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ABSTRACT

Cardiovascular diseases (CVDs) are the leading causes of global mortality and require an early and precise
diagnosis. This work presents an automated multi-class classifier for diagnosing cardiac disease from
electrocardiogram (ECG) images through image processing and machine-learning techniques. The proposed
framework consists of three steps, including pre-processing, feature extraction, and ensemble learning. Initially,
the ECG image undergoes a comprehensive pre-processing pipeline that includes lead segmentation, grayscale
conversion, Gaussian filtering, and Otsu thresholding. The contour-based features are extracted and then reduced
by PCA to preserve discriminative information. Finally, multiple machine-learning models, including K-nearest
neighbors (KNNs), Random Forest and support vector machines (SVMs), are ensembled using voting and stacking
classifiers to improve the performance of the proposed framework. The proposed ensemble model is evaluated on
a public dataset that consists of ECG images that are categorized into four classes: normal, abnormal, myocardial
infarction (M), and history of MI. The proposed ensemble model attained the highest classification accuracy of
98.06% and outperformed the existing pre-trained and state-of-the-art models.
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1. INTRODUCTION

Cardiovascular diseases (CVDs) are a major public-health issue and the leading cause of death
worldwide. The World Health Organization (WHO) says that CVDs kill 17.9 million people each year,
which is 31% of all deaths in the world [2]. CVDs are a category of diseases that include coronary artery
disease, myocardial infarction (MI), heart failure, and arrhythmias. These diseases don't show up until
later stages. For early medical treatment, lower healthcare costs, and a better quality of life, it is
important to diagnose heart disorders correctly and early. Electrocardiography (ECG) is the most
relevant and extensively employed non-invasive diagnostic modality for evaluating cardiac electrical
activity. A conventional ECG provides important information about the heart's rhythm, conduction
patterns, and how anomalies show up, which helps doctors figure out what kind of heart disease a person
has [3]. The physical examination of an ECG incurs considerable time and practice, and the results may
vary among individuals. This constraint makes it exceedingly challenging to identify by a cardiologist
in rural or under-resourced regions. This issue has generated a demand for automated ECG analysis
solutions utilizing artificial intelligence (Al) to enhance diagnostic accuracy and scalability for
physicians. Recent breakthroughs in machine learning (ML) and deep learning (DL) have significantly
revolutionized the domain of biological signal processing. Techniques, such as convolutional neural
networks (CNN), recurrent neural networks (RNNs) and ensemble-learning models, have achieved
unprecedented advancements in the classification of cardiac diseases utilizing ECG waveforms and
pictures [4]-[5]. The models can discover valuable traits, discern subtle trends, and manage extensive
data volumes with limited human involvement.

CNN-based structures have widely been applied to image-related ECG classification applications, as
they have superior capabilities in spatial-learning features [6]. Some previous studies have successfully
applied these methods, yielding reasonable outcomes. In [1], the authors employed CNN models like
MobileNetV2 and VGG16, for four-class classification of ECG images into Normal, Abnormal,
Myocardial Infarction (MI), and History of MI. The method employed real-time deployment by
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executing the model on Raspberry Pi platforms and obtained classification accuracy rates of up to 95%.
The authors largely trained the model using end-to-end learning without proper signal pre-processing
and lead-wise segmentation, potentially limiting its interpretability and adaptability. Other works
followed the traditional machine-learning approach by employing hand-designed pre-processing
pipelines with ML classifiers. For instance, works in [9] and [10] pre-processed ECG images by
segmenting them into 12 leads, computed statistics and shape-based features, and employed classifiers,
like Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), and Logistic Regression. Such
pipelines employed Principal-component Analysis (PCA) as a feature reducer and utilized voting
classifiers for class accuracy improvement, with the best accuracy of 94.2%. They employed only 12
leads and did not follow strict validation regimes, like K-fold cross-validation. Hence, they are less
robust and less generalizable.

We present a new and complete ECG-based cardiac-disease classification system that takes the best of
these previous works and extends them. Our contribution is 13 -lead ECG segmentation that records a
wider and more nuanced spatial coverage of the heart's electrical activity than conventional 12-lead
systems. Each lead is treated separately, enabling our system to learn local features from alternative
heart views. This approach alone makes our model structurally and physiologically different, enabling
better representation of subtle ECG waveform abnormalities. Further, our ensemble technique
aggregates the predictions of multiple base classifiers, including SVMs, KNNs, logistic regression, and
XGBoost, to achieve maximum diversity and performance. The contributions of this paper are multifold:

1. Adding 13-lead segmentation to improve spatial resolution.

2. A pre-processing pipeline with grayscale, Gaussian filtering, and Otsu thresholding.

3. The system integrates multiple conventional classifiers using ensemble-learning methods.
4. Cross-validation is utilized to obtain a precise performance estimate.

These contributions together offer a scalable, interpretable, and accurate solution for automated ECG
interpretation with high potential for application in real-world clinical decision-support systems and
portable diagnostic devices. The paper is organized as follows: Section 1 introduces multi-class
cardiovascular-disease classification. The literature review is presented in Section 2. Details of the
proposed ensemble framework are explored in Section 3. Section 4 includes an analysis of the results
and a discussion, while Section 5 concludes the findings.

2. LITERATURE REVIEW

In recent years, the application of artificial-intelligence (Al) methods in automated electrocardiogram
(ECG) data processing for the identification and classification of cardiovascular diseases has
significantly increased. Conventional methods rely heavily on clinical expertise and human judgment,
resulting in subjectivity or delays. Researchers have sought to utilize both conventional machine-
learning (ML) and deep-learning (DL) techniques to improve diagnostic accuracy and scalability.
Various studies have examined deep-learning models for the classification of ECG images. Lightweight
CNN architectures, such as MobileNetV2 and VGG16, have been employed to extract discriminative
features from ECG images, facilitating real-time implementation on embedded systems [1]. The models
demonstrated consistent effectiveness in detecting cardiac anomalies, including myocardial infarction
and arrhythmias, with an accuracy of up to 95%. Convolutional Neural Networks (CNNs) require
extensive datasets and GPU-based training and may lack interpretability-factors that can hinder their
clinical implementation in resource-constrained settings [3]-[4]. Nevertheless, conventional machine-
learning techniques have gained prominence due to their cost-effectiveness and comprehensibility.
Effective approaches for ECG classification include support vector machines (SVMs), K-Nearest
Neighbors (KNNs), logistic regression, and XGBoost. These methods are accurate when utilized
alongside well-crafted features [2][5][7]. Although the models demonstrate robust performance, they
may exhibit heightened sensitivity to noise and extraneous features, particularly when handling high-
dimensional data. Ensemble approaches, like voting and stacking, have been proposed to tackle these
issues. These are predicated on the robustness of a mixture of multiple base models to enhance their
durability and generalization capabilities. Voting classifiers employ majority voting to combine the
judgments, whereas stacking uses a meta-model to select the ideal combination of basic outputs to reach
improved accuracy [6], [9]. For example, [9] employed ensemble models optimized by GridSearch,
attaining a peak accuracy of 92.4%. Pre-processing is an essential component in rendering feature
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extraction significant. Gray-scale conversion, Gaussian filtering, and Otsu's thresholding are methods
commonly employed to enhance the clarity of the ECG waveform [2][5][10]. Principal-component
Analysis (PCA) is employed to diminish feature dimensionality while preserving the most pertinent
information with decreased computational effort. The latest research is confined to standard 12-lead
ECG pictures.

Finally, the literature encompasses a broad spectrum of CVD detection from ECGs. However, there is
still a gap in performance optimization that does not compromise interpretability or increase
computational complexity. Our contribution bridges these gaps by putting forward an ensemble
learning-based classification pipeline with improved performance without deep architectures. In the
proposed framework, we incorporate 13-lead segmentation, providing greater spatial resolution of the
cardiac activity. We incorporate ensemble approaches, including voting and stacking with cross-
validation, for robust and balanced assessment. These additions make our model more capable of
performing better than conventional ML pipelines [9]-[10] as well as deep CNN-based models, like
MobileNetV2 [1].

3. METHODOLOGY

LetX = {x;,x,, ..., X, } be the set of input ECG images, where every x; € R?213X1572X3 Gimilarly, Y =
{y1, V2, ..., yn} represents class labels of each x;, where y; € {0,1,2,3}. Table 1 lists the class description
for each class. The proposed framework comprises three stages for multi-class heart-disease
classification. It accepts the input ECG image x; and produces the class label y;, as shown in Figure 1.
The details of each stage are as follows.

Table 1. Description of each class label.

| Otsu thresholding Contour basgd feature ‘
| extraction

Image pre-processing 1 Feature engineering

| Class label | Description |

0 HB (Abnormal Heart Beat)

1 MI (Myocardial Infraction)

2 Normal

3 HMI (History of MI)

Normal
[ T e i e SR i S e 1 Ensemble Model
| | with Stacking Classifier T
(Iggi'; i“fg,,";‘;gg) ! Lead Segmentation | : _____ { ______ —
. v E i
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Figure 1. The proposed multi-lead features and ensemble learning framework.
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Figure 2. Sample ECG image with 13 leads.
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3.1 Image Pre-processing

The proposed framework utilizes a specialized pre-processing pipeline to enhance ECG-image features.
The pre-processing of images involves four steps, and the details are as follows.

1) Lead Segmentation

The literature reveals that existing models utilize 12 ECG leads for the classification of heart
diseases [22]. Madias [19] presented the importance of lead 13 of ECG in heart diseases. This
motivated us to involve the 13" lead for the proposed framework. Thus, each ECG image x; is
divided into 13 independent leads, each of which corresponds to different electrical activities
captured from different parts of the heart. The dataset shows that each lead L; has fixed
coordinates. Thus, coordinate slicing across standard spatial positions for all images was used
to mark the 13 leads L = {L;,L,, ...L;3}, where every L; is a single lead image. Figure 2
represents a sample ECG image acquired from the dataset [20]. The leads are obtained from
three horizontal bands and one bottom strip. Leads 1-4 are taken from the top section (rows 300-
600), leads 5-8 from the middle band (rows 600 — 900 ), and leads 9 — 12 from the bottom
band (rows 900 — 1200 ). Lead 13 spans rows 1250-1480 and spans the entire horizontal range,
which is known as an extended rhythm strip. This partitioning allows for uniform spatial
extraction of waveforms for all samples. The derived leads are harvested based on actual
coordinate regions as follows:

300: 600,150: 643]
300: 600,646: 1135]
300: 600,1140: 1625]
300: 600,1630: 2125]
600:900,150: 643]
600:900,646: 1135]
600:900,1140: 1625] (1)
600:900,1630: 2125]
900:1200,150: 643]
900: 1200,646: 1135]
Ly, < x;[900:1200,1140: 1625]
Ly, « x;[900: 1200,1630: 2125]
Ly < x;[1250: 1480,150: 2125]

In general, ECG images consist of red-colored grid-like patterns on which black-colored ECG
signals are printed. Figure 3(a) and Figure 3(b) depict the 12" lead segment color image and
corresponding histogram of the sample ECG image shown in Figure 2. From the histogram, it
can be observed that there is a huge number of pixels (around 50000) with high intensity above
250. Simple thresholding will cause loss of ECG signal information. Thus, the proposed
framework utilizes a sequence of pre-processing steps to preserve the ECG wave pattern.

Ly < x
L, « x;
Ly« x;
Ly < x;
Ls « x;
Lg < x;
L, « x;
Lg <« x;
Lo « x;
Lig «x;

T e T P P e —

— —

50000 -

40000 -

30000

20000 4

10000 -

(a) (b)
Figure 3. Color image of 12" lead segment along with its histogram.
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2) Grayscale Conversion

3)

Each color lead image ( L; ) is transformed to grayscale to reduce dimensionality and emphasize
signal morphology over color. The grayscale conversion is defined by Equation 2.

Lgray (%, ) =0.29-R(x,y) +0.58 - G(x,y) + 0.11 - B(x,y) (2)

The red, green, and blue intensities of pixel ( x,y ) are represented by R, G, and B . The value
of Lgy (x,y) represents the resulting grayscale intensity for pixel ( x,y ). This conversion
maximizes downstream processing and excludes color data that is irrelevant to the analysis of
ECG waveforms. Figure 4(a) and Figure 4(b) depict grayscale of 12" lead segment color image
and corresponding histogram, respectively. From the histogram, it can be observed that the peak
number of pixels has reduced to 10000 due to single channel.

8000
6000

6 4000

2000

(a) (b)
Figure 4. Grayscale image of the 12 lead segment along with its histogram.

Gaussian Filtering

The grayscale image was filtered with a Gaussian filter to cut down on high-frequency noise
and blur it without losing the structural outlines [21]. The two-dimensional Gaussian kernel
looks as follows:

_(x2+32/2)

Gr,y)=g5—3-exp 120 (3)
In this case, ¢ stands for the standard deviation of the Gaussian filter. It tells the quantity of
smoothing, and the blurring effect of the Gaussian filter can be controlled using the o value.
The ECG images need more smoothing to suppress the effect of the background grid pattern.
Thus, we have considered high sigma as ¢ = 0.7. Similarly, kernel size is another parameter
that influences the feature quality. Thus, we have conducted an ablation study with different
kernel sizes to identify a better kernel size. The results of the ablation study are reported in the
results section. The filtered image is the result of the convolution of the grayscale image with
the Gaussian kernel generated from Equation 3. The process smooths the ECG trace lines by
eliminating background variance and minor graphical artifacts. Figure 5(a) and Figure 5(b)
depict the smoothened image of the 12" lead segment image and the corresponding histogram,
respectively. From the histogram, it can be observed that the peak number of pixels has further
reduced to 7000 due to suppression of background pixels.

7000

6000

(a) (b)
Figure 5. Smoothened image of the 12" lead segment along with its histogram.
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4) Otsu's Thresholding

We apply Otsu's method to turn the smoothened image into binary and make the ECG signal
stand out as a binary image. Otsu's thresholding finds the best threshold that maximizes the
difference between background and foreground pixels [21]. The optimal threshold t is the one
that maximizes o (t).

o () = wo (1) - w1 (8) - [po(t) — 1 (D)2 4)

In this context, the symbols w(t) and w4 (t) represent the probabilities (weights) associated
with the background and foreground classes, respectively. Similarly, uy(t) and u, (t) are the
mean intensities of background and foreground classes. o7 (t) is between-class variance at
threshold t. Finally, the Otsu thresholded binarized image is resized to 300 x 450 to reduce
computational complexity. Figure 6 depicts the Otsu thresholded 12" lead segment, which
removes the grid pattern of the ECG color image.

Figure 6. Otsu thresholded binarized image of 12" lead segment.

This phase transforms input image x; to 13 binarized lead images BL = {BL,, BL,, ... BL;3} with
improved contrast between the ECG waveform and background. This pre-processing sequence
guarantees that the signal contours are maintained and evidently separable, allowing for efficient feature
extraction in the subsequent phase.

3.2 Feature Engineering

Contour-based features are employed in the proposed framework. Therefore, the feature-engineering
process consists of three sub-tasks as outlined below.

1)

2)

Contour-based Feature Extraction

After Otsu thresholding, contour detection is used to identify contours and boundaries of the
shapes within the segmented leads. From the contours, morphological characteristics are
obtained to describe significant structural characteristics of the segmented leads. The
characteristics may be shape, size, and orientation. Other morphological features may include
perimeter, aspect ratio, convexity, ...etc. Figure 7 depicts the contour plot of the 13" lead
segment. From that contour plot, only 255 points from each lead will be selected at equal
internals.

Min-Max Normalization

The range of contour-based features depends on the lead number, which leads to varying scales
and distributions. Therefore, normalization of the features extracted from each lead is necessary.
We have considered min-max normalization to normalize the features using the following
equation.

X' = X _Xmin (5)

Xmax - Xmin

where X is the original feature value. X,,;, and X, are the lower and upper limits of the
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feature, respectively. X' is the normalized feature value; now the values of each lead image are
in the range [0,1]. After normalization, each lead vector has 255 values. Thus, this stage
generates a feature vector F with 13 x 255 = 3315 features for each ECG image.

105 1

115 A W
120 4

0 250 500 750 1000 1250 1500 1750 2000

Figure 7. Contour plot of 13" lead segment.

3) Feature Reduction

To make ensemble learning less complicated, we used feature reduction on the feature vector F
obtained from the previous phase. Principal-component Analysis (PCA) is a way to reduce the
number of dimensions of features by mapping them onto a new collection of orthogonal
components (principal components). PCA seeks to get rid of redundant information while
keeping the most useful parts. The PCA implementation finds the eigenvalues and eigenvectors
of the covariance matrix and uses them to move the data into a new sub-space, which makes it
smaller. The output of the previous step produces a huge number of features (3315 features). It
needs a feature reduction to optimize the computational cost of the proposed model. However,
the number of features is significant for how well ensemble learning works. Therefore, we
conducted an ablation study with varying numbers of features to achieve the optimal
performance. We discovered in our ablation study that a feature vector with 512 features
performs the best of the options that we looked at. This stage generates a feature vector with
512 normalized contour-based features.

3.3 Ensemble Learning

We used machine learning algorithms, including Support Vector Machines (SVMs), K-Nearest
Neighbors (KNNSs), and Logistic Regression (LR) to create the proposed ensemble framework. SVM
builds a maximum-margin hyperplane to separate classes in a high-dimensional space. SVM is able to
handle nonlinear data by employing kernel tricks and generalizes extremely well. SVM is particularly
effective when applied to small- to medium-sized biomedical datasets. KNN is a very basic, non-
parametric classifier that computes the majority vote of the K-nearest neighbors. Relevant features and
high-dimensional data adversely affect KNN's ability to maintain local patterns. LR is class membership
probability as a logistic function. LR is computationally efficient, interpretable, and a useful linear
baseline for multi-class classification using the one-vs.-rest strategy. XGBoost is an outstanding
ensemble method that is gradient-boosted decision tree-based. XGBoost performs best with complex
patterns, restricts overfitting, and offers high accuracy as well as efficient operation. The individual
training and testing of all models on the PCA-reduced feature vectors are performed to create the
performance baselines. Two ensemble techniques were employed to obtain the highest individual model
and lowest predictive consistency.

e Voting classifier: This ensemble method uses soft voting to combine the probability output of
chosen base classifiers. Classification was performed by averaging predicted probabilities and
selecting the best combined score label.

e Stacking classifier: The base-level classifiers' predictions are used as input to a meta-classifier.
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The second-level learner learns the base models' dependencies, which enabled improved
decision boundaries and classification outcomes.

Ensemble models are created to take advantage of the complementary strengths of each algorithm and
to boost the overall robustness. The proposed ensemble model utilized the grid search-based cross
validation method with five folds for hyper-parameter tuning. We achieved the best performance with
an ensemble model that consists of SVM with C = 1, SVM with Gamma=0.01, KNN with 5 neighbors
and Random Forest with 300 trees.

4. RESULTS

This section presents a detailed performance analysis of the proposed ensemble model along with an
ablation study. Model performance was approximated using common classification metrics, including
accuracy, precision, recall, and F1-score. The proposed model has been evaluated on the Mendeley
Dataset [20]. The dataset holds 928 ECG color images with a resolution of 2213 x 1572. Each image
belongs to one of the four cardiac conditions: normal, abnormal, myocardial infarction (MI), and history
of MI (HMI).

4.1 Ablation Study

Gaussian filtering and feature reduction primarily influence the performance of the proposed
model. Therefore, we conducted an ablation study focusing on these two aspects.

e With different Gaussian filter sizes:

Firstly, we have considered 100 features and experimented with different Gaussian filter sizes
in the pre-processing step, including 3 x 3,5 x 5 and 7 x 7. Table 2 represents a comparison of
performance with different Gaussian filter sizes. This table reveals that the logistic-regression
model exhibits the least performance, and the XGBoost model attains the highest performance
among the basic machine-learning models. However, the proposed stacking-based ensemble
model outperforms basic models with 94.5%, 96.2%, and 93.4% with 3 x 3,5 x 5,and 7 x 7
filter sizes, respectively. It also indicates that the proposed stacking-based ensemble model
degrades its performance with a 7 x 7 filter size. The proposed stacking classifier exhibits
competing performance with Gaussian filter having 3 x 3 and 5 x 5 filter sizes. However, the
proposed model with Gaussian filter having 5 x 5 filter size exhibits best performance.

Table 2. Ablation study with different Gaussian filter sizes.

Filter size
Model 3x3 5%5 7x7
KNN 80.5 84.8 81.7
Logistic Regression 76.6 79.3 81.1
SVM 91.2 92.9 91.5
XGBoost 92.2 93,5 91.8
Voting Classifier 91.3 94.2 92.0
Stacking Classifier 94.5 96.2 93.4

e With different number of features:

In general, the number of features plays a vital role in the performance of a model. Thus, we
experimented with different numbers of features, including 100, 400, and 512, in the feature-
reduction process. We analyzed the proposed model with Gaussian filter sizes 5 x 5 and 3 x 3
to understand how it behaves. Table 3 represents a performance comparison with different
numbers of features having a Gaussian filter size of 5 x 5. In this case, the proposed stacking-
based ensemble model exhibits the best performance with 400 features. Similarly, Table 4
represents a performance comparison with different numbers of features having a Gaussian filter
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size of 3 x 3. In this case, the proposed ensemble model exhibits the best performance at 98%
with 400 and 512 features. Tables 3 and 4 reveal that the proposed stacking-based ensemble
model exhibits the best performance with a Gaussian filter size of 3 x 3 with 400 and 512
features. The computational cost of the proposed model with 400 features is less than that with
512 features. Further, the proposed model exhibits similar performance in both cases. Hence,
we have considered 400 features to optimize the proposed stacking-based ensemble model.

Table 3. Ablation study with different numbers of features having Gaussian filter size of 5 x 5.

Number of features
Model 100 400 512
KNN 84.8 78.4 77.2

Logistic Regression 79.3 89.3 89.6

SVM 92.9 94.2 94.1
XGBoost 935 93.2 96.3
Voting Classifier 94.2 97.3 97.7

Stacking Classifier 96.2 97.7 95.7

Table 4. Ablation study with different numbers of features having a Gaussian filter size of 3 x 3.

Number of features

Model 100 400 512

KNN 80.5 77.4 76.8
Logistic Regression 76.6 89.0 88.9
SVM 91.2 93.0 93.3
XGBoost 92.2 934 97.1

Voting Classifier 91.3 95.9 96.7
Stacking Classifier 94.5 98.1 98.3

4.2 Performance Comparison of Proposed Ensemble Model

The existing models utilized only 12 leads for the ECG classification. For more in-depth examination
and to mimic clinical lead-based interpretation, ECG images were divided into 13 leads rather than the
traditional 12-lead setup. We have considered popular machine-learning models for the performance
analysis. In the proposed model, we utilized a Gaussian filter with a 3 x 3 kernel filter size in pre-
processing and PCA with 400 features for feature reduction. The proposed ensemble model also consists
of an ensemble of SVM with C = 1, SVM with Gamma = 0.01, KNN with 5 neighbors, and Random
Forest with 300 trees. Table 5 lists out class-wise performance of proposed stacking classifier.

Table 5. Class-wise performance of proposed stacking classifier.

Class Precision | Recall | F1-Score
0 100.00 100.00 100.00
1 100.00 100.00 100.00
2 97.95 95.79 96.80
3 93.52 96.54 94.87
Accuracy 98.06
Weighted Avg. 98.17 98.06 98.06
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Table 6. Model performance comparison with ML models.

Model Accuracy | Precision | Recall | F1-Score
KNN 77.36 77.79 77.37 75.94
Logistic Regression | 88.69 89.47 88.69 88.19
SVM 93.10 93.27 93.10 93.02
XGBoost 93.32 93.56 93.32 93.24
Voting Classifier 95.47 95.85 95.47 95.36
Stacking Classifier 98.06 98.17 98.06 98.06

Table 6 lists out performance comparisons of stacking-based ensemble models with basic machine-
learning models. Among the individual classifiers, SVM and XGBoost were the best performers, with
over 93% accuracy, followed by logistic regression in the third place with 88.69%. KNN was the worst
performer with lower metrics owing to its vulnerability to noisy and high-dimensional data. The SVM
model gave consistent classification accuracy for each of the four classes of ECG with a total accuracy
of 93.10%. Weighted precision, recall, and F1-score were 93.27%, 93.10%, and 93.02%, respectively.
The XGBoost classifier achieved an accuracy of 93.32%, weighted precision of 93.56%, recall of
93.32%, and F1-score of 93.24%. Its gradient-boosting mechanism allowed it to handle non-linear
decision boundaries well, since it could capture the fine changes of ECG waveform features. However,
the proposed ensemble model performs better on all measures, with an accuracy rate of above 95%. The
voting classifier achieved 95.47% accuracy that uses a soft vote algorithm on predictions from SVM,
KNN and Random Forest. The stacking classifier, which uses a meta-model to integrate the predictions
of different base learners, like SVM, KNN, and Random Forest, also achieved the greatest overall
performance, with 98.06% accuracy and a balanced Fl1-score of 98.06%. Its hierarchical-learning
framework enables the comprehension of intricate interactions across models and enhances predictive
accuracy, rendering it the optimal selection for multi-class classification challenges. The data suggests
that utilizing ensemble methods, especially stacking, improves the accuracy, reliability, and overall
effectiveness of diagnosing cardiovascular problems through ECG.
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Figure 8. Confusion matrix of the proposed ensemble model.

The confusion matrix indicated that all four classes had more stability in their categorization. The
ensemble mechanism provided the model with optimal confidence in recognizing borderline cases. The
Abnormal and HMI classes exhibited a reduction in both false positives and false negatives. The results
indicate that integrating various base learners enhances the system's resilience and reliability. Figure 8
illustrates the confusion matrix for the proposed stacking-based ensemble model. The confusion matrix
indicates that the stacking classifier effectively distinguished between the classes, exhibiting minimal
errors. The stacking classifier effectively distinguished between the M1l and HMI classes, demonstrating
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exceptional precision and recall, indicative of robust discriminatory capability. The stacking design
exhibited superior performance due to its ability to use inter-model interactions.

Table 7. Performance comparison with state-of-the-art models.

Model Accuracy (%)
MobileNetV2 Transfer Learning [1] 93.00
MobileNetV2 Fine Tuning [1] 95.00
VGG16 Transfer Learning [1] 91.00
VGG16 Fine Tuning [1] 95.00
Sakli et al. [7] 96.70
Proposed Voting Classifier 95.47
Proposed Stacking Classifier 98.06

The efficacy of the proposed stack-based ensemble model is compared with that of existing models, as
illustrated in Table 7. The findings indicate that the proposed stack-based ensemble model surpasses
current state-of-the-art models, achieving an accuracy of 98.06%.

4.3 Discussion

This paper presents an extremely accurate model for predicting cardiovascular disease (CVD) based on
ensemble machine-learning models. Of all the classifiers examined, the best performance was exhibited
by the stacking classifier at 98.06% accuracy. Compared to [1], which used computationally costly
models, like MobileNetV2 ( 94% ) and VGG16 ( 92% ), our stacking classifier outperformed them,
even though it used less computationally costly models. This result proves the feasibility of ensemble
learning even without using computationally costly models. Reference [7] employed a range of standard
machine-learning models, including KNN, logistic regression, XGBoost, and SVM, and achieved a best
accuracy of 96.7%. In [8], there were only regular ML techniques tried out, and the highest documented
accuracy was less than 92.4%. Reference [9] used the models mentioned above, such as SVM, KNN,
RF, and logistic regression, achieving an accuracy up to 92.4% with ensemble learning using
GridSearch to optimize.

These comparisons also highlight the fact that, although there are excellent deep-learning architectures,
such as MobileNetV2 and VGG16, well-hyperparameterized ensemble machine-learning algorithms can
provide similar or even superior performance without the need for deep neural networks. This not only
makes our method accurate, but also lightweight, interpretable, and computationally efficient with a
significant advantage in real-world deployments to resource-constrained environments. The
performance summary shows that ensemble-learning methods are better than regular classifiers when it
comes to detecting heart diseases using ECGs.

5. CONCLUSION

This paper presents a scalable framework for multi-class classification of cardiovascular diseases from
ECG images. ECG images can be processed for multi-class heart-disease classification through better
pre-processing, contour-based feature extraction, and an ensemble-learning pipeline. Our results
indicate that the ensemble-stacking classifier significantly outperforms individual models and all the
earlier published works. The stacking classifier, with an accuracy of 98.06%, not only performed better
than traditional machine-learning models, but also deep learning-based classifiers, such as MobileNetV2
and VGG16. Compared with deep architectures, the improved performance and reduced computational
load of our architecture render it highly suitable for real-world use in resource-constrained
environments. Additional class-wise accuracy improvement, particularly for valuable classes, like Ml
and HMI, also renders the system more practical. Briefly, the work illustrates the ability of carefully
crafted traditional and ensemble-learning approaches to state-of-the-art performance on the cardiac-
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disease detection from ECG images. Some potential areas of future extensions of this paper include its
application in real time on edge hardware, integration in clinical decision-support systems, or multi-
modal health data to more general diagnostic applications.
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