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ABSTRACT 

Cardiovascular diseases (CVDs) are the leading causes of global mortality and require an early and precise 

diagnosis. This work presents an automated multi-class classifier for diagnosing cardiac disease from 

electrocardiogram (ECG) images through image processing and machine-learning techniques. The proposed 

framework consists of three steps, including pre-processing, feature extraction, and ensemble learning. Initially, 

the ECG image undergoes a comprehensive pre-processing pipeline that includes lead segmentation, grayscale 

conversion, Gaussian filtering, and Otsu thresholding. The contour-based features are extracted and then reduced 

by PCA to preserve discriminative information. Finally, multiple machine-learning models, including K-nearest 

neighbors (KNNs), Random Forest and support vector machines (SVMs), are ensembled using voting and stacking 

classifiers to improve the performance of the proposed framework. The proposed ensemble model is evaluated on 

a public dataset that consists of ECG images that are categorized into four classes: normal, abnormal, myocardial 

infarction (MI), and history of MI. The proposed ensemble model attained the highest classification accuracy of 

98.06% and outperformed the existing pre-trained and state-of-the-art models. 
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1. INTRODUCTION

Cardiovascular diseases (CVDs) are a major public-health issue and the leading cause of death 

worldwide. The World Health Organization (WHO) says that CVDs kill 17.9 million people each year, 

which is 31% of all deaths in the world [2]. CVDs are a category of diseases that include coronary artery 

disease, myocardial infarction (MI), heart failure, and arrhythmias. These diseases don't show up until 

later stages. For early medical treatment, lower healthcare costs, and a better quality of life, it is 

important to diagnose heart disorders correctly and early. Electrocardiography (ECG) is the most 

relevant and extensively employed non-invasive diagnostic modality for evaluating cardiac electrical 

activity. A conventional ECG provides important information about the heart's rhythm, conduction 

patterns, and how anomalies show up, which helps doctors figure out what kind of heart disease a person 

has [3]. The physical examination of an ECG incurs considerable time and practice, and the results may 

vary among individuals. This constraint makes it exceedingly challenging to identify by a cardiologist 

in rural or under-resourced regions. This issue has generated a demand for automated ECG analysis 

solutions utilizing artificial intelligence (AI) to enhance diagnostic accuracy and scalability for 

physicians. Recent breakthroughs in machine learning (ML) and deep learning (DL) have significantly 

revolutionized the domain of biological signal processing. Techniques, such as convolutional neural 

networks (CNN), recurrent neural networks (RNNs) and ensemble-learning models, have achieved 

unprecedented advancements in the classification of cardiac diseases utilizing ECG waveforms and 

pictures [4]-[5]. The models can discover valuable traits, discern subtle trends, and manage extensive 

data volumes with limited human involvement. 

CNN-based structures have widely been applied to image-related ECG classification applications, as 

they have superior capabilities in spatial-learning features [6]. Some previous studies have successfully 

applied these methods, yielding reasonable outcomes. In [1], the authors employed CNN models like 

MobileNetV2 and VGG16, for four-class classification of ECG images into Normal, Abnormal, 

Myocardial Infarction (MI), and History of MI. The method employed real-time deployment by 
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executing the model on Raspberry Pi platforms and obtained classification accuracy rates of up to 95%. 

The authors largely trained the model using end-to-end learning without proper signal pre-processing 

and lead-wise segmentation, potentially limiting its interpretability and adaptability. Other works 

followed the traditional machine-learning approach by employing hand-designed pre-processing 

pipelines with ML classifiers. For instance, works in [9] and [10] pre-processed ECG images by 

segmenting them into 12 leads, computed statistics and shape-based features, and employed classifiers, 

like Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), and Logistic Regression. Such 

pipelines employed Principal-component Analysis (PCA) as a feature reducer and utilized voting 

classifiers for class accuracy improvement, with the best accuracy of 94.2%. They employed only 12 

leads and did not follow strict validation regimes, like K-fold cross-validation. Hence, they are less 

robust and less generalizable. 

We present a new and complete ECG-based cardiac-disease classification system that takes the best of 

these previous works and extends them. Our contribution is 13 -lead ECG segmentation that records a 

wider and more nuanced spatial coverage of the heart's electrical activity than conventional 12-lead 

systems. Each lead is treated separately, enabling our system to learn local features from alternative 

heart views. This approach alone makes our model structurally and physiologically different, enabling 

better representation of subtle ECG waveform abnormalities. Further, our ensemble technique 

aggregates the predictions of multiple base classifiers, including SVMs, KNNs, logistic regression, and 

XGBoost, to achieve maximum diversity and performance. The contributions of this paper are multifold: 

1. Adding 13-lead segmentation to improve spatial resolution.

2. A pre-processing pipeline with grayscale, Gaussian filtering, and Otsu thresholding.

3. The system integrates multiple conventional classifiers using ensemble-learning methods.

4. Cross-validation is utilized to obtain a precise performance estimate.

These contributions together offer a scalable, interpretable, and accurate solution for automated ECG 

interpretation with high potential for application in real-world clinical decision-support systems and 

portable diagnostic devices. The paper is organized as follows: Section 1 introduces multi-class 

cardiovascular-disease classification. The literature review is presented in Section 2. Details of the 

proposed ensemble framework are explored in Section 3. Section 4 includes an analysis of the results 

and a discussion, while Section 5 concludes the findings. 

2. LITERATURE REVIEW

In recent years, the application of artificial-intelligence (AI) methods in automated electrocardiogram 

(ECG) data processing for the identification and classification of cardiovascular diseases has 

significantly increased. Conventional methods rely heavily on clinical expertise and human judgment, 

resulting in subjectivity or delays. Researchers have sought to utilize both conventional machine-

learning (ML) and deep-learning (DL) techniques to improve diagnostic accuracy and scalability. 

Various studies have examined deep-learning models for the classification of ECG images. Lightweight 

CNN architectures, such as MobileNetV2 and VGG16, have been employed to extract discriminative 

features from ECG images, facilitating real-time implementation on embedded systems [1]. The models 

demonstrated consistent effectiveness in detecting cardiac anomalies, including myocardial infarction 

and arrhythmias, with an accuracy of up to 95%. Convolutional Neural Networks (CNNs) require 

extensive datasets and GPU-based training and may lack interpretability-factors that can hinder their 

clinical implementation in resource-constrained settings [3]-[4]. Nevertheless, conventional machine-

learning techniques have gained prominence due to their cost-effectiveness and comprehensibility. 

Effective approaches for ECG classification include support vector machines (SVMs), K-Nearest 

Neighbors (KNNs), logistic regression, and XGBoost. These methods are accurate when utilized 

alongside well-crafted features [2][5][7]. Although the models demonstrate robust performance, they 

may exhibit heightened sensitivity to noise and extraneous features, particularly when handling high-

dimensional data. Ensemble approaches, like voting and stacking, have been proposed to tackle these 

issues. These are predicated on the robustness of a mixture of multiple base models to enhance their 

durability and generalization capabilities. Voting classifiers employ majority voting to combine the 

judgments, whereas stacking uses a meta-model to select the ideal combination of basic outputs to reach 

improved accuracy [6], [9]. For example, [9] employed ensemble models optimized by GridSearch, 

attaining a peak accuracy of 92.4%. Pre-processing is an essential component in rendering feature 
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extraction significant. Gray-scale conversion, Gaussian filtering, and Otsu's thresholding are methods 

commonly employed to enhance the clarity of the ECG waveform [2][5][10]. Principal-component 

Analysis (PCA) is employed to diminish feature dimensionality while preserving the most pertinent 

information with decreased computational effort. The latest research is confined to standard 12-lead 

ECG pictures. 

Finally, the literature encompasses a broad spectrum of CVD detection from ECGs. However, there is 

still a gap in performance optimization that does not compromise interpretability or increase 

computational complexity. Our contribution bridges these gaps by putting forward an ensemble 

learning-based classification pipeline with improved performance without deep architectures. In the 

proposed framework, we incorporate 13-lead segmentation, providing greater spatial resolution of the 

cardiac activity. We incorporate ensemble approaches, including voting and stacking with cross-

validation, for robust and balanced assessment. These additions make our model more capable of 

performing better than conventional ML pipelines [9]-[10] as well as deep CNN-based models, like 

MobileNetV2 [1]. 

3. METHODOLOGY

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the set of input ECG images, where every 𝑥𝑖 ∈ ℝ2213×1572×3. Similarly, 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛} represents class labels of each 𝑥𝑖, where 𝑦𝑖 ∈ {0,1,2,3}. Table 1 lists the class description

for each class. The proposed framework comprises three stages for multi-class heart-disease 

classification. It accepts the input ECG image 𝑥𝑖 and produces the class label 𝑦𝑖, as shown in Figure 1.

The details of each stage are as follows. 

Table 1. Description of each class label. 

Class label Description 

0 HB (Abnormal Heart Beat) 

1 MI (Myocardial Infraction) 

2 Normal 

3 HMI (History of MI) 

Figure 1. The proposed multi-lead features and ensemble learning framework. 

  2020-08-03 10:36:08 PM 

Figure 2. Sample ECG image with 13 leads. 
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3.1 Image Pre-processing 

The proposed framework utilizes a specialized pre-processing pipeline to enhance ECG-image features. 

The pre-processing of images involves four steps, and the details are as follows. 

1) Lead Segmentation

The literature reveals that existing models utilize 12 ECG leads for the classification of heart 

diseases [22]. Madias [19] presented the importance of lead 13 of ECG in heart diseases. This 

motivated us to involve the 13th lead for the proposed framework. Thus, each ECG image 𝑥𝑖 is

divided into 13 independent leads, each of which corresponds to different electrical activities 

captured from different parts of the heart. The dataset shows that each lead 𝐿𝑗 has fixed

coordinates. Thus, coordinate slicing across standard spatial positions for all images was used 

to mark the 13 leads 𝐿 = {𝐿1, 𝐿2, … 𝐿13}, where every 𝐿𝑗 is a single lead image. Figure 2

represents a sample ECG image acquired from the dataset [20]. The leads are obtained from 

three horizontal bands and one bottom strip. Leads 1-4 are taken from the top section (rows 300-

600), leads 5-8 from the middle band (rows 600 − 900 ), and leads 9 − 12 from the bottom 

band (rows 900 − 1200 ). Lead 13 spans rows 1250-1480 and spans the entire horizontal range, 

which is known as an extended rhythm strip. This partitioning allows for uniform spatial 

extraction of waveforms for all samples. The derived leads are harvested based on actual 

coordinate regions as follows: 

𝐿1 ← 𝑥𝑖[300: 600,150: 643]        

𝐿2 ← 𝑥𝑖[300: 600,646: 1135]       

𝐿3 ← 𝑥𝑖[300: 600,1140: 1625]     

𝐿4 ← 𝑥𝑖[300: 600,1630: 2125]     

𝐿5 ← 𝑥𝑖[600: 900,150: 643]        

𝐿6 ← 𝑥𝑖[600: 900,646: 1135]       

𝐿7 ← 𝑥𝑖[600: 900,1140: 1625]     

𝐿8 ← 𝑥𝑖[600: 900,1630: 2125]     

𝐿9 ← 𝑥𝑖[900: 1200,150: 643]       

𝐿10 ← 𝑥𝑖[900: 1200,646: 1135]    

𝐿11 ← 𝑥𝑖[900: 1200,1140: 1625] 

𝐿12 ← 𝑥𝑖[900: 1200,1630: 2125] 

𝐿13 ← 𝑥𝑖[1250: 1480,150: 2125] 

  (1) 

In general, ECG images consist of red-colored grid-like patterns on which black-colored ECG 

signals are printed. Figure 3(a) and Figure 3(b) depict the 12th lead segment color image and 

corresponding histogram of the sample ECG image shown in Figure 2. From the histogram, it 

can be observed that there is a huge number of pixels (around 50000) with high intensity above 

250. Simple thresholding will cause loss of ECG signal information. Thus, the proposed

framework utilizes a sequence of pre-processing steps to preserve the ECG wave pattern. 

Figure 3. Color image of 12th lead segment along with its histogram. 



22

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 12, No. 01, March 2026. 

2) Grayscale Conversion

Each color lead image ( 𝐿𝑗 ) is transformed to grayscale to reduce dimensionality and emphasize

signal morphology over color. The grayscale conversion is defined by Equation 2. 

𝐿gray (𝑥, 𝑦) = 0.29 ⋅ 𝑅(𝑥, 𝑦) + 0.58 ⋅ 𝐺(𝑥, 𝑦) + 0.11 ⋅ 𝐵(𝑥, 𝑦) (2) 

The red, green, and blue intensities of pixel ( 𝑥, 𝑦 ) are represented by R, G, and B . The value 

of 𝐿gray (𝑥, 𝑦) represents the resulting grayscale intensity for pixel ( 𝑥, 𝑦 ). This conversion

maximizes downstream processing and excludes color data that is irrelevant to the analysis of 

ECG waveforms. Figure 4(a) and Figure 4(b) depict grayscale of 12th lead segment color image 

and corresponding histogram, respectively. From the histogram, it can be observed that the peak 

number of pixels has reduced to 10000 due to single channel. 

Figure 4. Grayscale image of the 12th lead segment along with its histogram. 

3) Gaussian Filtering

The grayscale image was filtered with a Gaussian filter to cut down on high-frequency noise 

and blur it without losing the structural outlines [21]. The two-dimensional Gaussian kernel 

looks as follows: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
⋅ exp  

−(
𝑥2+𝑦2

2𝜎2 )
(3) 

In this case, 𝜎 stands for the standard deviation of the Gaussian filter. It tells the quantity of 

smoothing, and the blurring effect of the Gaussian filter can be controlled using the 𝜎 value. 

The ECG images need more smoothing to suppress the effect of the background grid pattern. 

Thus, we have considered high sigma as 𝜎 = 0.7. Similarly, kernel size is another parameter 

that influences the feature quality. Thus, we have conducted an ablation study with different 

kernel sizes to identify a better kernel size. The results of the ablation study are reported in the 

results section. The filtered image is the result of the convolution of the grayscale image with 

the Gaussian kernel generated from Equation 3. The process smooths the ECG trace lines by 

eliminating background variance and minor graphical artifacts. Figure 5(a) and Figure 5(b) 

depict the smoothened image of the 12th lead segment image and the corresponding histogram, 

respectively. From the histogram, it can be observed that the peak number of pixels has further 

reduced to 7000 due to suppression of background pixels. 

Figure 5. Smoothened image of the 12th lead segment along with its histogram. 
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4) Otsu's Thresholding

We apply Otsu's method to turn the smoothened image into binary and make the ECG signal 

stand out as a binary image. Otsu's thresholding finds the best threshold that maximizes the 

difference between background and foreground pixels [21]. The optimal threshold 𝑡 is the one 

that maximizes 𝜎𝑏
2(𝑡).

𝜎𝑏
2(𝑡) = 𝜔0(𝑡) ⋅ 𝜔1(𝑡) ⋅ [𝜇0(𝑡) − 𝜇1(𝑡)]2 (4) 

In this context, the symbols 𝜔0(𝑡) and 𝜔1(𝑡) represent the probabilities (weights) associated

with the background and foreground classes, respectively. Similarly, 𝜇0(𝑡) and 𝜇1(𝑡) are the

mean intensities of background and foreground classes. 𝜎𝑏
2(𝑡) is between-class variance at

threshold 𝑡. Finally, the Otsu thresholded binarized image is resized to 300 × 450 to reduce 

computational complexity. Figure 6 depicts the Otsu thresholded 12th lead segment, which 

removes the grid pattern of the ECG color image. 

Figure 6. Otsu thresholded binarized image of 12th lead segment. 

This phase transforms input image 𝑥𝑖 to 13 binarized lead images 𝐵𝐿 = {𝐵𝐿1, 𝐵𝐿2, … 𝐵𝐿13} with

improved contrast between the ECG waveform and background. This pre-processing sequence 

guarantees that the signal contours are maintained and evidently separable, allowing for efficient feature 

extraction in the subsequent phase. 

3.2 Feature Engineering 

Contour-based features are employed in the proposed framework. Therefore, the feature-engineering 

process consists of three sub-tasks as outlined below. 

1) Contour-based Feature Extraction

After Otsu thresholding, contour detection is used to identify contours and boundaries of the 

shapes within the segmented leads. From the contours, morphological characteristics are 

obtained to describe significant structural characteristics of the segmented leads. The 

characteristics may be shape, size, and orientation. Other morphological features may include 

perimeter, aspect ratio, convexity, …etc. Figure 7 depicts the contour plot of the 13th lead 

segment. From that contour plot, only 255 points from each lead will be selected at equal 

internals. 

2) Min-Max Normalization

The range of contour-based features depends on the lead number, which leads to varying scales 

and distributions. Therefore, normalization of the features extracted from each lead is necessary. 

We have considered min-max normalization to normalize the features using the following 

equation. 

𝑋′ =
𝑋 − 𝑋min

𝑋max − 𝑋min
(5) 

where 𝑋 is the original feature value. 𝑋min  and 𝑋max  are the lower and upper limits of the
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feature, respectively. 𝑋′ is the normalized feature value; now the values of each lead image are

in the range [0,1]. After normalization, each lead vector has 255 values. Thus, this stage 

generates a feature vector 𝐹 with 13 × 255 = 3315 features for each ECG image. 

Figure 7. Contour plot of 13th lead segment. 

3) Feature Reduction

To make ensemble learning less complicated, we used feature reduction on the feature vector 𝐹 

obtained from the previous phase. Principal-component Analysis (PCA) is a way to reduce the 

number of dimensions of features by mapping them onto a new collection of orthogonal 

components (principal components). PCA seeks to get rid of redundant information while 

keeping the most useful parts. The PCA implementation finds the eigenvalues and eigenvectors 

of the covariance matrix and uses them to move the data into a new sub-space, which makes it 

smaller. The output of the previous step produces a huge number of features (3315 features). It 

needs a feature reduction to optimize the computational cost of the proposed model. However, 

the number of features is significant for how well ensemble learning works. Therefore, we 

conducted an ablation study with varying numbers of features to achieve the optimal 

performance. We discovered in our ablation study that a feature vector with 512 features 

performs the best of the options that we looked at. This stage generates a feature vector with 

512 normalized contour-based features. 

3.3 Ensemble Learning 

We used machine learning algorithms, including Support Vector Machines (SVMs), K-Nearest 

Neighbors (KNNs), and Logistic Regression (LR) to create the proposed ensemble framework. SVM 

builds a maximum-margin hyperplane to separate classes in a high-dimensional space. SVM is able to 

handle nonlinear data by employing kernel tricks and generalizes extremely well. SVM is particularly 

effective when applied to small- to medium-sized biomedical datasets. KNN is a very basic, non-

parametric classifier that computes the majority vote of the K-nearest neighbors. Relevant features and 

high-dimensional data adversely affect KNN's ability to maintain local patterns. LR is class membership 

probability as a logistic function. LR is computationally efficient, interpretable, and a useful linear 

baseline for multi-class classification using the one-vs.-rest strategy. XGBoost is an outstanding 

ensemble method that is gradient-boosted decision tree-based. XGBoost performs best with complex 

patterns, restricts overfitting, and offers high accuracy as well as efficient operation. The individual 

training and testing of all models on the PCA-reduced feature vectors are performed to create the 

performance baselines. Two ensemble techniques were employed to obtain the highest individual model 

and lowest predictive consistency. 

 Voting classifier: This ensemble method uses soft voting to combine the probability output of

chosen base classifiers. Classification was performed by averaging predicted probabilities and 

selecting the best combined score label. 

 Stacking classifier: The base-level classifiers' predictions are used as input to a meta-classifier.
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The second-level learner learns the base models' dependencies, which enabled improved 

decision boundaries and classification outcomes. 

Ensemble models are created to take advantage of the complementary strengths of each algorithm and 

to boost the overall robustness. The proposed ensemble model utilized the grid search-based cross 

validation method with five folds for hyper-parameter tuning. We achieved the best performance with 

an ensemble model that consists of SVM with C = 1, SVM with Gamma=0.01, KNN with 5 neighbors 

and Random Forest with 300 trees. 

4. RESULTS

This section presents a detailed performance analysis of the proposed ensemble model along with an 

ablation study. Model performance was approximated using common classification metrics, including 

accuracy, precision, recall, and F1-score. The proposed model has been evaluated on the Mendeley 

Dataset [20]. The dataset holds 928 ECG color images with a resolution of 2213 × 1572. Each image 

belongs to one of the four cardiac conditions: normal, abnormal, myocardial infarction (MI), and history 

of MI (HMI). 

4.1 Ablation Study 

Gaussian filtering and feature reduction primarily influence the performance of the proposed 
model. Therefore, we conducted an ablation study focusing on these two aspects. 

 With different Gaussian filter sizes:

Firstly, we have considered 100 features and experimented with different Gaussian filter sizes 

in the pre-processing step, including 3 × 3,5 × 5 and 7 × 7. Table 2 represents a comparison of 

performance with different Gaussian filter sizes. This table reveals that the logistic-regression 

model exhibits the least performance, and the XGBoost model attains the highest performance 

among the basic machine-learning models. However, the proposed stacking-based ensemble 

model outperforms basic models with 94.5%, 96.2%, and 93.4% with 3 × 3,5 × 5, and 7 × 7 

filter sizes, respectively. It also indicates that the proposed stacking-based ensemble model 

degrades its performance with a 7 × 7 filter size. The proposed stacking classifier exhibits 

competing performance with Gaussian filter having 3 × 3 and 5 × 5 filter sizes. However, the 

proposed model with Gaussian filter having 5 × 5 filter size exhibits best performance. 

Table 2. Ablation study with different Gaussian filter sizes. 

Filter size 

Model 3 × 3 5 × 5 𝟕 × 7 

KNN 80.5 84.8 81.7 

Logistic Regression 76.6 79.3 81.1 

SVM 91.2 92.9 91.5 

XGBoost 92.2 93.5 91.8 

Voting Classifier 91.3 94.2 92.0 

Stacking Classifier 𝟗𝟒. 𝟓 𝟗𝟔. 𝟐 𝟗𝟑. 𝟒 

 With different number of features:

In general, the number of features plays a vital role in the performance of a model. Thus, we 

experimented with different numbers of features, including 100, 400, and 512, in the feature-

reduction process. We analyzed the proposed model with Gaussian filter sizes 5 × 5 and 3 × 3 

to understand how it behaves. Table 3 represents a performance comparison with different 

numbers of features having a Gaussian filter size of 5 × 5. In this case, the proposed stacking-

based ensemble model exhibits the best performance with 400 features. Similarly, Table 4 

represents a performance comparison with different numbers of features having a Gaussian filter 
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size of 3 × 3. In this case, the proposed ensemble model exhibits the best performance at 98% 

with 400 and 512 features. Tables 3 and 4 reveal that the proposed stacking-based ensemble 

model exhibits the best performance with a Gaussian filter size of 3 × 3 with 400 and 512 

features. The computational cost of the proposed model with 400 features is less than that with 

512 features. Further, the proposed model exhibits similar performance in both cases. Hence, 

we have considered 400 features to optimize the proposed stacking-based ensemble model. 

Table 3. Ablation study with different numbers of features having Gaussian filter size of 5 × 5. 

Number of features 

Model 𝟏𝟎𝟎 𝟒𝟎𝟎 𝟓𝟏𝟐 

KNN 84.8 78.4 77.2 

Logistic Regression 79.3 89.3 89.6 

SVM 92.9 94.2 94.1 

XGBoost 93.5 93.2 96.3 

Voting Classifier 94.2 97.3 𝟗𝟕. 𝟕 

Stacking Classifier 𝟗𝟔. 𝟐 𝟗𝟕. 𝟕 95.7 

Table 4. Ablation study with different numbers of features having a Gaussian filter size of 3 × 3. 

Number of features 

Model 𝟏𝟎𝟎 𝟒𝟎𝟎 𝟓𝟏𝟐 

KNN 80.5 77.4 76.8 

Logistic Regression 76.6 89.0 88.9 

SVM 91.2 93.0 93.3 

XGBoost 92.2 93.4 97.1 

Voting Classifier 91.3 95.9 96.7 

Stacking Classifier 𝟗𝟒. 𝟓 𝟗𝟖. 𝟏 𝟗𝟖. 𝟑 

4.2 Performance Comparison of Proposed Ensemble Model 

The existing models utilized only 12 leads for the ECG classification. For more in-depth examination 

and to mimic clinical lead-based interpretation, ECG images were divided into 13 leads rather than the 

traditional 12-lead setup. We have considered popular machine-learning models for the performance 

analysis. In the proposed model, we utilized a Gaussian filter with a 3 × 3 kernel filter size in pre-

processing and PCA with 400 features for feature reduction. The proposed ensemble model also consists 

of an ensemble of SVM with C = 1, SVM with Gamma = 0.01, KNN with 5 neighbors, and Random 

Forest with 300 trees. Table 5 lists out class-wise performance of proposed stacking classifier. 

Table 5. Class-wise performance of proposed stacking classifier. 

Class Precision Recall F1-Score 

0 100.00 100.00 100.00 

1 100.00 100.00 100.00 

2 97.95 95.79 96.80 

3 93.52 96.54 94.87 

Accuracy 98.06 

Weighted Avg. 98.17 98.06 98.06 
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Table 6. Model performance comparison with ML models. 

Model Accuracy Precision Recall F1-Score 

KNN 77.36 77.79 77.37 75.94 

Logistic Regression 88.69 89.47 88.69 88.19 

SVM 93.10 93.27 93.10 93.02 

XGBoost 93.32 93.56 93.32 93.24 

Voting Classifier 95.47 95.85 95.47 95.36 

Stacking Classifier 98.06 98.17 98.06 98.06 

Table 6 lists out performance comparisons of stacking-based ensemble models with basic machine-

learning models. Among the individual classifiers, SVM and XGBoost were the best performers, with 

over 93% accuracy, followed by logistic regression in the third place with 88.69%. KNN was the worst 

performer with lower metrics owing to its vulnerability to noisy and high-dimensional data. The SVM 

model gave consistent classification accuracy for each of the four classes of ECG with a total accuracy 

of 93.10%. Weighted precision, recall, and F1-score were 93.27%, 93.10%, and 93.02%, respectively. 

The XGBoost classifier achieved an accuracy of 93.32%, weighted precision of 93.56%, recall of 

93.32%, and F1-score of 93.24%. Its gradient-boosting mechanism allowed it to handle non-linear 

decision boundaries well, since it could capture the fine changes of ECG waveform features. However, 

the proposed ensemble model performs better on all measures, with an accuracy rate of above 95%. The 

voting classifier achieved 95.47% accuracy that uses a soft vote algorithm on predictions from SVM, 

KNN and Random Forest. The stacking classifier, which uses a meta-model to integrate the predictions 

of different base learners, like SVM, KNN, and Random Forest, also achieved the greatest overall 

performance, with 98.06% accuracy and a balanced F1-score of 98.06%. Its hierarchical-learning 

framework enables the comprehension of intricate interactions across models and enhances predictive 

accuracy, rendering it the optimal selection for multi-class classification challenges. The data suggests 

that utilizing ensemble methods, especially stacking, improves the accuracy, reliability, and overall 

effectiveness of diagnosing cardiovascular problems through ECG. 

Figure 8. Confusion matrix of the proposed ensemble model. 

The confusion matrix indicated that all four classes had more stability in their categorization. The 

ensemble mechanism provided the model with optimal confidence in recognizing borderline cases. The 

Abnormal and HMI classes exhibited a reduction in both false positives and false negatives. The results 

indicate that integrating various base learners enhances the system's resilience and reliability. Figure 8 

illustrates the confusion matrix for the proposed stacking-based ensemble model. The confusion matrix 

indicates that the stacking classifier effectively distinguished between the classes, exhibiting minimal 

errors. The stacking classifier effectively distinguished between the MI and HMI classes, demonstrating 
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exceptional precision and recall, indicative of robust discriminatory capability. The stacking design 

exhibited superior performance due to its ability to use inter-model interactions. 

Table 7. Performance comparison with state-of-the-art models. 

Model Accuracy (%) 

MobileNetV2 Transfer Learning [1] 93.00 

MobileNetV2 Fine Tuning [1] 95.00 

VGG16 Transfer Learning [1] 91.00 

VGG16 Fine Tuning [1] 95.00 

Sakli et al. [7] 96.70 

Proposed Voting Classifier 95.47 

Proposed Stacking Classifier 𝟗𝟖. 𝟎𝟔 

The efficacy of the proposed stack-based ensemble model is compared with that of existing models, as 

illustrated in Table 7. The findings indicate that the proposed stack-based ensemble model surpasses 

current state-of-the-art models, achieving an accuracy of 98.06%. 

4.3 Discussion 

This paper presents an extremely accurate model for predicting cardiovascular disease (CVD) based on 

ensemble machine-learning models. Of all the classifiers examined, the best performance was exhibited 

by the stacking classifier at 98.06% accuracy. Compared to [1], which used computationally costly 

models, like MobileNetV2 ( 94% ) and VGG16 ( 92% ), our stacking classifier outperformed them, 

even though it used less computationally costly models. This result proves the feasibility of ensemble 

learning even without using computationally costly models. Reference [7] employed a range of standard 

machine-learning models, including KNN, logistic regression, XGBoost, and SVM, and achieved a best 

accuracy of 96.7%. In [8], there were only regular ML techniques tried out, and the highest documented 

accuracy was less than 92.4%. Reference [9] used the models mentioned above, such as SVM, KNN, 

RF, and logistic regression, achieving an accuracy up to 92.4% with ensemble learning using 

GridSearch to optimize. 

These comparisons also highlight the fact that, although there are excellent deep-learning architectures, 

such as MobileNetV2 and VGG16, well-hyperparameterized ensemble machine-learning algorithms can 

provide similar or even superior performance without the need for deep neural networks. This not only 

makes our method accurate, but also lightweight, interpretable, and computationally efficient with a 

significant advantage in real-world deployments to resource-constrained environments. The 

performance summary shows that ensemble-learning methods are better than regular classifiers when it 

comes to detecting heart diseases using ECGs. 

5. CONCLUSION

This paper presents a scalable framework for multi-class classification of cardiovascular diseases from 

ECG images. ECG images can be processed for multi-class heart-disease classification through better 

pre-processing, contour-based feature extraction, and an ensemble-learning pipeline. Our results 

indicate that the ensemble-stacking classifier significantly outperforms individual models and all the 

earlier published works. The stacking classifier, with an accuracy of 98.06%, not only performed better 

than traditional machine-learning models, but also deep learning-based classifiers, such as MobileNetV2 

and VGG16. Compared with deep architectures, the improved performance and reduced computational 

load of our architecture render it highly suitable for real-world use in resource-constrained 

environments. Additional class-wise accuracy improvement, particularly for valuable classes, like MI 

and HMI, also renders the system more practical. Briefly, the work illustrates the ability of carefully 

crafted traditional and ensemble-learning approaches to state-of-the-art performance on the cardiac-
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disease detection from ECG images. Some potential areas of future extensions of this paper include its 

application in real time on edge hardware, integration in clinical decision-support systems, or multi-

modal health data to more general diagnostic applications. 
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ملخص البحث:

تعُدددددراض ادددددفي ضييعةدددددبضادددددتضعةىعددددد ض عدددددوتتضييباىدددددت ض ةددددد ضا ددددد ب ضييعدددددتي  ض ت   ةدددددبضت  ى دددددت ض

دددددفي  ضذعدددددر سضادددددتضلددددد أضيير ايعددددد ضذاتادددددت ضي  ددددد ى ض ادددددفي ضييعةدددددبضي عددددد  تد ضا ددددد ضادددددتض دقىعدددددت ض او. 

 ىصضتةدددددداضيباددددددفي ض تُ   ددددددتدض ةدددددد ضُ ددددددباضت  ددددددى ضييعةددددددبض تع ىددددددت ضييدددددد  عةا ضي يددددددت ضت دددددد

يىددددددد  ض يعددددددد    ضض ضادددددددطضاددددددد :ضا دددددددبي   ضت ددددددد   ضيي عتي ددددددد ت دددددددبي ضيي دددددددو. ضيي ع ف ددددددد يب  

ضيي  ِّ ت  ض يي  عةا ضيي  ت ت 

ض دددددتاة  ضضةدددددتض يددددداضيعددددد    ض يىددددد   ض    ادددددتضييوريضددددد ضت طدددددقض دددددبا ضت  دددددى ضييعةدددددبض يددددد ضاعتي ددددد  

ددددددد  ذدددددددت ضييف ى دددددددى ضيي  ِّ ِّ دددددددبا ض ادددددددطضاددددددد ضتعةىددددددد ض دددددددردلتض تعددددددد  ريسضت ةىددددددد ضيي .ب  ت ضادددددددطضيي  

(PCAدددددددبا  ض ددددددد ضيي  طددددددد    ضادددددددتضيي   ددددددد ت ضيي  ى ِّدددددددَّ ض يي عةبادددددددت ضيي     (ضية  دددددددتلض ةددددددد ضيي  ِّ

ضاددددطضذ ددددت  ضييدددد  عةا ضي يددددتضي   ددددىطض اددددتضذ تضدددد ضيي  ددددت  ضضدددد   ض ددددق ضاددددطض ددددرد  ضا    يعدددد  ريسضذاددددتس 

ضع  تدي ض ي ضعفضع تضيُذ  تتض يي  فزض   ديءض عتاضييع  ضيي ع فحضي

ضت دددددد   ضُ دددددد   ض تا   ةدددددد ضُ ددددددباضض قددددددرضيددددددف ضتعىددددددى ضيي  ِّاددددددتسضيي ع ددددددفحض ةدددددد ضا  ب دددددد ض ىتذددددددت  

باضغىددددددفضعوىعىدددددد  ضباضعوىعىدددددد  ض ُ ددددددي   ددددددى ضييعةددددددب ضتدددددد  ضت دددددد ى  تض يدددددد ض ا ددددددقضا ددددددت   ضُ دددددد

ادددددطضي  دددددت  ض تي  ب دددددت ضييعةوىددددد  ضضباضت دددددىفض يددددد ضتدددددتاض  ضباضت دددددىفض يددددد ضذب ددددد ضقةوىددددد  ض ُ ددددد ُ ددددد

ق دددددد ضت دددددد ى ضت ددددددت ز ض قددددددت ض ةدددددد ضيي   ددددددت  ض98 قددددددرض ع ددددددلضيي   ددددددب  ضيي ع ددددددفحض  ةدددددد ضدِّ ِّ %ضا  ب 

ضيي  تاة ضييبياد ضاتض د ىت ضيي بضبع 

This article is an open access article distributed under the terms and conditions of the Creativeض

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

