structured computational optimization, our method improves both
accuracy and efficiency, upgrading the coordinator from a basic parameter-matching framework to an
efficient universal processor suitable for complex graph-structured data. Therefore, during pre-training,
our approach enables more effective integration of multi-dataset information and enhances graph
representations for downstream applications.
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Figure 4. Node-classification confusion matrix of GEA-CoPe (c-way-1-shot). (a)Confusion matrix of

node classification on Cora. (b)Confusion matrix of node classification on Texas. (c)Confusion matrix
of node classification on Citeser.
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Figure 5. Node-classification accuracy and loss of GEA-CoPe on PubMed (c-way-1-shot).
(a)Accuracy curve. (b)Loss curve.

Additionally, to more intuitively demonstrate the framework's performance, partial confusion matrices
are plotted. As shown in Figure 4, which displays the classification results on the Cora, Texas and
Citeseer datasets from left to right, the distribution within the confusion matrices reveals that the
framework demonstrates significant advantages in multi-class classification tasks, particularly
exhibiting strong robustness when handling complex feature interactions and ambiguous class
boundaries. In the diabetes-type classification task, the framework's high accuracy for Gestational
Diabetes ( 69.6% ) reflects its strong ability to identify categories with distinct feature differences. In
the user-role classification task, the perfect identification of the Staff category (100%) indicates the
framework's effectiveness in capturing the unique patterns of minority or distinctively featured classes,
showcasing its adaptability to extremely distributed data. In the academic-domain classification task,
the high accuracy for the Theory category ( 84.0% ) confirms the framework's capability for hierarchical
modeling of classes with clear semantic features. Overall, through multi-dimensional feature-decoupling
and contextual-relationship modeling, the framework efficiently identifies well-separated categories
while clearly exposing bottlenecks related to feature overlap and label ambiguity. The accuracy and loss
variations of the framework in node classification on PubMed are shown in Figure 5.

Furthermore, to evaluate the framework's competitiveness in cross-domain graph learning, four state-of
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Table 3. Transfer learning performance (meanzstd Acc/AUC/F1) on homophilic datasets (C-way-1-
shot). GCL and Sim respectively represent GraphCL and SimGRACE.

g 4 Cora Citeseer Pubmed Computers Photos
§ g Methods
3 3 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1

GCN 0.3027:06 0.6436:06 0.2783:07 0.3760:04 0.7230:03 0.3280:04 0.3959:01 0.5443:02 0.3575:08 0.2537x07 0.6602:01 0.2289:04 0.4092:04 0.7817:04 0.3849:07

EAGCN  0.3359:02 0.6401:10 0.2839:10 0.5351:02 0.8335:01 0.4867:02 0.4730:03 0.5638:04 0.3828:08 0.4084:06 0.7194+05 0.2731:r06 0.5335:01 0.8231:02 0.4489:01

pasiniadng

GCL
+GCN

0.2507:06 0.6320:03 0.2230:03 0.3157:02 0.6631:04 0.2597:02 0.4282:02 0.5297:05 0.2994:07 0.2356:04 0.6347:03 0.1693:06 0.4093:01 0.7767:01 0.3754:01

+F(/i%LCN 0.3749:05 0.7224:03 0.3616:05 0.4472:+02 0.7682:01 0.4493:02 0.4517:02 0.5725:03 0.4137:04 0.4071:06 0.7116:01 0.2694:03 0.5407:01 0.8472:01 0.5138:03

dl

Sim
+GCN
Sim
+FAGCN

0.2492:+02 0.5779:03 0.1597:04 0.2980:06 0.6273:06 0.2074:06 0.3993:01 0.5082:02 0.2807+01 0.2466+10 0.6248+01 0.1603:03 0.4293:04 0.7645:02 0.3967+02

0.3763:03 0.7246:02 0.3561:01 0.5161:03 0.7984:01 0.4625:04 0.4386:01 0.5547:01 0.4018:02 0.3983:01 0.7118+02 0.3020:02 0.5411:02 0.8549:02 0.4955:01

GCL
+GCN

0.3482:07 0.6701:05 0.3051:07 0.3856:04 0.7221:04 0.3052:06 0.4805:04 0.6517:04 0.4562:03 0.2479:01 0.6567x00 0.2204:01 0.4101:03 0.7846:01 0.3887:03

+F(/2\CGLCN 0.3803:01 0.7314:01 0.3900:01 0.5714:00 0.8382:01 0.5214:02 0.4755:02 0.5804:03 0.4464:03 0.4015:01 0.7278:03 0.2736:03 0.5778:05 0.8650:02 0.5156+07

3d00D

Sim 0.3465:04 0.6529:03 0.2809:03 0.3428:02 0.6809:02 0.3102:02 0.3968:00 0.5430:01 0.3595:08 0.2388:01 0.6466:01 0.2240:02 0.4592:02 0.8160:01 0.4548:03
+GCN

Sim
+FAGCN

0.3867x00 0.7345:00 0.3774:00 0.5645:01 0.8457:00 0.5169:01 0.4654:02 0.5676:02 0.3913:04 0.4079:00 0.7356:02 0.3070:03 0.5511:01 0.8642:02 0.5332:02

GCL
+GCN
GCL
+FAGCN

0.4513:02 0.7712:01 0.4413:01 0.5129:06 0.7968:02 0.4580:06 0.6091:04 0.7818:02 0.6037:04 0.3510+08 0.6776+01 0.2932+01 0.4613:04 0.8253:02 0.4440+03
0.4799:03 0.7767+02 0.4296:01 0.5878:02 0.8409:01 0.5425:02 0.4922:02 0.5952:03 0.4482:.03 0.3951:04 0.6763+04 0.2705:03 0.6179:03 0.8804:01 0.5544+03

Sim 0.4186:05 0.7482:02 0.4142:06 0.5056:04 0.7905:02 0.4559:03 0.5542:03 0.7040:01 0.5442:04 0.3550:05 0.6749:03 0.3155:03 0.4642:03 0.8377:02 0.4382:03
+GCN

8d40D-v3IO

Sim 0.4526:03 0.7717:01 0.4364:04 0.5990:01 0.8546:00 0.5605:01 0.4975:04 0.6966:03 0.4799:03 0.4427+02 0.7363:03 0.2956:03 0.6156:04 0.8727:01 0.5199:02
+FAGCN

Table 4. Transfer learning performance (meanzstd Acc/AUC/F1) on heterophilic datasets (C-way-1-
shot).GCL and Sim respectively represent GraphCL and SimGRACE.

SawiByds

Wisconsin Texas Cornell Chameleon Squirrel

Methods

Bulures .

Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1

pasiniadng

GCN  0.4878:.08 0.7890+05 0.4334+07 0.6000+.06 0.6699:+.02 0.4787+.05 0.3650+.16 0.5881+09 0.2821+07 0.2271:00 0.5311:01 0.1863:03 0.2180:00 0.5169+00 0.1518:02

FAGCN 0.5303:+06 0.8108:+.04 0.4919:.09 0.6700+.04 0.6173+05 0.4909+08 0.4188+17 0.6260+08 0.3579:11 0.2675:02 0.5568:00 0.1959:+01 0.2165:+00 0.5264+00 0.1595: 03

dl

L
+GGCCN 0.5273+.03 0.7836+.03 0.4417+05 0.6350+.01 0.6593:.02 0.4936:+.09 0.3772+04 0.6251+02 0.3035:04 0.2249:02 0.5224:00 0.1423:04 0.2117:01 0.5092:01 0.1103:03

A 0.6049:04 0.8362:01 0.5588507 07433203 07038103 0.6141500 0.2688:0¢ 0.626704 03642505 02412500 0.5470s01 0.1845201 0.2143200 05086200 01728102
Sim
opy 0'5058:0s 0.7749:050.4610+ 050,503+ 50.6425..070.4257-140.36361.050.5852+ 09 0.2768x 0 0.2287-01 052931  0.1569..05 0.2063:.01 0.51030z 0.1550+.02
-

Si
+FAIg]CN 0.6215:.02 0.8575:.000.5830+.04 0.6754:.120.6582+.02 0.4906:+.04 0.2725+.06 0.6159:.04 0.3417:.04 0.2401:+.01 0.5303:.00 0.18011.00 0.2137:00 0.5247+.00 0.1715:01

34029

GCL
+GCN 0.5783:+.06 0.8230:.010.4850x.04 0.6425:.030.6516+.07 0.5061+.140.3675+.030.6302+.02 0.2785:.08 0.2266:.00 0.5405 +.030.2092:.03 0.2205:.01 0.5256+.01 0.1713:.01

+FGACGLCN 0.6317+.04 0.8417+010.5799+060.7787+.030.7359:+.01 0.6202+ 050.5413+ 06 0.7959+.02 0.4465+ 01 0.2597:+.01 0.5523+ .01 0.1982:+.03 0.2029:+00 0.5098+.00 0.1779:+ .01

si
+GI£;nN 0.4932:.08 0.7885:.050.4344+.070.6025:.130.6976+.01 0.4232+.11 0.3800:.020.6142+ 03 0.3066:.05 0.2264+.00 0.5309 +.01 0.1855:.05 0.2171:00 0.5249:.01 0.1561+ 03
+Fil(r3nCN 0.6670x.04 0.8684+.040.6287:+.070.6800+.020.6677+.01 0.4850x+.06 0.4200+.17 0.6265+.08 0.3582+11 0.2786+.01 0.5589 102 0.1997+02 0.2093 +00 0.5206+.00 0.1792:.00

9400-Vv3O

GCL
+GCN 0.6000x.05 0.8210+.000.5885:.050.6590+.040.6591+.02 0.5788+.060.3812+.08 0.6344+05 0.2848x.04 0.2371+.00 0.5440:+.00 0.2028:+.00 0.2464+.00 0.5474:+00 0.2203:01

GCL
+EAGCN 0.7484..01 0.9058:.000.7222+.010.8100:.030.7359:.01 0.7375+.050.6337+.01 0.8281+.02 0.4786+.01 0.2794:.02 0.5671+.02 0.2306+.01 0.2230+.00 0.5253:00 0.1868:00

+Z|rCnN 0.6262:.04 0.8215:.01 0.5539:.04 0.7225:.05 0.7066:.01 0.6257+.06 0.4087+.08 0.6688:.03 0.29811.03 0.2382:.02 0.5363:02 0.1801:01 0.2109:00 0.5193:01 0.1910x00
+Fil(r3nCN 0.7774+.000.9243:+.01 0.7469:+.01 0.7475:.00 0.6810-.00 0.5957+.03 0.5237.06 0.7996:.03 0.3814+05 0.2407:02 0.5324:01 0.1993:01 0.2204:00 0.5342:.00 0.2073:01

-the-art methods (MDGPT [49], MDGFM [50], SAMGPT [51] and UniPrompt [52]) were selected for
comparison. As shown in Table 5. Compared to MDGPT, which employs domain tokens for explicit
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feature semantic alignment, our model implicitly enhances the discriminative power and domain
invariance of features by introducing contrastive-learning signals during the normalization process,
thereby avoiding potential semantic bias caused by explicit token alignment. While MDGFM relies on
complex graph-structure learning for explicit topological reconstruction, our model utilizes the more
lightweight ContraNorm to implicitly improve robustness, maintaining efficiency while avoiding the
significant overhead and potential structural distortion risks associated with graph topology-aware
alignment. Unlike SAMGPT, which depends on structural tokens for layer-wise topological alignment,
our model achieves dynamic, attention-weighted fusion of multi-source domain contributions via
GEANet within the coordinator, eliminating the need for introducing fixed structural parameters. In
contrast to the general prompt framework UniPrompt, our model is specifically designed for cross-
domain graph learning. The dynamic domain-adaptation capability provided by GEANet is significantly
superior to UniPrompt's static task templates. Simultaneously, the powerful function-approximation
capability of the KAN classifier head far exceeds that of commonly used linear or shallow classifiers in
few-shot scenarios.

Overall, through the synergistic design of "dynamic fusion, contrastive enhancement and strong-fitting
classification,” our model demonstrates excellent performance across three key aspects: adaptive
integration of multi-domain knowledge, robustness of representations and adaptation to downstream
tasks. The best reported node-classification performance of these methods across ten datasets was
compared with the best performance achieved by our proposed framework. As shown in Table 6, the
best performance of our proposed framework clearly surpasses that of the other methods, demonstrating
its effectiveness.

Table 5. Cross-domain graph methods.

Method Core Architecture G‘L‘ggﬂg& Domain Adaptation Classification Head
MDGPT [48] Domain Tokens Domain Token Unified Prompt Lln%figgltassil(t:;r or
+Dual Prompts Explicit Alignment +Mixed Prompt yp!
Classifier
Graph Structure Graph Structure Prototypical
MDGFM [49] Learning Learning +'\'/|I'Ztséll<F|;rr(z)Tnptt Classifier or Linear
+Dual Prompts Explicit Alignment P Classifier
Structure Tokens Structure Token Global Prompt Prototypical
SAMGPT [50] +Dual Prompts Explicit Alignment +Specific Prompt Classifier
L1 BT TS Task Template Linear Classifier or
UniPrompt [51] Templ;trztnl_petzrnable Alignment General Prompting Shallow MLP
Coordinator .
External Attention Coordinator Implicit ~ Adaptive Weighting KAN: Strong
GEA-CoPe . . . Nonlinear Function
Enhanced Coordinator ~ Semantic Alignment Prompt L
. . Approximation
/Fine-tuning

4.3 Reconstruction Loss Analysis

On the Citeseer dataset, the proposed method was systematically evaluated for its impact on downstream
node classification tasks under different reconstruction loss coefficients, with a comparative analysis of
supervised-learning methods used to assess the effectiveness of the reconstruction module. In the
specific experimental setup, FAGCN was adopted as the backbone network architecture and GraphCL
was employed as the graph contrastive-learning pre-training strategy. To ensure a fair comparison, all
other hyper-parameter configurations were kept identical across the compared methods. A detailed
comparison of the experimental results is shown in Figure 6, with a comprehensive analysis conducted
based on three evaluation metrics: node-classification accuracy (Acc), area under the ROC curve (AUC)
and F1-score.

Based on the experimental data, the following conclusions can be drawn: First, without the
reconstruction module (A4 = 0.0), the framework already outperforms supervised pre-training,
demonstrating the effectiveness of the coordinator design. Second, when the reconstruction module is
introduced and A is set to 0.2, the model achieves optimal performance, surpassing not only supervised
pre-training, but also the framework without reconstruction (A = 0.0). This improvement benefits from
the reconstruction module's ability to align graph features across datasets, enabling the graph neural
network to more effectively learn common information from multi-source cross-domain data. However,
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when A exceeds 0.2, model performance begins to decline, eventually falling below both supervised pre-
training and the performance without reconstruction. This is attributed to excessively large A values
causing the model to over-prioritize the reconstruction task, thereby weakening the learning
effectiveness of the primary pre-training task. In summary, introducing the reconstruction module with
a relatively small A value is a key factor in ensuring the effectiveness of the framework method.

Table 6. Node-classification accuracy for cross-domain graph pre-training methods.

Methods
Cora
Citeseer
Pubmed
Computers
Photos
Wisconsin
Texas
Cornell
Chameleon
Squirrel

MDGPT [48]  04226.10 0.4240.09 0.4982.¢5 04216.11  054%.10 05040.15 05976.1, 0541915  0.2804s0s 02441,
MDGEM [49]  04483.07 0421805  0.4684.07 - - - - 0407705  0.2836.03  0.2430.03

SAMGPT [50]  04680.11  0.3638.00 0.5025.1 04522.00 0587l.os 0522914 0.6679:10 05934r00 02812:05  0.2475.05

UniPrompt[51] 04537:00  04325:09  0.5501.0 - - - - 05158500 0.2514:05  0.2429.0
GEA-CoPe 0.47991_03 0.59901_01 0.6091¢_04 0-44271.02 0.6179¢_03 0.77741_00 0.81001_03 0.63371_01 02794¢ 00 02464¢ 00
* “— denotes that the official code has not been released for implementation on these datasets.
059 ==dos il . —e— GEA-CoPe —e— GEA-CoPe
058 /\\ —— Supervised o —e— Supervised 055 —e— Supervised
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Figure 6. Node-classification performance of GEA-CoPe on Citeseer under C-way-1-shot setting.
(a)Variation of Acc with reconstruction loss coefficient. (b)Variation of AUC with reconstruction loss
coefficient. (c)Variation of F1-score with reconstruction loss coefficient.

4.4 Transferring by Graph Prompt

To transfer and apply knowledge learned from upstream tasks to downstream tasks, two methods are
selected: fine-tuning and graph-prompting techniques. Next, the feasibility of knowledge transfer via
graph prompting techniques is tested. More specifically, ProG [17] method is adopted, which is a
revolutionary graph neural network transfer-learning paradigm. It constructs a lightweight, learnable
"prompt graph" relevant to the downstream task and structurally integrates this prompt graph with the
original input graph, thereby effectively “"prompting” the frozen pre-trained GNN model with task
information.

The downstream datasets Cora, citeseer, Wisconsin and Texas were selected for the node classification
task, including two homophilic and two heterophilic datasets, to evaluate model performance. The
experimental results are shown in Table 7. To rigorously and intuitively assess the viability of the ProG
method, the results were compared with the results of supervised methods and the results of GEA-CoPe
using fine-tuning.

By comparing the experimental results, the following conclusions can be drawn: GEA-CoPe
demonstrates superior performance compared to other methods, regardless of whether knowledge is
transferred using fine-tuning or the ProG method. Particularly in the node-classification task, GEA-
CoPe utilizing ProG achieves positive transfer with the fewest tunable parameters. However, the model
using ProG performs slightly worse than the model using fine-tuning. Models employing these two
methods generally outperform supervised methods. Through analysis of the results, it can be concluded
that our proposed framework is favorable for prompt learning on downstream tasks.

4.5 Impact of Attention Heads

To investigate the impact of the number of external attention heads on GEA-CoPe, the performance of
GEA-CoPe method with varying numbers of attention heads in downstream node-classification task was
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Table 7. Cross-domain transfer-learning performance (mean + std Acc/AUC/F1) of GEA-CoPe with
ProG (C-way-1-shot). GCL and Sim, respectively, representing GraphCL and SimGRACE.

ini Cora Pubmed
;I—Crﬁg:]'qgg Methods
Acc AUC F1 Acc AUC F1
Supervised FAGCN 0.3359.9,  0.6401.;,  0.2839.;,  04730.0;  0.5638,,  0.3828,
GEA-CoPe GCL-FAGCN 03419, 07230,y 03041, 04750 g,  0.6732.9,  0.4205,
+ProG Sim-FAGCN 0.4015, 4, 0.7265, 41 0.37004 43 0.4450, 40 0.5922, 4, 0.4384, ¢,
GEA-CoPe GCL-FAGCN 04699, 93 0776749, 04296,y  0.4922,0, 05952, 03  0.4482, 3
+finetuning Sim-FAGCN 0.4526, 43 0.7717 44, 0.4364 ¢, 0.49754 ¢4 0.6966. 43 0.4799, 3
Training Wisconsin Texas
schemes Methods
Acc AUC F1 Acc AUC F1
Supervised FAGCN 0.53034 06 0.8108, ¢4 0.4919. o 0.67004 ¢, 0.6173, 45 0.4909, g
GEA-CoPe GCL-FAGCN 0.54674 40 0.82164 4 0.4863 o, 0.77124 o3 0.6847 4 4o 0.64124 o,
+ProG Sim-FAGCN 0.73944 o 0.8944. ¢, 0.6982, o, 0.7400. o3 0.6645. 0 0.6420, ¢,
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Figure 7. Node-classification performance (mean + std) of GEA-CoPe on Cora under C-way-1shot
setting. (a)Variation of Acc with the number of attention heads. (b)Variation of AUC with the number
of attention heads. (c)Variation of F1-score with the number of attention heads.

compared. Specifically, FAGCN is selected as the backbone model, GraphCL is selected as the pre-
training strategy, all other super-parameters are consistent and the node-classification task is performed
on the Cora dataset. The experimental results, presented in Figure 7, primarily demonstrate the Acc,
AUC and F1-score metrics.

From the figure, it can be observed that performance initially increases and then decreases with the
growing number of attention heads: An insufficient number of attention heads leads to lower
performance due to insufficient representation capacity. Increasing the number of heads enables the
model to capture richer neighborhood information, significantly improving the Acc, AUC and F1-score.
However, when the number of attention heads becomes excessive, performance declines as the model
suffers from over-fitting or noise interference. When the external number of attention heads is 4, all
metrics reach their peaks, resulting in the best node-classification performance.

4.6 Analysis of Neural Network Layers

To systematically evaluate the impact of neural-network depth on model performance, a controlled
variable experiment was designed. While keeping the hidden-layer dimensionality and other hyper-
parameters fixed, the number of graph neural-network layers was progressively increased. Experiments
were conducted uniformly using the GraphCL and FAGCN methods on the Photos and Texas datasets
to assess the influence of GNN depth on framework performance, with evaluation metrics including
Accuracy, AUC and F1-score. The results are shown in Figure 8.

The experimental results clearly demonstrate that as the number of layers increases, the model
performance shows an upward trend. When the number of layers is less than 8, the node-classification
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Figure 8. Node-classification performance of GEA-CoPe on Photos and Texas under C-way-1shot
setting. (a) The variation of Acc with the number of layers in GNNs. (b) The variation of AUC with
the number of layers in GNNSs. (¢) The variation of F1-score with the number of layers in GNNSs.

performance increases markedly, whereas beyond 8 layers, the improvement becomes more gradual.
This occurs, because excessively deep network structures are prone to issues, such as gradient vanishing
or over-smoothing during propagation, which can impair the model's ability to discriminate local node
features. While too few layers may lead to under-fitting, too many layers significantly increase
computational time. Selecting 8 GNN layers achieves an optimal balance between node-classification
accuracy and runtime.

4.7 Ablation Experiments

To thoroughly investigate the impact of individual components in GEA-CoPe on the overall model
performance, multiple ablation studies were conducted, analyzing the effects of the graph external-
attention mechanism, dual contrast normalization and the KAN classification head. Under the unified
framework employing both SImGRACE and FAGCN, four variants were constructed: Variant 1
incorporates only graph external attention, excludes dual contrast normalization and uses a traditional
classification head; Variant 2 removes the external attention from the base model; Variant 3 utilizes
traditional graph neural networks for data processing; Variant 4 adopts a traditional classification head.
Experiments were performed on the base model and all variants, as shown in Table 8 and Table 9.

Table 8. Node-classification performance on homophilic datasets (C-way-1-shot).

Methods Cora Pubmed Photos
Acc AUC F1 Acc AUC F1 Acc AUC F1
I\B/Iac?gel 0.3867,0, 07345, 0.3774,, 04654, 05676, 0.3913,,, 05541,  0.8342,, 0.5012,,,

Variant 1 0.4023.,, 0.7419,,; 0.3948,,  0.4763., 0.6192,, 04358.,, 0.5924,,; 0.8671,y 0.5136, ¢,
Variant2 04186, 074630, 04292, 04792, 06271, 04030, 0.6030,0, 0.8460,0; 05163,
Variant3 04072, 07128, 04037.0; 04629,0 05716, 04559, 05943,0, 08654, 052760

Variant4 — 0.4012,,, 0.7427,,  0.4009,, 0.4886,, 0.6401,, 04689,y 06120, 0.8686,5  0.5047,,

GEA-

CoPe 04526, 4 07717, 04364, 04975, 0.6966,0; 04799, 0.6156,, 0.8727, 0.5199,,

As evidenced by the table, the base model performs the worst across all datasets, while the variant
methods exhibit certain advantages in specific scenarios, but demonstrate inconsistent performance.
GEACoPe achieves particularly marked improvements on heterophilic datasets, indicating its
effectiveness in handling class-distribution imbalance and complex connectivity patterns. The proposed
framework outperforms both the base model and the variants in the vast majority of cases, highlighting
its comprehensive superiority, especially on heterophilic datasets where it shows significant
enhancements. This demonstrates the framework's strong generalization capability in effectively
addressing node-classification tasks across diverse graph structures.

4.8 Robustness Analysis

To evaluate the robustness of the model, three typical types of feature perturbation-Gaussian noise
injection, feature sparsification and node-feature masking - were introduced to simulate common data-
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Table 9. Node-classification performance on heterophilic datasets (C -way-1-shot).

Methods Wisconsin Texas Squirrel
Acc AUC F1 Acc AUC F1 Acc AUC F1
l\BAa;gel 0.6070,0, 08284,0, 05287.5, 068000 0.6477,0; 04850,0 02093,0 0.5106,0 0.1692, 0

Variantl 0.7153,,, 0.8914,,; 07140, 0.7092,,5 0.6526,,; 0.5413,,, 0.2146,,  05283,,  0.1892,,
Variant2  0.7285,,  0.8987,, 07206, 0.6525,;, 0.6739.,5 0.5308,,5 0.2133,, 05219,y 0.1751,¢;
Variant3  0.6100.,, 08317, 0.5398,5 0.7125,45 0.6509.0, 04995, 0.2174,4 052794 0.1604,;

Variant4  0.5919.,, 0.8278.,, 04861,y 0.7300,93 0.6686.; 0.5738. 05 0.2142,, 0.5265.0 0.1719.,,

GEA-

CoPe 077749, 09243, 07469, 07475, 0.6810,4 05957,0; 02197, 05302, 0.1806,,

quality issues in real-world applications, such as noise, sparse node features or partially missing
attributes. The experiments were conducted on both homophilic and heterophilic datasets as target
domains under a 1-shot learning setting. Methods including GraphCL and FAGCN were employed, with
pre-training performed on the remaining nine datasets and downstream tasks carried out on the target
dataset. Perturbations of the same type and intensity were applied in both stages to comprehensively
assess the model's robustness under impaired feature conditions.

Table 10. Node-classification performance with Gaussian noise on GEA-CoPe (C-way-1-shot).

Standard Cora Texas

deviation Acc AUC F1 Acc AUC F1
0.0 0.4799.93 0776744, 0.42964, 0.8100403 0.73594; 0.73754¢s
0.3 0.4648. 9, 0762847, 0.40554,, 0.7875.05 0.7047,43 0.65634 9
0.5 04512493 0.7514443 0.3921,43 0.765040 0.6925,0, 0.6314,;,
0.7 0432649, 0.739810, 0.3787,05 0.7412,,, 0.678319s 0.6059,,

The experimental results are shown in Tables 10, 11 and 12. Overall, the model demonstrates notable
robustness and superiority when facing various feature perturbations. Under Gaussian-noise
interference, the model achieves cross-graph feature smoothing through its coordinator. Even under
high-intensity noise, it maintains high accuracy, indicating its strong filtering capability against random
errors. In the feature-sparsification experiments, when 90% of features are zeroed out, the model
exhibits only a slight drop in accuracy, benefiting from the cross-graph information compensation and
structural enhancement enabled by the coordinator and external-attention mechanism. Particularly in
heterophilic graphs, the rich topological structure provides critical information compensation, resulting
in significantly better performance retention compared to homophilic graphs. In the most challenging
scenario of node-feature masking, where 70% of node features are completely absent, the accuracy on
the Texas dataset remains at 72.64%. This suggests that the model does not simply rely on complete
feature inputs, but can effectively capture key patterns from partially masked features and integrate
graph structural information for reliable inference. Comprehensive analysis indicates that the model's
robustness stems from its dynamic adaptive mechanism: the external attention and coordinator can
intelligently adjust the weights of intra- and inter-graph information flow according to the type and
intensity of interference, achieving synergy among feature smoothing, missing feature compensation
and structural enhancement. Moreover, multi-graph pre-training endows the model with more
generalized feature invariance. This enables the model not only to perform well under ideal data
conditions, but also to maintain stable performance with low-quality and incomplete feature data
commonly encountered in real-world scenarios.

Table 11. Node-classification performance with feature sparsification on GEA-CoPe (C-way-1shot).

Sparse Cora Texas
scale Acc AUC F1 Acc AUC F1
0% 0.4799.93 0.7767,0, 0429644, 0.8100403 0.7359.4; 0.7375.¢s
50% 0.4646.9, 0.7678,0; 0.4181,9; 0.7737.9, 0.7252,,, 0.6485,
70% 0.4482, 93 0.7543,03 0.4027.9, 0.7419.95 0.7128,,; 0.6184,,

90% 04185, 0, 073260, 0.3789,05 0.7013,0, 0.6934,0, 0.5742,,
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Table 12. Node classification performance with node feature masking on GEA-CoPe (C-way-1shot).

Mask Cora Texas

scale Acc AUC F1 Acc AUC F1
0% 04799403 0.776740, 0.429644; 0.8100443 0.7359.9; 0.73754 5
30% 0432449, 0.7716403 0.409440, 0.7925,,, 0726319, 0.7278.,;
50% 04018493 0.758240, 0.3876405 0.7637,45 0.7129.9, 0.6843,
70% 0.368540, 0.7427405 036219 0.7264.9, 0.6985.9; 0.63284

5. CONCLUSION

This study addresses the negative-transfer problem in cross-domain graph pre-training under few-shot
learning scenarios by proposing a novel multi-component framework named GEA-CoPe. The inherent
structural and semantic discrepancies between graph domains significantly hinder effective knowledge
transfer, while existing methods often fail to resolve this issue due to their limited adaptability and lack
of explicit constraints on feature consistency. The proposed framework innovatively integrates multi-
head external attention with a graph coordinator, enabling dynamic and adaptive cross-graph semantic
alignment to bridge domain gaps while preserving unique structural information. The introduced dual
feature-normalization strategy, which combines intra-layer node-similarity constraints with a cross-
layer distribution-alignment loss, effectively mitigates feature drift and enhances the robustness and
stability of pre-trained representations. Furthermore, by incorporating Kolmogorov-Arnold Networks
(KAN) with parameter-adaptive activation functions, the model gains superior non-linear representation
capability and improved interpretability, allowing it to better capture complex topological dependencies.
Extensive experiments conducted on ten real-world graph datasets demonstrate that GEA-CoPe
significantly outperforms existing methods in both cross-domain generalization and few-shot node-
classification tasks. The model's ability to focus on critical graph structures while maintaining consistent
feature distributions throughout propagation highlights its practical potential in complex and resource-
constrained environments.

Despite the encouraging results, the proposed framework has certain limitations. Its performance still
partially depends on the quality and diversity of the pre-training data. Moreover, the increased model
complexity may require additional computational resources during training. Future work will focus on
extending the framework to handle more dynamic and heterogeneous graph structures, optimizing its
efficiency for large-scale deployment and exploring its integration with other advanced pre-training
paradigms.
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