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ABSTRACT 

This study addresses challenges in sentiment analysis for low-resource educational contexts by proposing a 

framework that integrates Few-Shot Learning (FSL) with Transformer-based ensemble models and boosting 

techniques. Sentiment analysis of student feedback is crucial for improving teaching quality, yet traditional 

methods struggle with data scarcity and computational inefficiency. The proposed framework leverages self-

attention mechanisms in Transformers and combines models through Gradient Boosting to enhance performance 

and generalization with minimal labeled data. Evaluated on the UIT-VSFC dataset, comprising Vietnamese 

student feedback, the framework achieved superior F1-scores in sentiment and topic-classification tasks, 

outperforming individual models. Results demonstrate the potential of the proposed framework for extracting 

actionable insights to enhance educational experiences. Despite its effectiveness, the approach faces limitations, 

such as reliance on pre-trained models and computational complexity. Future work could optimize lightweight 

models and explore applications in other domains, like healthcare and finance. 
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1. INTRODUCTION 

In natural language processing (NLP), sentiment analysis, also referred to as opinion mining, is a method 

used for evaluating the emotional state of a given text [1]. This technique has become a valuable tool 

for extracting user opinions from product and service reviews, providing businesses with actionable 

insights to improve their offerings [2]. Student feedback is essential for assessing learning-management 

systems, instructional strategies and course material in the educational setting [3]. To facilitate efficient 

analysis, these feedback responses, which are frequently in the form of text, need to be pre-processed 

using NLP techniques as feature extraction and selection [4]. 

The initial step in sentiment analysis involves labeling text with emotional categories, like positive, 

negative, or neutral, reflecting students' feelings about the courses and services provided [5]. However, 

the manual annotation process can be time-consuming and require substantial resources, as well as an 

understanding of educational content. This challenge has been addressed through automated methods 

powered by AI and machine learning [6]. With its ability to process and analyze vast amounts of student 

input, artificial intelligence (AI) greatly improves the precision and effectiveness of sentiment 

categorization [7]. Even when feedback is unlabeled, machine learning, deep learning and transformer 

models are very good at using attention processes to identify students' feelings [8]. 

In the age of online and blended learning, where emotional cues may be harder to discern, leveraging 

sentiment-analysis tools becomes essential for extracting meaningful insights from textual data [9]. 

Furthermore, various machine-learning algorithms, such as Naive Bayes, Support Vector Machines 

(SVMs) and lexicon-based methods, have been used to analyze sentiments in student feedback, 

demonstrating their effectiveness in processing and interpreting these responses [10]–[12]. With these 

advancements, sentiment analysis not only contributes to enhancing teaching quality, but also provides 

valuable insights into the experiences and perspectives of students in the educational process. 

Traditional supervised-learning approaches have been extensively applied in sentiment analysis, yet 

they are constrained by inherent limitations. One major challenge arises in scenarios with limited labeled 

training data, where traditional machine-learning models often suffer from overfitting, rendering them 

unable to generalize effectively to unseen data [13]. This limitation is particularly problematic in 
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sentiment analysis, where diverse and complex text patterns demand robust generalization. Moreover, 

while humans can intuitively generalize concepts with minimal exposure or partial information, 

machine-learning models struggle to replicate this ability [14]. As a result, traditional methods falter in 

low-data settings, leaving critical gaps in performance and scalability. 

Previously, sentiment analysis has depended on supervised techniques that handle issues, like lexical 

variety and long-distance interdependence, present in textual data. To capture these relationships, 

sequence models such as RNNs and LSTM networks, have been frequently employed. While these 

models can encode complex relationships within text, their serialized processing makes them 

computationally inefficient and limits their scalability, especially in real-world applications. Through 

the application of parallelized processing, Transformer models, on the other hand, have transformed 

sentiment analysis and greatly increased computational effectiveness while maintaining the capacity to 

identify long-distance relationships. Their self-attention mechanisms allow for a more comprehensive 

understanding of text structure and semantics, making them well-suited for sentiment analysis. 

However, these models often require large amounts of labeled data to perform effectively, which poses 

a challenge in resource-constrained environments.  

To address these challenges of data scarcity and computational inefficiency, Few-Shot Learning (FSL) 

has emerged as a promising solution. FSL enables models to generalize effectively from only a few 

labeled examples, mimicking human-like learning. However, traditional supervised methods still face 

limitations in terms of overfitting and dependency on large datasets. To overcome these issues, 

integrating ensemble learning with Transformer architecture and FSL offers a novel approach. By 

combining multiple Transformer models trained with few-shot data, ensemble learning can improve 

generalization and robustness, mitigating the risks of overfitting. The hybrid approach leverages the 

computational efficiency of Transformers, the contextual power of self-attention mechanisms and the 

scalability of FSL, offering a more effective and resource-efficient framework for sentiment analysis in 

real-world applications. 

While traditional sentiment-analysis approaches have demonstrated strong performance on large-scale 

datasets, their applicability is limited in low-resource educational environments, where collecting and 

annotating large volumes of labeled data are often impractical due to time, budgetary and expertise 

constraints. Deep learning and transformer-based techniques have achieved promising results in 

educational contexts, such as analyzing course feedback or evaluating learning-management systems 

[60–62]. However, these approaches are highly dependent on the availability of comprehensively 

labeled datasets, which poses a significant barrier in many real-world educational scenarios, particularly 

in under-resourced institutions or less-documented languages. Moreover, existing research has paid 

limited attention to the use of boosting strategies for ensembling Transformer-based models in 

educational sentiment analysis. Most prior studies, such as [63] and [64], have focused on combining 

traditional deep-learning models and basic machine-learning techniques rather than leveraging the 

potential diversity and complementary strengths of multiple Transformer architectures. This reflects a 

research gap in exploring ensemble-learning techniques, particularly boosting, in conjunction with 

modern pre-trained language models for low-resource educational contexts. 

To address the critical challenge of data scarcity in analyzing student feedback, particularly for under-

resourced languages, like Vietnamese, within educational settings, this paper proposes a novel approach. 

We investigate the synergistic integration of Few-Shot Learning (FSL) with boosting-enhanced 

Transformer-based ensemble models. While FSL addresses the limited data and Transformers offer 

powerful text representation, the strategic application of boosting techniques over an ensemble of such 

FSL-trained Transformers is a relatively unexplored configuration aimed at maximizing performance 

and robustness specifically for this low-resource niche. 

The purpose of the research includes: 

• To rigorously assess the viability and effectiveness of integrating FSL with boosted Transformer 

ensembles for sentiment analysis specifically on scarce Vietnamese student-feedback data, thereby 

demonstrating a practical solution for low-resource educational contexts. 

• To explore and apply boosting methods to combine model predictions and evaluate the effectiveness 

of ensemble techniques in improving accuracy and prediction performance for sentiment and topic 
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classification tasks. 

• To develop and provide a high-performance model for student sentiment analysis, particularly suited 

for small datasets, to support research and enhance sentiment-analysis methods in the educational 

context. 

• To evaluate the proposed model on an additional sentiment-analysis dataset from a different domain 

to ensure the model’s robustness and generalizability across various contexts, thereby supporting its 

applicability in broader sentiment-analysis tasks beyond the educational setting. 

2. RELATED WORK  

2.1 Contrastive Learning in Sentiment Analysis  

The primary objective of contrastive learning (CL), a self-supervised machine-learning technique, is to 

develop representations through the comparison of various data samples. More specifically, CL learns 

to push negative pairings farther apart and bring positive pairs closer together in the representation space. 

In order to decrease dimensionality and enhance classification and recognition performance, CL was 

presented as a technique that involves learning an invariant mapping [15]. With a momentum encoder 

that continuously updates negative samples, it was shown how important the quantity of negative 

samples is to improving representation learning [16]. Constructing effective positive pairs was 

highlighted as a critical factor in learning high-quality representations in CL [17]. 

Contrastive learning has shown itself to be an effective technique in sentiment-analysis applications. 

Supervised CL has been directly used in a number of research studies [18]-[20] to align sentiment 

representations with corresponding sentiment labels in order to develop fine-grained sentiment 

representations. In order to promote more efficient sentiment-analysis learning, supervised CL creates 

positive pairings based on labels, where samples with the same label are regarded as positive pairs and 

samples with different labels are regarded as negative pairs [21]. Additionally, to improve the accuracy 

and resilience of sentiment-analysis models, multi-aspect samples for CL were created using an in-

domain generator and a cross-channel data-augmentation technique [22]. In order to enhance sentiment-

analysis performance, cross-lingual contrastive learning also employed token-level and sentence-level 

data-augmentation techniques in addition to sentiment identifying [23]. 

2.2 Boosting 

Boosting is a method of machine learning that combines weak learners in an ensemble style to turn them 

into a strong classifier. Its main goal is to minimize bias, which aids in the improvement of highly biased 

models. Combining the outcomes of each iteration using a weighted vote for classification or a weighted 

sum for regression yields the final output of boosting [24]. 

2.2.1 AdaBoost 

Adaptive boosting is a powerful boosting algorithm introduced by [25], designed to combine weak 

learners, typically decision stumps (decision trees with a single split), into a strong classifier. It is widely 

regarded as one of the most robust machine-learning algorithms, with AdaBoost.M1 being a notable 

implementation for binary-classification tasks [26]. AdaBoost requires little hyper-parameter tuning and 

is simple to deploy [27]. To create the strong classifier, the several base learners are added one after the 

other and weighted [28]. The learning process involves iteratively training base classifiers, updating 

sample weights based on their classification performance and prioritizing misclassified samples in 

subsequent iterations. Initially, all samples are assigned equal weights: 

D1(𝑖) =
1

𝑚
, 𝑖 = 1,2, … ,𝑚. 

The weights are then updated after each iteration using the formula: 

D𝑡+1(𝑖) =
D𝑡(𝑖)

𝑍𝑡
exp⁡(−α𝑡y𝑖h𝑡(x𝑖). 

Here, the importance of each base classifier is quantified as: 

α𝑡 =
1

2
ln⁡(

1 −∈𝑡
∈𝑡

) 

where ∈𝑡 is the error rate of the base classifier. After T𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, the final strong classifier is computed 
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as: 

H(x) = sign(∑α𝑡h𝑡(x)

𝑇

𝑡=1

 

This approach ensures a weighted combination of base classifiers to optimize performance. AdaBoost’s 

adaptability and sequential focus on hard-to-classify samples make it highly effective for diverse 

applications.  

2.2.2 Gradient Boosting 

A popular machine-learning technique, called gradient boosting, iteratively combines weaker base 

learners, usually decision trees, to create a powerful prediction model. Because it uses decision trees as 

essential building elements, it is frequently referred to as Gradient Boosted Decision Tree (GBDT). [29] 

was the first reference to describe the concept, demonstrating that boosting can be seen as an 

optimization problem that aims to achieve a certain loss function. 

An advanced version of this approach was later developed [30], focusing on sequentially training models 

to construct a robust ensemble classifier. Unlike other boosting methods, the key idea in Gradient 

Boosting is to design base learners that align with the negative gradient of the loss function for the 

overall ensemble [31]. 

For a given training dataset 𝑆 = {(x𝑖, 𝑦𝑖}𝑖=1
𝑁 , the goal of Gradient Boosting is to approximate a function  

F∗(x) that predicts the response variable y based on input features x, by minimizing a pre-defined loss 

function L(y, F(x)). This approximation is achieved iteratively by creating an additive model expressed 

as: 

 
Here: 

• : The prediction at iteration m. 

•  The prediction from the previous iteration. 

• : The weight of the mth learner. 

•  The mth base learner, typically a decision tree. 

The initial model, F0(x), is determined by minimizing the loss across all samples: 

 
In subsequent iterations, each new learner  is trained to minimize the error of the current model: 

 
A critical aspect of this process involves computing pseudo residuals, which represent the gradients of 

the loss function with respect to the model's predictions. These are calculated as: 

 

The optimal weight  is subsequently obtained through a line-search procedure. 

To mitigate overfitting, the algorithm applies shrinkage, scaling the contribution of each step by a 

learning rate  (commonly set to 0.1): 

 

Gradient boosting stands out for its ability to uncover intricate patterns in data by systematically 

addressing errors in previous iterations. However, it is susceptible to overfitting, especially with noisy 

datasets, if regularization techniques are not adequately employed [31 - 32]. Despite this, it remains a 

powerful choice, particularly for small datasets [33]. 
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2.2.3 XGBoost 

Extreme Gradient Boosting, or XGBoost, is a decision tree-based ensemble technique that uses the 

gradient-boosting framework and is incredibly effective and scalable. Because of its excellent accuracy 

in both classification and regression tasks, it has become more well-known. After winning many Kaggle 

tournaments, XGBoost has emerged as a major force in machine learning in recent years. Originally 

developed by [34], XGBoost introduces several enhancements over traditional gradient-boosting 

algorithms. A key feature of XGBoost is the incorporation of a regularization term in its loss function, 

which helps prevent overfitting [35]. 

The regularized loss function used in XGBoost is defined as: 

 
where 𝐿(𝑦𝑖, 𝐹(𝑥𝑖)) measures the error between the predicted and actual values and Ω(hm)  represents 

the regularization term. The regularization term is expressed as: 

Ω(ℎ) = 𝛾𝑇 +
1

2
𝜆|𝜔|2 

In this expression,  regulates the complexity of the trees, T is the number of tree leaves, 𝜆 serves as a 

penalty parameter and  corresponds to the outputs from the leaf nodes. 

Unlike standard gradient boosting, which uses first-order derivatives, XGBoost improves upon this by 

using a second-order Taylor approximation to optimize the loss function more effectively. The revised 

form of the loss function is: 

 

where gi and hi represent the first and second derivatives of the loss function, respectively. The total 

loss is computed by summing the contributions from each leaf node, as described by: 

 

The objective function is approximated quadratically as a result of this modification to the optimization 

process. Furthermore, according to [36], the regularization term makes sure that XGBoost is immune to 

overfitting. In order to prevent overfitting, XGBoost uses parameters, like tree depth, learning rate and 

sub-sampling, just like conventional gradient boosting. 

One of the key advantages of XGBoost is its ability to handle minimal feature engineering, including 

dealing with missing values, data normalization and feature scaling. Furthermore, XGBoost can output 

feature importance, making it easier to understand the significance of different input features and 

perform feature selection. It can handle big datasets effectively, is quicker than the majority of machine-

learning algorithms and frequently performs better than other models. This has made XGBoost a popular 

choice, particularly in Kaggle competitions. However, a disadvantage is that it has many hyper-

parameters, which can make the model-tuning process quite complex [37]-[38]. 

2.3 Base Transformer Models for Ensemble Learning Boosting 

The Transformer, introduced by [39], was designed to overcome the limitations of RNNs and traditional 

encoder-decoder architectures. By replacing RNNs with attention mechanisms, it enables efficient long-

term memory handling. With feed-forward layers, residual connections and normalization layers 

combined with multi-head attention layers, the model concentrates on every token from the past. With 

attention weights derived from the encoder hidden states (K) and decoder state (Q), the attention 

mechanism aids the model in focusing on pertinent information depending on the current input. These 

weights are generated by an alignment function and distribution function, such as SoftMax, to enhance 

processing efficiency. Self-attention further enables the model to link positions within a single sequence 

to form comprehensive representations. Table 1 summarizes the transformer models experimented with 

in this study. 
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Table 1. Base models for boosting in transformer-based architectures. 

Type Model Supported 

Language 

Training Data 

Source 

Base Model Highlights Citation 

Mono-lingual PhoBERT Vietnamese 20GB pre-training 

dataset, including: 

(i) Vietnamese 

Wikipedia (~1GB); 

(ii) Vietnamese 

news dataset 

(~19GB) 

RoBERTa Uses syllable-level 

tokenizer, trained on a 

large Vietnamese dataset 

with fastBPE. 

[40] 

Mono-lingual viBERT Vietnamese 0GB Vietnamese 

news datasets 

(vnexpress.net, 

dantri.com.vn, 

baomoi.com, 

zingnews.vn, 

vitalk.vn, …etc.) 

BERT Improved performance 

on Vietnamese text 

processing tasks due to 

training on Vietnamese-

specific data and pre-

training techniques. 

[41] 

Mono-lingual BARTpho Vietnamese The training data is 

an undivided 

variant of the 

PhoBERT pre-

training corpus 

(about 4 billion 

syllable tokens) 

BART Combines Transformer 

structure with BERT, 

using a large Vietnamese 

dataset to enhance text 

generation and 

summarization quality. 

[42] 

Mono-lingual ViT5 Vietnamese - CC100 Dataset: 

Total size 138GB 

of raw text. 

- Data split: 

  - 69GB short 

sentences for 256-

length model. 

  - 71GB long 

sentences for 1024-

length model 

T5 ViT5 applies 

Transformer-based 

Encoder-Decoder 

architecture, with two 

versions: Base (310M 

parameters) and Large 

(866M parameters). The 

model uses 36K sub-

words generated by 

SentencePiece and 

trained with span-

corruption self-

supervision (15% rate). 

[43] 

Multi-lingual XLM-

RoBERTa-

Base 

100 

languages 

CommonCrawl, 

Wikipedia 

RoBERTa Trained on 100 

languages. Uses Masked 

Language Modeling 

(MLM) objective. 

Vocabulary size = 250K, 

using SentencePiece. 

Training data from 

CommonCrawl and 

Wikipedia, with 

improved support for 

low-resource languages. 

[44] 

Multi-lingual BERT English Wikipedia (2.5 

billion words), 

BooksCorpus (800 

million words) 

Transformer Trained using two 

unsupervised tasks: 

Masked LM and Next 

Sentence Prediction, 

utilizing a bidirectional 

Transformer architecture. 

[45] 

Multi-lingual mT5 Over 100 

languages, 

including 

Vietnamese 

mC4 dataset 

(Massive Multi-

lingual Crawled 

Corpus) collected 

from billions of 

web pages 

T5 Multilingual pretraining, 

supports numerous 

languages using the T5 

architecture. 

[46] 

In the context of this research, various Transformer-based models serve as the base models for the 

boosting methods explored. These models, which include both mono-lingual and multi-lingual variants, 

are pre-trained on large, domain-specific datasets and exhibit remarkable performance in natural-
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language processing tasks. Table 1 summarizes these base models, their training data sources and key 

highlights, showing how they contribute to enhancing model performance through boosting techniques.  

2.4 Few-shot Learning Using Contrastive Learning 

Few-shot learning (FSL) presents a significant challenge, as it requires models to adapt and generalize 

effectively with only a limited amount of data. Contrastive learning, a self-supervised method, has 

proven to be highly effective in addressing this challenge by learning meaningful and discriminative 

feature representations. By emphasizing similarities and differences among data points, contrastive 

learning aligns well with the objectives of FSL, where the focus is on distinguishing between unseen 

classes using minimal training data. 

Contrastive-learning methods for FSL are often based on principles, such as noise contrastive estimation 

(NCE) [47]-[48] or N-pair losses [49], which facilitate the learning of robust feature spaces. For instance, 

SimCLR [17] employs data augmentation and non-linear transformations to train encoders that pull 

embeddings of similar data points closer together while pushing apart embeddings of dissimilar ones. 

Additionally, supervised contrastive learning [21] extends this framework to leverage labeled data, 

which is particularly useful in FSL scenarios where labeled support sets are small, but crucial. 

In the context of FSL, contrastive learning enhances the effectiveness of models by improving the 

quality of representations derived from the support set (training examples). Key methods include: 

 Instance-based Representations: Non-parametric softmax classifiers, such as those introduced in 

[50], focus on maximizing the separation between instance-level feature embeddings, helping 

models better distinguish between novel classes in FSL tasks. 

 Multi-view Learning: Techniques like Time-Contrastive Networks (TCNs) [51] make use of multi-

view data, aligning positive pairs (e.g. related samples, such as video frames) while separating 

negative pairs. In FSL, this can help bridge gaps between the limited support and query sets. 

 Maximizing Information Representation: Methods, such as Deep InfoMax [52] among others [53], 

aim to maximize mutual information either within input-output pairs or across views of the same 

data. These methods ensure robust and meaningful feature extraction, improving FSL task 

performance. 

Contrastive learning naturally integrates with metric-based FSL approaches, such as Prototypical 

Networks [54] and Siamese Networks [55], which rely on embedding distances. Discriminative 

representations learned through contrastive losses can significantly enhance the performance of these 

methods. Moreover, episodic training, commonly used in FSL, complements contrastive learning by 

structuring tasks to mimic real-world applications. 

By leveraging contrastive learning, FSL models are better equipped to generalize from minimal data, 

offering a robust pathway for improving performance on tasks with scarce training resources. This 

combination demonstrates substantial potential to advance the effectiveness of few-shot learning in 

various domains. 

3. METHODOLOGY 

3.1 Dataset 

3.1.1 Vietnamese Student Feedback  

The dataset used in this study is the UIT-VSFC corpus, which consists of student feedback collected 

from a Vietnamese university. The dataset comprises 16,175 feedback sentences annotated with three 

sentiment categories: negative (0), neutral (1) and positive (2). Additionally, the dataset includes 

classifications for four main topics: Lecturer (0), Curriculum (1), Facility (2) and Others (3). Feedback 

was gathered between 2013 and 2016 through an automated survey system at the end of each semester. 

The surveys employed a 5-point Likert scale to assess pre-defined criteria and open-ended questions to 

gather more detailed feedback. 

A key strength of this dataset is its reliability, demonstrated by an inter-annotator agreement score of 

91%, which reflects a high level of consistency in sentiment labeling [56]. To evaluate few-shot learning 

scenarios, sub-sets of the training data were constructed with limited labeled samples per class. This 
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setup ensured that the models were trained and tested under minimal data conditions, providing a robust 

assessment of their generalization capabilities with few-shot learning. Table 2 presents some examples 

from the dataset. 

Table 3 presents the distribution of sentiment and topic categories. The dataset is highly imbalanced, 

with positive and negative sentiments each accounting for nearly 50%, while neutral feedback represents 

only 4.32%. In terms of topic labels, the majority of the feedback pertains to the Lecturer category 

(71.76%), followed by Curriculum (18.79%), indicating that students tend to comment most frequently 

on teaching-related aspects. 

Furthermore, a linguistic analysis of the dataset reveals that student feedback tends to be concise: over 

83% of the sentences contain 15 words or fewer. As shown in Table 4, negative sentences are generally 

longer than positive or neutral ones, likely because they often include justifications or suggestions for 

improvement. Table 5 displays the length distribution by topic, where feedback related to Lecturer, 

Curriculum and Facility frequently involves more detailed expressions (i.e., more than five words), 

reflecting students’ emphasis on those aspects. 

Table 2. Examples of the UIT-VSFC dataset. 

No. Sentence Sentiment Topic 

1 Giảng dạy nhiệt tình, liên hệ thực tế khá nhiều, tương tác với sinh viên 

tương đối tốt. 

(Enthusiastic teaching, incorporating a lot of real-life examples and 

relatively good interaction with students.) 

Positive (2) Lecturer (0) 

2 Tính thực tế cũng cao so với việc thi lý thuyết lấy điểm. 

(It is also more practical compared to taking theoretical exams for 

grades.) 

Positive (2) Curriculum (1) 

3 Phòng máy cũ, nhưng nhìn chung thì không có ảnh hưởng gì vì thầy dạy 

rất nhiệt tình. 

(The computer lab is outdated, but overall, it doesn't affect much, 

because the teacher is very enthusiastic.) 

Neutral (1) Facility (2) 

4 Học thì quá ít nhưng khi thi thì quá nhiều yêu cầu viết code trong đề thi 

thì sao mà sinh viên có thể làm được. 

(The amount of learning is too little, but the exam demands too much 

coding. How can students possibly handle it?) 

Negative (0) Others (3) 

Table 3. Distribution of sentiment and topic labels in the UIT-VSFC corpus (%). 

Topic Positive (%) Negative (%) Neutral (%) Total (%) 

Lecturer 33.57 25.38 1.81 71.76 

Curriculum 3.40 14.39 1.00 18.79 

Facility 0.11 4.21 0.08 4.4 

Others 1.61 2.01 1.43 5.04 

Total 49.69 45.99 4.32 100 

Table 4. Distribution of sentences by sentiment and sentence length (%). 

Length (words) Positive (%) Negative (%) Neutral (%) Total (%) 

1–5 17.26 9.75 2.31 29.32 

6–10 21.00 15.34 1.17 37.55 

11–15 7.19 8.59 0.51 16.29 

16–20 2.37 5.17 0.15 7.69 

21–25 1.06 2.85 0.07 3.98 

26–30 0.37 1.72 0.07 2.16 

>30 0.40 2.57 0.04 3.01 

Total 49.65 45.99 4.32 100 
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Table 5. Sentence-length distribution by topic (%). 

Length (words) Lecturer (%) Curriculum (%) Facility (%) Others (%) Total (%) 

1–5 20.80 3.61 2.63 2.28 29.32 

6–10 27.84 6.69 1.94 1.08 37.55 

11–15 11.93 2.61 0.84 0.91 16.29 

16–20 5.44 1.35 0.46 0.44 7.69 

21–25 2.96 0.62 0.25 0.15 3.98 

26–30 1.56 0.32 0.19 0.09 2.16 

>30 1.13 0.59 0.10 1.19 3.01 

3.1.2 Customer Product Reviews Dataset 

To further evaluate model generalization, particularly for few-shot learning tasks across different 

domains, we utilized the "Vietnamese Sentiment Analyst" dataset, herein referred to as Customer 

Product Reviews. This corpus contains 31,460 Vietnamese customer reviews focused on various 

products. Each review is labeled with one of three sentiment polarities: positive, negative, or neutral. 

Table 6 presents some examples from the dataset. 

Table 7 details the distribution of sentiment labels and sentence lengths within this dataset. Overall, 

positive sentiment is predominant (63.87%, N=20,093). In terms of sentence length, reviews are 

generally concise, with the highest concentration of positive reviews in the 1-5 word (20.84% of total 

dataset) and 6-10 word (21.14%) brackets. 

Table 6. Examples of the customer product reviews dataset. 

No. Sentence Sentiment 

1 Chất lượng sản phẩm đúng như hình. Đóng gói sản phẩm tạm được.  

(The product quality is just like in the pictures. The packaging is 

acceptable.) 

Positive (2) 

2 Cơ mà tôi mua hôm nay, ngày mai shop làm flash sale là sao. 

(But I bought it today and now the shop is doing a flash sale tomorrow — 

what's that about?) 

Neutral (1) 

3 Có giống hình nhưng vải rất mỏng không đúng như trong hình. Giá tiền 

tương đương với sản phẩm.  

(It looks like the picture, but the fabric is very thin and not as shown. The 

price is equivalent to the product.) 

Negative (0) 

 

Table 7. Distribution of sentiment labels by review length. 

Length (words) Positive (%) Negative (%) Neutral (%) 

1–5 20.84 6.61 5.18 

6–10 21.14 7.47 5.36 

11–15 9.46 3.53 2.4 

16–20 4.96 1.71 1.06 

21–25 2.83 0.79 0.52 

26–30 1.96 0.48 0.2 

>30 2.68 0.62 0.21 

Total 63.87 21.2 14.93 

3.2 Model Evaluation Metrics 

These metrics are typically calculated using weighted averages to better reflect performance, especially 

in imbalanced datasets. 
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Precision measures the ratio of correctly predicted positive instances to all predicted positive instances. 

It is crucial in problems where false positives have high costs. Precision ranges from 0 to 1 and can be 

calculated as a weighted average, considering class sample sizes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall measures the model’s ability to detect actual positive instances. It is important in problems where 

missing positive cases can have severe consequences. Like Precision, Recall ranges from 0 to 1 and can 

be computed as a weighted average. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

F1-score combines Precision and Recall to give a comprehensive performance measure, especially 

useful in imbalanced datasets. It ranges from 0 to 1, with higher values indicating a better balance 

between Precision and Recall. When calculated as a weighted average, it reflects the model's overall 

performance across all classes. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

3.3 Software and Hardware 

For the proposed research, Python was used as the programming language within the Google Colab 

runtime environment, which provides access to powerful hardware acceleration through GPUs. 

Specifically, the NVIDIA Tesla T4 GPU was utilized, equipped with 2560 CUDA cores designed to 

support deep-learning tasks. These cores, along with specialized Tensor Cores, allow for efficient 

execution of matrix-heavy operations commonly used in neural-network models. The environment ran 

on a CPU with an Intel (R) Core (TM) i3-4005U Processor at 1.70 GHz, paired with 4 GB of RAM. 

To clarify the computational cost, Table 8 presents the number of trainable parameters and the 

approximate model size (in MB) for each transformer-based model evaluated in this study. Models with 

a higher number of parameters and larger memory footprints—such as mBART Large EN-RO (610M 

parameters, ~2.3GB) or mT5 Base (390M parameters, ~1.5GB)—require significantly more GPU 

memory, training time and processing power for both fine-tuning and inference. In contrast, smaller 

models, like ViBERT and PhoBERT, are comparatively lightweight and faster to train, making them 

more suitable for environments with limited computational resources. Table 8 presents the number of 

parameters and the sizes of the transformer models used in this study. 

Table 8. Trainable parameters and approximate model sizes of pretrained transformer models. 

Model Trainable Parameters Model Size (MB) 

PhoBERT 134,998,272 514.98 

ViBERT 115,354,368 440.04 

XLM-RoBERTa Base 278,043,648 1,060.65 

BERT Base Uncased 109,482,240 417.64 

mT5 Base 390,315,264 1,488.93 

BERT Base Multilingual Cased 177,853,440 678.46 

mBART Large EN-RO 610,851,840 2,330.21 

BARTpho-syllable 395,814,912 1,509.91 

ViT5 Base 225,950,976 861.93 

3.4 Experimental Framework 

Few-shot Learning was implemented with varying levels of data availability (N = 1, 5 and 20) to evaluate 

the performance of several transformer-based models on limited labeled data. The models included 

PhoBERT, ViBERT, XLM-RoBERTa, mT5, multi-lingual BERT, base BERT, MBart, BARTpho and 
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ViT5. Each model was fine-tuned using a contrastive learning approach and their performances were 

evaluated using the F1-score. In addition to transformer-based models, the study also conducted 

experiments with several classical machine-learning architectures, including RNN, GRU and LSTM, to 

serve as comparative baselines. This inclusion provides a broader perspective on the effectiveness of 

modern pre-trained models under low-resource conditions. 

For the ensemble-learning stage, our primary selection criterion was individual model performance. 

Consequently, the top three models demonstrating the highest average F1-scores were chosen as base 

learners. To validate this selection, we conducted pairwise statistical significance tests (paired t-tests), 

which confirmed that these models belonged to a top-performing tier, showing statistically significant 

improvements over most other models. This approach ensures that the components of our ensemble are 

strong and reliable individual predictors. 

To further improve prediction accuracy, a supervised ensemble strategy based on boosting was applied. 

Instead of using simple combination methods, such as majority voting or averaging, the outputs from 

the top-three transformer models served as input features for three ensemble learners: AdaBoost, 

Gradient Boosting and XGBoost. These ensemble models were trained to learn from the prediction 

patterns of the base models, functioning as meta-learners that integrate their outputs into a final decision. 

This method is analogous to a stacking framework, where boosting algorithms iteratively focus on 

samples that are harder to classify, thereby refining predictions and enhancing overall generalization 

performance. Detailed descriptions of the proposed method and framework are presented in Figure 1. 

Figure 1. Flow diagram of proposed methodology. The framework trains weak models on data subsets 

(N = 1, 5, 20) using contrastive learning. False predictions are identified during testing and outputs are 

combined to produce the final overall prediction on test data [56]–[57]. 

3.5 Hyper-parameter Tuning  

Bayesian optimization is a powerful and efficient method for hyper-parameter tuning, especially in 

complex machine-learning models where traditional techniques, such as Grid Search and Random 

Search, fall short due to their inefficiency or lack of strategic sampling. By modeling the objective 

function using a probabilistic surrogate model, Bayesian optimization intelligently selects the next 

sampling point based on past evaluations, effectively balancing exploration and exploitation. This 

approach is particularly suitable for combinatorial optimization problems where gradient-based methods 

are not applicable. Bayesian optimization is the top choice for optimizing objective functions [57-59]. 

In this study, Bayesian optimization is employed to tune hyper-parameters for boosting algorithms, 

including AdaBoost, Gradient Boosting and XGBoost. Examples of optimized parameters include the 

learning rate, number of estimators, maximum tree depth, …etc. 

Tables 9, 10 and 11 present the hyper-parameters of the boosting models—AdaBoost, Gradient Boosting 

and XGBoost—that were optimized using Bayesian optimization. These tables detail the specific 

parameters selected for tuning, such as learning rate, number of estimators and maximum depth, among 

others, which play a crucial role in controlling model complexity, convergence behaviour and overall 
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predictive performance. 

Table 9. Optimized hyper-parameters using Bayesian optimization for AdaBoost across datasets and 

N-shot settings. 

Dataset N-shot Learning Rate N estimators 

UIT-VSFC (Sentiment) 

 

N=1 0.010 820 

N=5 0.650 29 

N=20 0.279 884 

UIT-VSFC (Topic) 
N=1 0.159 

 

920 

 
N=5 0.677 1000 

N=20 0.558 180 

Customer Product Reviews 
N=1 0.820 884 

N=5 0.128 730 

N=20 0.159 920 

Table 10. Optimized hyper-parameters using Bayesian optimization for XGBoost across datasets and 

N-shot settings. 

Dataset 
N-

shot  

Column 

Subsample 

Learning 

Rate 

Max. 

Depth 

No. of 

Estimators 

L1 

Regularization 

L2 

Regularization 

Subsample 

Ratio 

UIT-VSFC 

(Sentiment) 

N=1 0.300 0.010 11 506 0.703 0.955 1.000 

N=5 0.680 0.229 7 854 0.324 0.051 0.785 

N=20 0.969 0.108 11 474 0.381 0.211 0.500 

UIT-VSFC 

(Topic) 

N=1 1.000 0.168 12 1000 1.000 0.000 0.873 

N=5 0.300 0.062 5 1000 0.000 1.000 1.000 

N=20 0.611 0.228 4 490 0.188 0.454 0.578 

Customer 

Product 

Reviews 

N=1 1 0.027 3 100 1 0 1 

N=5 0.969 0.108 11 474 0.381 0.211 0.5 

N=20 1 0.025 9 551 1 0.549 0.519 

Table 11. Optimized hyper-parameters using Bayesian optimization for Gradient Boosting across 

datasets and N-shot settings. 

Dataset N-shot 
Learning 

Rate 

Maximum 

Depth 

Minimum 

Samples per Leaf 

Minimum 

Samples to 

Split 

Number of 

Estimators 

Subsample 

Ratio 

UIT-VSFC 

(Sentiment) 

N=1 0.082 10 4 9 633 0.797 

N=5 0.072 11 2 8 812 0.504 

N=20 0.279 7 10 2 173 0.597 

UIT-VSFC 

(Topic) 

N=1 0.029 3 1 2 337 0.913 

N=5 0.013 8 2 4 600 0.900 

N=20 0.170 12 10 2 100 0.774 

Customer 

Product 

Reviews 

N=1 0.258 9 9 5 443 0.606 

N=5 0.298 10 9 9 195 0.520 

N=20 0.146 11 2 7 608 0.531 
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The hyper-parameters optimized in this study critically influence the balance between model bias and 

variance, as well as training efficiency. Learning rate determines the step size during model updates, 

affecting convergence speed and overfitting risk. Number of estimators specifies how many weak 

learners (trees) are combined, impacting the model’s capacity and complexity. 

For XGBoost, additional parameters, such as column sub-sample ratio, control the fraction of features 

used per tree to prevent overfitting. Maximum tree depth limits the complexity of individual trees. L1 

(reg_alpha) and L2 (reg_lambda) regularization terms penalize model complexity to enhance 

robustness, while sub-sample ratio governs the portion of training data sampled per tree, reducing 

variance. 

In Gradient Boosting, besides learning rate and number of estimators, the minimum samples per leaf 

and minimum samples to split parameters regulate tree growth by specifying thresholds for leaf-node 

formation and internal-node splitting, further preventing overfitting. 

3.6 Statistical Significance Testing and Confidence Intervals  

A paired t-test is used to determine whether the difference in performance between models is statistically 

significant. Instead of using k-fold cross-validation, the models are run multiple times with different 

random initializations to generate sets of performance results. For each run, the performance difference 

between two models A and B is calculated as: 

𝑑𝑖 = 𝑎𝑐𝑐𝑖(𝐴) − 𝑎𝑐𝑐𝑖(𝐵) 

From these differences, the sample mean is computed as: 

𝑚 =
1

𝑁
∑diff𝑛

𝑁

𝑛=1

 

and the sample standard deviation is: 

𝑠𝑑 = √
1

𝑁 − 1
∑(diff𝑛 −𝑚)2
𝑁

𝑛=1

 

The t-statistics are then calculated as: 

𝑡 =
𝑚√𝑁

𝑠𝑑
 

Finally, the t-value is compared against the critical value from the t-distribution with N−1 degrees of 

freedom to test the null hypothesis. If the p-value is less than 0.05 (p<0.05), it can be concluded that the 

difference between the two models is statistically significant. Using the paired t-test thus helps 

strengthen the reliability of selecting more effective models. 

Besides the paired t-test, the 95% Confidence Interval (CI) is used to provide a range within which the 

true performance metric of each model is likely to fall with 95% certainty. Each model is run 5 times 

with different random seeds to capture the variability caused by random initialization. Reporting the 

mean performance along with the 95% CI reflects the stability and reliability of the models. 

This approach allows for a more comprehensive evaluation by quantifying the uncertainty around the 

average performance, ensuring that model comparison and selection consider not only the mean 

accuracy, but also the consistency across multiple runs. 

4. RESULTS 

4.1 Few-shot Learning Experiments on Transformer Models 

The experimental results of transformer models are presented on the dataset for two tasks: sentiment 

classification and topic classification. Additionally, experiments were conducted on sentiment analysis 

using the customer product reviews dataset. Each model is evaluated on the same training dataset with 

setups of N = 1, N = 5 and N = 20. The training environment and hyper-parameters are identical across 

all models. The reports highlight the precision, recall and F1-score achieved by each model, specifying 
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which transformers perform well in 1-shot learning (N = 1), few-shot learning (N = 5) and scenarios 

with a significant amount of data. 

Table 12 shows the experimental results on the sentiment-analysis task, with XLM-RoBERTa 

outperforming other models and achieving the highest F1-scores. This model demonstrates the best 

performance in precision, recall and F1-score, making it the most effective model for sentiment analysis. 

Other models, such as BARTpho and BERT multi-lingual, also show strong results. 

Table 13 shows the experimental results on the topic-classification task. The highest F1-score for N = 

20 is 0.817, achieved by XLM-RoBERTa. PhoBERT and BARTpho also show strong performance, but 

XLM-RoBERTa leads in this setup. Table 14 presents the experimental results on the customer product 

reviews dataset. The highest F1-score for N = 20 is 0.744, achieved by mT5. ViBERT and ViT5 also 

show strong performance. 

Notably, the confidence intervals (CIs) among transformer-based models show minimal variation, with 

differences generally remaining below 0.02. This indicates consistent and stable performance across 

different runs. In contrast, traditional models, such as LSTM, RNN and GRU, exhibit greater 

fluctuations in their CI values, reflecting less stability and higher variability in performance. 

Table 12. The experimental results of transformer models for sentiment analysis. 

Model N = 1 N = 5 N = 20 

P R F1 P  R F1 P R F1 
RNN 0.449±

0.0375 

0.251±

0.0451 

0.322±

0.0396 

0.520±

0.0296 

0.387±

0.0416 

0.444±

0.0312 

0.645±

0.0261 

0.502±

0.0421 

0.565±

0.0364 
GRU 0.369±

0.0223 

0.287±

0.0322 

0.323±

0.0268 

0.552±

0.0575 

0.477±

0.0428 

0.512±

0.0443 

0.654±

0.0370 

0.591±

0.0503 

0.621±

0.0449 
LSTM 0.381±

0.0122 

0.381±

0.0320 

0.381±

0.0289 

0.626±

0.0366 

0.504±

0.0198 

0.558±

0.0217 

0.657±

0.0366 

0.586±

0.0310 

0.619±

0.0343 
PhoBERT 0.610±

0.0081 

0.591±

0.0098 

0.596±

0.0079 

0.759±

0.0048 

0.708±

0.0053 

0.733±

0.0036 

0.846±

0.0055 

0.812±

0.0045 

0.829±

0.0049 
ViBERT 0.549±

0.0121 

0.278±

0.0106 

0.369±

0.0088 

0.580±

0.0083 

0.499±

0.0036 

0.536±

0.0076 

0.723±

0.0083 

0.608±

0.0076 

0.661±

0.0077 
XLM-

RoBERTa 

0.603±

0.0075 

0.470±

0.0089 

0.528±

0.0077 

0.720±

0.0040 

0.625±

0.0066 

0.669±

0.0058 

0.843±

0.0081 

0.834±

0.0075 

0.838±

0.0075 
BERT base  0.597±

0.0098 

0.527±

0.0032 

0.560±

0.0038 

0.692±

0.0020 

0.460±

0.0088 

0.553±

0.0033 

0.672±

0.0038 

0.630±

0.0081 

0.650±

0.0076 
mT5 0.606±

0.0072 

0.471±

0.0025 

0.530±

0.0057 

0.769±

0.0047 

0.653±

0.0027 

0.653±

0.0046 

0.779±

0.0096 

0.692±

0.0052 

0.721±

0.0080 
BERT 

multilingual 

0.656±

0.0125 

0.655±

0.0098 

0.655±

0.0101 

0.748±

0.0186 

0.672±

0.0143 

0.672±

0.0153 

0.801±

0.0142 

0.743±

0.0096 

0.765±

0.0138 
MBart 0.582±

0.0069 

0.525±

0.0052 

0.552±

0.0057 

0.685±

0.0091 

0.638±

0.0093 

0.661±

0.0090 

0.811±

0.0076 

0.793±

0.0096 

0.801±

0.0082 
BARTpho 0.608±

0.0093 

0.533±

0.0082 

0.568±

0.0081 

0.764±

0.0091 

0.712±

0.0087 

0.737±

0.0090 

0.843±

0.0064 

0.780±

0.0097 

0.806±

0.0084 
ViT5 0.594±

0.0188 

0.590±

0.0157 

0.592±

0.0165 

0.745±

0.0109 

0.611±

0.0146 

0.671±

0.0138 

0.825±

0.0070 

0.742±

0.0051 

0.771±

0.0069 

4.2 Pairwise Statistical Significance Testing Using Paired T-test  

After training and evaluating all models on two primary tasks, sentiment analysis and topic 

classification, additional experiments were also conducted on sentiment analysis using the customer 

product reviews dataset. The three models with the highest F1-scores were selected to undergo paired t-

test evaluation against each of the remaining models. The objective was to assess whether the 

performance differences between models are statistically significant. 

Each model was run five times with different random seeds to capture variation introduced by random 

initialization. The performance differences (in terms of F1-score) between each model pair were 

calculated and a paired t-test was conducted using a significance threshold of p<0.05. The results show 

that the top three models consistently outperformed most other models with statistically significant 

differences, confirming their superiority in a reliable manner. Notably, the model with the lowest 

average performance still achieved statistically significant results (p < 0.05) in two comparisons, 
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indicating that it also qualifies for inclusion in the ensemble model. 

Table 13. The experimental results of transformer models for topic analysis. 

Model N = 1 N = 5 N = 20 

P R F1 P  R F1 P R F1 

RNN 0.540±

0.0411 

0.197±

0.0325 

0.289±

0.0336 

0.599±

0.0233 

0.297±

0.0341 

0.397±

0.0302 

0.624±

0.0265 

0.388±

0.0372 

0.478±

0.0298 
GRU 0.481±

0.0231 

0.237±

0.0421 

0.318±

0.0403 

0.633±

0.0158 

0.356±

0.0229 

0.456±

0.0196 

0.644±

0.0331 

0.669±

0.0253 

0.656±

0.0268 
LSTM 0.491±

0.0321 

0.229±

0.0210 

0.312±

0.0298 

0.649±

0.0254 

0.323±

0.0187 

0.431±

0.0203 

0.524±

0.0135 

0.715±

0.0201 

0.605±

0.0184 
PhoBERT 0.708±

0.0101 

0.647±

0.0128 

0.676±

0.0120 

0.762±

0.0063 

0.667±

0.0098 

0.711±

0.0088 

0.821±

0.0063 

0.767±

0.0041 

0.791±

0.0055 
ViBERT 0.679±

0.0156 

0.214±

0.0203 

0.325±

0.0139 

0.708±

0.0109 

0.534±

0.0056 

0.609±

0.0063 

0.774±

0.0182 

0.682±

0.0099 

0.725±

0.0103 
XLM-

RoBERTa 

0.639±

0.0095 

0.646±

0.0127 

0.642±

0.0110 

0.741±

0.0063 

0.630±

0.0036 

0.681±

0.0054 

0.841±

0.0096 

0.795±

0.0082 

0.817±

0.0079 
BERT base 0.588±

0.0153 

0.278±

0.0102 

0.378±

0.0115 

0.691±

0.0118 

0.497±

0.0064 

0.578±

0.0082 

0.754±

0.0053 

0.644±

0.0089 

0.695±

0.0076 
mT5 0.672±

0.0089 

0.448±

0.0056 

0.538±

0.0076 

0.734±

0.0038 

0.451±

0.0025 

0.559±

0.0030 

0.836±

0.0056 

0.719±

0.0089 

0.773±

0.0088 
BERT 

multilingual 

0.696±

0.0145 

0.696±

0.0096 

0.696±

0.0135 

0.790±

0.0202 

0.594±

0.0158 

0.678±

0.0166 

0.820±

0.0083 

0.719±

0.0103 

0.766±

0.0096 
MBart 0.642±

0.0080 

0.547±

0.0088 

0.591±

0.0082 

0.823±

0.0093 

0.738±

0.0066 

0.778±

0.0083 

0.846±

0.0103 

0.768±

0.0152 

0.805±

0.0109 
BARTpho 0.692±

0.0132 

0.419±

0.0122 

0.522±

0.0126 

0.783±

0.0102 

0.661±

0.0123 

0.744±

0.099 

0.850±

0.0101 

0.763±

0.0095 

0.804±

0.0097 
ViT5 0.736±

0.0052 

0.684±

0.0085 

0.709±

0.0063 

0.786±

0.0102 

0.660±

0.0092 

0.741±

0.0091 

0.846±

0.0064 

0.780±

0.0092 

0.812±

0.0066 

Table 14. The experimental results of transformer models for customer product reviews dataset. 

Model N = 1 N = 5 N = 20 

P R F1 P  R F1 P R F1 

RNN 0.305±

0.0482 

0.321±

0.0554 

0.313±

0.0501 

0.462±

0.0363 

0.453±

0.0382 

0.457±

0.0351 

0.515±

0.0334 

0.496±

0.0312 

0.503±

0.0305 
GRU 0.324±

0.0505 

0.343±

0.0578 

0.332±

0.0524 

0.481±

0.0381 

0.472±

0.0403 

0.475±

0.0372 

0.533±

0.0352 

0.514±

0.0331 

0.521±

0.0323 
LSTM 0.342±

0.0521 

0.361±

0.0595 

0.350±

0.0543 

0.503±

0.0402 

0.491±

0.0425 

0.494±

0.0391 

0.552±

0.0373 

0.535±

0.0354 

0.543±

0.0342 
PhoBERT 0.456±

0.0121 

0.484±

0.0142 

0.470±

0.0135  

0.623±

0.0083  

0.616± 

0.0102  

0.619± 

0.0091  

0.701± 

0.0072  

0.679±

0.0064  

0.690±

0.0068  
ViBERT 0.469±

0.0163

  

0.484±

0.0211  

0.476±

0.0184  

0.685±

0.0119  

0.680± 

0.0098  

0.682± 

0.0105  

0.729± 

0.0121  

0.729±

0.0103  

0.729± 

0.0112  
XLM-

RoBERTa 

0.397±

0.0112

  

0.535±

0.0135  

0.456±

0.0121  

0.694±

0.0091  

0.643±

0.0103  

0.668± 

0.0095  

0.725± 

0.0087  

0.677±

0.0079  

0.700± 

0.0081  
BERT base 0.471±

0.0185 

0.516±

0.0199  
0.492±

0.0191 

 

0.620±

0.0131 

0.622±

0.0124  

0.621± 

0.0128 

 

0.679± 

0.0093 

0.670±

0.0108 

0.674± 

0.0099 
mT5 0.457±

0.0138

  

0.508±

0.0145  

0.481±

0.0141  

0.699±

0.0095  

0.676±

0.0115  
0.687± 

0.0101  

0.748±

0.0086  

0.741±

0.0094  
0.744± 

0.0090  
BERT 

multilingual 

0.451± 

0.0152

  

0.427±

0.0148  

0.439±

0.0149  

0.685±

0.0122  

0.632± 

0.0138  

0.657±

0.0129  

0.728±

0.0098  

0.697±

0.0113  

0.712± 

0.0104  
MBart 0.437± 

0.0115

  

0.456±

0.0128  

0.446±

0.0119  

0.658±

0.0081  

0.628± 

0.0094  

0.643±

0.0094  

0.756±

0.0079  

0.677±

0.0091  

0.714±

0.0084  
BARTpho 0.444±

0.0141

  

0.441±

0.0153  

0.442± 

0.0148  

0.669±

0.0112  

0.632± 

0.0109  

0.650± 

0.0110 

0.760±

0.0081  

0.709± 

0.0092  

0.734±

0.0087  
ViT5 0.483±

0.0102

  

0.485±

0.0115  

0.484±

0.0108  

0.653±

0.0092  

0.669±

0.0105  

0.661± 

0.0097  

0.726± 

0.0074  

0.734± 

0.0082  

0.730±

0.0078  

This evaluation approach, based on paired t-tests, ensures that model selection is not solely based on 

average performance, but also considers stability and statistical significance across multiple runs, 

thereby enhancing the robustness and reliability of the final model-selection process. The results of the 
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paired t-tests are reported in Tables from 15 to 23. 

Note on statistical-significance levels: (*: p < 0.05), (**: p < 0.01) and (***: p < 0.001). 

Table 15. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 1). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

PhoBERT  *** *** 0.0245 *** *** *** *** 0.0377 

BERT 

multilingual *** *** *** *** ***  *** *** *** 

ViT5 0.0377 *** *** *** *** *** *** ***  

Table 16. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 5). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

PhoBERT  *** *** *** *** 0.0108 *** *** *** 

BERT 

multilingual 0.0108 *** *** *** ***  *** *** *** 

BARTpho *** *** *** *** ** *** 0.0518  *** 

Table 17. Pairwise statistical significance testing using paired t-test on sentiment-analysis task (N = 20). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

XLM-

RoBERTa *** ***  *** *** *** *** *** *** 

PhoBERT  *** *** *** *** *** *** *** *** 

BARTpho *** *** *** *** *** *** ***  *** 

Table 18. Pairwise statistical significance testing using paired t-test on topic-classification task (N = 1). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

PhoBERT  ***  *** *** *** *** *** *** 

BERT 

multilingual ** *** *** *** ***  *** *** 0.0249 

ViT5 *** *** *** *** *** 0.0249 *** ***  

Table 19. Pairwise statistical significance testing using paired t-test on topic-classification task (N = 5). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

MBart *** *** *** *** *** ***  0.6952 

 

0.6951 

BARTpho ** *** *** *** *** *** 0.6952 

 

 ** 

ViT5 0.0730 

 

*** *** *** *** *** *** **  

Table 20. Pairwise statistical significance testing using paired t-test on topic-classification Task  

(N = 20). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

XLM-

RoBERTa *** ***  *** *** *** *** *** ** 

MBart *** *** *** *** *** ***  0.3903 0.0479 

ViT5 *** 

 

*** ** *** *** *** 0.0479 ***  
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Table 21. Pairwise statistical significance testing using paired t-test on customer product reviews 

dataset (N = 1). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

ViBERT 0.0322  *** 0.0359 *** *** *** ** ** 

BERT base 

 

*** 0.0359 ***  ** *** *** *** ** 

mT5 *** 

 

*** ** **  *** *** **  

Table 22. Pairwise statistical significance testing using paired t-test on customer product reviews 

dataset (N = 5). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

mT5 *** ** 0.0122 ***  *** *** *** ** 

ViBERT ***  *** *** ** *** *** ** *** 

XLM-

RoBERTa *** ***  *** 0.0122 *** ** *** *** 

Table 23. Pairwise statistical significance testing using paired t-test on customer product reviews 

dataset (N = 20). 

 PhoBERT ViBERT XLM-

RoBERTa 

BERT 

base 

mT5 BERT 

multilingual 

MBart BARTpho ViT5 

mT5 *** *** *** ***  *** *** *** 0.5856 

BARTpho *** *** *** *** *** ** ***  0.0152 

ViT5 *** 

 

*** *** *** 0.5856 ***    *** 0.0152  

4.3 Experiments on Boosting Models with Transformers 

Based on the few-shot learning experiments with transformers, the study conducted boosting 

experiments using the best-performing models. Specifically, the three models with the highest F1-scores 

were selected as base models for three boosting methods. Table 24 and Table 25 present the 

experimental results for two tasks: sentiment analysis and topic classification. Table 26 presents the 

experimental results on the customer product reviews dataset. The results indicate that Gradient 

Boosting achieved the best performance across all tasks and base models. With N=20, Gradient Boosting 

reached an F1-score of 0.836 on the sentiment-analysis task and 0.824 on the topic-classification task. 

However, the performance of the other two methods was also very promising.  

Table 24. Experimental results of boosting on the sentiment-analysis task. 

N Base model AdaBoost Gradient Boosting XGBoost 

P R F1 P R F1 P R F1 

1 PhoBERT + BERT 

multilingual + ViT5 

0.639 0.670 0.648 0.665 0.675 0.661 0.638 0.671 0.653 

5 PhoBERT + BERT 

multilingual+ BARTpho 

0.754 0.785 0.765 0.792 0.796 0.776 0.772 0.796 0.774 

20 XLM-RoBERTa +BERT 

multilingual+ BARTpho 

0.798 0.841 0.819 0.837 0.853 0.836 0.833 0.849 0.836 

Table 25. Experimental results of boosting on the topic-classification task. 

N Base model AdaBoost Gradient Boosting XGBoost 

P R F1 P R F1 P R F1 

1 PhoBERT + BERT 

multilingual + ViT5 

0.732 0.754 0.709 0.723 0.758 0.725 0.717 0.748 0.723 

5 MBart + BARTpho + 

ViT5 

0.799 0.803 0.735 0.811 0.812 0.804 0.789 0.804 0.790 

20 XLM-RoBERTa+ 

Bart + ViT5 

0.826 0.834 0.817 0.832  

 

0.819  0.824 0.795 0.829 0.811 
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Table 26. Experimental results of boosting on the customer product reviews dataset. 

N Base model AdaBoost Gradient Boosting XGBoost 

P R F1 P R F1 P R F1 

1 ViBERT + BERT base 

+ mT5 

0.532 0.556 0.544 0.536 0.573 0.554 0.530 0.555 0.542 

5 mT5 + ViBERT+ 

XLM-RoBERTa 

0.665 0.685 0.675 0.709 0.706 0.707 0.694 0.703 0.698 

20 mT5 + BARTpho + 

ViT5 

0.740 0.750 0.745 0.749 

 

0.761  0.755 0.751 0.753 0.752 

 

 

Figure 2. Comparison of F1-scores of boosting algorithms (AdaBoost, Gradient boosting, XGBoost) 

on two tasks: sentiment analysis and topic analysis, using different combined models. 

5. CONCLUSIONS 

The findings of this study have far-reaching implications that contribute to yet another theoretical and 

practical advancement in sentiment analysis, particularly in low-resource educational environments. To 

mitigate challenges, such as limited data and computational inefficiency, the proposed study introduces 

a novel framework that combines Few-Shot Learning (FSL) and Transformer-based ensemble models 

with boosting approaches. 

By drawing on the strengths of both Transformer models using self-attention to learn patterns from rich 

data and adapting the FSL setting, this paper then introduces a hybrid methodology that addresses the 

shortcomings of traditional supervised approaches in low-data scenarios. Moreover, it presents the role 

of boosting techniques, such as Gradient boosting and XGBoost, and their capabilities in classifying the 

sentiments, which may set a pathway for forthcoming research on ensemble learning for NLP tasks. 

On the practical side, the framework presented in this research will serve as a basis for providing 

actionable knowledge to educational institutes to better analyze students' feedback, hence improving 

their learning experience and the quality of teaching. The scalability of the method makes it relevant for 

a wide range of fields that experience a scarcity of labeled data. Furthermore, its efficient use of 

resources demonstrates its practicality for translating to practice, even in settings where computational 

power is limited. Although the model demonstrates effectiveness in sentiment-analysis tasks with 

limited training resources, particularly in educational feedback systems, this study acknowledges the 

ethical aspects associated with its real-world deployment. Fairness is a key concern when sentiment 

models are trained on imbalanced datasets in terms of class distribution, dialectal expressions and 

stylistic variations, which often predominantly reflect students’ perspectives. This may result in 

systematic bias against certain groups. 

Bias during evaluation and sentiment classification may lead the model to misinterpret students’ 

feedback, especially when cultural context or specific expression styles are not accurately captured in 

the training data. For instance, negative feedback expressed politely or formally may be misclassified 

as neutral or even positive. This misunderstanding can delay necessary interventions by model users 

when addressing customer requests or student concerns. Another issue to consider is the impact of 

misclassification, which can lead to incorrect conclusions in both educational and customer-service 
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evaluations. If negative feedback is misinterpreted as positive, educational administrators or customer-

service staff may overlook significant issues raised by students or customers, potentially affecting the 

overall learning or service experience. To mitigate these risks, future research and deployments should 

apply fairness-aware training methods, such as data rebalancing and debiasing techniques, utilize more 

diverse datasets to increase representativeness and integrate human oversight during the result-

validation process. 

Despite the promising results, this study has several limitations that provide clear avenues for future 

research. First, our framework's effectiveness is contingent on the availability of high-quality pre-trained 

Transformer models. Consequently, its application may be challenging for low-resource languages or 

specialized domains that lack representative pre-training corpora. Second, the use of ensemble and 

boosting techniques, while improving performance, introduces additional computational complexity, 

which might be a barrier for organizations with limited resources. A third limitation lies in our ensemble 

selection logic. In this study, base models were chosen primarily based on their individual performance. 

While this ensures strong components, it does not explicitly guarantee model diversity, a critical factor 

for robust ensembling. Finally, as the evaluation was conducted on a single dataset (UIT-VSFC), the 

generalizability of our findings needs further validation on other datasets and across different domains.  

Building on these limitations, future work can proceed in several promising directions. To address 

generalizability, the framework should be evaluated across diverse domains, such as healthcare or 

finance, and on datasets in other languages. To enhance the ensemble methodology, future research 

should explore more sophisticated, diversity-aware selection strategies that co-optimize for both model 

performance and diversity; for instance, by analyzing prediction correlations. Furthermore, performance 

in extremely low-data environments could be improved by optimizing Transformer architectures for 

lightweight deployments and leveraging advanced data-augmentation strategies. Finally, integrating 

human-in-the-loop feedback systems could improve model adaptability in ambiguous cases, making the 

framework more practical for real-world deployment. This research underscores the transformative 

potential of advanced NLP techniques in enhancing sentiment analysis, offering a valuable framework 

for addressing challenges in resource-constrained scenarios. 
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 ملخص البحث:

اااااايه هرلديتح لي يااااااطل سااااااال تتنااااااه الوااااااتّلديات ااااااطلديتحلااااااشاهرلدي اتسّااااااطلتتللياااااارلدي  ااااااه ال اااااا لدي ح

 لااااايرل لااااايالدي اااااشال دينح اااااهّلالدي ه  اااااطل لااااا لدي لااااااح رل  ااااارلاي ااااا لتاااااي لديتحلد تاااااادرل  اااااهتل

لتللياااااارلدي  ااااااه الا ااااااشللااااااااد لحه اااااا ه ليتل ااااااي ل ااااااا  لديتح لااااااير لل ت نيااااااهرلديتح  ااااااا   حيااااااتلليح

ااااايلديسيهساااااهرل يااااا ال ه لياااااطلديلا اااااسط لياااااتي لا  ااااارل  اااااهتلدي  ااااارل  اااااا للتااااااتلديتحلاااااشاهرلعح

 ااااااهّلالااااااا لت ل اااااا لدي لاااااااح ر ل اي اااااا لتااااااي لدينحلدي  تااااااارل لاااااا لت  ااااااا لاييااااااهرلد ستسااااااهّلديااااااتحد

ل ااااااااش تلااااااااا لديسيهسااااااااهرل خااااااااتالت نيااااااااهرلديتح  ااااااااا ليتل ااااااااي لدر دنل  ايهسيااااااااطلديتح  اااااااايرلت  اااااااارح

لتلااااااا لديتح تاااااااطل دي ا ااااااااط ل  اااااااالتّسياااااارل  ااااااهتلدي  اااااارلدي  تااااااارل لاااااا لاي ا ااااااطلتيهسااااااهر 

اااااهرل حّلساااااطلتهيلح اااااطلديجيتنهاياااااط ل ح حااااارلستاااااه  لا يااااا  ل ااااا لا  ح د  اااااطلاااااا لدي تلليااااارلدي  اااااه الدياح

ل  اااااهتلدي  ااااارل  تلااااانيالدي ناااااه ا لا هتساااااط لاااااا لااااااهلح  تاااااألدينح اااااهّلالانجاااااا   ل تاااااهيا رلاااااا لليح

ل سحااااااألااد ااااااألت اااااا لدي لااااااش در ل دي  تااااااارلا تلاااااا لديايهسيااااااطليتل ااااااي لديهسااااااادرلديتح لي يااااااطل  ح

 اثرلد ت ه ّل ل لس هّلالاشحتتطلا س ه ل  ل لت  يشلديلا سط ل
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