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ABSTRACT 

This paper addresses the challenge of accurately translating Jordanian Arabic into Modern Standard Arabic 

(MSA) and correcting common linguistic errors. Although MSA is the formal standard for Arabic communication, 

the widespread use of local dialects in social media and everyday interactions often results in texts laden with 

spelling and grammatical issues. To overcome these challenges, we present an end-to-end system based on a newly 

constructed Jordanian Arabic dataset (JODA) comprising 59,135 sentences, as well as the Tashkeela dataset 

perturbed through synthetic error injection. We employ ByT5, a large pre-trained language model that processes 

text at the byte level, making it resilient to spelling variations and morphological complexities common in Arabic 

dialects. Our experimental results show that fine-tuning ByT5 on JODA and a 10% error-injected Tashkeela subset 

notably improves both BLEU score and character error rate (CER). Combining JODA with the synthetically 

modified Tashkeela data reduces the CER to 4.64% on the Test-200 test set and 1.65% on the TSMTS test set. 

Moreover, manual inspections reveal that the model produces correct or near-correct translations in most cases. 

Finally, we developed a custom smartphone keyboard and a web portal to demonstrate how the system can be 

made easily accessible to interested users, offering a practical solution for millions of Arabic speakers seeking to 

produce accurate, diacritized MSA text. This solution is currently limited to the Jordanian dialect; future work 

will focus on developing similar datasets and solutions for other Arabic dialects. 
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Jordanian Arabic, Modern Standard Arabic, Dialectal translation, Large language models, Synthetic error 

injection, Natural-language processing, ByT5. 

1. INTRODUCTION 

Arabic, as the official language of over 20 countries, exhibits a rich linguistic diversity shaped by various 

regional dialects [1]. In Jordan, everyday communication relies heavily on an informal local dialect 

distinct from Modern Standard Arabic (MSA). While MSA remains the formal standard for written 

communication in official contexts, many Jordanians encounter difficulties expressing themselves 

accurately, often producing texts riddled with lexical, morphological, grammatical, syntactic and 

spelling errors. The proliferation of social media has further amplified this issue, as informal dialects 

and spelling inconsistencies dominate many online platforms [2]. 

To address these challenges, modern natural-language processing (NLP) techniques offer promising 

solutions by leveraging powerful pre-trained large language models. These models have demonstrated 

remarkable success in understanding and generating text across different languages, including Arabic, 

when sufficiently trained on diverse and high-quality examples [3]. However, collecting large-scale 

datasets that reflect the intricacies of informal dialects and embedding them in a unified framework for 

effective NLP applications pose significant hurdles. Despite recent advancements, current solutions for 
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translating dialectal Arabic to MSA remain unsatisfactory in terms of accuracy and robustness. This is 

largely due to the low-resource nature of the problem, as most dialects lack extensive parallel corpora. 

The development of additional high-quality, dialect-specific resources is therefore essential to improve 

translation performance and to enable fine-tuning of large models for this challenging task. 

In this work, we present an end-to-end system designed to translate Jordanian Arabic into MSA, correct 

common linguistic mistakes and provide optional diacritization (automatic restoration of missing short 

vowel marks). Our project involved collecting 59,135 Jordanian Arabic sentences, spanning various 

dialectal usages and error types, then pairing them with carefully proofread MSA renditions. This dataset 

was augmented with additional resources to address the scarcity of real-world error examples. By fine-

tuning pre-trained large language models on these combined resources, we have created a robust system 

capable of significantly improving the quality of Jordanian Arabic texts. While this solution is currently 

limited to the Jordanian dialect, it can be extended to other Arabic dialects as similar datasets become 

available. 

The key contributions of our research can be summarized as follows. First, we provide a new, purpose-

built Jordanian Arabic dataset that captures authentic usage and errors, serving as a valuable resource 

for future NLP research in Arabic. Second, we introduce synthetic spelling errors into a well-known 

diacritized dataset, enabling the model to learn extensive error patterns beyond the scope of the 

Jordanian dialect alone. Third, we fine-tune and evaluate a large language model for the translation task, 

demonstrating its effectiveness in handling informal dialect and spelling issues. Finally, we make the 

resulting models available through user-friendly web and smartphone applications, allowing Jordanians 

to produce clear and accurate MSA texts. 

After this introduction, Section 2 reviews some related previous work. The approach is outlined in 

Section 3, followed by the datasets in Section 4, which includes the Jordanian dialect dataset, the 

Tashkeela datasets with synthetic error injection and the test sets. Section 5 focuses on the models and 

experiments, describing the model tuning, optimization of synthetic error injection and training using 

the developed datasets. The results and discussion are presented in Section 6, encompassing a manual 

inspection of model predictions and a detailed analysis of the results. Finally, the paper concludes with 

insights, implications and future work in Section 7. 

2. LITERATURE REVIEW 

This review traces the evolution of machine translation, from rule-based methods to neural architectures, 

focusing on large language models (e.g., GPT, BERT, T5 and ByT5) and highlighting their key features. 

Finally, it examines recent approaches for translating Arabic dialects into MSA. 

2.1 Evolution of Machine-translation Approaches 

Traditional language-translation methods, such as rule-based machine translation (RBMT), rely on 

comprehensive morphological, semantic and syntactic rules for both the source and target languages, 

requiring extensive expert input [4]. In contrast, example-based machine translation (EBMT) maps 

sentence examples from one language to another without requiring any handcrafted linguistic rules. 

However, its performance is heavily influenced by the quality of the example database [5]. Statistical 

machine translation (SMT), which was once dominant, integrates phrase, syntax and hierarchical 

models, but its complexity necessitates combining translation, language and sentence-reordering models 

[6]-[9]. Hybrid approaches that combine RBMT and SMT have also been explored [10]. 

Recently, neural machine translation (NMT) has become the standard, with widespread adoption by 

companies, like Google and Microsoft [6], [11]-[13]. NMT employs advanced models, like recurrent 

neural networks (RNNs), convolutional neural networks (CNNs), encoder-decoder stacks and 

transformers. With sufficient training data, these models can learn complex linguistic relationships and 

capture context and semantics from parallel data [12]-[13]. Popular NMT variants, such as bidirectional 

encoder representations from transformers (BERT) [14]-[15] and text-to-text transfer transformer (T5) 

[16], are widely used for natural-language processing. NMT systems, initially focused on language pairs, 

are now capable of translating across 200+ languages [17]. 
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2.2 Large Language Models 

Large language models (LLMs), such as generative pre-trained transformer (GPT) [18], BERT [19] and 

T5 [16] have significantly advanced NLP. These models are based on the transformer architecture, 

which uses self-attention mechanisms to process text in parallel rather than sequentially [20]. This 

parallel processing enables LLMs to better handle long-range dependencies and complex linguistic 

structures. Trained on large datasets, LLMs can perform various tasks, like text generation, translation, 

summarization and error correction, making them versatile tools for language applications. However, 

models like GPT and T5, which rely on token-based representations, may struggle with out-of-

vocabulary words or small typographical errors. 

ByT5 is a token-free variant of the T5 model that operates directly on byte-level inputs rather than 

relying on tokenized text [21]. It retains T5’s core architecture, consisting of a heavy encoder and a 

lighter decoder, both built with multi-head self-attention mechanisms and feed-forward neural networks. 

The encoder converts raw byte sequences into continuous representations, effectively capturing 

semantic meaning even in the presence of spelling errors or non-standard formatting, while the decoder 

generates coherent output sequences from these representations. This byte-level processing eliminates 

the limitations of traditional tokenization, enabling ByT5 to handle diverse languages and character sets 

more flexibly. 

We adopt ByT5 in our solution due to its demonstrated robustness against spelling variations, 

misspellings and unconventional text formats—characteristics that are prevalent in dialectal and 

informal Arabic. These strengths make it particularly well-suited for tasks, such as error correction, 

normalization and diacritization. ByT5 has also proven effective in Arabic NLP applications, including 

automatic text diacritization [22]. 

2.3 Recent Approaches to Translating Arabic Dialects 

This sub-section reviews recent efforts in Arabic-dialect translation, arranged from broader to more 

closely related work. 

Some studies have focused on translating Arabic dialects to or from English. Alzamzami and Saddik 

[23] proposed a transformer-based model for translating English tweets into four Arabic dialects. 

Nagoudi et al. [24] developed AraT5, a transformer model pre-trained on large-scale data and fine-tuned 

on several tasks, including Arabic dialect-to-English translation. AraT5 outperformed the more general 

multilingual mT5 model in these tasks. 

Several other studies have targeted the translation of multidialectal Arabic content into MSA. Slim and 

Melouah [25] addressed the translation of three Maghrebi dialects into MSA using an incremental fine-

tuning strategy on a transformer model to address the low-resource nature of dialectal Arabic. Baniata 

et al. [26] proposed integrating RNN-based part-of-speech tagging to enhance translation from 

Levantine and Maghrebi dialects into MSA, achieving a BLEU score of 43 for Levantine dialects. Alimi 

et al. [27] fine-tuned a variant of AraT5 for translating Levantine and Maghrebi dialects into MSA, 

reporting high BLEU scores of 43.38 and 64.99, respectively. Notably, both works on Levantine dialects 

include coverage of the Jordanian dialect. 

There is also a line of research focusing on the translation of a single dialect, which aligns more closely 

with our work. Kchaou et al. [28], [29] applied data-augmentation techniques to Tunisian-dialect 

translation and demonstrated that a transformer model outperformed CNN and RNN baselines, 

achieving a BLEU score of 60. Faheem et al. [30] focused on translating the Egyptian dialect into MSA. 

Their model, trained on 40,000 supervised parallel sentences and supplemented with 35 million 

monolingual sentences in an unsupervised manner, achieved a BLEU score of 29.5. 

Our approach aligns with Refs. [29]-[30] in targeting the translation of a single Arabic dialect into MSA 

and with Refs. [30], [27], [25], [24] in fine-tuning transformer-based models. However, we distinguish 

our work by adopting a pretrained, token-free transformer (ByT5), which we fine-tune using a parallel 

Jordanian-MSA dataset and stochastic error injection. To the best of our knowledge, this is the first work 

to fine-tune a transformer model specifically for translating not only Jordanian dialect, but also error-

prone MSA text—including linguistic and spelling errors—into proper MSA. 
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3. APPROACH 

Our research implements a comprehensive approach, shown in Figure 1, to accurately translate 

Jordanian Arabic into MSA, correct spelling mistakes and add diacritics. We began by collecting a 

dataset of 59,135 Jordanian Arabic sentences, encompassing a broad spectrum of language mistakes and 

dialectal variations. Working with Arabic-language specialists, we corrected mistakes, translated 

colloquial forms into MSA and thoroughly proofread all samples. 

 
Figure 1.  End-to-end approach for Jordanian Arabic to diacritized MSA conversion. 

Building on this dataset, we further expanded it using the diacritized Tashkeela Classical Arabic dataset 

[31]. Synthetic spelling errors were introduced into Tashkeela via random error injection, enhancing the 

model’s capacity to handle real-world misspellings. 

We fine-tuned pre-trained ByT5 models, leveraging their broad language understanding developed 

through training on large datasets. Pre-trained models like ByT5 are neural networks designed to learn 

general language representations, enabling them to understand and generate text effectively. Fine-tuning 

involves adapting these models to specific tasks by training them further on smaller, task-specific 

datasets. In our case, one model was fine-tuned to translate Jordanian Arabic into proper MSA, 

specializing in this linguistic transformation. Additionally, we explored another model inspired by Al-

Rfooh et al. [22] to optionally add diacritics, though this lies outside the scope of this paper [32], [33]. 

Upon completion of training, the models exhibited strong performance in error correction, translation 

and diacritization. Finally, we integrated these trained models into both internet-based and smartphone 

applications, exploring open access for Jordanian users seeking reliable and accurate linguistic support. 

Despite its effectiveness, the approach faces limitations including the cost of developing high-quality 

parallel datasets and the computational intensity of training and deploying large models like ByT5, 

which constrains scalability and performance on resource-limited devices. 

4. DATASETS 

This section describes the datasets used for training and evaluating our approach. Sub-section 4.1 details 

the newly developed Jordanian dialect dataset [34], Sub-section 4.2 introduces the Tashkeela-based 

datasets alongside synthetic error injection and Sub-section 4.3 outlines the test sets employed to 

measure model performance. 

4.1 Jordanian Dialect Dataset 

One key contribution of this research is the development of the Jordanian dialect dataset (JODA). This 

parallel dataset was constructed by collecting Arabic sentences that contain various linguistic mistakes 

or are in the informal Jordanian dialect. Each collected sentence was then paired with its corresponding 

correct MSA equivalent. The dataset draws from three primary sources to ensure diversity and 

authenticity (Figure 2). Approximately 72% of JODA comes from social-media platforms: YouTube, 

Facebook, Instagram and Twitter (X), covering various topics like economics, society and politics. 

Additionally, 22% are sentences selected from publicly available Arabic-dialect datasets: Dialectal 

Arabic tweets (DART) dataset [35] and the Shami dialect corpus (SDC) [36]. The remaining 6.6% of 

the dataset consists of transcriptions of eight short Jordanian movies capturing cultural and linguistic 

diversity. 
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The collected samples from the various sources underwent extensive preprocessing, which included 

removing irrelevant elements, duplicates, emojis and unnecessary characters, as well as segmenting the 

text into meaningful sentences. Each sentence was manually reviewed to ensure proper segmentation 

and meaningful content, retaining only those in MSA containing mistakes or in the Jordanian dialect. 

The sentences range from 2 to 277 characters, reflecting natural-language usage. Arabic linguistic 

experts contributed to the development of this parallel dataset by providing either corrections for MSA 

sentences containing mistakes or translating Jordanian dialect sentences into MSA. For a broader 

linguistic perspective on this translation from Jordanian Arabic into MSA, interested readers are referred 

to [37]. 

While JODA was designed to be as representative as possible, some bias may exist. The Jordanian 

dialect varies by region, but most data likely reflect the central region, where most of the population 

resides. Northern and southern dialects may be underrepresented. Additionally, the heavy reliance on 

social-media content may skew the language toward younger, urban speakers. We also used curated 

datasets and film transcripts, which may not fully capture spontaneous speech. Despite these limitations, 

we made deliberate efforts to ensure diversity in topics, sources and linguistic styles across the dataset. 

To expedite dataset corrections, we developed a custom PyQt-based GUI specifically tailored for 

Arabic-text processing. The tool is employed by both experts and auditors, who can selectively load 

dataset files, navigate individual sequences, classify entries and either provide or validate corrections. 

This interface was designed to accommodate right-to-left scripts and fully support Arabic display and 

parsing, ensuring minimal friction during annotation and review. Additionally, it offers streamlined 

functionality for saving changes, flagging problematic entries and maintaining detailed logs of edits. 

Figure 3 illustrates the tool’s layout and features, highlighting its user-friendly design. 

Figure 3.  Correction and auditing tool. 

Figure 2.  Composition of JODA dataset by sample source. 
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The final version of the JODA dataset comprises 59,135 sentences, with 62.4% in the Jordanian dialect 

and 37.6% in MSA containing mistakes (Table 1). This version was randomly split into three sub-sets; 

91.5% of the sentences were included in the training sub-set, while the remaining sentences were evenly 

divided between the validation and test sub-sets (2,500 sentences each). 

Table 1.  Distribution of the JODA dataset by sentence type and data split. The “Total” row and 

column show the number of sentences and their percentages relative to the entire dataset. 

Sentence type Training subset Validation subset Test subset Total 

Jordanian dialect  33,767  1,560  1,559  36,886 (62.4%) 

MSA containing mistakes  20,368  940  941  22,249 (37.6%) 

Total  54,135 (91.5%)  2,500 (4.2%)  2,500 (4.2%)  59,135 (100%) 

During this split, stratification was applied to ensure representative sampling of the various sentence 

sources and types across the three sub-sets. Figure 4 shows the number of sentences in the three dataset 

sub-sets, categorized by sentence source and sentence type. 

Figure 4.  Stratified split of the JODA dataset by sentence source (left) and sentence type (right). 

4.2 Tashkeela Datasets and Synthetic Error Injection 

In addition to JODA, the proposed model was also trained using the Tashkeela Clean-50 and Clean-400 

datasets, which primarily contain diacritized Classical Arabic text. The Tashkeela Clean-50 dataset, 

developed by Fadel et al. [38], comprises 50,000 training sequences extracted from the original 

Tashkeela dataset [31]. These sequences were filtered to ensure a diacritic-to-character ratio of at least 

80% and were processed using heuristics, such as diacritic correction, removal of English letters and 

isolation of numbers from words. Abdel-Karim and Abandah [39] expanded this dataset, creating the 

Tashkeela Clean-400 dataset with 400,000 training sequences. Both datasets include, in addition to their 

respective training sets, the same validation sub-set of 2,500 sequences and the same test sub-set of 

2,500 sequences. These datasets were truncated to a maximum sequence length of 512 bytes to maintain 

consistency with the JODA dataset. 

These datasets were further processed into input-target pairs by introducing synthetic stochastic spelling 

errors [40]. Two methods were employed for error injection: directed error injection and general error 

injection. Directed error injection focuses on “soft spelling mistakes,” which are common among Arabic 

speakers and learners due to the complexity of Arabic orthography. Following the approach of Abandah 

et al. [41], this method specifically targets frequent mistakes involving words with different forms of 

hamza (ء، أ، إ، آ، ؤ، ئ) and words ending with similarly pronounced letters (ه، ة، ت) and (و، وا). Errors 

were introduced based on their position within words, using three injection rates (2.5%, 10% and 40%) 

to evaluate their impact on model training. This method ensures that artificial errors closely resemble 

common real-world mistake patterns. 

General error injection extends directed error injection by incorporating a broader range of spelling 

error patterns, including letter deletion, insertion, swapping and replacement. This approach introduces 

stochastic errors of selected probability, also evaluated at three injection rates. These errors simulate 
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various mistake patterns found in Arabic text, allowing the model to learn corrections for a variety of 

mistake types. By combining directed and general error injection methods, the dataset is designed to 

improve the model’s ability to correct both specific and general spelling mistakes. Table 2 provides the 

statistics for JODA, Tashkeela Clean-50 and Tashkeela Clean-400. 

Table 2.  Statistics of the datasets used. 

Metric JODA 
Tashkeela 

Clean-50 

Tashkeela 

Clean-400 

Size (MB) 10.3 12.80 102.50 

Number of sequences 59,135 pairs 50,000 400,000 

Word count 1.14 × 106 1.62 × 106 12.95 × 106 

Character count 5.92 × 106 7.34 × 106 58.67 × 106 

Average number of words per sequence 9.6 32.40 32.36 

4.3 Test Sets 

To thoroughly evaluate the developed model’s performance, we use three test sets. The first is the JODA 

test subset described above, which is critical for assessing performance and selecting optimal 

configurations. The second, Test-200 [41], contains 200 sentences with “soft” spelling mistakes, 

averaging 6.5 mistakes per sentence and a 5%-character mistake rate. This set is particularly useful for 

fine-tuning the model when training on data with directed error injection. 

We also developed a third test set, the Tashkeela spelling mistakes test set (TSMTS), derived from the 

2,500 sequences of the Tashkeela test set. Each sequence in the Tashkeela test set serves as a target, 

paired with an input sequence generated by applying the general error injection described above to the 

original sequence. A character error rate of 5% was used to ensure that TSMTS mirrors the Test-200 

set. This test set provides a benchmark for evaluating general error injection. 

5. MODELS AND EXPERIMENTS

We selected ByT5 for its robustness in handling multilingual text and noisy inputs, operating at the byte 

level without tokenization. This language-agnostic approach ensures high flexibility across diverse 

languages and scripts [21]. ByT5’s strengths include resilience to misspellings and compatibility with 

low-resource languages. For our experiments, we utilized the Small and Base model sizes due to their 

lower computational requirements. We did not use larger models, as the significantly higher 

computational cost was not justified by the relatively small performance gains reported in prior work 

[21]-[22]. Table 3 summarizes the architectures of both models. 

Table 3.  Architectures of the two ByT5 models explored. 

Criterion Small Base 

Number of parameters 300M 582M 

Encoder/decoder layers 12 / 4 18 / 6 

Feed forward dimension (dff) 3,584 3,968 

Model dimension (dmodel) 1,472 1,536 

For evaluation, we used the BLEU and CER metrics. BLEU (bilingual evaluation understudy) measures 

the similarity between the model’s output and reference translations by comparing overlapping n-grams, 

providing a score for translation quality. CER (character error rate) calculates the percentage of 

character-level errors, such as substitutions, insertions and deletions, in the model’s output compared to 

the reference, offering insight into fine-grained accuracy. 

The experiments were conducted on Google’s Colab Pro Plus platform, utilizing TPU v2 units to 

accelerate the training process. The programming language used was Python 3.7.13, with TensorFlow 

2.12.0 as the primary library.  

The following sub-sections detail the experiments and results for tuning the ByT5 model, refining the 

error injection approach used in preparing the Tashkeela datasets and training the optimized model on a 

combined dataset of JODA and Tashkeela. 
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5.1 Tuning the ByT5 Model 

The ByT5 model comes in multiple sizes and offers numerous hyperparameters that can be adjusted to 

improve performance, depending on the target task. In this work, we began by establishing a baseline 

model and then explored various hyperparameter configurations to arrive at a final tuned model. Table 

4 summarizes the explored hyperparameter options and lists the values used in both the baseline and the 

tuned models. The following paragraphs describe the tuning experimental procedure and summarize the 

results. 

Table 4.  Explored ByT5 hyperparameters, evaluated options and the corresponding values for both 

the baseline and the tuned models. 

Hyperparameter Options Baseline model Tuned model 

Model size Small, Base Small Base 

Batch size 128, 256, 512 256 128 

Learning rate 0.0001, 0.003, 0.01 0.003 0.003 

Optimizer AdaFactor, Adam Weight Decay AdaFactor Adam Weight Decay 

We fine-tuned the model using the JODA dataset, which includes the two implicit tasks: translating 

Jordanian Arabic into MSA and correcting linguistic mistakes. Our initial experiment assessed the 

baseline model’s performance. Figure 5 shows the BLEU scores for both the training and validation 

sub-sets over successive training steps, where each step corresponds to a batch of a specified size (256 

for the baseline model). During this experiment and others, we observed that the model exhibits 

overfitting, with the BLEU score on the training sub-set approaching 100 while the validation score 

plateaus at a lower level. To mitigate overfitting, we halted training when the validation score ceased to 

improve and adopted the model weights from the training step with the highest validation score. The 

baseline model achieves its highest BLEU score of 57.49 at the 3,000th training step, with a 

corresponding BLEU score of 56.07 on the JODA test sub-set. 

 

In our fine-tuning experiments, we followed the methodology described in [42], which involves 

adjusting one hyperparameter at a time and comparing the resulting performance to the baseline. 

Although this “coordinate ascent” approach may overlook higher-order interactions between parameters 

(for instance, a different learning rate might produce better results with a larger model size), a full 

factorial design would be expensive, as it would require 2×3×3×2 = 36 experiments. Once the best 

individual hyperparameters were identified, we used those values to train the final model. 

Table 5 provides the outcomes of the seven fine-tuning experiments involving the four hyperparameters. 

Each row presents the examined hyperparameter option, the training step where the validation score 

peaked and the corresponding BLEU scores for both the validation and test sub-sets. Based on these 

results, the optimal hyperparameters for the tuned model are those shown in Table 4. 

Figure 5.  Training curves of the baseline model trained on JODA dataset. 
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Table 5.  Results of fine-tuning the hyperparameters of the ByT5 model. 

Hyperparameter Option Best training step 
BLEU score 

(validation) 
BLEU score (test) 

Model size 
Small (baseline) 3,000 57.49 56.07 

Base 7,000 59.01 57.08 

Batch size 

128 4,000 57.54 56.43 

256 (baseline) 3,000 57.49 56.07 

512 1,000 58.03 56.32 

Learning rate 

0.0001 20,000 56.53 55.38 

0.003 (baseline) 3,000 57.49 56.07 

0.01 9,000 55.13 53.90 

Optimizer 

AdaFactor 

(baseline) 
3,000 57.49 56.07 

Adam Weight 

Decay 
2,000 57.60 56.29 

When trained on JODA, the tuned model achieves its highest BLEU score of 59.07 at the 3,000th 

training step on the validation sub-set, yielding a BLEU score of 57.77 on the test sub-set, which 

represents a 3% improvement over the baseline model. 

5.2 Tuning Error Injection 

The performance of a model trained with synthetic error injection is influenced by the chosen injection 

rate in [41]. This sub-section describes the experiments conducted to determine optimal rates and 

summarizes the results. In these experiments, we trained the tuned model on the Tashkeela datasets and 

evaluated it on the Test-200 or TSMTS test sub-sets. As in previous experiments, we stopped training 

once the validation score ceased to improve and adopted the model weights from the training step that 

produced the highest validation score for final evaluation. 

5.2.1 Directed Error Injection 

We explored three rates for directed error injection: 2.5%, 10% and 40%. In each experiment, the model 

was trained on a Tashkeela dataset with the specified rate of directed error injection, then evaluated on 

Test-200. We selected Test-200, because it contains common real-life spelling mistakes, like those 

introduced by the directed method. 

Table 6 shows the results obtained using the Clean-50 dataset, where a 10% injection rate yielded the 

lowest CER on Test-200 (1.37%). Note that the CER on the validation sub-set increases with higher 

error rate in this sub-set. The table also reports results for training on the larger Clean-400 dataset at the 

same 10% rate, which further reduced the CER on Test-200 to 1.23%. This improvement demonstrates 

that a larger dataset provides the model with more examples of spelling variations, enhancing its ability 

to correct errors. 

Table 6.  Results of tuning directed error injection. 

Dataset 
Error injection 

rate 
Best training step 

CER (validation 

sub-set) 
CER (Test-200) 

Clean-50 

2.5% 8,000 0.03% 2.26% 

10% 8,000 0.07% 1.37% 

40% 8,000 0.14% 1.53% 

Clean-400 10% 13,000 0.04% 1.23% 

5.2.2 General Error Injection 

For general error injection, we similarly evaluated three rates: 2.5%, 10% and 40%. In each experiment, 

the model was trained on a Tashkeela dataset with the chosen rate of general error injection and tested 

on TSMTS. TSMTS was selected, because it contains synthetic spelling errors comparable to those 

produced by the general error injection method. 
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As shown in Table 7, using the Clean-50 dataset with a 10% injection rate resulted in the lowest CER 

on TSMTS (1.77%). When the model was trained on the larger Clean-400 dataset at the same 10% rate, 

the CER dropped further to 1.28%, indicating that a bigger training sub-set helps the model better 

generalize to diverse error patterns. 

Table 7.  Results of tuning general error injection. 

Dataset 
Error injection 

rate 
Best training step 

CER (validation 

sub-set) 
CER (TSMTS) 

Clean-50 

2.5% 14,000 0.80% 2.09% 

10% 10,000 2.99% 1.77% 

40% 12,000 16.69% 2.78% 

Clean-400 10% 14,000 2.20% 1.28% 

Overall, these experiments confirm that a 10% error injection rate is most effective for both directed and 

general error injection methods. Furthermore, training on a larger dataset (Clean-400) yields better 

results, highlighting the importance of data size in improving the model’s ability to correct spelling 

errors. 

5.3 Training Using JODA and Tashkeela Datasets 

To further improve the model’s performance on both translating Jordanian Arabic into MSA and 

correcting linguistic mistakes, we explored training on a combined dataset. Specifically, we combined 

JODA with the 10% directed error-injected Clean-50 dataset and the 10% general error-injected Clean-

50 dataset. As usual, this combined dataset was partitioned into training, validation and test sub-sets by 

merging the corresponding sub-sets from the three individual datasets. 

Figure 6 illustrates the training curves for the tuned model on this combined dataset. The BLEU score 

for the training sub-set continued to improve with more training steps, whereas the validation score 

increased more slowly. Training was halted at Step 15,000 due to the slowing improvement on the 

validation sub-set and the widening gap between the training and validation scores. At this step, the 

validation BLEU score reached 87.57, which is considerably higher than the BLEU score of 59.07 

achieved by training solely on the JODA dataset. This apparent discrepancy arises, because the 

validation sub-set in the single-dataset experiment contains only JODA sentences, which tend to be more 

challenging than the mixed-validation sub-set here. Indeed, when evaluated on the JODA test sub-set, 

this model achieves a BLEU score of only 57.39. 

Figure 6.  Training curves of the tuned model trained on JODA and Clean-50 datasets. 

To assess whether the model could generalize beyond JODA, we compared the CER on the Test-200 

and TSMTS test sub-sets between (1) the model trained on JODA only and (2) the model trained on the 

combined dataset. As shown in Figure 7, the combined-dataset model generalizes more effectively: the 

CER on Test-200 improves from 6.37% to 4.64% and on TSMTS from 11.95% to 1.65%. This result 

demonstrates the model’s enhanced ability to correct common and general spelling mistakes. 



329

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

Figure 7.  CER on two test sub-sets for the tuned model trained with two dataset configurations. 

We also examined the model’s performance when trained on a combined dataset consisting of JODA 

and the larger Tashkeela Clean-400 dataset. In this case, the model yielded a lower BLEU score of 53.24 

on the JODA test sub-set, likely due to an imbalance between Jordanian dialect and MSA content in the 

larger dataset. Consequently, we adopted the model trained on the combined JODA and Clean-50 

datasets. 

6. RESULTS AND DISCUSSION

Table 8 compares the three main models trained under different conditions to evaluate their performance 

in translating Jordanian Arabic into MSA and correcting linguistic mistakes. The baseline model, trained 

only on JODA, reaches a high BLEU 56.07, because many JODA references differ from the inputs by 

only minor spelling errors; n-gram overlap is therefore already near-saturated. However, CER exposes 

those spelling mistakes: the baseline scores 6.58% on Test-200 and 12.41% on TSMTS. Hyper-

parameter tuning (still on JODA) nudges BLEU to 57.77 and trims CER to 6.37% and 11.95%. Adding 

the Clean-50 corpus introduces many perfectly spelled targets and forces the model to generalize beyond 

JODA. BLEU on the JODA test sub-set dips slightly to 57.39, but CER falls sharply to 4.64% on Test-

200 and 1.65% on TSMTS. Thus, while BLEU shows only marginal gains, the steep CER reduction 

demonstrates that the final model corrects errors more aggressively and transfers this ability to unseen 

text, striking a practical balance between fluency (BLEU) and accuracy (CER). 

Table 8.  Comparison of the three main experiments on three test sub-sets. 

Model 
Training time 

in hours 

BLEU score 

(JODA test set) 

CER 

(Test-200) 

CER 

(TSMTS) 

Baseline model (trained on 

JODA) 
1.5 56.07 6.58% 12.41% 

Tuned model (trained on JODA) 2.1 57.77 6.37% 11.95% 

Tuned model (trained on JODA 

+ Clean-50)
10.3 57.39 4.64% 1.65% 

Although large language models deliver impressive results, they often come with substantial 

computational costs. Table 8 lists the training times for the three models, showing that the tuned model 

employing the base ByT5 requires longer training than the baseline model, which uses the smaller ByT5 

variant. Moreover, the final model trained on the combined larger dataset increases training time to 

around five times that of the tuned JODA-only model. In the prediction mode, the trained model 

translates a single Jordanian dialect sentence into MSA in approximately 1.5 seconds. 

6.1 Comparison with Previous Work 

Table 9 presents a comparative overview of recent efforts in translating Arabic dialects into MSA, 

highlighting the methods, datasets and BLEU scores reported for different dialects. Compared to 

previous studies, our work utilizes JODA—the largest Arabic mono-dialect dataset focused on Jordanian 
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Arabic—and achieves the highest BLEU score reported for Levantine dialects, demonstrating the 

effectiveness of our fine-tuned ByT5 model with stochastic error injection. 

Table 9.  Comparison with previous work in translating Arabic dialects into MSA. 

Work Method Dataset/Size BLEU score 

Baniata et al. [26] RNN with POS tagging 
Multidialectal / 
36K 

43 for Levantine 
dialect 

Alimi et al. [27] Fine-tuning pretrained AraT5 model 
Multidialectal / 
69K 

43.38 for Levantine 
dialect 

Kchaou et al. [29] Transformer with data augmentation 
Tunisian dialect / 
36K 

60 

Faheem et al. [30] 
Pretraining followed by fine-tuning a 
transformer 

Egyptian dialect / 
40K 

29.5 

This work 
Fine-tuning ByT5 and stochastic error 

injection 
 JODA / 59K  57.77 

6.2 Manual Inspection of the Model Predictions 

Throughout this research, we primarily relied on BLEU and CER scores to evaluate translation and 

correction quality. While these metrics are generally appropriate, they can also underestimate the 

model’s performance—especially given Arabic’s linguistic richness, where a single sentence can be 

correctly translated into multiple valid forms. Consequently, the model may receive a penalty if it 

produces a legitimate translation that does not exactly match the target sequence. 

Our main objective is to develop a model capable of translating Jordanian Arabic into MSA, rather than 

replicating a specific reference translation. To gain deeper insight into the model’s real-world 

performance, we manually reviewed 100 randomly selected predictions from the JODA test sub-set, 

comparing them with the expert-provided target sentences. Table 10 provides sample inputs, target 

sentences and model outputs, categorized into three classes: (1) correct translations with contextual 

variations, (2) translations exhibiting minor differences and (3) translations with more substantial 

discrepancies, often reflecting synonym usage. 

Table 10.  Overview of 100 manually audited predictions. 

Prediction 

classification 
Count 

Example input 

sentence 
Target sentence Predicted sentence 

1 Correct predictions 51 
بامكاني انزل لمستواك و احكي 

بالطريقة الهمجية الي بتحكي فيها ،

بإمكاني أن أنزل إلى مستواك 
وأتكلم بالطريقة الهمجية التي 

 تتكلمين بها

بإمكاني أن أنزل إلى مستواك وأتكلم 

 بهاتتكلم بالطريقة الهمجية التي 

2 Small differences 40 
المذيعه مش معاه ابدا ما خلتله 

 مجال يحكي أسلوبها مزعج
المذيعة ليست معه أبدا، لم تترك له 

 مجالا ليتكلم، أسلوبها مزعج
المذيعة ليست معه أبدا، لم تترك له 

 زعجمأسلوبها بمجالا ليتكلم 

3 Large differences 9 
يا بنت الحلال مهو طول عمره 

 هون شو عملك يعني
لحلال، هو طوال عمره يا بنت ا

 هنا، ماذا فعل لك إذا؟
هو طوال عمره هنا فيا بنت الحلال 

 لك إذا؟عمل ماذا 

Notably, the manual review revealed that the model’s true performance exceeds the CER evaluation of 

12.39%. When correct translations are not counted as errors, the CER declines to 5.56%. Although these 

findings are already encouraging, they further confirm that the model’s practical performance is stronger 

than what traditional metrics alone may indicate. 

Despite strong overall results, the final model shows two noteworthy limitations. First, ambiguous short 

sentences, where number or gender is underspecified, can lead to incorrect disambiguation in MSA. 

Second, because training data was restricted to Jordanian Arabic and MSA, the system struggles with 

inputs that mix codes (e.g. bilingual Arabic and English sentences). Addressing these issues will require 

additional annotated data and explicit modeling of ambiguity. 

6.3 Evaluation on Additional Jordanian and Other Levantine-dialect Sentences 

We conclude that our final model effectively translates Jordanian Arabic into MSA and corrects 

linguistic errors. 
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Table 11 provides examples of input sentences that were not part of the JODA dataset, alongside the 

model’s corresponding predictions and evaluations. In most instances, the model produces high-quality 

translations, occasionally exhibiting only minor errors. 

Table 11.  Sample input sentences, model predictions and evaluations. 

Input sentence Predicted sentence Evaluation 

وين بدك تروح اليوم؟ أين ستذهب اليوم؟ Correct 

ونك يا زلمة؟شل كيف حالك يا رجل؟ Correct 

الجو دفا اليوم اليوم أالجو دف Minor error 

قديش الساعة هسا؟ كم الساعة الآن؟ Correct 

امبارح كنت تعبان كتير البارحة كنت متعبا كثيرا Correct 

اشتقتلك يخوي اشتقت لك يا أخي Correct 

شو وراك يا زلمة ما وراءك يا رجل؟ Correct 

To probe generalizability beyond Jordanian Arabic, we manually assembled fifteen unseen sentences, 

five each in Palestinian, Syrian and Lebanese dialects and translated them with the final model. The 

model successfully rendered all sentences into grammatical MSA, confirming that its byte-level 

representations capture many shared Levantine structures. Accuracy, however, was lower than for 

Jordanian input: output fluency occasionally suffered from dialect-specific lexemes and translations of 

Lebanese examples that contained French loanwords (e.g. ascenseur, parfum). These observations 

suggest that while the system generalizes reasonably within the Levantine group, expanded training data 

would be needed for consistently high performance across all regional variants. 

6.4 Accessing the Model via Smartphones and Web Portal 

To provide the model’s Jordanian Arabic-to-MSA translation and Arabic error correction capabilities to 

end users, we developed a custom keyboard and a web-based portal. The model is hosted on a server 

and communicates with both the keyboard and web interface using the Flask framework. When users 

enter text and request a correction, the front end sends this text to the Flask API, which processes it 

through the trained model and returns the corrected output in real time. This setup ensures a responsive, 

lightweight user experience by offloading complex processing tasks to the server. 

The custom keyboard, called AI Board, was developed using the open-source OpenBoard project [43] 

for Android and the KeyboardKit 7.9.8 package [44] for iOS. As shown in Figure 8, it features a 

dedicated “صحح” (Correct) button that translates or corrects any text entered via the Arabic keyboard 

or microphone, seamlessly converting Jordanian dialect into MSA. 

Figure 8.  The AI Board translating a Jordanian dialect sentence (left) into MSA (right). 

We also built a web-based portal named Loghati (Arabic for “my language”) to offer open access to this 

solution. In addition to the translation feature shown in Figure 9, the portal provides references for 

Arabic grammar and spelling rules. It supports keyboard and microphone input, allows copying of 

translated text and is built using HTML, CSS, JavaScript, Bootstrap and React.js. 
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Figure 9.  Loghati interface translating a sentence entered from the Jordanian dialect into MSA. 

7. CONCLUSIONS

In this work, we presented an end-to-end system for translating Jordanian Arabic into MSA, correcting 

common linguistic errors and optionally adding diacritics. We began by collecting a large dataset of 

Jordanian dialect sentences (JODA), comprising diverse dialectal usages and error types. Each entry 

was carefully curated by Arabic-language experts, ensuring accurate MSA equivalents. To further 

enhance performance, we incorporated additional resources from Tashkeela, introducing synthetic 

spelling errors to increase the model’s exposure to spelling mistake patterns and ability to correct Arabic 

text. 

Our experiments employed the ByT5 architecture—well-suited for Arabic dialect processing due to its 

byte-level input handling—to achieve robust translation and correction. Through systematic fine-tuning 

of hyperparameters, we identified a tuned combination that improved BLEU scores on the JODA test 

subset by 3% over a baseline system. Furthermore, integrating the error-injected Tashkeela dataset 

enhanced the model’s generalization, as evidenced by significant improvements in CER across various 

benchmark test sub-sets. 

Beyond quantitative metrics, manual reviews revealed that the model’s output often matched or closely 

approximated expert translations, underscoring its practical effectiveness. Finally, we made the resulting 

models accessible via a custom keyboard and a web portal, thus offering user-friendly solutions that 

expand the reach and impact of this research. These solutions will first be introduced in pilot scenarios 

to collect user feedback, enabling further refinement before a wider public launch. 

Our approach, trained on JODA, the largest mono-dialect corpus, achieves the highest reported BLEU 

for Levantine dialects, outperforming prior Arabic-dialect-to-MSA systems. Nevertheless, it can 

mishandle number/gender ambiguities and code-mixed Arabic-English inputs, pointing to the need for 

richer data and explicit ambiguity modeling. Tests on other Levantine samples show reasonable cross-

dialect transfer, but reduced accuracy with dialect-specific or French-derived terms, underscoring the 

need for further adaptation to other Levantine varieties. 

One avenue for future research is to explore larger, more advanced ByT5 or similar transformer-based 

models. Increasing model parameters could enhance their capacity to capture a broader range of 

linguistic nuances, especially when trained on significantly expanded datasets. 

While large models often produce superior results, they may be too resource-intensive for deployment 

on mobile devices with limited computational capabilities. A natural extension is to investigate smaller, 

more efficient architectures, employing techniques, like model distillation or quantization, to reduce size 

and inference time. This would facilitate on-device processing, ensuring offline usability and faster, 

more personalized performance. 

Currently, we rely on two separate models whenever the corrected text also needs diacritization. 

However, modern-language models are powerful enough to handle multiple tasks within a single 
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architecture—one task for correction only and another task for both correction and diacritization. This 

approach eliminates the need to chain two distinct models, which will reduce latency. Future work could 

integrate the developed translation capabilities into Arabic chatbots [45] to enable them to automatically 

understand and translate user inputs from dialectal Arabic into MSA, thereby enhancing their generality 

and linguistic accuracy. 
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ملخص البحث:

تعُاااااالج هاااااذه الورقاااااة التيحاااااديي المتمثااااال فاااااي إنتااااااإ ترجماااااة  دقيقاااااة  مااااان العربياااااة ا ردنياااااة إلاااااى 

ااااااااا عة   (MSA) الحديثااااااااة الفصااااااااحىالعربيااااااااة  وعلااااااااى مااااااااا تصااااااااويب ا خطاااااااااء اللي ويااااااااة ال ي

سااااامية للتيواصااااال باللي اااااة العربياااااة،  الفصاااااحىالاااااري م مااااان أني العربياااااة  اااااي ة الري الحديثاااااة هاااااي الصي

فااااااإني الانت ااااااار الواسااااااا لليهجااااااات المحلييااااااة فااااااي وسااااااا ل التيواصاااااال الاجتماااااااعي إلااااااى جانااااااب 

تعُااااااني مااااان أخطااااااء فاااااي التيهج اااااة وعياااااو    نصُاااااو  انت اااااارالتيفااااااعلات اليومياااااة نجااااام عنهاااااا 

 قواعدية 

ع علاااااى مجموعاااااة بياناااااات  للت لاااااب و ع مبتكاااااراع مبنياااااا بالعربياااااة علاااااى هاااااذه التيحاااااديات، نقاااااديم ن اماااااا

( جُملاااااااااة، إلاااااااااى جاناااااااااب مجموعاااااااااة البياناااااااااات 59135( تتاااااااااألف مااااااااان )JODAا ردنياااااااااة )

ونقااااااوم بتوويااااااف نمااااااوذإع ل ااااااوي    الصااااااناعية)ت ااااااكيلة( المعديلااااااة ماااااان خاااااالال حقاااااان ا خطاااااااء 

ع  البايْااااات تجعلاااااه قاااااابلاع للتيكي اااااف للتيباينُاااااات نصُاااااو  علاااااى مساااااتو   يقبااااالضاااااخم مُااااادرً   مُسااااابقا

المتعليقاااااااة بالتيهج اااااااة فاااااااي الليهجاااااااات المحليياااااااة المختلفاااااااة والتيعقيااااااادات التيركيبياااااااة المختلفاااااااة فاااااااي 

ن امناااااا مااااان خااااالال التيجاااااار  العملياااااة تحساااااين معاااااديل الخطاااااأ فاااااي   هااااارلهجاااااات العربياااااة  ويال

مجموعاااااات البياناااااات الماااااذكورة،  الااااانيري عبااااار تقليااااال ذلاااااك المعاااااديل بفعااااال معاااااايرة الني اااااام علاااااى

ع أني  اااااح أني الني اااااام المقتااااارح ينُاااااتج ترجماااااات  دقيقاااااةع فاااااي مع ااااام الحاااااالات  وتباااااين أيّاااااا كماااااا اتيّ

اااااااعين للحصااااااول  ع لملايااااااين المتحاااااادي ين بالعربيااااااة السي ع ناجعااااااا اااااادار البحااااااا يُ ااااااكيل حاااااالاي الني ااااااام مل

   الحديثة الفصحىعلى نصو   دقيقة بالعربية 

اهن مُ والني ااااااام المقتاااااارح فااااااا صاااااار علاااااااى ترجمااااااة النيصاااااااو  ماااااان العربياااااااة قتي وضااااااعه الاااااااري

اااااي التيرجماااااة مااااان  ا ردنياااااة، وتتيجاااااه مسااااااعي البحاااااا المساااااتقبلية إلاااااى توسااااايا اساااااتخدامه لي طي

 لهجات  عربية أخر  
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