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ABSTRACT 

Parkinson’s Disease (PD) is a progressive, chronic neurological disorder that is distinguished by abnormalities 

in the motor system. The condition can be detected in the early stage by the irregular handwriting of the 

individual. Early diagnosis is critical to enable timely therapeutic intervention and slow disease advancement. 

However, traditional diagnostic approaches largely depend on subjective clinical assessments, which lack 

scalability and exhibit reduced sensitivity in the prodromal phase. The present study proposes a well-established 

deep-learning architecture using transfer learning with MobileNetV2, which can be used for early diagnosis of 

Parkinson’s Disease through handwriting images. The dataset includes 816 samples from 120 people. It is 

augmented through grayscale and HSL to add more variety to feature samples of the model. A two-stage training 

regimen—initial base freezing followed by fine-tuning with a reduced learning rate—was employed to optimize 

convergence and generalization. The approach presented in this study scored 92% on accuracy with an F1-

score of 0.88 and a precision of 0.81, outperforming those of conventional baselines in regard to sensitivity and 

robustness. The resulting framework is lightweight, non-invasive, and well-suited for real-time screening 

applications, offering significant potential for clinical decision support and remote telehealth deployments. 
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1. INTRODUCTION

Parkinson’s disease is characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN) 

region of the brain [1]-[2]. Tremors, slow movement, muscle stiffness, and balance difficulties are the 

clinical features that impact the affected person’s daily-living capacity and quality of life. Due to the 

growing global incidence of these diseases, especially in aging populations, early and accurate 

diagnosis is a crucial goal of neurological care [4]-[5]. Nonetheless, there is a significant clinical issue 

with the early detection of Parkinson’s disease. Currently, diagnosing a patient often involves 

identifying neurological symptoms and examining motor symptoms, but it is a subjective measure to 

start with and will result in late-stage diagnosis. Also, in resource-limited settings or pediatric and 

early-onset cases, these methods might lead to the delay or misdiagnosis of the medical intervention 

due to symptomatological similarities with other conditions or the atypical nature of the PD course [6]-

[8]. Traditional methods have aimed to assist in the diagnosis of PD through the application of 

biomedical signals, including speech recordings, handwriting dynamics, and neuroimaging data. 

Although these methods are promising, they rely on features designed by hand, domain expertise, and 

hand-crafted pre-processing. Their performance also tends to drop off in real-world deployments and 

cross-population settings, limiting scalability and clinical utility [9]-[10]. To resolve this issue, the 

study introduces an efficient deep-learning framework that uses convolutional neural network (CNN) 

transfer learning to detect Parkinson’s disease early in handwriting. Writing, a fine motor skill, may be 

affected by micrographia and other altered stroke patterns at the onset of Parkinson’s disease because 

of micrographia. With a pre-trained MobileNetV2 model and data augmentations, our model improves 

feature-extraction capability with fewer data and computations. This research’s principal contributions 

are outlined as follows: 

 We present a deep-learning (DL) framework based on transfer learning using MobileNetV2

for early PD detection from handwriting images. 
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 A robust data-enhancement pipeline using grayscale and HSL transformations is proposed to 

increase the diversity of the dataset. 

 The suggested model delivers a classification accuracy of 92%, a strong performance for non-

invasive PD screening in large populations. 

The remaining sections of this study are organized as follows: Section 2 explores the recent advances 

in AI-enabled PD diagnosis. The proposed method explained in Section 3 consists of dataset pre-

processing, CNN architecture, and training strategies. In Section 4, the results of the experiment and 

their comparison will be highlighted. Ultimately, Section 5 concludes the study and indicates future 

research directions. 

2. RELATED WORK 

Recent advancements in DL have significantly improved the diagnostic capabilities for Parkinson’s 

Disease (PD) across various modalities. Alissa et al. (2021) [1] developed a CNN-based model 

utilizing figure-copying tasks, such as cube and pentagon drawings, achieving high accuracy by 

analyzing geometric distortions linked to PD. Similarly, Hireš et al. (2021) [2] introduced an ensemble 

of CNN models for detecting PD from voice recordings by leveraging acoustic features, such as pitch 

and jitter, yielding 90% accuracy. Chen et al. (2024) [3] proposed a CNN–Transformer hybrid network 

for segmenting PD-related nuclei from medical images, enhancing segmentation performance through 

long-range dependency modeling. Aggarwal et al. [4] suggested a one-dimensional convolutional 

neural-network framework with data augmentation to differentiate Parkinson’s disease from SWEDD 

scans, yielding favorable classification outcomes. Wang et al. (2024) [5] compared 1D, 2D, and 3D 

CNNs for classifying digitized drawing tests, showing that dimensionality affects diagnostic 

performance in handwriting-based PD detection. 

Focusing on motor-skill degradation, Allebawi et al. (2024) [6] implemented a handwriting-based PD 

detection system using a Beta-Elliptical model and fuzzy perceptual detectors, emphasizing dynamic 

spatiotemporal signatures in writing. For gait-related symptoms, Sigcha et al. (2024) [7] evaluated DL 

algorithms across datasets for freezing of gait (FoG) detection, highlighting the importance of 

standardization for clinical use. In the auditory domain, Celik and Başaran (2023) [8] presented a 

CNN–Random Forest hybrid model for PD detection using speech signals, showcasing robustness in 

feature modeling. Extending this, Madusanka and Lee (2024) [9] utilized transformer-based models on 

spectrograms of speech data, achieving 90.8% accuracy by identifying vocal biomarkers indicative of 

PD. 

EEG-based approaches have also gained attention. Khalid and Ehsan (2024) [10] used gated recurrent 

units to classify EEG sub-bands, capturing temporal dependencies in brain activity related to PD and 

achieving notable accuracy. From an algorithmic perspective, Li et al. (2021) [11] provided an 

extensive survey on CNNs, covering applications across biomedical domains. Image pre-processing is 

essential in medical imaging; Qi et al. (2021) [12] provided a comprehensive overview of 

enhancement techniques, while van Dyk and Meng (2001) [13] discussed the statistical underpinnings 

of data augmentation to improve generalization. 

In feature representation, Ping (2013) [14] reviewed classical image feature extraction methods, laying 

the groundwork for more complex deep-learning features. For lightweight CNN design, Dong et al. 

(2020) [15] introduced MobileNetV2, which balances efficiency and performance—making it suitable 

for PD detetion on limited data. For activation functions, He et al. (2018) [16] explored the theoretical 

foundations of ReLU in deep neural networks. Optimization strategies were improved by Zhang 

(2018) [17], who proposed an enhanced Adam optimizer for faster convergence. Transfer-learning 

techniques were thoroughly reviewed by Zhuang et al. (2020) [18], establishing their utility for 

domain adaptation, especially in healthcare. Radenović et al. (2016) [19] demonstrated unsupervised 

fine-tuning of CNNs using hard examples, supporting robust image retrieval and classification. 

Finally, Corley et al. (2015) [20] explored deep learning for software feature location, indirectly 

informing architecture search techniques relevant to model customization in PD-detection frameworks. 

Jiang et al. (2025) [21] proposed a novel network architecture specifically tailored for Parkinson’s 

handwriting-image recognition, demonstrating enhanced structural modeling of handwriting patterns 

using domain-specific features. Extending this direction, Lu et al. (2025) [22] introduced a dynamic 
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handwriting feature-extraction approach that integrates temporal and spatial cues, showing significant 

improvement in Parkinson’s disease-detection accuracy through dynamic pen-motion analytics. 

Kansizoglou et al. (2025) [23] contributed a hierarchical deep-learning framework that incorporates 

drawing-aware context to refine model performance, emphasizing the importance of spatial abstraction 

in analyzing handwriting traits linked to Parkinsonian symptoms. Miah et al. (2025) [24] conducted a 

comprehensive review encompassing various data modalities, including handwriting, voice, and 

motion signals, and highlighted structural and algorithmic considerations for future research on 

Parkinson’s disease-detection systems. While most studies focus on Parkinson’s-specific datasets, 

Javeed et al. (2025) [25] broadened the application domain by applying machine-learning techniques 

to classify handwriting samples for mental-health conditions, such as schizophrenia and bipolar 

disorder, underscoring the potential of handwriting as a universal biomarker for neurological and 

psychiatric evaluations. Al-Shannaq and Elrefaei [26] proposed a domain-specific transfer-learning 

method for age estimation. While existing methods demonstrate notable performance in Parkinson’s 

Disease detection, many face limitations, such as restricted generalization on small datasets, 

insufficient stage-wise analysis, and limited use of domain-specific augmentations. These gaps 

motivate the proposed HWR-PDNet framework, which is designed to enhance robustness, improve 

early-stage detection, and address the shortcomings identified in prior approaches. 

3. SYSTEM METHODOLOGY

This section elaborates on the suggested DL approach for the automated recognition of PD using 

handwriting image analysis. This method utilizes the representational capabilities of CNNs enhanced 

by transfer learning, enabling robust classification even with a limited dataset. The system comprises 

multiple stages, including image pre-processing, feature extraction, classification, and evaluation, as 

shown in Figure 1. 

Figure 1. Workflow of the proposed CNN + transfer-learning system for PD recognition. 

3.1 Data Acquisition 

The handwriting-image dataset was compiled from both PD patients and healthy control participants. 

All subjects performed a standardized wave-drawing (saw-tooth) task using an identical pen-tablet 

device under controlled acquisition conditions. The captured images were then systematically split into 

training and testing sub-sets to facilitate model development and evaluation. 

3.1.1 Problem Formulation 

Let 𝐷 = {(𝐼𝑖, 𝑦𝑖)}𝑖=1
𝑛  represent the dataset, where each handwriting image Ii∈ RH ×W ×C corresponds to

height  H,  width  W,  and  C color  channels  (typically  RGB,  so  C = 3).  The label y ∈ {0, 1} 

denotes the ground-truth class, where 0 indicates a healthy individual and 1 corresponds to a patient 

diagnosed with PD. The objective is to learn a mapping function: 
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fθ : RH ×W ×C  → {0, 1}                                                  (1) 

where fθ is a deep neural network parameterized by θ, which accurately classifies input images into 

one of the two target classes. 

3.2 Feature Extraction 

This stage prepares handwriting images for deep-learning input through pre-processing, augmentation, 

region isolation, and feature derivation. Initially, all images are resized to 256×256 pixels and 

normalized. Data-augmentation techniques—horizontal and vertical flips, ±20° rotations, zooming, 

and contrast adjustments—are applied to improve generalization. Grayscale conversion and HSL 

transformation emphasize stroke patterns and pen pressure variations. Region isolation reduces noise 

by focusing only on handwriting strokes. Finally, a pre-trained MobileNetV2 backbone is used to 

derive discriminative latent features. 

3.3 Image Pre-processing and Augmentation 

The collected handwriting images exhibit variability in image size and background noise. All images 

are resized to the 256×256 pixels. Data augmentation applies to a dataset of a restricted size and 

improves the model’s generalization. This includes random horizontal and vertical flipping, rotations 

within ±20°, zooming, and contrast adjustments. Additionally, grayscale conversion and BGR to HSL 

transformation are incorporated to emphasize fine motor patterns and variations in pen pressure and 

stroke directionality — features often indicative of PD onset. 

3.4 Feature Derivation Using Transfer Learning 

In this work, we utilize a pre-trained lightweight deep network, symbolized as Ψbase, originally 

optimized on the ImageNet benchmark, to perform feature derivation. For a given input handwriting 

image denoted by Xn ∈ RH×W×C , the model outputs an intermediate feature embedding: 

fn = Ψbase(Xn ), fn ∈ RM (2) 

where fn represents the extracted descriptor for sample n, and M is the latent vector dimensionality. 

This embedding captures both structural and abstract traits within the handwriting image that may be 

linked to Parkinsonian motor abnormalities. 

3.5 Model Initialization 

The MobileNetV2 backbone is adapted for binary classification by replacing its output layer with a 

task- specific classification head. Transfer learning is performed in two phases: first, freezing the 

backbone and training only the classification head at a learning rate of 10−4; second, unfreezing the 

entire network and fine-tuning at a reduced learning rate of 10−5 to adapt the pre-trained features to the 

handwriting domain. 

3.6 Decision Mapping Layer 

The derived vector fn is forwarded into a dense projection layer, followed by a softmax classifier to 

predict the output probabilities: 

pn = softmax(W c · fn + bc), pn ∈ R2 (3) 

Here, Wc∈R2×M and bc∈R2 denote the classification weights and bias terms. The predicted vector pn 

reflects the confidence distribution across the binary output space, identifying whether the input 

sample is from a healthy subject or a PD patient. 

3.7 Optimization Objective and Parameter Update 

The network optimizes the sparse categorical cross-entropy loss between the actual labels yn and 

predicted outputs pn. 

JCE = − ∑ 𝑦𝑛,𝑗 log (𝑝𝑛,𝑗)2
𝑗=1 (4) 

where yn,j and pn,j indicate the true label and predicted score for class j of the nth instance. To update 

model parameters ω, we employ the Adam optimizer with momentum-based adaptive learning. The 

parameter-update rule is defined as: 
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ω(u+1) = ω(u) − λ · ∇ω JCE (5) 

where λ is the learning rate, and u indicates the current update step. Two separate learning rates are 

used: λ = 10−4 for initial training (frozen backbone), and λ = 10−5 for fine-tuning (unfrozen backbone). 

3.8 Two-stage Training Framework 

The training protocol consists of a dual-phase learning routine. In the preliminary phase, the base 

encoder Ψbase is kept frozen to retain the pre-learned general features, while only the classifier head is 

trained on the PD-specific dataset. In the subsequent fine-tuning phase, the entire model including the 

feature extractor is unfrozen and optimized using a reduced learning rate. This two-stage strategy 

ensures efficient convergence and avoids overfitting, especially when working with limited domain-

specific samples. 

3.9 Non-linear Activation Dynamics 

We incorporate non-linearity into the model by employing Rectified Linear Units (ReLUs) in hidden 

layers. This allows us to improve the learning capacity of the model. Given an input scalar s that is 

contained inside the set of real numbers, the ReLU activation is expressed as follows: 

ReLU(s) = max(0, s)  (6) 

This function suppresses negative activations and introduces sparsity, thereby improving gradient flow 

and learning stability. The transformed hidden output g is computed as: 

g = ReLU(Wh · fn + bh )  (7) 

where Wh and bh are the parameters of the hidden fully connected layer. 

3.10 Model Evaluation 

Once trained, the model produces prediction probabilities for both PD and healthy classes. A 

confidence- based decision threshold τ is applied to balance sensitivity and specificity based on 

clinical-screening requirements. The model’s performance is evaluated using accuracy, precision, 

recall, F1-score, and ROC AUC metrics. 

3.11 Dropout-based Regularization Mechanism 

To counteract overfitting due to the small sample size, a dropout mechanism is applied post-feature 

extraction. Let the dropout probability be denoted by ρ = 0.2, then the stochastic regularized output is 

computed as: 

g̃ = g ⊙ δ, δi ∼ Bernoulli(1 − ρ)    (8) 

Here, δ is a binary dropout mask applied element-wise using the Hadamard product ⊙. This introduces 

controlled noise during training, which improves model robustness by preventing reliance on specific 

neuron activations and enhancing generalization to unseen handwriting patterns. 

3.12 Model Confidence and Decision Thresholding 

The softmax output yˆ = [yˆ0, yˆ1] represents the class probabilities for the two classes. The default 

decision rule assigns the class with the highest probability: 

𝑦̂𝑝𝑟𝑒𝑑 = arg max 𝑦̂𝑘 , 𝑘 ∈ {0,1} (9) 

However, to account for medical-risk tolerance, a confidence-based threshold τ ∈[0, 1]  is introduced, such 

that: 

𝑦̂𝑝𝑟𝑒𝑑 = {
1, 𝑖𝑓 𝑦̂1 ≥ 𝜏

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (10) 

This allows tuning the sensitivity-specificity trade-off according to application needs, such as favoring 

early detection (high recall) over absolute precision in clinical-screening scenarios. 
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Algorithm 1 Proposed Parkinson’s Disease Detection Pipeline 

Require: Dataset D = {(Ii , yi )}, pre-trained CNN φMobileNet , learning rates η1, η2, threshold τ 

Ensure:  Predicted labels ŷ i ∈ {0, 1} 

1:  Preprocessing:  Resize  Ii to 256×256, apply grayscale & HSL conversion, and augment with flip, 

rotation, zoom, contrast. 

2: Feature Extraction: Compute zi = φMobileNet (Ii ) 

3:   Dropout  Regularization:   z̃ i = zi ⊙ r , where rj  ∼ Bernoulli(1 − p) 
4:   Classification:  ŷ i = softmax(W · z̃ i + b) 

5:   Loss: 𝓛𝑪𝑬 = − ∑ 𝒚𝒊,𝒌𝒍𝒐𝒈(𝒚̂𝒊,𝒌)𝟐
𝒌=𝟏  

6: Training: Optimize θ using Adam with η1 (frozen base); fine-tune with η2 (unfrozen base) 

7: Prediction: 

𝑦̂𝑝𝑟𝑒𝑑 = {
1, 𝑖𝑓 𝑦̂𝑖,1 ≥ 𝜏

  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(a) Initial image, (b) Grayscale enhanced image, (c) Unscaled image (1010×610), (d) Scaled image (256×256)

Figure 2. Progression of handwriting-image transformations: (a) Initial image, (b) grayscale 

enhancement, (c) original unscaled image and (d) resized image for CNN input. 

4. RESULTS

4.1 Dataset Summary 

The dataset used in this study was specifically curated to capture fine motor-skill anomalies typically 

observed in patients with Parkinson’s Disease (PD), along with representative samples from 

neurologically healthy controls, as summarized in Table 1. A total of 120 subjects participated, 

comprising 60 clinically diagnosed PD patients and 60 healthy controls. The cohort included an equal 

gender distribution (60 males and 60 females) to ensure demographic balance, and the participants’ 

ages ranged from 45 to 80 years, representing the most common age span for PD onset. The PD group 

was stratified according to the Hoehn and Yahr scale, a widely accepted clinical metric for disease 

severity: 20 patients in Stage 1 (early PD), 30 in Stage 2 (mild), 25 in Stage 3 (moderate), 20 in Stage 

4 (severe), and 25 in Stage 5 (advanced). The healthy controls were screened to confirm the absence of 

neurological or movement disorders and were matched to the PD group by age and demographic 

background to minimize potential bias. All subjects performed a standardized wave-drawing (saw-

tooth) task using the same pen-tablet device under uniform acquisition conditions, ensuring 

comparability of handwriting features. From these drawings, two primary kinematic attributes—pen 

pressure and drawing speed—were extracted, as they are clinically validated indicators of motor 

dysfunctions, such as micrographia, tremor, and bradykinesia. 

The raw handwriting images were captured at an original image size of 1010×610 pixels and 

subsequently resized to 256×256 pixels to meet the input-dimensionality requirements of the 

MobileNetV2 architecture. The dataset was divided into training (80%), validation (10%), and testing 

(10%) sub-sets, maintaining proportional representation of PD stages and healthy controls in each 

split. To further increase intra- class diversity and improve generalization, data-augmentation 

techniques—including grayscale and HSL conversion, geometric transformations, and contrast 

enhancement—were applied. This process expanded the dataset to 816 images, enabling robust 

learning despite the relatively limited original sample size. 
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Table 1. Dataset description for Parkinson’s disease handwriting study. 

Attribute Details 

Total Subjects 120 (60 PD patients, 60 Healthy Controls) 

Age Range 45–80 years 

Primary Features Pen-pressure, Drawing Speed 

Image Size (Original) 1010 × 610 pixels 

Image Size (Resized) 256 × 256 pixels 

PD Stage Classification Hoehn and Yahr Scale (Stage 1 to Stage 5) 

Stage 1 (Early PD) 20 Patients 

Stage 2 (Mild PD) 30 Patients 

Stage 3 (Moderate PD) 25 Patients 

Stage 4 (Severe PD) 20 Patients 

Stage 5 (Advanced PD) 25 Patients 

Healthy Controls 60 Subjects 

Data Split 80% Train, 10% Validation, 10% Test 

Final Dataset Size (after augmentation)      816 Images 

4.1 Model Configuration and Hyper-parameter Settings 

The suggested framework utilizes MobileNetV2 as a feature extractor, because it requires fewer 

resources to run and performs well in environments with limited power, as shown in Table 2. This 

model used pre-trained weights for ImageNet, allowing effective transfer learning to use its model for 

handwriting classification of people with Parkinson’s disease. All writing samples were resized to 

256×256×3 to conform with the input structure requirements of the model. A data augmentation 

pipeline was utilized to improve generalization and reduce overfitting. This step involved flipping 

images horizontally and vertically at random, rotating images up to 20°, zooming, and changing 

contrast. Each of these transformations was done with a probability of 0.2, enabling variability similar 

to real-world handwriting. After the convolutions, a Global Average Pooling (GAP) layer is utilized to 

lower the feature’s dimension while obtaining a reduced characteristic map and compressing spatial 

information by bridging spatial features to obtain the most discriminative features. Then, a dropout 

layer with 20% drop probability was added before output dense layers to prevent neuron co-

adaptation. The classification portion was made up of a fully connected layer composed of 64 units, 

each activated by the ReLU function, followed by a soft- max output to predict the probabilities of 

Parkinson’s and Healthy. We utilized the Sparse Categorical Cross-Entropy objective function, 

appropriate for multi-class classification problems, including degenerate binary cases.  

Table 2. Hyper-parameters and training configuration. 

Hyper-parameter Value 

Base Model MobileNetV2 (Pre-trained on ImageNet) 

Input Image Size 256 × 256 × 3 

Data Augmentation Flip, Rotation (0.2), Zoom (0.2), Contrast (0.2) 

Pooling Layer Global Average Pooling 

Dropout Rate 0.2 

Dense Layer 64 Units, ReLU Activation 

Output Layer Softmax (2 Classes: Healthy / PD) 

Loss Function Sparse Categorical Cross Entropy 

Optimizer (Initial Phase) Adam (LR = 1e-4) 

Optimizer (Fine-tuning Phase) Adam (LR = 1e-5) 

Batch Size 32 

Total Epochs 25 (15 Base + 10 Finetuning) 

Due to its adaptability to the gradients and speed of convergence, training was performed via the 

Adam optimization. To begin with training the classification head, the learning rate was set to 1 × 10-4 
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with the feature extractor frozen. In the fine-tuning step, all layers were unfrozen and re-optimized 

using a lower learning rate (1e−5). The model underwent training with a batch size of 32. In total, we 

ran 25 epochs, where we used 15 epochs for training and 10 for fine-tuning. The transformation of raw 

handwriting samples is illustrated in Figure 2. Certain image pre-processing operations are done to raw 

handwriting samples to edit and resize them for training. 

Table 3. Metrics for training and validation by epoch using ROC AUC. 

Epoch Train Loss Train Acc. (%) Val. Loss Val. Acc. (%) ROC AUC 

0 0.80 63.00 0.78 62.00 0.62 

5 0.50 80.00 0.48 78.00 0.79 

10 0.35 84.00 0.36 83.00 0.85 

15 0.30 87.00 0.31 85.00 0.87 

20 0.25 90.00 0.28 89.00 0.89 

25 0.21 92.00 0.26 91.00 0.91 

(a) ROC  AUC  over  training epochs            (b) Loss of training and validation across epochs

(c) Epoch-wise training and validation cccuracy

Figure 3. Training performance metrics: ROC AUC, loss and accuracy. 

4.2 Epoch-wise Evaluation of Training Dynamics 

The performance of the suggested model was assessed for progressive learning behaviour through 

training and validation metrics over epochs. Table 3 reports the performance during each epoch in 

terms of loss, accuracy, and ROC AUC. Likewise, Figure 3 plots the training metrics from its 

evolution with time. At the initial epoch (Epoch 0), the model had limited predictive capacity; 

training accuracy of 63%, validation accuracy of 62%, and ROC AUC equal to 0.62. The network is 

untrained, as indicated by high loss values of 0.80 and 0.78 as part of this baseline performance. 

However, as training progressed, several things improved. By epoch 5,  the validation accuracy was 

up to 78% while the ROC  AUC improved sharply  to 0.79. The model continues to improve 

performance with more epochs. The validation loss amounted to (0.31) with accuracy (85%) and 

AUC-ROC score (0.87) at epoch 15. Generalization has increased, and overfitting has decreased. 

Epoch 25 exhibits optimal performance, with a training accuracy of 92%, a validation accuracy of 

91%, and a ROC AUC of 0.91. The model is capable of minimizing classification error, which leads 

to stable generalization performance. This corroborates the numerical findings, as illustrated in Fig 3. 

The training and validation sub-set loss curves exhibit a consistent fall, signifying smooth 
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convergence. Also, the accuracy plots indicate that both training accuracy and validation accuracy 

have almost the same upward trend. The ROC AUC curve further affirms that the model is tuning 

itself with every epoch to better discriminate between the positive and negative classes. In summary, 

the epoch-wise performance metrics affirm the robustness and convergence of the model. The steady 

improvement across loss, accuracy, and ROC AUC validates the effectiveness of the learning strategy 

and the suitability of the selected architecture for the classification task.  

Table 4. Performance comparison of HWR-PDNet with existing models on the test dataset. 

Model Acc. Pre. Re. Spe. F1 ROC AUC 

CNN (Baseline) 0.90 0.76 0.91 0.83 0.83 0.88 

LSTM Model 0.89 0.78 0.87 0.80 0.82 0.86 

CNN–Transformer 0.85 0.73 0.84 0.78 0.78 0.84 

1D/2D/3D CNN 0.82 0.71 0.80 0.76 0.75 0.82 

Beta-Elliptic + Fuzzy PD Classifier 0.88 0.79 0.86 0.81 0.82 0.87 

Hybrid CNN–GRU Handwriting Classifies 0.90 0.80 0.89 0.85 0.84 0.89 

Proposed HW R-PDNet 0.92 0.81 0.95 0.89 0.88 0.91 

Figure 4. Performance comparison of HWR-PDNet vs. existing models’ performance on the test dataset. 

4.3 Comparative Examination with Current Models 

Table 4 presents a detailed evaluation of the proposed HWR-PDNet framework against several 

contemporary baseline and hybrid models, including CNN (Baseline), LSTM Model, CNN–

Transformer, 1D/2D/3D CNN, Beta-Elliptic + Fuzzy PD Classifier, and Hybrid CNN–GRU 

Handwriting Classifier. The baseline CNN achieved a strong recall of 0.91, but comparatively lower 

precision (0.76), suggesting a higher tendency toward false positives. The LSTM model showed 

balanced precision (0.78) and recall (0.87), though its overall accuracy (0.89) and ROC AUC (0.86) 

were slightly lower. The CNN–CNN-Transformer and 1D/2D/3D CNN architectures exhibited 

reduced performance, particularly in specificity, indicating limitations in correctly identifying healthy 

subjects. The Beta-Elliptic + Fuzzy PD Classifier demonstrated competitive precision (0.79) and 

specificity (0.81), while the Hybrid CNN–GRU Handwriting Classifier improved both accuracy (0.90) 

and specificity (0.85) compared to earlier baselines. In contrast, the proposed HWR-PDNet surpassed 

all other models, achieving the highest accuracy (0.92) and recall (0.95), alongside a robust F1-score 

(0.88) and the highest ROC AUC (0.91). Its specificity of 0.89 reflects an effective reduction in false 

positives, which is crucial in medical-screening applications. The graphical illustration in Figure 4 

visually reinforces these results, showing HWR-PDNet’s consistent lead across all metrics. This 



414 

"HWR-PDNet: A Transfer Learning CNN for Parkinson’s Detection from Handwriting Images", Mathu T. et al. 

performance gain can be attributed to its hybrid feature-extraction design, optimized regularization, 

and fine-tuning strategies, which enhance its generalization and discrimination capabilities. These 

findings confirm that HWR-PDNet is a reliable and superior choice for handwriting-based Parkinson’s 

Disease detection in practical clinical workflows. 

Table 5. Performance contribution of individual enhancements in the HWR-PDNet pipeline. 

Configuration Accuracy F1-Score ROC AUC 

Baseline CNN (No Aug, No Fine-Tune) 0.86 0.82 0.84 

With Grayscale Augmentation 0.88 0.84 0.86 

With HSL Color Space Augmentation 0.89 0.86 0.88 

With Dropout Regularization (p=0.2) 0.90 0.87 0.89 

With Fine-tuning with Low LR 0.91 0.88 0.90 

Full Model (HW R-PDNet) 0.92 0.88 0.91 

Figure 5. Performance contribution of enhancements in HWR-PDNet. 

4.4 Impact Analysis of Incremental Enhancements in HWR-PDNet 

An ablation study was conducted to elucidate the impact of specific enhancements in the HWR-PDNet 

architecture. As represented in Table 5, the classification metrics show progressive improvements with 

each enhancement, and the cumulative effects are visually summarized in Figure 5. Importantly, the 

configurations in Table 5 are cumulative rather than singular. Each successive configuration builds 

upon the enhancements of the previous one in the following order: baseline CNN without 

augmentation or fine-tuning, addition of grayscale augmentation, addition of HSL color space-

augmentation (in addition to Grayscale), integration of dropout regularization with a probability of 0.2 

(in addition to grayscale and HSL), fine-tuning with a low learning rate (in addition to grayscale, HSL, 

and dropout), and finally, the complete HWR-PDNet model that incorporates all enhancements. The 

order of integration was deliberately chosen to first expand the diversity and richness of the input 

representations (grayscale and HSL augmentations), then introduce regularization to mitigate 

overfitting (dropout), and finally apply targeted optimization to adapt the pre-trained backbone to the 

handwriting domain (fine-tuning). This approach ensures that the model initially develops a broader 

and more representative feature space, improves robustness against noise and overfitting, and then 

benefits from specialized adaptation to the target domain without catastrophic forgetting. Starting from 

the baseline CNN without data augmentation or fine-tuning, the model achieved 86% accuracy, an F1-

score of 0.82, and ROC AUC of 0.84. Adding grayscale augmentation improved performance by 

enhancing the network’s ability to detect contrast-based stroke patterns, leading to better 

generalization. Incorporating HSL color-space augmentation further increased accuracy to 89% and 

the F1-score to 0.86, showing the benefits of color-space diversity in capturing subtle handwriting 

variations. Integrating dropout regularization raised accuracy to 90% and ROC AUC to 0.89, 

demonstrating improved robustness. Fine-tuning with a low learning rate allowed the network to adapt 

feature representations more precisely to domain-specific characteristics, increasing accuracy to 91% 
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and F1-score to 0.88. The complete HWR-PDNet model, integrating all enhancements, achieved the 

best results: 92% accuracy, F1-score of 0.88, and ROC AUC of 0.91. These results confirm that the 

cumulative addition of augmentations, regularization, and fine-tuning significantly enhances both the 

generalization capability and the discriminative power of the proposed model. 

Table 6. Per-class performance metrics stratified by stage. 

Stage Pre. Re. F1. Support 

Stage 1 (Early) 0.85 0.91 0.88 10 

Stage 2 (Mild) 0.86 0.94 0.90 15 

Stage 3 (Moderate) 0.87 0.93 0.90 13 

Stage 4 (Severe) 0.80 0.89 0.84 10 

Stage 5 (Advanced) 0.79 0.87 0.83 12 

Healthy Controls 0.89 0.86 0.87 60 

Figure 6. Per-class performance metrics stratified by stage. 

4.5 Stage-wise Evaluation of Classification Performance 

An analysis of the performance of the suggested HWR-PDNet across the various stages of PD was 

conducted to evaluate its discriminative capability, as represented in Table 6. The model demonstrated 

strong performance in detecting Stage 1 (Early) with a precision of 0.85, a recall of 0.91, and an F1-

score of 0.88, indicating sensitivity to subtle handwriting irregularities associated with early 

neurodegeneration. Stages 2 (Mild) and 3 (Moderate) achieved the highest F1-scores of 0.90, 

supported by reliable precision–recall pairs, highlighting the model’s robustness in capturing 

progressive motor impairments. Performance decreased slightly for Stage 4 (Severe) and Stage 5 

(Advanced), with F1-scores of 0.84 and 0.83, respectively. This reduction can be attributed to 

overlapping clinical signs and reduced handwriting variability in advanced PD stages, though the 

model maintained consistent classification capability. The largest support was observed in the Healthy 

Control group (n=60), where the model reached an F1-score of 0.87. Notably, precision exceeded 

recall in this class (0.89 vs. 0.86), suggesting a conservative, but accurate, identification of healthy 

subjects. As illustrated in Figure 6, performance was relatively balanced across classes. Overall, the 

stage-wise evaluation underscores the ability of HWR-PDNet to effectively track disease progression, 

achieving higher efficiency in moderate-to-severe phases while preserving sensitivity at the early 

stage. 

4.6 Discussion 

The experimental evaluation of the proposed HWR-PDNet framework demonstrates consistent 

improvements across multiple classification metrics and experimental configurations. The epoch-wise 
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training dynamics (Table 3 and Figure 3) reveal a smooth convergence pattern with increasing 

accuracy and ROC AUC, indicating effective learning and generalization. Comparative analysis 

(Table 4 and Figure 4) shows that HWR-PDNet outperforms conventional CNN, LSTM, and hybrid 

models, achieving superior accuracy (92%) and recall (95%). The ablation study (Table 5 and Figure 

5) highlights the cumulative contribution of augmentation, regularization, and fine-tuning, where each

enhancement incrementally boosts model performance. Moreover, the stage-wise stratification (Table 

6 and Figure 6) illustrates robust classification across all Parkinson’s stages, with particularly strong 

results in early and moderate stages—underscoring the model’s utility in early intervention scenarios. 

Collectively, the results confirm that HWR-PDNet offers a reliable, interpretable, and high-performing 

solution for stage-aware Parkinson’s Disease recognition from handwriting data. 

5. CONCLUSION

This study introduced HWR-PDNet, a hybrid deep-learning architecture for stage-specific 

classification of Parkinson’s Disease (PD) using handwriting patterns. The model integrates 

convolutional feature extraction, attention-based enhancement, grayscale and HSL augmentations, 

dropout regularization, and fine-tuning with a low learning rate to achieve robust and generalizable 

outcomes. Experimental evaluations demonstrated that HWR-PDNet achieved superior classification 

performance compared to baseline models, with an overall accuracy of 92%, precision of 0.81, recall 

of 0.95, F1-score of 0.88, and ROC AUC of 0.91. The proposed framework consistently outperformed 

the baseline CNN (accuracy: 90%, F1-score: 0.83, ROC AUC: 0.88), LSTM (accuracy: 89%), and 

CNN–Transformer (accuracy: 85%) across all metrics. Ablation analysis confirmed the incremental 

contribution of each enhancement, with performance improving from 86% accuracy (baseline) to 92% 

in the final configuration. Stage-wise evaluation further highlighted the model’s discriminative 

capacity: early-stage PD (Stage 1) achieved an F1-score of 0.88, moderate-stage PD (Stage 3) reached 

0.90, and healthy controls were identified with an F1-score of 0.87, indicating low false-positive rates. 

Slightly lower scores were observed in advanced stages (Stages 4–5), reflecting the overlapping 

handwriting patterns typical of severe motor impairment. While this study focused on static 

handwriting images, the findings underscore the potential of extending HWR-PDNet to incorporate 

dynamic handwriting features, such as stroke velocity, acceleration, and temporal rhythm, which can 

be readily captured using touchscreen devices. Future work will explore the integration of such 

temporal signals with spatial handwriting patterns, along with multi-modal physiological data, to 

enable more sensitive, specific, and real-time PD monitoring. This direction holds promise for 

scalable, non-invasive, and personalized early intervention strategies in clinical and home settings. 
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ملخص البحث:

وع رررررررص ومررررررر م و م  ررررررر   و ي ميررررررر وني ررررررر   و يرررررررنومرررررررنسون عباررررررررلٍوعصررررررر عموعررررررر و  ررررررر  

رررررر رررررراع ي ديررررررلوّرررررر وايا ورررررر  واي نبرررررر  و يم رررررر واي    نموعرررررر وفوعرررررر واي  يررررررلوّرررررر ومنا   رررررر وايمص  

رررررنو مرررررنا ونررررر ي وا  ميرررررل و طنيررررر وعررررر  واا وررررر  واي   نرررررلوايي  يرررررلوي كرررررندًو يلغررررر  واي   ررررريي وايمص  

ررررر ومرررر واي  ررررر    وايغسبرررر وّررررر وايل رررررموايما قرررر  و  ررررر ّل و يرررر و ا ررررر ويصرررري ومن  رررررلو  ررررر   و ّ ررررلويم  

و  غ  ررررر ون م  ايرررررلو دا   رررررنمواي    ي يرررررلوّررررر واي   ررررريي ومررررر وم ررررر    ايمرررررنسًو مرررررنو يررررر و لغررررر ا وايل 

واي  لقنو اايك سواي ر قيلً

رررررنوعررررر و   رررررن و ررررربنوايلع رررررلونايرررررلو غ  ررررر وعميررررر و رررررر ي  و اي   نرررررلوايي  يرررررلون ررررر  واي  رررررفوايمص  

ومررررررنسون عبارررررررلًٍو  رررررر وانرررررر م موم ملعررررررلوايصي ارررررر  وايمررررررر ي ملوّرررررر و رررررربنواي عاقررررررلوع رررررر 

وايا وررررر  وايم  ررررررن وو120عيارررررلوب  نرررررلوي  يررررررلو غرررررلدويرررررر  وو816  ٍ و   رررررر عواننررررر عمو يرررررر و   ً ني ررررر 

ررررررنمواي    ي يررررررلومرررررر و يرررررر و ومرررررر وايل     رررررر ومأنررررررنا و داموبيرررررر مو كررررررلمومأنررررررنا وا دامويغرررررر د 

ايم  اررررررلو اي ر قرررررريلًو يلغرررررر  و طرررررر عوايغمرررررر وايرررررربّو الررررررلّوع يرررررر وايل ني ررررررلوايم  ن ررررررلو طرررررر عا و

ا قرررررص  وي  م واي  ي ررررر  و  رررررلويرررررلّ نو كيرررررفوايرررررلًٍومل رررررفوعررررر وايمرررررنسوّررررر وايررررر   لصي ررررر  واي   

رررررفوعررررر وان ررررر نلونررررر يمنسومررررر وعررررر م  و عواي    رررررنينّو  لرررررل  رررررلويررررر ع واي رررررناعواير   م  ايرررررلوم م 

وع ونلغ ًو
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