
351

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

1. R. Younisse, A. Saif, N. Al-Madi, S. Almajali are with Department of Computer Science, Princess Sumaya University for Technology,

Amman, Jordan. Emails: r.baniyounisse@psut.edu.jo, ama20219010@std.psut.edu.jo, n.madi@psut.edu.jo and s.almajali@psut.edu.jo 

2. Basel Mahafzah is with Computer Science Department, King Abdullah II School of Information Technology, The University of Jordan,
Amman 11942, Jordan. 

IMPROVING IOT SECURITY: THE IMPACT OF

DIMENSIONALITY AND SIZE REDUCTION ON

INTRUSION-DETECTION PERFORMANCE 

Remah Younisse1, Amal Saif1, Nailah Al-Madi1, Sufyan Almajali1 

and Basel Mahafzah2

(Received: 16-Mar.-2025, Revised: 23-May-2025 and 24-Jun.-2025, Accepted: 27-Jun.-2025)

ABSTRACT 

Intrusion detection in the Internet of Things (IoT) environments is essential to guarantee computer-network 

security. Machine-learning (ML) models are widely used to improve efficient detection systems. Meanwhile, with 

the increasing complexity and size of intrusion-detection data, analyzing vast datasets using ML models is 

becoming more challenging and demanding in terms of computational resources. Datasets related to IoT 

environments usually come in very large sizes. This study investigates the impact of dataset-reduction techniques 

on machine learning-based Intrusion Detection Systems (IDSs) regarding performance and efficiency. We propose 

a two-stage framework incorporating deep autoencoder-based feature reduction with stratified sampling to reduce 

the dimensionality and size of six publicly available IDS datasets, including BoT-IoT, CSE-CIC-IDS2018, and 

others. Multiple machine-learning models, such as Random Forest, XGBoost, K-Nearest Neighbors, SVM and 

AdaBoost, were evaluated using default parameters. Our results show that dataset reduction can decrease training 

time by up to 99% with minimal loss in F1-score, typically less than 1%. It is recognized that excessive size 

reduction can compromise detection accuracy for minority attack classes. However, employing a stratified 

sampling method can effectively maintain class distributions. The study highlights significant feature redundancy, 

particularly high correlation among features, across multiple IoT security-related datasets, motivating the use of 

dimensionality-reduction techniques. These findings support the feasibility of efficient, scalable IDS 

implementations for real-world environments, especially in resource-constrained or real-time settings. This work 

shows considerable redundancy in the datasets which questions the huge amount of these datasets, because, in 

many cases, the reduced datasets provide almost the same F1-score readings after data reduction. Rasing the 

alarm to notice the unnecessary massive amount of data used to build robust IDSs. 

KEYWORDS 

Dimensionality reduction, Data reduction, Autoencoders, Stratified sampling, Machine learning. 

1. INTRODUCTION

Massive amounts of data are being generated due to digitization in different Internet of Things (IoT) 

domains, such as healthcare, vehicular networks [1]-[2], and Intrusion Detection Systems (IDSs) [3]. 

Two options are available for data reduction; reducing the number of features (feature reduction) or the 

number of tuples in the dataset (size reduction). Deep-learning (DL) techniques can deal with vast 

amounts of data. Still, DL only concerns some features in the data; thus, dimensionality reduction 

becomes an important step in best utilizing the resources [4]-[5]. 

Wearable devices, such as wearable healthcare devices, for example, generate a lot of features; it takes 

work to manage and store the generated data. It is hard to decide which features must be preserved for 

accurate diagnosis and which are not [6]. Due to the cost and computational resources needed to handle 

the enormous number of features, it becomes a challenge to reduce them without affecting the models’ 

performance [7]. However, intrusion-detection datasets face unique issues. The extreme data imbalance 

is a major concern, where minority classes represent attack classes [8]. Hence, any reduction technique 

should consider the risk of eliminating them. Meanwhile, rapid learning and detection models are needed 

to enhance the detection process, because the sooner threats are detected, the less harmful the attacks 

are. Additionally, adversarial behaviors may intentionally mimic normal traffic, complicating feature 

learning. These challenges motivate the need for intelligent, attack-aware dataset-reduction strategies. 

Hence, the proposed approach in this study uses stratified sampling to maintain class balance and deep 

mailto:r.baniy


352 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah. 
  
autoencoder-based feature extraction to preserve non-linear patterns and subtle feature dependencies 

critical for effective IDS performance. 

Different dimensionality-reduction techniques could be used based on the data complexity, such as 

Principal Component Analysis (PCA), MDS, and Time-lagged independent component analysis (TICA) 

for linear manifolds, and Sketchmap, t-SNE, and deep methods for non-linear manifolds [9]. Principal 

Component Analysis (PCA) has been widely used in dimensionality reduction. It helps provide better 

data quality, improve classification, reduce the needed space and time, and remove irrelevant data [10]. 

At the same time, data reduction techniques are becoming popular and widely used for data visualization, 

simulation and analysis [11]. Stratified sampling is a famous method that divides data into similar groups 

known as strata [12]. Then, it selects a certain number of samples from each group, considering the 

data’s distribution rate; any sample taken from the data should keep the same distribution in the original 

dataset. Stratified sampling was proven to be an efficient, unbiased sampling method and highly 

representative of the data being studied. The main drawback of stratified sampling is that it can only be 

applied when the data cannot be grouped in disjoint groups [13]. 

In recent years, many intrusion-detection datasets have been generated due to the rapid updates of the 

malware authors, and different attacks have been developed to maneuver different IDSs. It has been 

noticed that these datasets tend to be large, with millions of tuples and hundreds of features. Hence, 

different reduction techniques have to be studied and improved. The main motivation for this paper is 

to explore the value of using huge datasets to train machine learning (ML)-based IDSs and to assess the 

effect of reducing the size of the datasets used on these IDSs. Thus, this assessment work investigates 

the efficiency of different data reduction and feature-extraction techniques. Reducing the datasets’ sizes 

will help improve the required ML-based IDS training time. 

In the context of intrusion detection and dimensionality reduction, many works have focused on feature 

reduction techniques to speed up the ML models and enhance the outcomes of these models [14]-[15]. 

In comparison, the size-reduction aspect is not sufficient for the research work. One reason for this is 

the risk associated with removing potentially valuable information, primarily in class-imbalanced 

datasets where minority attack classes are already underrepresented. Unlike feature selection, which can 

often enhance generalization by removing noise and redundancy, size reduction, if not handled carefully, 

can negatively impact detection accuracy. Moreover, feature reduction methods compress 

dimensionality while keeping the overall event diversity. Our work aims to fill this gap by proposing a 

controlled size-reduction approach using stratified sampling, ensuring that data diversity and class 

proportions are preserved even in smaller training sets.The work in [16] explored how deep-learning 

models can be used as a feature-extraction tool aiming to remove redundant features from the dataset. 

The experiment was applied to an outdated balanced dataset with relatively small features. Meanwhile, 

information gain (IG-PCA) was also used as a dimensionality-reduction tool in [17]. In [18], two 

different feature-reduction methods were investigated with a more recent dataset than the dataset used 

in the previously mentioned works: the CISIDS2017 dataset. 

This paper focuses on answering two questions. The first question is, "Is the large amount of data 

collected in IDS datasets needed to build robust IDS ML and AI systems?". The second question is, 

"What efficient reduction techniques can be used to reduce the size of IDS datasets, yet they can be used 

to build robust IDSs?". 

Some works have focused on combining size and dimensionality-reduction techniques to extract the 

dataset’s core value  and enhance machine-learning (ML) model performance, but not in the context   of 

intrusion-detection applications, such as the work in [19]. The primary contribution of this study is    a 

practical framework for enhancing IDS performance through efficient data reduction rather than a novel 

detection algorithm. The proposed model combines deep feature extraction using autoencoders with 

stratified sampling to reduce the number of features and training samples without compromising 

classification performance. This two-stage reduction process significantly lowers computational costs 

and model complexity, making machine learning-based IDS solutions more scalable and suitable for 

real-time applications, especially in IoT scenarios. Experiments on six IDS-related datasets demonstrate 

that the proposed method preserves or even improves F1-scores while reducing training time by up to 

99% in some cases. Therefore, this work’s main contributions can be summarized as follows: 



353

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

 We present a practical, two-stage dataset-reduction framework that combines stratified sampling

with autoencoder-based feature selection to reduce both the size and dimensionality of IDS datasets. 

The first algorithm sorts the importance of the features in the dataset via an autoencoder. Then, the 

least important features are removed, followed by tuple reduction via stratified sampling. The 

second algorithm starts with stratified sampling, followed by feature ranking and selection. 

 We empirically evaluate the trade-offs between different reduction percentages and their effects on

training time and detection performance using multiple ML models across six public IDS datasets. 

 We show that, when properly applied, dataset size and dimensionality reduction can achieve up to

99% decrease in training time with minimal performance loss (typically less than 1% drop in F1-

score). The proposed reduction techniques prove that there is a notable degree of redundancy in the 

datasets. The huge amount of data should be questioned in these datasets, because, in many cases, 
the reduced datasets provide almost the same F1-score readings after data reduction. More attention 
should be paid to the unnecessary massive amount of data used to build robust IDSs. 

 We provide a reproducible baseline for evaluating dataset-reduction strategies in IDSs, offering

insights into scalability and efficiency for real-world deployment in resource-constrained 

environments. 

The rest of this paper is organized as follows: Section 2 shows the related work. Preliminaries and 

methodology are presented in Section 3. Section 4 shows the results and assessments, and finally, the 

work is concluded in Section 5. 

2. RELATED WORK

Data-reduction techniques are widely explored to address machine-learning datasets’ growing 

complexity and size, specifically in intrusion detection systems (IDSs). These techniques typically fall 

into two categories: dimensionality reduction, which reduces the number of features (columns), and size 

reduction, which reduces the number of records (rows). This section critically investigates related works 

grouped by technique type and discusses their applicability to IDSs, mainly in IoT environments. 

Linear techniques, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA), have been broadly used to project data into lower-dimensional spaces. PCA is widely employed 

due to its computational efficiency and ability to decorrelate features. PCA has shown considerable 

performance with high-dimensional datasets, such as medical imaging and network traffic [20]-[21]. 

However, PCA supposes linear relationships between the features, which may not hold in complex IDS 

datasets. At the same time, LDA is useful for maximizing class separability, but suffers from scalability 

issues in large-scale, high-dimensional environments. Recent work has focused on autoencoders and 

their variants, including Deep Sparse Autoencoders (DSAEs), to handle these restrictions for non-linear 

and data-driven feature extraction. Unlike PCA, autoencoders do not suppose linearity and can model 

complicated feature relations [22]. This capability of modeling complex relationships makes them 

specifically suitable for IDS datasets with complex patterns and correlations. For instance, [23] used 

autoencoders to improve classification accuracy through feature selection. However, their work focused 

on general accuracy rather than on IDS-specific issues, like class imbalance or real-time deployment. 

Recently, Nabi and Zhou [24] explored using PCA and random projection for dimensionality reduction 

in intrusion-detection schemes using the NSL-KDD dataset. Their results emphasized random 

projection’s computational efficiency and accuracy benefits over PCA. In contrast, this study explores 

deep autoencoders as a non-linear and data-driven technique for feature extraction and links this with a 

structured dataset size-reduction pipeline. Moreover, this evaluation spans multiple recent IDS datasets, 

addressing generalization, dataset redundancy, and attack-class preservation. In contrast to earlier 

studies that used traditional datasets, like NSL-KDD or outdated benchmark sets [16]-[17], our work 

leverages recent and large-scale IDS datasets, such as CSE-CIC-IDS 2018 and BoT-IoT. When 

integrated with stratified sampling, we confirm that autoencoders can preserve detection performance 

even under significant feature reduction. 

Stratified sampling is a widely utilized technique for reducing dataset size while keeping class 

distributions, which is critical in class-imbalanced IDS contexts. Multiple studies [25][26][27][28] have 

examined its effect on handling large-scale datasets. For example, [28] proposed an enhanced stratified 

sampling framework with over-sampling of minority classes using Gaussian noise and clustering of 



354 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

majority classes. However, these works frequently lacked comparative analysis of reduction order, 

sampling before vs. after feature reduction. Moreover, some prior works overlap in their discussion of 

stratified sampling without clearly distinguishing their contributions. We address this by systematically 

comparing each method’s novelty and outcome: [25] applied stratified sampling in general big-data 

contexts, [26] optimized sampling with hash- based stratum construction, and [27] integrated stratified 

sampling with clustering for better illustration. Our method builds upon these by integrating sampling 

with deep feature selection, presenting a unified pipeline evaluated on multiple IDS datasets. 

Recent developments have introduced scattering-based enhancements to graph neural networks for 

anomaly detection and feature learning. For instance, the STEG model [29] applies a wavelet-based 

scattering transform to edge features within an E-GraphSAGE architecture, significantly improving 

detection performance on network-intrusion datasets. STEG leverages multi-resolution edge encoding 

and node2vec embeddings to provide a fine-grained understanding of graph-structure anomalies, a 

strategy relevant to our anomaly-detection pipeline. In a related domain, the GeoScatt-GNN framework 

[30] combines geometric-scattering transforms with ANOVA-based statistical feature selection to

predict Ames mutagenicity. While its application lies in bio-informatics, the architecture introduces a 

principled pipeline where meaningful features are extracted and filtered prior to GNN classification, 

highlighting the cross-domain effectiveness of scattering-transform approaches. Our work draws 

inspiration from these efforts, but focuses on reducing the dataset size, with a tailored architecture and 

feature-selection approach suited to network-level anomaly scenarios. We also emphasize the 

redundancy happening in the security-related dataset applied in the IoT environments. 

A summary of the related works and methods is clarified in Table 1. Our approach closes this gap by 

employing a two-stage pipeline tested across six modern IDS datasets and comparing sampling-first vs. 

feature-first strategies. Additionally, we quantify training-time reduction and model resilience to 

aggressive reduction analysis, which previous studies often dismissed. The datasets related to security 

threats in IoT networks tend to be massive, hindering the detection models and requiring huge 

computational resources [31]. This work presents a methodology that can reduce dataset size while 

keeping the IDS performance high and accurate. Our work offers a more rigid, application-focused 

synthesis of dimensionality and size reduction in IDSs. It advances the field by addressing the interplay 

between reduction type and model performance using large-scale, recent IDS datasets. It also provides 

empirical proof across multiple classifiers and offers a reproducible framework for real-world 

deployment. 

Table 1. Summary of data-reduction techniques in literature. 

Technique Category Dataset Used Strengths Limitations 

PCA [20]-[21], [24] Dimensionality NSL-KDD, CTG, 

DR 

Fast, simple, linear 

separability 

Fails on non-linear 

data 

LDA [16]-[17] Dimensionality CTG, DR Class separation- 

focused 

Poor scalability 

Deep Autoencoders 

[22]-[23] 

Dimensionality BoT-IoT, 

CSE- CIC-IDS2018 

Handles non-linear 

features, scalable 

Overfitting risk on 

small datasets 

Stratified Sampling 

[25][26][27][28] 

Size KDD, CICIDS, 

financial 

Maintains class 

balance 

Requires stratification 

label 

Sampling +  

Clustering [27]-[28] 

Size Big-data Clusters Reduces outliers, 

enhances sample 

diversity 

Adds clustering 

complexity 

This Work Size + 

Dimensionality 

6 modern IDS datasets Two-stage, flexible, 

efficient 

Minor NB performance 

degradation noted 

3. PRELIMINARIES AND METHODOLOGIES

This section introduces the datasets used in this study and the methodologies that are applied to reduce 

the size and dimensionality of the datasets. It also introduces the performance metrics that have been 

used to assess the efficiency of the methodologies used. 



355

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

3.1 Datasets 

Throughout this study, six intrusion-detection datasets were used: The Kitsune-ARP dataset [32], 

SNMP- MIB [33], the CSE-CIC-IDS2018 dataset [34], the BoTIoT dataset [35], the UNR-IDD dataset 

[36], and the credit-card fraud-detection dataset from [37]. The six datasets are all related to intrusion-

detection applications, and they are collected from different hostile environments with different features 

and sizes. 

What distinguishes the selected datasets in this study is that many datasets were recently collected from 

IoT environments. The datasets are challenging due to data imbalance, which is typical in intrusion-

detection datasets in general. Meanwhile, many datasets are enormous, challenging for ML models, 

require a long time for training, and can result in very complex ML models. All non-binary datasets 

were transformed into binary datasets, such as the CSE-CIC-IDS2018 dataset. 

A summary of the six datasets, including the size, dimension, and imbalance rate, is presented in Table.2. 

The datasets were renamed DS1-DS6 throughout this work, as shown in Table 2, to enhance the 

readability of the paper, especially the figures and tables. 

Table 2. Summary of the datasets used in the study. 

Dataset Size (KB) Records Features Imbalance Rate (%) 

UNR-IDD (DS1) 267 2620 21 9.4 

Kitsune-ARP (DS2) 15,300 15000 115 10 

SNMP-MIB (DS3) 788 5000 34 10 

CSE-CIC-IDS2018 (DS4) 315,233 1048576 80 50 

BoTIoT (DS5) 620,600 2426574 24 27 

Fraud detection (DS6) 100,500 248808 31 0.1724 

3.2 The Techniques Used 

We present here the main techniques used throughout this study. These techniques include sampling, 

dimensionality reduction, and ML techniques. 

Sampling is selecting a representative set of items from a larger set. Sampling can be applied to select 

a specific number or percentage of samples. This work uses sampling with intrusion-detection datasets 

to select a certain percentage of the dataset to train the ML models, since many datasets are very large 

and contain hundreds of thousands of records, sometimes millions. Training machine-learning models 

with huge datasets requires high computational power and consumes time. The sampling process 

investigates the degree of redundancy existing in these datasets. When a half or a quarter of the data can 

be used to train the  ML model and still give the same results as when the entire dataset was used, this 

can indicate that the dataset records include a noticeable degree of redundancy. 

This work deploys stratified sampling to reduce the number of records in intrusion-detection datasets; 

meanwhile, it maintains the imbalance ratio. Since the data used is large and imbalanced, randomly 

selecting a small group from the data might alter the balance of the data; there is a more significant 

probability that a selected record belongs to the larger group. The datasets are also labeled, which makes 

stratified sampling a good choice for this presented work. 

At the same time, dimensionality reduction is used for different purposes, such as having interpretable 

models or reducing the required computational time for ML-model training. PCA is commonly used for 

this task. The main difference between reducing the features using PCA and by autoencoders is that 

PCA can model linear structures. However, autoencoders do not assume linearity [18]. In [9], 

dimensionality-reduction techniques were divided into three main categories based on the data structure. 

Three main dimensionality-reduction methods are available in the literature: linear manifolds, non-linear 

manifolds and curved twisted manifolds. 

Due to the high performance of autoencoders in reducing the intrusion detection features that outperform 

other methods, such as PCA and LDA [38]; dense autoencoders are used in the proposed methods in 

this paper. The main idea of the autoencoder is to have the ability to reconstruct the input after encoding 

it to a lower dimension. For dimensionality reduction, the most important part of the autoencoder is the 

latent space, the encoder’s output, which has the most critical features of the input. Its size is a hyper-



356 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

parameter that can be controlled to define the desired number of features. In the proposed methods, 

features with the highest weights were selected after sorting all features based on their importance. 

Eventually, the selected approaches to reduce the size and dimensionality of different intrusion-detection 

datasets are evaluated with nine different ML models. These ML models are the K-Nearest Neighbor 

algorithm (KNN), the Support Vector Machine Algorithm (SVM), Naive Bayes, linear regression, LDA, 

C5, XGBoost, Random Forest, and ADA. These ML models were selected throughout this study, 

because they are extensively used in the literature with similar datasets. The ML models were proven to 

be efficient and durable with tabular datasets. The random forest is a robust ensemble model that reduces 

overfitting and performs well on tabular data with noisy or redundant features. XGB is an ensemble 

model that proved its efficiency in many real problem-detection tasks. SVM model has a powerful 

feature which is called kernel trick that gives SVM the power to handle binary classification effectively. 

The KNN is a simple, non-parametric model that benefits from reduced feature spaces and works well 

for pattern recognition. AdaBoost is an ensemble technique that adapts to classification errors, making 

it more robust to decide on samples, which is very important with imbalanced datasets. 

3.3 Proposed Methods 

This work investigates how dataset size-reduction and feature-reduction methodologies affect machine- 

learning algorithms. The analysis is studied in the context of IDS systems and IoT environments. The 

method followed throughout the proposed work adapts two approaches clarified in Algorithms 1 and 2. 

In the first approach, data reduction is applied first, followed by size reduction, and then ML models are 

used with the data to build the IDS models. In the second approach, size reduction is applied before the 

feature-reduction step, and then ML models are used again to build the IDS models. Finally, the 

performance of the models built with the first approach is compared with the performance of those 

created with the second approach, as shown in Figure 1. The approach that produces better results is 

recommended for IDS datasets. The size-reduction method used throughout this study is the stratified 

sampling technique. Meanwhile, the feature reduction method used here is the dense autoencoder 

method. 

Figure 1 illustrates the two-stage dataset-reduction strategies evaluated in this study. In the Feature 

Reduction First (FF) approach (Figure 2a), the full dataset is used to train an autoencoder, which ranks 

features based on their importance. The dimensionality of the dataset is then reduced by selecting the 

top-ranked features; 1/2, 1/4, or 1/10 of the full set. Finally, stratified sampling, 1/2, 1/4, or 1/10 of the 

full set, is applied on the reduced dataset to create reduced sub-sets for training, preserving class 

distribution. On the other hand, the Sampling First (SF) technique (Figure 2b) starts by applying 

stratified sampling directly to the full dataset, yielding sub-sets that are 1/2, 1/4, or 1/10 the dataset size. 

Each reduced sub-set is then passed to an autoencoder to perform feature reduction. The reduction at 

this stage is applied to extract 1/2, 1/4, 1/10, or full features. This order assumes that features are sorted 

in descending order of importance after training, as indicated in the figure. The main difference between 

the two methods is the timing of dimensionality reduction relative to volume reduction. FF (Feature 

reduction First) guarantees that the autoencoder is trained on the most complete data to capture more 

prosperous feature patterns. SF (Sampling First), meanwhile, reduces computational load earlier, but 

may lose important patterns due to early sub-sampling. This trade-off is critical when working with 

class-imbalanced and high-dimensional IDS datasets. 

DS1, DS2, and DS3 were used through the investigation and steps mentioned in the previous paragraph. 

Meanwhile, DS4, DS5, and DS6 were used throughout the assessment process due to their large size 

where applying the reduction techniques is essential. During the assessment stage, we practically try to 

evaluate the performance of different ML models and the order of the reduction process. Time-analysis 

results, besides F-score measures, are recorded. In the second stage, we aim to prove the correctness of 

the conclusions made in the first stage. For example, time-reduction and close-to-perfect performance 

measures are used, despite using fewer data and features. In this study, we list only the F1-score as a 

suitable performance measure, which combines precision and recall. This allows us to evaluate the 

robustness of IDS performance across different levels of dataset reduction in a compact and interpretable 

way. Although additional metrics, such as recall, precision, and false-positive rate, were computed, their 

trends closely followed the F1-score. For clarity and space efficiency, only the F1-score is reported in 



357

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

← 

∈ 

∈ { } 

{ } 
∈ 

∈ { } 

the main-results tables, as it sufficiently describes the robustness of IDS performance under dataset 

reduction. 

(a) Feature Reduction First (FF) Approach (b) Size Reduction (SR) First Approach

Figure 1. The methodology followed to reduce the datasets. 

Algorithm 1 Feature Extraction First (FF) 

Require: Input dataset DSi 

1:  for each dataset DSi, i   [1,2,3] do 

2: for each F in {1, 2, 4, 10} do 

3: Apply feature extraction on DSi, extracting the most important 1/F features from 

DSi and update DSi 

4: for each F          1, 2, 4,10  do 

5: Apply stratified sampling on DSi to extract 1/S of the data: DSi    DSi/S 

6: Apply the machine learning methods to DSi 

7: end for 

8: end for 

9: end for 

Algorithm 2 Size Reduction First (SF) 

Require: Input dataset DSi 

1:  for each dataset DSi, I   1,2,3 do 

2: for each S in 1, 2, 4, 10 do 

3: DSi = StratifiedSampling(DSi, 1/S) 

4: for each F 1, 2, 4, 10 do 

5: DSi = AutoencoderFeatureExtraction(DSi, 1/F ) 

6: Apply the machine learning methods to DSi 

7: end for 

8: end for 

9: end for 

We investigate how the datasets’ size and feature reduction can affect the performance of nine different 

ML models. The models were trained with the data prior to reduction, then trained with the reduced 

datasets. Size and dimensionality were reduced in different scenarios, and then a comparison was held 

to assess the different reduction scenarios. The method used for data reduction is the Stratified-sampling 

process which reduces the data size and keeps the data distribution untouched. 

The technique used for the feature-reduction process is ranking the importance of all features of the 

datasets using a dense autoencoder. Every dataset was used to train the autoencoder and then, the 

encoder was used to explore and rank the importance of all features based on their weights. The features 

were then sorted, and the less critical features were dropped from the dataset. Many scenarios were 

examined; a half of the features were selected, and one-fourth and one-tenth of the features were selected 

in other scenarios. Selecting-all-features scenarios were also analyzed. 



358 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

The encoder architecture with the bottleneck consists of three dense layers with the LeakyReLU 

activation function and two batch-normalization layers, as shown in Figure 2. The autoencoder designed 

in this study follows a symmetrical architecture tailored for reconstructing input features while capturing 

meaningful representations in its bottleneck layer. The input-layer size corresponds directly to the 

number of features in each dataset. The encoder consists of two fully connected layers: the first layer 

expands the dimensionality to twice the input size and applies a LeakyReLU activation function, 

followed by batch normalization. At the same time, the second layer reduces the dimensionality back to 

the original feature size using the same activation and normalization setup. The bottleneck layer 

maintains this same dimensionality, serving as the latent representation of the input data without 

applying compression, allowing for feature-importance extraction. The decoder mirrors the encoder in 

structure, reconstructing the data through symmetric dense layers and concluding with a linear activation 

function in the output layer. The architecture was selected to balance expressive power and 

computational efficiency, particularly for high-dimensional, imbalanced intrusion-detection datasets 

where non-linear patterns and feature interactions are prevalent. The model was trained using the Adam 

optimizer with a learning rate of 0.001, a batch size of 16, and 100 epochs. The trained encoder was 

used to extract latent feature weights; all feature weights were reported without reduction at this level, 

which were subsequently ranked to identify the most important features. While this work focuses on 

autoencoder-based feature extraction, we acknowledge the importance of traditional methods, such as 

ANOVA and chi-square [39]. However, these classical approaches rely on assumptions of linearity and 

independence among features, which are often violated in intrusion detection scenarios. Autoencoders, 

by contrast, provide the flexibility to model complex, non-linear, and correlated feature interactions 

more effectively. However, although autoencoders offer powerful non-linear feature-extraction 

capabilities, they also introduce certain limitations. One concern is the risk of overfitting when training 

deep models on reduced datasets. They also require high computational capabilities when very large 

datasets are used. Hence, they should be used with caution to deliver accepted results while requiring 

minimal computational power. 

Figure 2. Encoder architecture. 

Stratified sampling was used to reduce the size of the data. Every dataset was reduced to one half, one-

fourth, and one-tenth; it was also analyzed without size reduction. The experiment goes through different 

steps, aiming to explore the efficiency of different reduction strategies. The whole data was analyzed 

with all features, a half of the features, one-fourth, and one-tenth using the nine ML models, which will 

be mentioned shortly. The exact process was repeated when one-fourth of the data was used, and one-

tenth of the data was used. Reducing the data size followed by feature reduction is noted by (SF), which 

indicates "Sampling First " since the sampling method is applied to the data before the feature-reduction 

process. It is worth mentioning that when stratified sampling was applied before feature ranking, the 

importance ranks of some features changed due to the reduced dataset size. However, the most 

significant features showed minimal change in their ranking. During (FF) or "Feature First," the 

previously mentioned data-reduction process was applied, but feature reduction was applied first to the 

data, followed by the sampling step. 



359

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

The used ML models are KNN, SVM, Naive Bayes, linear regression, LDA, C5, X-GBoost, Random 

Forest, and ADA. All models are evaluated with their default hyper-parameters as provided by sklearn 

Python libraries. Employing default parameters was to emphasize the practical applicability and 

effectiveness of the presented dataset-reduction techniques without requiring exhaustive hyper-

parameter tuning. This setup demonstrates that meaningful improvements in computational efficiency 

and model performance can be achieved without additional optimization steps. 

All datasets were normalized through a MinMaxScalar. During pre-processing, non-numerical features 

were dropped from the datasets, such as the Timestamp feature from the CSE-CIC-IDS2018 dataset and 

" Switch ID" and "Port Number" from DS1. Data pre-processing includes multiple steps, guaranteeing 

that the AI models will be fed with proper data values. During categorical feature encoding, all 

categorical features were encoded using One-Hot Encoding, transforming them into numerical formats 

suitable for machine-learning models. Moreover, features containing more than 50% of missing data 

were removed from the dataset. The remaining missing values were handled using mean imputation. 

Additionally, numerical features were scaled using Min-Max normalization, mapping feature values to 

a range between 0 and 1. This normalization improves model convergence and performance stability. 

Finally, stratified sampling was used explicitly to maintain the original class distribution, effectively 

managing dataset imbalance during data reduction. All datasets were divided into 64% for training and 

36% for testing, while the 70/30 or 80/20 splits are widely used as standard practice. The slightly non-

standard split in this study ensured that a representative portion of the minority class remained in the 

testing set, which is particularly important for performance evaluation on imbalanced datasets. 

4. RESULTS AND ASSESSMENT

This section presents the results of the data-reduction techniques described in the previous section and 

investigates how combining different reduction techniques influences the ML models used. All the 

experiments were conducted using the Google Co-Lab platform based on Python 3. Google Co-Lab 

offers 12 GB RAM and 128 GB Disk. To rank feature importance, absolute weights from the first dense 

layer of the encoder were extracted. These weights reflect the strength of the connection between input 

features and their influence on the latent representation. We ranked in descending order based on the 

sum of absolute weights across all neurons in this layer. We then selected the top-k features: 1/2, 1/4, or 

1/10 for further evaluation. Stratified sampling was applied using a class-wise sampling strategy to 

maintain class proportions. This was done via pandas.groupby(’class’).apply(lambda x: 

x.sample(frac=p)) in Python, where p is the target sampling fraction; 0.5, 0.25, 0.10. This method was

used to generate progressively smaller, but balanced, datasets for training and testing. This step was 

either applied before or after feature selection based on the reduction strategy (SF or FF). 

4.1 Machine-learning Model Results 

To  detail each model’s performance,  the F-score metric is used to represent the results as values for 

all steps of the two approaches in Tables 3, 4, 5, 6, 7, and 8, because F-score is sufficient  measure for 

imbalanced data. The numbers at the top of the columns represent the feature percentage and the size 

percentage; F-S "0.5–0.25," in Table 4, for example, denotes the ML models’ performance with a data 

sample retaining the top half of the features after ordering them according to their importance. If we 

have 20 features, for example, the top-10 features are used. Meanwhile, 0.25 means that one-fourth of 

the data tuples are used; for example, if we have 1000 tuples, 250 tuples are selected via stratified 

sampling and used through the training and testing processes. Features extraction precedes size reduction 

in this case where the “F” comes first. However, S-F "0.5–0.25," indicated using 50% of the tuples and 

0.25 of the features where the size reduction precedes the feature extraction method.  

In Table 3, all classifiers achieve a high F-score until the 0.1-1 reduction is applied, starting with size 

reduction. This is expected due to the small size and dimensions of DS1. However, when the reduction 

processes are swapped in Table 4, LR, SVM, and C4.5 can still produce high results. The conclusion 

that can be extracted from these results is that feature reduction first is better for small-sized and low- 

dimensional datasets. Moreover, RF, KNN, C4.5, and XGB are the best classifiers for DS2 based on the 

F-score when applying size reduction first, as shown in Table 5. XGB is the most stable classifier when 

feature reduction is applied first. At the same time, other models were unstable or could not achieve 

high F-scores in most data-reduction scenarios, as Table 6 demonstrates. As for the third dataset, KNN 



360 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

is the best classifier for size reduction first, as shown in Table 7 and XGB is the best for feature reduction 

first, as shown in Table 8. Most of the classifiers performed well, and it was the most suitable dataset 

for NB. In all Tables 3-8, we have colored the highest values in each column in yellow to highlight the 

best results for each division, also to highlight the best-performing models. Our analysis shows that 

dataset and feature-reduction strategies exhibit multiple levels of performance degradation. Decreasing 

the dataset or feature set to 1/2 or 1/4 generally resulted in a less than 2% drop in F1-score. More 

aggressive reduction to 1/10 greatly affected detection accuracy, particularly for complex datasets, like 

BoT-IoT and CSE-CIC-IDS2018. Notably, KNN and AdaBoost shared larger performance drops under 

1/10 feature reduction, due to their sensitivity to input dimensionality. In contrast, ensemble tree- based 

models, such as XGBoost and Random Forest, showed higher resilience, maintaining performance even 

when trained on only 10% of features or samples. This indicates that the model’s robustness to feature 

sparsity and sample diversity plays an essential function in mitigating the effects of reduction. These 

trade-offs emphasize the significance of choosing the proper model and reduction level based on the 

dataset’s complexity and attack distribution. 

Table 3. DS1 sampling first F1-score results. 

S–F 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

.025 

0.25– 

0.1 

0.1–1 0.1– 

0.5 

0.1– 

0.25 

KNN 1.000 1.000 1.000 0.923 1.000 1.000 1.000 0.885 0.999 0.976 1.000 0.923 0.560 0.498 0.500 

SVM 0.995 1.000 1.000 0.885 1.000 0.976 1.000 0.885 0.999 0.999 1.000 0.923 0.500 0.500 0.500 

NB 0.991 0.993 0.998 0.508 0.986 0.993 0.995 0.514 0.974 0.983 0.986 0.982 0.543 0.535 0.529 

LR 0.999 1.000 1.000 0.846 0.999 0.976 0.962 0.885 0.999 0.988 0.885 0.692 0.500 0.500 0.500 

LDA 0.999 1.000 1.000 1.000 0.999 0.976 1.000 1.000 0.999 0.998 1.000 1.000 0.500 0.500 0.500 

C4.5 1.000 1.000 1.000 0.962 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

XGB 1.000 1.000 1.000 0.962 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

RF 1.000 1.000 1.000 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

Ada 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500 0.500 0.500 

Table 4. DS1 feature extraction first F1-score results. 

F-S 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

.025 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.999 0.999 0.999 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 0.333 

SVM 0.995 0.995 0.995 0.995 0.998 0.992 0.995 0.973 1.000 0.984 0.798 0.471 0.809 0.781 0.491 1.000 

NB 0.918 0.918 0.918 0.918 0.844 0.836 0.814 0.791 0.885 0.843 0.983 1.000 0.764 0.708 0.565 1.000 

LR 1.000 1.000 1.000 1.000 0.668 0.544 0.470 0.468 0.465 0.470 0.459 0.471 0.465 0.467 0.491 0.333 

LDA 1.000 1.000 1.000 1.000 0.791 0.749 0.723 0.851 0.803 0.779 0.459 1.000 0.465 0.466 0.491 0.333 

C4.5 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.931 0.998 0.973 0.964 1.000 1.000 0.942 1.000 1.000 

XGB 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.944 0.998 0.978 0.982 0.818 0.999 0.980 0.491 0.000 

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 0.999 1.000 0.964 0.884 0.999 0.960 0.824 0.333 

Ada 1.000 1.000 1.000 1.000 0.999 0.997 1.000 0.959 0.999 1.000 1.000 0.884 0.960 0.969 0.491 0.333 

Table 5. DS2 sampling first F1-score results. 

S-F 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.995 0.984 0.975 0.997 0.991 0.976 0.945 0.992 0.974 0.939 0.944 0.991 0.985 0.952 0.907 

SVM 0.837 0.806 0.509 0.473 0.839 0.785 0.609 0.473 0.532 0.499 0.473 0.473 0.588 0.554 0.473 0.473 

NB 0.250 0.253 0.249 0.255 0.233 0.234 0.232 0.240 0.235 0.240 0.169 0.179 0.412 0.417 0.431 0.407 

LR 0.882 0.842 0.763 0.615 0.833 0.782 0.733 0.541 0.606 0.565 0.529 0.473 0.552 0.540 0.473 0.473 

LDA 0.978 0.978 0.967 0.990 0.944 0.959 0.947 0.965 0.807 0.836 0.815 0.827 0.602 0.617 0.576 0.550 

C4.5 1.000 1.000 0.998 0.985 0.998 0.995 0.992 0.995 1.000 0.995 0.994 1.000 0.995 0.977 0.955 0.946 

XGB 1.000 0.998 0.998 0.995 1.000 0.998 0.996 0.995 1.000 0.999 0.994 0.995 0.998 0.995 0.975 0.985 

RF 1.000 0.999 0.996 1.000 1.000 0.999 0.990 0.985 0.999 0.994 0.981 0.990 0.993 0.988 0.957 0.969 

Ada 0.999 0.996 0.988 0.995 0.977 0.990 0.983 0.967 0.991 0.988 0.964 0.995 0.680 0.657 0.754 0.710 



361

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

Table 6. DS2 feature extraction first F1-score results. 

F-S 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.999 0.999 0.999 0.994 0.993 0.975 0.930 0.994 0.944 0.806 0.697 0.988 0.898 0.689 0.400 

SVM 0.854 0.854 0.854 0.854 0.858 0.803 0.488 0.473 0.532 0.473 0.468 0.481 0.607 0.469 0.472 1.000 

NB 0.255 0.255 0.255 0.255 0.231 0.238 0.247 0.259 0.232 0.235 0.243 0.184 0.408 0.429 0.382 1.000 

LR 0.899 0.899 0.899 0.899 0.852 0.783 0.734 0.601 0.609 0.509 0.468 0.481 0.571 0.469 0.472 0.400 

LDA 0.987 0.987 0.987 0.987 0.951 0.940 0.966 0.926 0.806 0.886 0.834 0.694 0.622 0.631 0.671 0.400 

C4.5 0.998 0.998 0.998 0.999 0.996 0.994 0.996 0.985 0.996 0.986 0.993 1.000 0.985 0.955 0.689 0.400 

XGB 0.999 0.999 0.999 0.999 1.000 0.994 0.998 0.990 1.000 1.000 1.000 1.000 0.995 0.964 0.817 1.000 

RF 0.999 0.999 1.000 0.999 1.000 0.995 0.990 0.985 1.000 0.992 0.986 0.924 0.995 0.982 0.709 0.455 

Ada 0.997 0.997 0.997 0.997 0.989 0.927 0.969 0.927 0.991 0.990 0.993 0.824 0.706 0.522 0.625 0.400 

Table 7. DS3 sampling first F1-score results. 

S-F 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 1.000 1.000 1.000 0.974 0.999 1.000 1.000 0.944 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 

SVM 0.998 0.992 1.000 0.987 0.998 0.987 0.973 0.895 0.998 0.995 0.995 1.000 0.813 0.803 0.861 0.794 

NB 0.912 0.923 0.922 0.874 0.852 0.866 0.853 0.807 0.880 0.883 0.860 0.856 0.738 0.757 0.751 0.763 

LR 1.000 0.997 1.000 0.959 0.681 0.582 0.470 0.468 0.465 0.467 0.470 0.468 0.465 0.467 0.470 0.468 

LDA 1.000 1.000 1.000 0.987 0.788 0.782 0.810 0.744 0.790 0.772 0.786 0.773 0.465 0.467 0.468 0.468 

C4.5 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.973 1.000 0.998 0.965 0.987 1.000 0.997 0.994 0.881 

XGB 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.973 1.000 1.000 0.965 0.959 1.000 0.997 0.994 0.916 

RF 1.000 1.000 0.971 1.000 1.000 1.000 0.965 1.000 1.000 1.000 0.959 1.000 1.000 0.997 0.989 0.899 

Ada 1.000 1.000 1.000 1.000 1.000 1.000 0.949 0.973 1.000 1.000 0.965 0.973 0.968 0.966 0.941 0.859 

Table 8. DS3 feature extraction first F1-score results. 

F-S 1–1 1– 

0.5 

1– 

0.25 

1– 

0.1 

0.5– 

1 

0.5– 

0.5 

0.5– 

0.25 

0.5– 

0.1 

0.25– 

1 

0.25– 

0.5 

0.25– 

0.25 

0.25– 

0.1 

0.1– 

1 

0.1– 

0.5 

0.1– 

0.25 

0.1– 

0.1 

KNN 0.999 0.999 0.999 0.999 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 0.333 

SVM 0.995 0.995 0.995 0.995 0.998 0.992 0.995 0.973 1.000 0.984 0.798 0.471 0.809 0.781 0.491 1.000 

NB 0.918 0.918 0.918 0.918 0.844 0.836 0.814 0.791 0.885 0.843 0.983 1.000 0.764 0.708 0.565 1.000 

LR 1.000 1.000 1.000 1.000 0.668 0.544 0.470 0.468 0.465 0.470 0.459 0.471 0.465 0.467 0.491 0.333 

LDA 1.000 1.000 1.000 1.000 0.791 0.749 0.723 0.851 0.803 0.779 0.459 1.000 0.465 0.466 0.491 0.333 

C4.5 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.931 0.998 0.973 0.964 1.000 1.000 0.942 1.000 1.000 

XGB 1.000 1.000 1.000 1.000 0.996 1.000 1.000 0.944 0.998 0.978 0.982 0.818 0.999 0.980 0.491 0.000 

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 0.999 1.000 0.964 0.884 0.999 0.960 0.824 0.333 

Ada 1.000 1.000 1.000 1.000 0.999 0.997 1.000 0.959 0.999 1.000 1.000 0.884 0.960 0.969 0.491 0.333 

After training the different ML models with different portions from different datasets, the following 

notes should be considered from the tables: 

 In all cases, data can be reduced by a half regarding both size and dimensionality, yet the ML

models’ performance remains the same. 

 Applying the proper process to select part of the data to train the model can give the same results

when all the data is used. 

 The data-reduction techniques used throughout this work can enhance the required time to train and

test the models. 

 The data-reduction techniques used throughout this work can also produce less complicated models

with the same efficiency. 

4.2 Evaluating the Proposed Methods 

The assessment step is presented and explored in this sub-section, where multiple data-reduction 

scenarios are being applied to three huge datasets. Feeding these datasets into the ML models requires 

very high computational resources. Additionally, time-demanding processes should be considered. 

For the datasets DS4, DS5 and DS6, the reduction techniques were applied to investigate how the 

precision, recall, and F1-score were affected. The required training time to train all models is also 

measured. DS4 is a huge dataset in size and dimension; by extracting 0.001 of the size and a half of the 

features, all the classifiers still have a high performance of F-score, especially the KNN. Nevertheless, 

NB classifier behavior is sensitive to this level of reduction, as shown in Figure 4a. In other experiments, 

the NB was the worst when applied to a vast dataset with a small dimension, such as (DS4). The LDA 

performance with DS5 degrades, compared with its performance when DS4 was used, while other 

algorithms were robust to the reduction, as shown in Figure 4b. A moderate dimension and size dataset 

(DS6) was used to investigate the proposed approach; NB was the worst in comparison, even without 

reducing the data, while the other algorithms performed well. RF and XGB classifiers are the best for 

this data, as shown in Figure 4c. Every experiment held to reduce the size or the dimensionality of DS4, 



362 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

DS5, and DS6 datasets was repeated 10 times, and the ML model results were measured and averaged 

and then clarified in Figure 4. This step is necessary to examine the reduction techniques’ effectiveness 

and confirm the derived conclusions. 

The time required to train DS4 when all the data was used is 3750.40s. When the data was reduced to 

0.05, 0.01, and 0.001, the required time to train all the models was reduced to 22.53s, 6.05s, and 3.74s, 

and when a half of the important features were selected from the 0.001 part of the data, the time was 

reduced to 3.2s. Yet, the ML classifiers still can detect anomaly behavior even when the dataset size is 

dramatically reduced (see Figure 4a). 

As the experiment focuses on reducing the size of the datasets horizontally and vertically, this reduction 

is expected to affect the required time to train the ML models. DS4, Ds5, and DS6 are reduced in many 

ways to study how time is affected, and the time required to train all the mentioned ML models is 

reported. The time needed to train DS5 when all the data was used was 9779.81s, but when the size of 

the dataset was reduced to 0.01, the required time was 2.58s only, and the required time to train all the 

models was reduced to 1s when 0.001 of the dataset was used. Meanwhile, the ML models’ performance 

measured in F-score are mostly close to 100% as shown in Figure 4b. 

DS6 training time was 350.33s and reducing the size to the half made the training time become 118.4s. 

Reducing the features to the half made the training time become 221.41s, while combining both 

reductions made the time become 79.12s. ML models, such as KNN, SVM, XGB and RF, can still 

produce perfect results (see Figure 4c). Figure 3 lists the time required for training DS4, DS5 and DS6 

and the required time when multiple reduction techniques were used. 0.5S means that a half the data 

was used, while 0.5F indicates the percentage of reduction applied to the features, where all the values 

in the figure are measured in seconds. 

This reduction in computational time is due to the reduction in dataset rows and columns. The number 

of rows in each dataset is reduced via stratified sampling, while the number of columns is reduced    via 

feature extraction carried out using the autoencoder model. Combining feature extraction with the size 

reduction process makes the dataset size shrink vertically and horizontally. The required processing time 

for ML models is a function of the number of rows and columns. Hence, if we can assume that the total 

computational time for these models is T = F (numOfRows,numOfCol,... ), a function of the number of 

rows and the number of columns, then reducing the value of either numOfRows,numOfCol, or both will 

have a reducing impact on the required computational time.  

Figure 3. Time enhancement when large datasets were used. 

4.3 Result Analysis and Recommendations 

Simple reduction techniques, such as stratified sampling, can reduce the required time to build and train 

different ML models. Nevertheless, the performance of ML models is kept almost untouched. The huge 

amount of records stacked in different IDS datasets might be necessary, but not for IDS systems using 

ML models, such as those presented in this work. Some models can be less trusted, such as NB, and 

sometimes LR and LDA should be avoided, too. KNN, XGBoost, RF, and C-5 models are robust and 

can be trusted even when reduction methods are applied to the data. 

When dealing with massive IDS datasets, reduction techniques, such as stratified sampling, and 

dimensionality-reduction techniques, such as autoencoders, are highly recommended to be used with 

the data to make it more usable. If the number of records in the dataset is small; i.e., < 20000, using the 

autoencoder first is highly recommended. For example, for a dataset similar to DS5, which is used here, 



363

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

reducing the data size first is recommended, since training the autoencoder and getting the results from 

the encoder will take a very long time. 

(a) DS4

(b) DS5

(c) DS6

Figure 4. ML model performance when large datasets were used. 

If the dataset is already small, but has a large number of features, like DS2, which has 115 features, 

extracting the important features first is preferred since the autoencoder accuracy will be better with 

more data tuples to train it. Extracting the most important features from the dataset might enhance the 

performance of some ML models, like NB and SVM, with the DS2 results above. 

The amount of the reduction to the data; i.e., how much data should be used to train the model, is a 

subject of experience and the logic of trial and error. The reduction tools are available and should be 

used with wisdom. For example, DS6 was reduced to the half to make the training time more efficient. 

While DS5 was reduced to one-tenth, considering that DS5 is almost five times the size of DS6, DS6 is 

a very unbalanced dataset. 



364 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

The answer to the first research question is that huge IDS datasets are not necessarily needed, because 

the study results show that the ML models can produce sufficient results in many reduction cases, 

especially when certain ML models are used, such as Random Forest and KNN. The answer to the 

second question is that size reduction, feature reduction, and combining both reduction techniques can 

be used to reduce the size of the datasets while keeping the ML-model results sufficient. Although the 

proposed method does not introduce a new detection algorithm, it handles a crucial operational challenge 

in IDSs: the need for scalable and efficient model training on large, high-dimensional datasets. The 

framework shows that significant computational gains can be achieved through structured dataset 

reduction, allowing faster deployment and real-time responsiveness without degrading detection 

performance. This contribution supports more practical and cost-effective implementation of IDSs in 

environments where computational resources and latency are constrained. 

4.4 Scalability Considerations and Real-world Deployment 

The suggested dataset-reduction framework is developed to be modular and scalable, allowing it to adapt 

to diverse deployment scenarios. In cloud or cluster-based environments, the autoencoder training 

process can be parallelized and accelerated using GPU hardware, making it feasible to extract feature 

importance from even larger IDS datasets, such as real-time streaming logs or full network captures. 

The feature-selection step, once learned, can be reused across multiple time windows or data batches 

with minimal retraining. 

Our sampling-first (SF) pipeline offers a practical compromise for edge-computing environments whose 

computational resources of which are limited. Applying stratified sampling before dimensionality 

reduction minimizes resource usage and preserves class distribution. Additionally, autoencoder-based 

feature selection lowers memory requirements and latency for deployed ML models. Thus, the discussed 

reduction methods are sufficient for academic evaluation and functional for real-world IDS applications 

where scalability, model-retraining efficiency, and system throughput are key considerations. 

4.5 Comparison with Other Works 

Table 9 demonstrates a comparison between our work and recent works with similar contributions. 

The comparison of our work with recent contributions emphasizes key dissimilarities in dataset 

selection, feature-reduction methodologies, machine-learning models, and overall effectiveness in 

cyber-threat detection. One of the main strengths of our technique is the use of multiple datasets, 

including Kitsune- ARP, SNMP-MIB, CSE-CIC-IDS2018, BoTIoT, UNR-IDD, and Credit Card Fraud, 

which provides a more comprehensive evaluation of cyber threats. This contrasts studies, such as Behiry 

and Aly (2024), which focus on certain datasets, like NSL-KDD, UNSW-NB15 and CICIDS2017. Using 

various datasets in our study improves the generalizability of the results, although it presents 

sophistication in formalizing feature-selection techniques. 

The data-reduction strategy used in our study combines autoencoders with stratified sampling, setting it 

apart from the principal component analysis (PCA) and singular value decomposition (SVD) approaches 

used in other studies. Autoencoders allow for non-linear feature extraction, which provides more robust 

dimensionality reduction, unlike traditional methods that assume linear relationships between variables. 

Compared to the Coot Optimization Algorithm (COA) used by Vallabhaneni et al. [42], our approach 

fulfills similar feature-reduction effectiveness, but significantly reduces the computational cost. 

Combining autoencoders with stratified sampling ensures that essential features are retained while 

reducing redundancy, making our method accurate and efficient. Another distinguishing factor is using 

stratified sampling instead of synthetic oversampling methods, like SMOTE, which Behiry & Aly [40] 

utilized. While SMOTE artificially generates new samples, stratified sampling preserves the natural 

distribution of data, preserving class balance without introducing synthetic artifacts. This approach 

ensures that minority-class instances, crucial for fraud and intrusion detection, remain well-represented 

while reducing data size. By leveraging stratified sampling, our method enhances dataset efficiency 

without sacrificing classification performance. 

The selection of machine-learning models further distinguishes our work from previous studies. Our 

evaluation encloses a diverse set of algorithms, including K-Nearest Neighbors (KNN), Support Vector 

Machines (SVMs), Naïve Bayes, Linear Discriminant Analysis (LDA), C5, XGBoost, Random Forest, 



365

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

and ADA, offering a comprehensive analysis of classification performance. In contrast, [40] and [42] 

mostly depend on deep-learning models, such as deep forward neural networks (DFNNs) and modified 

feedforward neural networks (FFNNs). While deep learning models perform well on high-dimensional 

data, they demand much more computational resources and training time. Our approach balances 

accuracy and computational efficiency by combining classical machine learning and ensemble methods, 

making it more suitable for real-time applications. 

Table 9. Comparison of our work and recent works with similar contributions. 

Criteria Our work Behiry & Aly [40] Hossain et al. [41] Vallabhaneni et al. 

[42] 

Dataset Used Kitsune-ARP, 

SNMP-MIB, CSE- CIC-

IDS2018, BoTIoT, UNR-

IDD,   Credit Card Fraud 

NSL-KDD, UNSW- 

NB15, CICIDS2017 

Not specified 

(DDoS-related) 

BotNet dataset 

Dataset Size Multiple large-scale 

datasets (ranging from 

2,620 to 2,426,574  records) 

175,466 samples 

(CICIDS2017) 

Not provided 1,803,333 domain 

names 

Feature-reduction 

Method 

Autoencoders + 

Stratified Sampling 

Singular  Value De- 

composition (SVD) 

+ PCA + KMC-IG

Hybrid Feature 

Selection 

Coot Optimization 

Algorithm (COA) 

Sampling Method Stratified Sampling SMOTE + ENN Not specified Not specified 

Machine-learning 

Model 

KNN, SVM, Naive 

Bayes, Linear Regression, 

LDA, C5, XGBoost, 

Random Forest, ADA 

Deep Forward Neural 

Network (DFNN) + 

K-means Clustering 

(KMC) 

Ensemble-based 

classifier 

Modified Feed- 

forward Neural 

Network (FFNN) 

Performance 

Metrics 

Accuracy up to 

99% (varies by dataset), F1-

score analysis for different 

reduction strategies 

Accuracy: 99.7%, 

F1-score: 98.8% (NSL-

KDD) 

Not specified Accuracy: 97.56%, 

Precision: 96.76% 

Computational 

Efficiency 

Training time reduced 

significantly by applying size 

and feature reduction 

techniques 

High efficiency due 

to hybrid feature 

selection 

Not specified Improved by using 

COA for feature 

selection 

Real-time 

Applicability 

Yes, reduces 

dataset size while 

maintaining accuracy for 

efficient IDS deployment 

Yes, suitable for 

real-time WSN intrusion 

detection 

Yes, aimed at 

robust DDoS 

mitigation 

Yes, designed for 

Cybersecurity-

attack prediction 

Novelty Combination of 

autoencoder-based feature 

selection and stratified 

sampling for dataset 

reduction 

Hybrid  feature 

reduction (SVD+ PCA 

+ KMC-IG) + deep

learning 

Hybrid feature 

selection + 

ensemble 

classification 

COA-based feature 

selection with 

adaptive weight 

FFNN 

Limitations Some models (e.g., 

Naive Bayes) perform 

poorly on highly reduced 

datasets 

Requires large labeled 

datasets 

Requires further 

evaluation in real- 

world scenarios 

Computational 

complexity in 

feature selection 

and training 

The performance metrics indicate that our method achieves an accuracy of up to 99% across multiple 

datasets, comparable to the 99.7% accuracy reported in [40]. However, the key advantage of our 

approach lies in its computational efficiency. By reducing the dataset size while maintaining 

classification performance, our method enables faster training times, making it highly scalable for real-

time intrusion-detection systems. In contrast, with a computationally expensive feature selection process 

[42], it achieved a slightly lower accuracy of 97.56%. Using autoencoder-based feature-selection in our 

work ensures optimal feature retention with minimal processing overhead, achieving a balance between 

performance and efficiency. 

Real-time applicability is a critical aspect of intrusion-detection systems. Our study prioritizes this using 



366 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

efficient data-reduction techniques and lightweight machine-learning models. While [40] and [41] argue 

real-time relevancy, their studies lack detailed evaluations of computational efficiency. Our work 

explicitly shows that dataset-size reduction leads to significantly lower training times, confirming that 

the model remains deployable in practical cyber-security environments. The novelty of our work lies in 

the hybrid combination of autoencoder-based feature selection with stratified sampling, which optimizes 

both dataset size and model performance. Unlike previous studies that rely only on statistical reduction 

techniques or heuristic optimization, our approach integrates deep feature extraction and data-selection 

strategies. This hybrid approach results in an efficient intrusion-detection system capable of handling 

large-scale datasets while maintaining high detection accuracy. 

Despite the benefits, there are areas for additional improvement. Some models, such as Naïve Bayes, 

exhibit performance degradation when involved with highly-reduced datasets, suggesting that feature-

selection techniques could be further purified to improve  compatibility with a more expansive range   

of classifiers. Additionally, estimating the trade-off between dataset reduction and accuracy loss under 

extreme conditions would provide further insights into the scalability of our approach. Expanding the 

study to real-world cyber-security attack scenarios would further validate its functional applicability. 

5. CONCLUSION AND FUTURE WORK

This study presents and tests two methods to reduce the amount of data used to train and test IDSs. The 

first method depends on reducing the size of the datasets with very large tuples, followed by feature 

selection to improve the ML model’s performance. The second method, which is more practical with 

relatively small datasets, aimed to select the most important features first and then reduce the number 

of used tuples; this method guarantees the selection of better features and also improves the ML-model 

performance. This emphasizes the redundancy happening in some datasets related to security attacks in 

IoT datasets, especially simulated datasets. 

This study shows that careful dataset size and feature-dimensionality reduction can lower computational 

costs while maintaining equivalent intrusion-detection performance. Specifically, using only 25% of the 

original data or feature set resulted in a less than 2% reduction in F-score for most models and datasets. 

Even with a large reduction to 10%, the average F1-score declined by only 4%–6%, with ensemble 

models, such as XGBoost and Random Forest, showing more resilience compared to other simple 

classifiers, like KNN. The reduction framework is computationally efficient and robust across various 

IDS scenarios. Meanwhile, data-reduction processes should be taken with caution, because random or 

extreme data reduction might cause the models to produce unacceptable results, as seen in many 

scenarios throughout this study.  

In the future, we plan to repeat the experiment with multi-class labeled datasets and check how the 

proposed reduction techniques would affect the ML models. We also wish to investigate and compare 

other multiple reduction techniques. Our plan also includes applying the reduction techniques to 

different convolutional neural-network architectures and employing XAI tools to explore the reasons 

behind feature-ranking results. It is also necessary to have methods to evaluate the redundancy level in 

a dataset to estimate the possible efficient reduction percentages that can be applied to the data. 

REFERENCES 

[1] M. B. Younes and A. Boukerche, "A Performance Evaluation of a Context-aware Path Recommendation

Protocol for Vehicular Ad-hoc Networks," Proc. of the 2013 IEEE Global Communications Conf. 

(GLOBE- COM), IEEE, pp. 516–521, Atlanta, USA, 2013. 

[2] M. B. Younes, G. R. Alonso and A. Boukerche, "A Distributed Infrastructure-based Congestion

Avoidance Protocol for Vehicular Ad Hoc Networks," Proc. of the 2012 IEEE Global Communications 

Conf. (GLOBECOM), pp. 73–78, Anaheim, USA, 2012. 

[3] J. Al-Sawwa, M. Almseidin, M. Alkasassbeh, K. Alemerien and R. Younisse, "Spark-based Multi-verse

Optimizer as Wrapper Features Selection Algorithm for Phishing Attack Challenge," Cluster 

Computing, vol. 27, no. 5, pp. 5799–5814, 2024. 

[4] L. A. C. Ahakonye et al., "SCADA Intrusion Detection Scheme Exploiting the Fusion of Modified

Decision Tree and Chi-square Feature Selection," Internet of Things, vol. 21, p. 100676, 2023. 

[5] Y. Han, Y. Zhang and J. Wang, "Semantic-driven Dimension Reduction for Wireless Internet of Things,"
Internet of Things, vol. 25, p. 101138, 2024.



367

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

[6] F. Ali et al., "An Intelligent Healthcare Monitoring Framework Using Wearable Sensors and Social

Networking Data," Future Generation Computer Systems, vol. 114, pp. 23–43, 2021. 

[7] A. Shiravani, M. H. Sadreddini and H. N. Nahook, "Network Intrusion Detection Using Data Dimensions

Reduction Techniques," Journal of Big Data, vol. 10, no. 1, p. 27, 2023. 

[8] R. Younisse and M. AlKasassbeh, "SGID: A Semi-synthetic Dataset for Injection Attacks in Smart Grid

Systems," Proc. of the 2024 15th IEEE Int. Conf. on Information and Communication Systems (ICICS), 

pp. 1–4, Irbid, Jordan, 2024. 

[9] A. Glielmo, B. E. Husic, A. Rodriguez, C. Clementi, F. Noé and A. Laio, "Unsupervised Learning

Methods for Molecular Simulation Data," Chemical Reviews, vol. 121, no. 16, pp. 9722–9758, 2021. 

[10] B. M. S. Hasan and A. M. Abdulazeez, "A Review of Principal Component Analysis Algorithm for

Dimensionality Reduction," Journal of Soft Computing and Data Mining, vol. 2, no. 1, pp. 20–30, 2021. 

[11] S. Li, N. Marsaglia et al., "Data Reduction Techniques for Simulation, Visualization and Data Analysis,"
Computer Graphics Forum, vol. 37, pp. 422–447, Wiley Online Library, 2018. 

[12] M. Dumelle, T. Kincaid, A. R. Olsen and M. Weber, "Spsurvey: Spatial sampling design and analysis in

R," Journal of Statistical Software, vol. 105, no. 3, pp. 1–29, 2023. 

[13] G. Sharma, "Pros and Cons of Different Sampling Techniques," International Journal of Applied

Research, vol. 3, no. 7, pp. 749–752, 2017. 

[14] Z. Ashi, L. Aburashed, M. Al-Qudah and A. Qusef, "Network Intrusion Detection Systems Using

Supervised Machine Learning Classification and Dimensionality Reduction Techniques: A Systematic 

Review," Jordanian J. of Computers and Inform. Technol. (JJCIT), vol. 7, no. 4, pp. 373 – 390, 2021. 

[15] N. Saran and N. Kesswani, "Intrusion Detection System for Internet of Medical Things Using GRU with

Attention Mechanism-based Hybrid Deep Learning," Jordanian Journal of Computers and Information 

Technology (JJCIT), vol. 11, no. 2, pp. 136-150, 2015.

[16] Y. Xiao, C. Xing, T. Zhang and Z. Zhao, "An Intrusion Detection Model Based on Feature Reduction and

Convolutional Neural Networks," IEEE Access, vol. 7, pp. 42210–42219, 2019. 

[17] F. Salo, A. B. Nassif and A. Essex, "Dimensionality Reduction with IG-PCA and Ensemble Classifier for

Network Intrusion Detection," Computer Networks, vol. 148, pp. 164–175, 2019. 

[18] R. Abdulhammed et al., "Features Dimensionality Reduction Approaches for Machine Learning Based

Network Intrusion Detection," Electronics, vol. 8, no. 3, p. 322, 2019. 

[19] S. Ryu et al., "Convolutional Autoencoder Based Feature Extraction and Clustering for Customer Load

Analysis," IEEE Trans. on Power Systems, vol. 35, no. 2, pp. 1048–1060, 2019. 

[20] G. T. Reddy et al., "Analysis of Dimensionality Reduction Techniques on Big Data," IEEE Access, vol.

8, pp. 54776–54788, 2020. 

[21] K. K. Pandey and D. Shukla, "Stratified Linear Systematic Sampling Based Clustering Approach for

Detection of Financial Risk Group by Mining of Big Data," Int. J. of System Assurance Engineering and 

Management, vol. 13, pp. 1239–1253, 2021. 

[22] K. Zhang et al., "History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder,"
SPE Journal, vol. 26, no. 4, pp. 1700– 1721, 2021. 

[23] B. Manjunatha et al., "A Network Intrusion Detection Framework on Sparse Deep Denoising

Autoencoder for Dimensionality Reduction," Soft Computing, vol. 28, no. 5, pp. 4503–4517, 2024. 

[24] F. Nabi and X. Zhou, "Enhancing Intrusion Detection Systems through Dimensionality Reduction: A

Comparative Study of Machine Learning Techniques for Cyber Security," Cyber Security and 

Applications, vol. 2, p. 100033, 2024. 

[25] K. K. Pandey and D. Shukla, "Stratified Sampling-based Data Reduction and Categorization Model for

Big Data Mining," Proc. of Communication and Intelligent Systems (ICCIS 2019), pp. 107–122, 

Springer, 2020. 

[26] X. Zhao, J. Liang and C. Dang, "A Stratified Sampling Based Clustering Algorithm for Large-scale Data,"
Knowledge-based Systems, vol. 163, pp. 416–428, 2019. 

[27] Y. Yang, J. Cai, H. Yang, Y. Li and X. Zhao, "ISBFK-means: A New Clustering Algorithm Based on

Influence Space," Expert Systems with Applications, vol. 201, p. 117018, 2022. 

[28] L. Cao and H. Shen, "CSS: Handling Imbalanced Data by Improved Clustering with Stratified Sampling,"
Concurrency and Computation: Practice and Experience, vol. 34, no. 2, p. e6071, 2022. 

[29] A. Zoubir and B. Missaoui, "Graph Neural Networks with Scattering Transform for Network Anomaly

Detection," Engineering Applications of Artificial Intelligence, vol. 150, p. 110546, 2025. 

[30] A. Zoubir and B. Missaoui, "GeoScatt-GNN: A Geometric Scattering Transform-based Graph Neural

Network Model for Ames Mutagenicity Prediction," arXiv preprint, arXiv: 2411.15331, 2024. 

[31] M. Alqarqaz, M. Bani Younes and R. Qaddoura, "An Object Classification Approach for Autonomous

Vehicles Using Machine Learning Techniques," World Electric Vehicle J., vol. 14, no. 2, p. 41, 2023. 

[32] Y. Mirsky, T. Doitshman, Y. Elovici and A. Shabtai, "Kitsune: An Ensemble of Autoencoders for Online

Network Intrusion Detection," arXiv preprint, arXiv: 1802.09089, 2018. 

[33] M. Al-Kasassbeh et al., "Towards Generating Realistic SNMP-MIB Dataset for Network Anomaly

Detection," Int. J. of Computer Science and Information Security, vol. 14, no. 9, p. 1162, 2016. 



368 

"Improving IoT Security: The Impact of Dimensionality and Size Reduction on Intrusion-detection Performance", R. Younisse, A. Saif, N. 
Al-Madi, S. Almajali and Basel Mahafzah.

[34] UNB, "CSE-CIC-IDS2018 on AWS," [Online], Available: http://www.unb.ca/cic/datasets/ids-

2018.html, Accessed on Apr. 25, 2023, 2018. 

[35] N. Koroniotis et al., "Towards the Development of Realistic Botnet Dataset in the Internet of Things for

Network Forensic Analytics: Bot-IoT Dataset," Future Generation Computer Systems, vol. 100, pp. 779–

796, 2019. 

[36] T. Das et al., "UNR-IDD: Intrusion Detection Dataset Using Network Port Statistics," Proc. of the 2023

IEEE 20th Consumer Comm. & Networking Conf. (CCNC), pp. 497–500, Las Vegas, USA, 2023. 

[37] Kaggle, "Credit Card Fraud Detection," [Online], Available: www.kaggle.com/datasets/mlg-

ulb/creditcardfraud, Accessed: June 1, 2023. 

[38] Y. N. Kunang et al., "Automatic Features Extraction Using Autoencoder in Intrusion Detection System,"
Proc. of the 2018 Int. Conf. on Electrical Engineering and Computer Science (ICECOS), pp. 219–224, 

Pangkal, Indonesia, 2018. 

[39] Z. Salah et al., "Optimizing Intrusion Detection in 5G Networks Using Dimensionality Reduction

Techniques," Int. J. of Electrical & Computer Engineering, vol. 14, no. 5, pp. 2088-8708, 2024. 

[40] M. H. Behiry and M. Aly, "Cyberattack Detection in Wireless Sensor Networks Using a Hybrid Feature

Reduction Technique with AI and Machine Learning Methods," J. of Big Data, vol. 11, no. 1, 2024. 

[41] M. A. Hossain and M. S. Islam, "Enhancing DDoS Attack Detection with Hybrid Feature Selection and

Ensemble-based Classifier: A Promising Solution for Robust Cybersecurity," Measurement: Sensors, vol. 

32, p. 101037, 2024. 

[42] R. Vallabhaneni et al., "Feature Selection Using COA with Modified Feedforward Neural Network for

Prediction of Attacks in Cyber-security," Proc. of ICDCOT, pp. 1–6, DOI: 10.1109/ICDCOT61034, 

2024.10516044, 2024. 

ملخص البحث:

يعُدددددف الاخدددددتافي بيفادددددرنا دددددءاأمردددددرنااًبيًدددددماف شدددددمر ا  ددددديف ا  ر دددددمر ا  ددددد ر ا  دددددر اشددددد  رنا

ا ع ر ددددد ا ا خدددددتا ادف ددددد  ا بح دددددم ا ً  ددددد   عافل دددددءاظادددددّاًةدددددر  
ف حر دددددتستادم دددددبافتاً دددددري اف دددددب عاس

ددددديي ا دددددءامعشمدددددفاد  دددددعاف  مرًدددددرنا دددددءا ً  ددددد اف  خدددددتاظددددد ا ظددددد افي بيفادددددرنتاد ددددد اف ب  فيدددددفاف   

اعددددددا  اأر ددددددباففتاً ددددددري اف ددددددب عاسعافي بيفاددددددر امحامدددددداا   تظددددددرناأمرًددددددرن  ان،ا ددددددل   فل ددددددءاأددددددرن 

ينةدددددددتلاظادددددددّاف   يدددددددفا ددددددد اف ب حدددددددف يرنادف  بةا  دددددددرناف  بعا شددددددد اأ  دددددددر  اف حت ددددددد  تادمددددددد مءا

   تظدددددددرناف  مرًدددددددرناف  بعا شددددددد اأ مردددددددرنااًبيًدددددددماف شدددددددمر اأ   دددددددرتاعدددددددا  تادم حددددددد ا ددددددد  ا

 دددددءا   تظدددددرناف  مرًدددددرنا دددددءا رظامددددد اد  ف ا ً  ددددد اف ف  ف ددددد ا دددددءا تددددديامشنمدددددرنامشامدددددااف  مرًدددددرنا

اف  ختاظ افي بيفارنت

دددددد رنادمشامدددددداا اتندددددرلءاف  يف دددددداايددددددف  اأددددددم امشامددددددااف     ًشبددددديها ددددددءا دددددد  اف ت ادددددد اايددددددر اظ ددددددا 

ف أعددددددر ادف ح ددددددعا ددددددءا   تظددددددرناف  مرًددددددرناف  بعا شدددددد اأ مرددددددرنااًبيًددددددماف شددددددمر ،ادي دددددد اظاددددددّا

اُ بر ددددد ا اع دددددتتتادمدددددع ام ا   تظدددددرناأمرًدددددرن  ا ددددد اً دددددري اف دددددب عاسعافل دددددءاظادددددّا دددددم  شمدددددمعا  ف اظدددددف  

امشامددددددااف  مرًددددددرنا ددددددلاف ن بددددددرل اف  بددددددءا  ددددددانراظام ددددددرا       تظددددددرناف  مرًددددددرناف  ف د دددددد تادمتع 

ا ر خددددءا ددددءا99 دددد اشدددد ًّا  ايددددي  لاا ددددّامشامدددداا  دددد اف ب ددددف ي اأ ددددراي ددددااا ددددّا %ا دددد ا شددددفف  

ددددديفناف  ف ايايب دددددرد ا فلددددد1 يش  اف ب شامدددددااف    فا ا مرًدددددرناادددددفايددددديتيا دددددا ر ا دددددءا%،ادادددددفام دددددم ا   

دددددت اظ ا ددددد اف  خدددددتتا ادددددّا تفلدددددفامشامدددددااف  مرًدددددرنا دددددءا   تظدددددرناأمرًدددددرنادم ددددداّاف ف  ف ددددد اف   

اًبيًدددددماف شدددددمر ،ادمدددددفظعاً بدددددرل اف ف  ف ددددد الدددددفدتامة مشدددددرناف  خدددددتاف  ع دددددر اظددددد افي بيفادددددرنا

دددددد  ا ددددددءاف دعددددددرّاف  بددددددءامب  ددددددعاأ حفد يدددددد اف  ددددددتف  ا داف  بددددددءا   مرددددددرناف عددددددر عاف حشمشددددددء،اد رت 

امبعا قاأر     اف حشمشءت

This article is an open access article distributed under the terms and conditions of the Creativeا

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).اا 

http://www.unb.ca/cic/datasets/ids-2018.html
http://www.unb.ca/cic/datasets/ids-2018.html
http://www.unb.ca/cic/datasets/ids-2018.html
http://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
http://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://doi.org/10.1109/ICDCOT61034.2024.10516044
https://doi.org/10.1109/ICDCOT61034.2024.10516044
http://creativecommons.org/licenses/by/4.0/



