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ABSTRACT 

The rapid advancements in digital imaging technologies, including image restoration (IR), have created a 

growing demand for effective image-restoration techniques. Various kinds of degradation, including noise, blur 

and low resolution, should be handled with these techniques. Restoration is important in many applications, 

including medical imaging, surveillance, photography and remote sensing, where image quality will be critical 

to the correctness of analysis and decision. This article provides an all-inclusive review of state-of-the-art 

(SOTA) methods in image restoration, covering traditional methods as well as modern techniques like deep 

learning (DL) and transformer-based models. Traditional image-restoration techniques include deblurring, 

denoising and super-resolution based on mathematical models and handcrafted algorithms. These methods were 

indeed effective for certain types of noise or blur, but generalized poorly to various real-world scenarios. Recent 

advances in machine learning (ML), especially DL using convolutional neural networks (CNNs), have made 

data-driven approaches that learn directly from large datasets much more effective. Recently, transformer-based 

models, such as Vision Transformers and Swin Transformers, have shown the ability to capture global 

dependencies in images, leading to superior performance on complex restoration tasks. It is also to mention the 

challenge of generalization across the type of degradation, say mixed noise or blur, and across different 

datasets. The proposed survey indicates the limitations of existing approaches, including computational cost and 

generalization challenges and offers insights into possible directions for future research. Considering these 

challenges and achievements, this article attempts to provide helpful guidance on methods for future research on 

restoring images. 
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1. INTRODUCTION

Image restoration, which aims to preserve high-quality images from deteriorating or damaged ones, 

has gained increased attention in modern multimedia-driven society due to the growing usage of 

digital photos. Degradations such as noise and blur can significantly affect image quality, affecting 

everything from everyday photography to medical imaging. Because it preserves details and improves 

visual clarity—two things that are often required for jobs involving image analysis, image restoration 

is therefore an important field of research in computer vision and image processing. The challenge of 

addressing various forms of degeneration has led academics to explore innovative methods for 

accurate and efficient image restoration. 

Traditional approaches to image deblurring, denoising and super-resolution focused on specially 

designed algorithms that introduced regularization and filtering techniques to attempt to make use of 

mathematical models in recovering lost information. Such approaches proved to be very effective for 

some classes of noise or blur, but fared rather poorly at generalizing to other classes of degradation 

and sometimes produced sub-optimal results when applied directly to real-world problems. Thus, the 

entire domain has undergone major changes with recent developments in the fields of ML and DL, 

where a model becomes capable of learning from data rather than from rules. 

The recent resurgence of interest in image restoration is due to architectures that have been designed 

primarily within the context of natural-language processing, particularly those built on the 

Transformer model. Here, among heroes, Swin Transformers and Vision Transformers, or ViTs, have 

proven to capture long-range dependencies and accurately model global interactions within images 

and return much detail lost in more traditional approaches for restoring images. So, mainly, wide pre-

training on megascale data provides those Transformer-based models with a rather strong sense of 
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both global and local features. So, this kind of model proves to be extremely efficient in many 

restoration tasks, from video- and image-compression enhancement to the repair of damaged medical 

images. For this reason, Swin Transformers and ViTs are now the main representatives of modern 

image restoration. It is here that success lies-largest capacity for recovering the finest detail and 

significantly raising the quality of degraded images. 

In recent years, multiple ML techniques are implemented to solve complicated tasks in image 

restoration and related problems. Those methods consist mainly of traditional machine learning, deep 

learning-based methods and more advanced models that include Transformers and GAN-based 

approaches. Each technique presents advantages and limitations and offers a specific solution for 

challenges. Table 1 summarizes these diverse methodologies, highlighting some important studies 

related to each approach. This general summary serves as a foundation for the development of 

techniques in machine learning and offers some insight into just how each approach uniquely 

contributes to image restoration. Notably, traditional methods continue to dominate baseline 

comparisons, but DL, Transformer and diffusion-based models are beginning to take the field, because 

they pose SOTA performance on complex restoration tasks. 

Table 1. Summary of machine-learning approaches and related studies. 

Machine-learning Approach Related Studies 

Traditional Machine-learning Approaches [1],[2],[3],[4] 

DL-based Approaches [5],[6],[7],[8],[9],[10],[11],[12],[13],[14] 

Transformer-based Models [15],[16],[17],[18],[19] 

Multitask and Meta-learning Approaches [20],[21] 

GAN-based Approaches [22],[23] 

Diffusion-based Models [11],[24],[25],[26],[27],[28],[29] 

Hybrid Models [9],[30] 

Domain-specific Approaches [31],[32],[33],[34],[35],[36],[37],[38] 

Despite the remarkable progress made so far, the research in image restoration remains a burdensome 

task with several difficulties. Those include a significant reduction in the computational cost of 

restoring methods for real-time applications, handling multiple degradations together and boosting the 

generality of models across different domains. Lack of high-quality annotated datasets for specific 

domains, such as medical images and setting up cross-domain restoration models are vital today. This 

work considers the techniques developed for image restoration, focusing on deep-learning strategies, 

traditional methods and more recent transformer-based models. At the same time, we pass through the 

main datasets that are generally utilized alongside performance indicators and challenges that 

characterize the state of image restoration research today and point out possible lines for further 

research. 

1.1 Comprehensive Comparison between Existing Survey Papers 

In the field of image restoration, numerous survey articles have been published, each providing unique 

insights into various algorithms, methodologies and applications. However, these surveys differ in 

focus, evaluation criteria and comprehensiveness. Table 2 provides a comparative summary of 

prominent survey articles, which outline their respective strengths and limitations. This comparison 

enables a clearer understanding of the existing literature, helping to identify common approaches, as 

well as gaps in coverage that may benefit from further research. By examining the merits and 

demerits, this review aims to position our study in the context of existing work and to highlight areas 

where our approach may offer additional insights. 

Table 2. Comparison of paper with existing surveys. 

Review Paper Objective Merits Demerits 

[39], 2021 To explore the application of 
DL methods in SAR image 
restoration. 

Offers a detailed analysis of 
SAR-specific restoration 
challenges with deep learning. 

Limited to SAR images, not 
generalizable to other image 
modalities. 



213 
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 02, June 2025. 

  
 

Continuation of Table 2 

Review Paper Objective Merits Demerits 

[40], 2021 To review GAN-based methods 
for image reconstruction in 
medical imaging. 

Explores the successful use of 
GANs in improving medical- 
imaging quality and accuracy. 

Primarily focuses on medical 
imaging, limiting its 
applicability to other fields. 

   [41], 2022   To explore DL and smart 
technologies for image super-
resolution. 

Provides a critical analysis of 
recent advancements in super-
resolution techniques. 

Focuses primarily on super-
resolution, lacks coverage of 
other restoration techniques. 

   [42], 2022 To review DL approaches for 
demoiring screen-shot images. 

Focuses on a niche issue in image 
restoration, providing 
specialized solutions. 

Limited to demoiring 
applications, lacks broader 
applicability to other 
restoration tasks. 

  [43], 2022 To review various image- 
restoration methods for 
different image types. 

Provides a broad review of 
restoration methods across 
diverse image types and 
applications. 

Lacks depth in any specific 
domain due to its broad 
scope. 

 [44], 2023 Surveys diffusion models for 
image restoration and 
enhancement, analyzing their 
advantages, challenges and 
recent improvements. 

Provides a structured taxonomy 
of diffusion models and their 
applications in denoising, 
super- resolution and 
deblurring. 

Diffusion models often 
require high computational 
resources, which is not 
thoroughly discussed in terms 
of practical deployment. 

 [45], 2023 To review various IR methods 
designed to handle salt and 
pepper noise. 

Provides an extensive survey of 
both linear and non-linear 
filtering techniques to restore 
ground- truth images. 

Primarily focuses on salt and 
pepper noise, limiting its 
generalizability to other types 
of image degradation. 

 [46], 2023 To compare GAN-based 
approaches for image 
deblurring. 

Offers a comparative analysis of 
multiple GAN- based methods 
for deblurring. 

Limited to GAN-based 
approaches, excluding other 
potential techniques. 

 [47], 2023 To review DL-based techniques 
for image restoration in real-
world settings. 

Provides a comprehensive 
analysis of different DL 
techniques for image 
restoration. 

Does not focus on specific 
restoration domains, making it 
broad in scope. 

 [48], 2023 To   review    underwater 
image-restoration techniques. 

Addresses specific challenges 
of underwater imaging and 
offers solutions for image 
restoration. 

Limited to underwater optical 
imaging, lacks generalization 
to other image types. 

 [49], 2023 To review quality assessment 
algorithms for realistic blurred 
images. 

Provides insights into quality 
assessment for blurred images 
using a comprehensive 
database. 

Limited to quality 
assessment, lacking 
exploration of actual image 
restoration techniques. 

 [50], 2025 To analyze and compare 
machine learning-based 
techniques for improving image 
quality. 

Offers a broad comparison of 
machine-learning models, 
highlighting their strengths and 
applications in image 
enhancement. 

Lacks in-depth discussion on 
DL-based approaches, 
focusing more on traditional 
ML techniques. 

 [51], 2024 To develop and analyze a 
GAN-based image-restoration 
algorithm for engineering 
applications. 

Highlights the potential of 
GANs in reconstructing and 
restoring images with high 
precision in engineering 
contexts. 

Focuses on engineering 
applications, with limited 
exploration of general- 
purpose image-restoration 
techniques. 

 [52], 2024 To analyze deep-learning 
techniques applied to image 
denoising. 

Provides an in-depth review of 
SOTA methods in denoising 
using deep learning. 

Primarily focuses on 
denoising, with limited 
exploration of other 
restoration tasks. 

 [53], 2024 To report on the NTIRE 2024 
challenge focused on bracketing 
image restoration. 

Highlights the latest 
advancements from the NTIRE 
challenge with benchmark 
results. 

Results are constrained to the 
challenge datasets, limiting 
real-world applicability. 

Proposed Survey To offer an overview of image 
restoration methods with a 
focus on recent advancements. 

Provides a comprehensive 
analysis of image restoration 
techniques, including GAN, 
hybrid, DL and transformer-
based methods, …etc. 
Additionally, it presents key 
metrics such as inference time, 
PSNR and SSIM, enabling 
detailed evaluation of each 
method’s efficacy. 
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1.2 Performance Comparison of Image-restoration and denoising Techniques 

Table 3 presents a comparative evaluation of the effectiveness of various denoising and IR methods. 

DnCNN easily handles both known and unknown noise levels while achieving good PSNR in a range 

of denoising applications. As noise-reduction settings are changed, the efficacy of Wiener filtering 

improves, offering a balanced approach to both noise reduction and feature retention. An extremely 

useful technique for minimizing noise and preserving significant image edges is total variation 

regularization. QTP loss improves perceptual quality by addressing problems, such as inadequate 

augmentation and misleading color. The Three-stage CNN exhibits remarkable performance in color- 

image restoration, especially in denoising and demosaicking. Finally, VCRNet is a strong candidate 

for real-world settings, since it effectively resolves no-reference image-quality assessment (NR-IQA) 

tasks, retrieving images even in the absence of reference data. Depending on the particular needs of 

image-restoration activities, these approaches provide a variety of possibilities. 

Table 3. Performance comparison of image-restoration and denoising techniques. 

Model/Technique Accuracy/Performance 

Deep Neural Networks (DnCNNs) High PSNR results across various tasks; specific improvements noted in denoising. 

Wiener Filtering Performance improves with better noise reduction; often provides a good balance. 

Total Variation Regularization Effective in reducing noise while preserving image edges. 

Quality-Task-Perception (QTP) Loss  Enhanced perceptual quality for images during restoration. 

Three-stage CNN Effectively restores color images with high performance in various tasks. 

Visual Compensation Network 

(VCRNet) 

Efficiently handles NR-IQA tasks, showing significant promise in restoring images. 

2. LITERATURE SURVEY 

This section explores the various algorithms used in Image Restoration. Figure 1 depicts a taxonomy   

of image restoration that divides the methods into several categories of model-based approaches. The 

systematic classification above indicates an overview of methods proposed to address various 

problems associated with image restoration, from diffusion-based models, GANs, transformer-based 

models, deep-learning techniques, hybrid approaches, multi-task/meta-learning approaches, to 

conventional machine learning-based models. Each category has several methods proposed to address 

a specific type of vision impairment. 

2.1 Traditional Machine Learning-based Approaches 

Traditional machine-learning techniques have played a very crucial role in image restoration. They 

were applied to various restoration tasks under conditions, like diffraction effects and limited 

visibility. The techniques use mathematical models and feature-driven approaches to solve the 

problem of image degradation, where the model’s understanding of local image properties and image 

production is essential. Although these approaches were significant advances in particular domains, 

they were also inherently limited as techniques based on rigid priors and handcrafted features. These 

models were much less flexible than the subsequently developed DL-based techniques, because they 

frequently required intense fine-tuning to work generically over many applications. However, they 

formed a strong basis for adaptive previous use and image formation that went into the formulation of 

modern image-restoration frameworks. A comparison of various traditional image-restoration 

methods, highlighting their key characteristics and performance, is presented in Table 4. 

Generalized Image Formation Model (GIFM) is a framework in computer vision and image processing 

that describes the process of capturing and reconstructing images. It generalizes the traditional image-

formation models, thus enabling a broader range of applications and accommodating various imaging 

modalities. Liang et al. [1] objective was to rebuild images shot in low-visibility conditions using the 

GIFM. Using a machine learning-based approach, this tactic integrated domain information relevant to 

creating images in challenging conditions, such as fog and dim illumination. The recommended 

method worked well on datasets with poor visibility, successfully enhancing image clarity. However, 

its applicability to a greater range of vision problems was restricted by its inability to adapt to 

significant variations in lighting conditions. 
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Figure 1. Taxonomy diagram for image restoration. 

Local Adaptive Prior-based Image Restoration (LAPIR) is a technique in image processing that deals 

with the process of recovering or enhancing images by using prior knowledge about the content of the 

image, particularly in areas degraded or noisy. Jiang et al. [2] introduced a LAPIR technique 

specifically tailored for space diffraction imaging systems. Using priors that adapt to the specifics of 

the diffraction process, the technique effectively reduced noise and enhanced the restoration of 

features in diffraction-distorted images. This technique, which focused on the distinctive properties of 

space diffraction, significantly improved image quality and was particularly helpful in fields where 

effects of diffraction are frequent, such as astronomy and remote sensing. The algorithm fared better 

than traditional methods in a number of instances when it came to recovering structural information. 

Its use in fixing other image issues, such as motion blur or general low-light photography, was 

constrained by its difficulty in generalizing beyond its original application due to its uniqueness to 

spatial diffraction. 

Yang et al. [3] formalized a generic Image Restoration framework for Visual Recognition (IRVR) 

designed to facilitate holistic semantic recovery across various high-level tasks in image restoration. 

To improve generalization, they maximized semantic recovery during the training of IR models and 

used image regression as an additional regularization term. For compatibility with any potentially 

unseen recognition models, they adjusted the gradient of the primary objective with the regularization 

gradient. The IRVR was recognition-agnostic and integrated as a plug-and-play module into existing 

IR techniques without adding computational cost at inference time. Through extensive experiments, 

Yang et al. [3] demonstrated IRVR’s effectiveness and its strong generalization across different 

downstream high-level tasks. This precise recovery of intrinsic semantic details proved critical for 

advanced machine analysis, ensuring integrity and authenticity in multi-media content. 
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Recent breakthroughs in the restoration of aged photos have improved greatly by generative networks, 

while the restoration quality still remains heavily affected by the latent space properties, which 

captures the necessary semantic information essential for successful recovery. To resolve this problem, 

Chen et al. [4] developed a new generative network that uses hyperbolic embeddings to regenerate old 

photos affected by multiple degradations. For further improving hierarchical representational 

capability, the intermediate hyperbolic features were processed with channel mixing and group 

convolutions. Furthermore, an attention-based aggregation mechanism in hyperbolic space was 

employed; this enabled the latent vectors to capture important semantic factors that contribute to 

higher-quality restoration. A diversity loss function was also defined for steering each latent vector 

toward the disentangling of semantically different aspects. Extensive experiments showed that this 

method outperforms existing restoration techniques with visually pleasing results even for complex 

degradations. 

Table 4. Comparison of traditional image-restoration methods. 

Study Methods/ Algorithms 
Used 

Dataset Used Accuracy/ 
Performance 

Limitations 

[1], 2022 Generalized Image 
Formation Model 

Poor-visibility 
datasets 

PSNR: 17.198, 

SSIM: 0.565, 

CIEDE: 14.402 

Struggles with extreme lighting 
variations 

[2], 2023 Local Adaptive Priors Space-diffraction 
datasets 

SSIM: 0.8503, 

VIF:  0.6425,  

SNR: 22.9858 

Limited generalization to other imaging 
systems 

[3], 2024 Dynamic Gradient 
Calibration, Intrinsic 
Semantic Consistency 
Constraint, Ground-truth 
Augmentation Strategy 

CUB DATASET PSNR: 29.94, 

SSIM: 0.8892 

Limited testing on real-time 
applications, requires more exploration 
for model robustness in dynamic 
conditions 

[4], 2024 Hyperbolic Feature 
Transformation, Group-
wise Feature 
Aggregation 

TJU-OPR, FFHQ 
[54] 

PSNR: 23.64, 

SSIM: 0.8206, 

LPIPS: 0.25,   

FID: 13.175 

Sensitive to latent space selection, which 
affects stability in complex images; 
computational complexity due to 
hyperbolic transformations, challenging 
for large-scale or real- time applications 

2.2 Deep Learning-based Approaches 

Deep-learning methods have revolutionized photo restoration by utilizing the capacity of neural 

networks to automatically recognize complex relationships and patterns in images. DL models can 

extract hierarchical representations from unprocessed image data, allowing for more complex and 

efficient restoration solutions than traditional machine-learning models that depend on manually 

created features. Deep learning is particularly well-suited to image-restoration applications, because 

CNNs efficiently maintain spatial information throughout feature-extraction layers. Table 5 presents a 

comparison of DL-based IR methods, outlining their key features and effectiveness. These techniques 

have greatly improved image restoration by removing the need for manually constructed features and 

allowing models to learn directly from data. Despite challenges with computational resources and data 

requirements, deep learning-based methods continue to advance, adopting innovations that increase 

their accuracy and adaptability across a variety of image-restoration applications. The generalized 

deep-learning architecture, depicted in Figure 2, highlights the key components and workflow of a 

typical neural-network model. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Overview of a generalized deep-learning framework. 
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Block-attentive subpixel-prediction networks (BASPNs) represent a neural-network architecture used 

for high-resolution image generation tasks and also in terms of performance, a high level of 

improvement for the case of sub-pixel image prediction. This network architecture is applied in the 

related applications, such as: image super-resolution, enhancement, or video-frame prediction. In place 

of full-resolution images, this paper introduced a novel family of networks known as Subpixel 

Prediction Networks (SPNs), which predict reshaped and spatially down-sampled block-wise tensors. 

This novel method significantly increased network speed by reducing the impact of spatial 

downsampling on restoration performance. Kim et al. [5] included a unique Subpixel Block Attention 

module which reduced discontinuities between blocks by recalibration of block-wise characteristics in 

order to further improve performance. Experimental results showed that these networks successfully 

matched computational efficiency and restoration quality in three important image restoration tasks: 

image augmentation, color-image denoising and image-compression artifact removal. This study 

demonstrated how SPNs can improve image-restoration procedures’ speed and effectiveness. 

Deep Residual Encoder-Decoder (RED) is a neural-network architecture for IR tasks, particularly 

deblurring, inpainting and denoising. It combines the deep-learning approach with the residual-

learning technique to boost performance in recovering images from distorted or low-quality inputs. 

The Deep Unfolding Network (DUN) developed an effective framework for image restoration by 

combining a regularization module with a data-fitting module. In classic DUN models, which often 

used a DCNN for regularization, data fitting was done prior to regularization at each stage. The 

regularization module was positioned before the data-fitting module in the enhanced DUN that the 

authors of this study deployed. The Regularization by Denoising (RED) method served as the 

foundation for this regularization model, which included a recently developed DCNN. For the data-

fitting part, Kong et al. [6] employed a closed- form method based on the Faster Fourier Transform 

(FFT). Among the many advantages of the proposed DRED-DUN model were its capacity to integrate 

the interpretability of RED with the adaptability of discovered image-adaptive regularization; its full 

end-to-end trainability, which allowed for cooperative regularization-network optimization with extra 

parameters; and its superior performance compared to both model-based and learning-based methods, 

as evidenced by higher PSNR values and better visual quality. Notably, this approach performed better 

than cut CNN-based Reconstruction, which refers to the use of CNNs for the task of reconstructing 

images or signals from incomplete or degraded data. Perdios et al. [7] allowed full-view frame capture 

at rates more than 1 kHz, ultrafast ultrasound (US) which has greatly improved biomedical imaging 

and paved the way for novel methods, such as shear-wave elastography. However, diffraction artifacts 

from sidelobes and grating lobes provide difficulties. Frame rates are decreased by the need for several 

acquisitions for sufficient image quality in traditional methods. A two-step image-reconstruction 

technique based on CNNs was developed for real-time imaging in order to address this issue. This 

method uses a residual CNN trained to eliminate diffraction artifacts to perform a high-quality 

restoration after beginning with a poor-quality estimation from a back-projection-based operation. The 

mean signed logarithmic absolute error was established as the training loss function to address the high 

dynamic range of radio frequency US images. Tests using a linear transducer array showed that this 

technique could achieve a dynamic range of more than 60 dB and rebuild images taken from single 

plane-wave acquisitions with quality on par with the best artificial aperture imaging. 

Based on the free-energy principle, no-reference image-quality assessment techniques have attracted 

much attention and applied GANs recently. As a result, they achieve more accuracy in quality 

prediction than the former methods. However, most of the GAN-based methods can barely recover 

very poor-quality images, resulting in the broken relationship of distorted images and restored images 

between their quality reconstruction. To solve this problem, Pan et al. [8] proposed a VCRNet based 

on the non-adversarial model for better compensation of heavily distorted images. The innovations in 

this model would be a visual compensation module, an optimized asymmetric residual block and a 

mixed loss function based on error maps. All these further enhance the restoration capacity of the 

visual restoration network (VRN) by better handling the visual restorations. VCRNet further enhances 

the ability to accurately estimate the qualities of severely degraded images with multi-level restoration 

features coming from the VRN. Performing SOTA in all seven widely used IQA databases 

demonstrates the effectiveness of the proposed VCRNet for image-quality assessment. 

These are concepts that have been used for various applications in machine learning, image processing 

and computer vision, including representation learning, denoising and image reconstruction. Deep 
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priors are neural networks that serve as implicit priors in generative modeling. Low-rank tensor 

factorization is a mathematical method to decompose an array (tensor) that exists in multi-dimensional 

form into the sum of lower-dimensional tensors. This is very important to handle high-dimensional 

data by retaining significant structures and patterns. Zhang et al. [9] looked at the difficulties related to 

processing mixed noise pollution in hyperspectral images (HSIs). Although a number of approaches 

have been put out to address this problem, they typically fall into one of the following categories: 

model-driven or data-driven. Model-driven approaches were frequently criticized for being sensitive to 

changes in parameters and having high processing costs due to iterative optimization. However, data-

driven techniques often performed poorly due to overfitting. This study suggested a unique approach 

to HSI restoration that blends low- rank tensor factorization (DP-LRTF) with deep denoising priors to 

get beyond these restrictions. Tucker tensor factorization was used to enforce global spectral low-rank 

requirements and two deep denoising priors were used to improve the spectral orthogonal basis and 

spatial reduced factor. This combined strategy effectively used the low-rank structure of HSIs and the 

powerful feature-extraction capabilities of deep learning. Experimental evaluations demonstrated that 

DP-LRTF significantly exceeded both model- driven and data-driven methods in terms of blended 

noise reduction and execution efficiency in a range of simulated and real-world scenarios. 

Table 5. Comparison of deep learning image restoration methods. 

Study Methods/ Algorithms 

Used 

Dataset Used Accuracy/ 
Performance 

Limitations 

[5], 2021 Block-attentive sub-pixel 
prediction networks 

Div2k dataset [56] PSNR: 33.89, 

SSIM: 0.934, 

LPIPS: 0.0990 

Risk of overfitting 

[6], 2021 Deep RED 
(Regularization by 
Denoising) 

Multiple benchmark 
datasets 

PSNR: 35.98 Limited to certain types of 
degradations 

[7], 2021  CNN-based      

reconstruction 

Ultrasound imaging 

datasets 

PSNR:14.23,  

SSIM: 0.31 

Limited to specific 
ultrasound configurations 

[8], 2022 Visual Compensation 

Module, Asymmetric 

Residual Block, Error 

Map-based Mixed Loss 

Function 

Seven representative 
IQA databases 

SROCC: 0.973, 

PLCC: 0.974 

May face challenges in cases 
of extreme degradation 

[9], 2023 Deep priors, low-rank 
tensor factorization 

Hyperspectral datasets PSNR: 32.943, 

SSIM: 0.9704 

Computational complexity 

[10], 2023 Artifact  detection, stain-
style preservation 

Histology datasets PSNR: 26.37, 

SSIM: 0.9359, 

SRE: 56.31 

Limited generalizability 

[14], 2024 A DL-based super- 
resolution method that 
utilizes feature, channel 
and pixel attention 
mechanisms to enhance 
image details. 

DIV2K  [57],  Set 5, 

Set 14, BSD100, 

Urban100 

PSNR: 38.19, 

SSIM: 0.9613 

Computationally more 
expensive and the robustness 
of the complex network 
remains a challenge 

[11], 2024 Denoising Diffusion 
Probabilistic Models 

CelebA-HQ [55] and 
FFHQ [54] 

PSNR: 33.2055, 

SSIM: 0.8662, 

LPIPS: 0.0966 

Slow Convergence 

[12], 2024 Improved GFP-GAN Miner face dataset PSNR:26.1061, 
SSIM:0.7236, 
LPIPS: 0.3827, 
FID: 46.51 

Specific to miner face images 

[13], 2024 Neural Degradation 
Representation (NDR), 
Degradation Query and 
Injection Modules, 
Bidirectional 
Optimization Strategy 

BSD68, UR-BAN100 PSNR: 26.02, 

SSIM: 0.8657 

Potential complexity in 
handling highly 
heterogeneous degradations 

Artifact detection and Stain-style preservation are two closely associated ideas found in the broad 

category of image processing and computer vision, often utilized specifically within medical imaging 

and digital art, as well as within the area of image restoration. Artifact detection consists of detecting 



219 
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 02, June 2025. 

  
distortions  or errors within an image not existing in the scene under photo. Ke et al. [10] addressed 

these artifacts through manual quality control, where the level of automation in image analysis is 

significantly reduced. By detecting and fixing artifacts, a systematic pre-processing technique was 

proposed to bridge this gap and lessen its impact on subsequent AI diagnostic tasks. At first, the AR-

Classifier artefact-detection network distinguished between normal tissues and common artifacts, such 

as out-of-focus regions, spots, marking dye, tattoo pigment and tissue folds. It also categorized artifact 

fixes based on how restorable they were. Then, in an effort to preserve tissue architecture and stain 

styles, the AR-CycleGAN artifact restoration network performed de-artifact processing. A standard for 

performance evaluation was built using both publicly available datasets of breast and colorectal cancer 

and clinically gathered whole slide images. The functional structures of the suggested method were 

rigorously evaluated across multiple metrics in a variety of tasks, including artifact restoration and 

classification, as well as downstream diagnostic tasks, like tumor classification and cell segmentation. 

DCNNs demonstrated remarkable capabilities in feature extraction and detail reconstruction for single- 

image super-resolution (SISR). However, previous DCNN-based approaches often failed to fully 

leverage the complementary strengths among feature maps, channels and pixels, which limited their 

ability to capture rich image details. To address these challenges, Zhang et al. [14] introduced a 

Cascaded Visual Attention Network (CVANet). This network was designed to mimic the human 

visual-attention mechanism to enhance detail reconstruction. The proposed approach incorporated 

three key modules: a Feature Attention Module (FAM) for feature-level attention learning, a Channel 

Attention Module (CAM) to strengthen feature maps through channel-level attention and a Pixel 

Attention Module (PAM) that adaptively selected representative features from previous layers to 

generate a high-resolution output. By effectively exploring feature-representation capabilities and 

human visual-perception properties, CVANet significantly improved image resolution. Experimental 

evaluations on four benchmark datasets demonstrated that CVANet outperformed SOTA methods in 

terms of subjective visual perception, PSNR and SSIM. 

Denoising Diffusion Probabilistic Models (DDPMs) is a class of generative models that have gained 

acceptance for their ability to provide high-quality images and successfully perform various tasks in 

the field of computer vision, especially in image generation and in painting as well as denoising. Pang 

et al. [11] examined a facial image-restoration technique that made use of a pre-trained unconditional 

DDPM model in order to offer more flexible restoration procedures. The overall quality of the restored 

photos was found to suffer from low iterations throughout the resampling process. The study 

suggested an optimization technique for the inversion process that combined continuous sampling and 

sample scheduling in order to lessen this problem and improve image quality. The suggested strategy 

outperformed current techniques in facial image restoration, according to extensive testing utilizing the 

CelebA-HQ [55] and FFHQ datasets [54]. In terms of LPIPS and PSNR measures, the outcomes 

showed an excellent performance. Additionally, face-recognition accuracy improved by 15.7% when 

photos were restored using random masks and by a significant 26% when images were restored using 

central masks. 

Improved GFP-GAN is an advanced model of the original GFP-GAN model, designed with the 

intention of high-quality facial image generation and restoration. GFP-GAN pays special attention to 

generating more realistic human faces while also preserving details and improving quality. A New 

Blind Restoration Approach for Miner Face Images Utilizes an Enhanced GFP-GAN Model. The 

challenges presented by miner face images, which are crucial for information exchange and for the 

digital transformation and astute management of mining firms, were addressed. To solve the issues of 

complex degradation variables including noise, blurring and low resolution, Zhang et al. [12] proposed 

a blind-restoration model built on an improved GFP-GAN. This concept attempted to achieve a 

balance between integrity and authenticity throughout the repair process. The authors successfully 

removed the complex degeneration from the miner face photos by first integrating a UNet++ network, 

using the pre- trained StyleGAN2 network as a source of previous knowledge. To improve the use of 

previous features from the pre-training network, they also added a channel-attention technique to the 

channel-split spatial feature-transform layer. This method allowed the miner face photographs to more 

accurately and authentically portray their end result. According to experimental data, the suggested 

approach significantly outperformed competing model methods in terms of reconstructing miner face 

photos. 

At present, the conventional techniques used in the restoration of images are adequate for only one 
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type of degradation in the image. However, in real-time applications, the nature of degradation varies 

and is mostly unknown. This mismatch may lead to a considerable drop in the performance of the 

model under consideration. With the motivation to overcome the mentioned problem, Yao et al. [13] 

came up with the all-in-one image-restoration network for managing multiple degradation types inside 

a single framework. The core of this approach is a neural degradation representation (NDR), which 

captures the unique characteristics of different degradation types. The NDR acts like a neural 

dictionary, which can adaptively decompose various degradations into fundamental components and 

allows the network to generalize across multiple degradation types. The authors introduced a 

degradation-query module and a degradation-injection module to utilize the NDR in order to 

approximate and inject the specific degradation patterns according to the learned representation, thus 

allowing the network to handle diverse degradations in a unified way. Moreover, it makes use of two-

way optimization strategy: It actually degrades and reconstructs in the process, one after another, in 

order to enhance the degradation representation. 

2.3 Transformer-based Models 

Recently, transformer-based models have emerged as highly successful image-restoration techniques 

by leveraging the ability to detect local and global dependencies in image data. First developed for 

applications in natural-language processing, transformers established the self-attention mechanism that 

enables them to look at data in their entirety by evaluating the significance of different input elements. 

Since transformers can understand more complex patterns in images, as well as contextual links across 

the entire image, they tend to perform well in restoring images compared to traditional CNNs that 

basically rely on localized features. Even though the transformer-based models for image restoration 

are still nascent, there is definitely a lot of room to improve, because they can fit well and also capture 

high-order correlations in images. Such transformers are bound to be part of future SOTA image-

restoration systems, not to mention the critical components of the systems, since efficiency gains and 

architectural advances are ongoing. Figure 3 illustrates the structure of a Transformer-based model, 

which processes information by focusing on different parts of the input data. This approach allowed 

the model to understand relationships between elements efficiently. 

 

 

 

 

 

 

 

Figure 3. Overview of a generalized transformer-based model. 

SwinIR includes three main parts, which are shallow feature extraction, deep-feature extraction and 

high-quality image reconstruction. Deep Feature Extraction combines several residual Swin 

Transformer blocks, having several layers of Swin Transformers combined with residual connections. 

Liang et al. [15] tested the model on three sample tasks: image super-resolution (including classical, 

lightweight and real-world scenarios), image denoising (including both grayscale and color images) 

and JPEG compression artifact removal. Experimental results demonstrate that SwinIR outperforms 

SOTA approaches in performance by 0.14 to 0.45 dB, while also achieving a decrease of up to 67% in 

the total number of parameters. 

RFormer (Reconstruction Transformer) combines reconstruction tasks with transformer architectures 

for applications in image processing and computer vision. This method leverages the transformers’ 

ability to capture long-range dependencies and learn complex data patterns in applications, such as 

image inpainting, noise removal and super-resolution. Deng et al. [16] presented this approach coupled 

with a new dataset, Real Fundus, consisting of 120 pairs of low and high-quality fundus images; this 

dataset focuses on addressing the difficulties of reconstructing clinical fundus images. Their 

contribution introduced a Transformer-based Generative Adversarial Network (GAN), which 

addresses real-world degradation in clinical fundus images. At the heart of this architecture is the 

Window-based Self-attention Block, which captures the long-range dependencies and the non-local 

self-similarity in an efficient manner. Furthermore, a Transformer-based discriminator was used to 

further improve the visual quality of reconstructed images. Experiments on the RF dataset showed that 
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RFormer performed substantially better than the SOTA methods. 

Wang et al. [17] developed the Uformer, a Transformer-based architecture for image restoration which 

balances efficiency with effectiveness using Transformer blocks in forming a hierarchical encoder-

decoder network. There are two novel designs, one is the locally-enhanced window Transformer block 

and the other one is a learnable multi-scale restoration modulator. LeWin Transformer block employs 

non-overlapping window-based self-attention to efficiently capture the local context without 

consuming considerable computation for high-resolution feature maps. Meanwhile, the multi-scale 

restoration modulator is, in fact, a kind of multi-scale spatial bias that refines features from the 

decoder’s layers while enhancing detail restoration without computational overhead or significant 

increases in parameters. These improvements can help Uformer model essential dependencies for 

image restoration at different levels; namely, local and global. Thorough testing has been conducted 

on various tasks of restoration and as a result, Uformer has shown comparable or sometimes superior 

performance to SOTA methods while maintaining architectural simplicity. 

The Under-Display Camera (UDC) allows users to realize an all-screen experience based on the 

placement of a camera below the display panel, but this setup heavily degrades the image quality due 

to the unique properties which affect the display, so restoration is really challenging. Although 

multiple solutions have been proposed toward dealing with the UDC image-restoration issue, there are 

yet no specific methods and databases used for restoring UDC face images, which happen to be a basic 

problem when taking into consideration UDC applications. In response to the same, Tan et al. [18] 

designed a two-stage network and named it UDC Degradation Model Network (UDC-DMNet). This 

simulates the color filtering effect, brightness attenuation and diffraction effects seen when using UDC 

imaging as it synthesizes UDC images. The authors developed dedicated UDC face training and 

testing datasets named FFHQ and CelebA- Test in aid of UDC face restoration by making use of 

UDC-DMNet in combination with good-quality face images; namely, from FFHQ [54] and CelebA-

Test. They introduced a new kind of dictionary-guided transformer network known as DGFormer that 

comes up with facial component dictionary, with image characteristic accounting for the particular 

features of UDC image and can hence blindly recover a face related specifically to a UDC scenario. 

Experimental results show that the proposed DGFormer and UDC-DMNet have the SOTA 

performance in UDC image restoration. 

Zhang et al. [19] introduced a multi-stage image-restoration (IR) approach for progressively restoring 

images with multiple degradations by transferring similar edges and textures from a reference image, 

referred to as the Reference-based Image Restoration Transformer (Ref-IRT). The proposed method 

operates in three stages. In the first stage, a cascaded U-Transformer network performs the preliminary 

recovery of the degraded image. This network comprises two U-Transformer architectures connected 

by feature-fusion layers at both encoder and decoder levels, enabling each U-Transformer to predict 

the residual image step-by-step, progressing from simple to complex and from coarse to fine toward 

complete recovery. The second and third stages aim to enhance the restoration quality by transferring 

textures from a reference image to the partially restored target image. To achieve accurate content and 

texture matching between the reference and target images, the authors propose a quality-degradation-

restoration method. A texture-transfer and reconstruction network then maps these transferred features 

to generate the final high-quality output. By progressively refining degraded inputs, the method 

enhances restoration quality, particularly in cases involving severe distortions. This approach 

demonstrates effectiveness in handling complex degradations by incorporating contextual information 

from high-quality references. Experiments conducted on three benchmark datasets confirm the 

superior performance of Ref-IRT in comparison to other cutting-edge techniques for multi-degraded 

image restoration. 

Table 6 provides a comparison of transformer-based models, highlighting their architectures and 

performance in image restoration. 

2.4 Multi-task and Meta-learning Approaches 

Recent image-restoration techniques have become popular due to multi-tasking and meta-learning 

techniques, because they offer solutions that can work based on shared data-related activities or 

quickly adapt novel restoration settings. They overcome the pitfalls with single-task models, which 

struggle most of the time not to generalize across other degradations and various context-specific types 
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of images by allowing the model to learn common representations of improvements in performance in 

various tasks. All things considered, the multi-task and meta-learning techniques have enlarged the 

scope of image restoration in that they provide tools for not only improving the performance on known 

tasks, but also allowing models to be well equipped in coping with new and challenging degradation 

conditions. Further development is expected to advance resilient and flexible models in image 

restoration that could solve a range of dynamic problems of image deterioration. A detailed 

comparison of multi-task and meta-learning approaches, showcasing their key strategies and 

performance in image restoration, is provided in Table 7. 

Table 6. Comparison of transformer-based models. 

Study Methods/ Algorithms Used Dataset Used Accuracy/ 
Performance 

Limitations 

[15], 2021 Swin Transformer for 
image restoration 

Classic5 [58], LIVE1 [59], 

Flickr2K 

PSNR: 34.52,  

SSIM: 0.908 

High resource 
consumption 

[16], 2022 Transformer-based GAN Fundus clinical dataset PSNR: 28.38, 

SSIM: 0.873 

Specific to fundus 
images 

[17], 2022 U-shaped transformer, 
Window-based Self- 
attention, hierarchical 
encoder-decoder structure, 
skip connections 

SIDD (Smartphone Image 
Denoising Dataset) [60], 
GoPro Dataset, DIV2K  
Dataset [56] 

PSNR: 26.28 , SSIM: 0.842 High computational 
cost due to 
transformer-based 
architecture 

[18], 2023 DGFormer, UDC-DMNet FFHQ-P/T, 

CelebA-Test-P/T 

PSNR: 38.35, SSIM: 

0.9678, LPIPS: 0.0720 

Limited to UDC- 
specific scenarios 

[19], 2024 Reference-based Image 
Restoration Transformer 
(Ref- IRT), Cascaded U-
Transformer Network, 
Texture Transfer and 
Reconstruction Network 

CUFED5, WR_SR, 
XRIR 

PSNR: 28.893, 

SSIM: 0.905, 

LPIPS: 0.421 

Requires reference 
image for optimal 
restoration 

Table 7. Comparison of multi-task and Meta-learning approaches. 

Study Methods/ Algorithms 
Used 

Dataset Used Accuracy/ 
Performance 

Limitations 

[20], 2022 Dual-domain restoration 
network 

CT and low-dose 
imaging datasets 

PSNR: 42.03, SSIM: 

0.966, RMSE: 20.18 

Specific to CT and low-dose 
images 

[21], 2022 CNNs, Unfolded of 

Multi-method pliers 

Multispectral 
datasets are used 

PSNR: 36.47,  

SSIM: 0.9873 

Increased complexity and 
computation limited 

DuDoUFNet is a specialized DL model that is set to solve the challenges of image restoration by 

progressively reconstructing images in a dual-domain framework. It is a dual domain under-to-fully 

complete progressive restoration network which was created in this work with the goal of combining 

low-dose computed tomography (LDCT) with metal artifact removal (MAR). Due to the increasing 

use of low-dose computed tomography (LDCT) to reduce radiation exposure in patients, image quality 

is frequently compromised by noise, particularly in cases where patients have metallic implants. This 

can lead to extra streak artifacts and increased noise, which can impair medical diagnoses and related 

applications. The main emphasis of previous studies was either full-dose CT MAR or denoising LDCT 

images without considering the effect of metallic implants. Reconstructions from MARLD may not be 

as good as they may be if conventional MAR or LDCT methods are used. Zhou et al. [20] used a two-

stage progressive restoration network to effectively restore from the sinogram to the image domain 

while drastically lowering noise and artifacts. 

Marivani et al. [21] examined MIR and fusion by framing the problem as a linked convolutional sparse 

coding challenge, employing the Method of Multipliers (MM) for resolution. The MM-based strategy 

drove the building of a CNN encoder, relying on the concepts of deep unfolding. Marivani et al. [21] 

suggested two multimodal models that combined the specified encoder, followed by a customized 

decoder that transformed the learned representations into the appropriate output. Unlike most current 

deep learning techniques, which often featured several encoding branches blended by concatenation or 

linear combination, this technique offered a more efficient and systematic approach for fusing input at 

various stages of the network. This method resulted in representations that permitted accurate image 
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reconstruction. Marivani et al. [21] evaluated the models on three image-restoration domains and two 

image-fusion domains. Those quantitative and qualitative comparisons with other SOTA analytical 

and deep-learning techniques further emphasized that the proposed framework outperforms. 

2.5 Generative Adversarial Network (GAN)-based Approaches 

GAN is a strong image-restoration technology that emerges from a novel framework, which is capable 

of generating realistic images from the damaged input. They are composed of two neural networks, the 

discriminator and the generator. GANs have been trained against each other. The goal of the generator 

is to generate high-quality restored images. The discriminator judges the realism of the generated 

images by distinguishing between made and genuine outputs. The adversarial structure of GANs 

makes them particularly effective in restoration tasks that preserve the texture and details of the 

original image. The generator has to produce images that look more realistic. GAN-based approaches 

focus on the generation of images that should have realistic textures and structural features and hence 

these are useful for applications where perceptual quality is the requirement. They are very effective 

whenever the classical models fail, as for example, in extreme noise reduction or super-resolution at 

very high levels, they have the capacity to learn complex distributions. Figure 4 illustrates the structure 

of a GAN, which consists of two components—a generator and a discriminator. The generator creates 

data samples, while the discriminator evaluates their authenticity, enabling the model to generate high-

quality outputs through an adversarial training process. 

 

 
 

 

 

 

 

Figure 4. Generalized representation of a GAN architecture. 

Deep-Masking Generative Network (DMGN) is specifically a deep-learning model set up for 

numerous image-generation and restoration applications, typically where selective masking of various 

parts of the images under consideration is involved. It is a unified technique for recovering 

backgrounds from images that have been superimposed. Feng et al. [22] unified framework for 

background restoration from overlain images that successfully handles different kinds of noise—the 

DMGN—was presented. The generative technique used by the DMGN is coarse-to-fine. It starts by 

producing a noise image and a coarse background image simultaneously. The background image is 

then improved in quality by using the noise image for refinement. The unique Residual Deep-Masking 

Cell, which enhances the extraction of pertinent information while reducing noise using a learnt gating 

mask that regulates information flow, lies at the heart of the DMGN. The DMGN gradually produces 

noisy images and high-quality background images by repeatedly applying this cell. To help with 

backdrop refining, a two-pronged approach is also used to take use of the created noise image as 

contrasted signals. Extensive tests on three challenges (image dehazing, image reflection removal and 

rain streak removal) showed that the DMGN consistently beats the SOTA techniques customized for 

each particular job. 

UW-CycleGAN refers to the advanced version of the CycleGAN model which has been designed 

specifically with unsupervised image-to-image translation tasks in the forefront. It uses 

transformations involving wavelets to refine traditional CycleGAN architectures on their performance. 

Yan et al. [23] suggested Model-driven and cycle-consistent generative adversarial network 

(CycleGAN) which is inspired by the underwater image-creation model. Targeting the transmission 

map, scene depth, attenuation coefficient and background light directly was the goal of the model. 

Extensive trials proved that this technique produced recovered photographs with improved color 

saturation and brightness, surpassing other approaches for restoring underwater images in both 
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quantitative and qualitative aspects. The efficiency of the CycleGAN in enhancing detection accuracy 

was further shown by research on underwater item detection. 

Table 8 presents an overview of GAN-based approaches, emphasizing their methodologies and 

effectiveness in image restoration. 

Table 8. Comparison of GAN-based approaches. 

Study Methods/ Algorithms Used Dataset 

Used 

Accuracy/ Performance Limitations 

[22], 

2021 

Deep-masking generative 
network 

PLNet [61] PSNR:23.05, SSIM:0.823 Struggles with complex occlusions 

[23], 

2023 

CycleGAN for underwater 
image restoration 

NYU-V2 

dataset [62] 

PSNR: 21.14, SSIM: 0.83 ,  

UIQM: 2.24, CCF: 50.10 

Struggles with complex 
underwater conditions 

2.6 Diffusion-based Models 

Diffusion-based models have been the latest advancement in image restoration. Image models can 

enhance damaged images with probabilistic-modeling simulation of physical-diffusion processes 

iteratively. Such models work to revert a noisy image to its original state through progressive and 

reversible procedures that borrow inspirations from concepts, such as image denoising and noise 

diffusion. Unlike the rest of the restoration algorithms that predict restored results almost 

instantaneously, diffusion models learn complicated noise patterns and gradually eliminate them to 

produce images with a very fine degree of control over the restoration process. This is novel in the 

context of diffusion-based models and with it, the future prospects are promising in image restoration. 

As the techniques for more efficient computations and faster sampling continue to advance, it can be 

anticipated that diffusion-based models will increasingly be integrated into flexible frameworks of 

high-fidelity image restoration toward wide applications requiring high quality and flexibility over 

many types of degradations. Figure 5 depictes the framework of a diffusion model, where data is 

gradually transformed into noise in a forward process and then reconstructed in the reverse process. 

 

 
 
 

 

 

 

 
Figure 5. Architecture of a diffusion-based generative model. 

Plug-and-Play IR covered a well-established and flexible way to solve inverse problems by making 

use of pre-trained denoisers as implicit image priors. Most current methods were discriminative 

Gaussian denoisers. However, there was no research on diffusion models as generative denoiser priors. 

Although some research incorporated diffusion models into image restoration, they had either sub-

optimal performance or needed an extreme number of Neural Function Evaluations (NFEs) during 

inference. To overcome such limitations, Zhu et al. [24] introduced DiffPIR that combined the plug-

and-play scheme with the diffusion sampling. In contrast to traditional plug-and-play IR schemes 

relying on Gaussian denoisers, DiffPIR utilized the generation ability of diffusion models to produce 

better image restoration. The scheme was tested on three prominent IR tasks; i.e., super-resolution, 

deblurring and inpainting. Experimental performance on the FFHQ and ImageNet benchmarks 

confirmed that DiffPIR achieved SOTA reconstruction accuracy as well as visual quality and, at the 

same time, kept an inference process within 100 NFEs. 

Luo et al. [27] aimed to enhance the usability of diffusion models in IR by optimizing important 

factors, like network architecture, noise intensity, denoising steps, training image size and 

optimization methods. Luo et al. [27] introduced Refusion, a U-Net-based latent diffusion model, that 

performed diffusion in a low-resolution latent space with high-resolution details left for decoding. In 
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contrast to other latent diffusion models that employed VAE-GAN for compression, their model was 

more stable and produced very precise reconstructions without adversarial training. Such improvement 

enabled the model to efficiently handle various image-restoration tasks like real-world shadow 

removal, high-resolution non-homogeneous dehazing, stereo super-resolution and bokeh-effect 

conversion. Refusion was shown to handle large-scale images (e.g. 6000×4000×3 in high-resolution 

dehazing) without sacrificing robust performance on various restoration tasks. Notably, it achieved the 

best perceptual performance in the NTIRE 2023 Image Shadow Removal Challenge. 

Ortega et al. [28] analyzed the role of anisotropic-diffusion models in image restoration and 

emphasized the role of the diffusion function, where, traditionally, this diffusion function was fixed as 

part of the classical approach. The idea is introduced on learning this function dynamically using 

either a Fields of Experts (FoE) or a U-Net, demonstrating that their approach outperformed 

conventional and SOTA models with some numerical experiments. Ortega et al. [28] Perona-Malik 

model combined with machine-learning techniques was leveraged to directly learn an optimized 

diffusion function from data. By combining classical approaches with data-driven methods, a balance 

between interpretability in a mathematical sense and improved restoration was achieved. By 

demonstrating generalization to a host of image-restoration tasks, this approach offered the possibility 

of offering a more stable and effective replacement for purely deep learning-based models, such as 

blind denoising. 

Although diffusion-based IR techniques have shown impressive results, their poor inference speeds—

which required hundreds or even thousands of sample steps—hampered their applicability. Current 

acceleration methods tried to expedite this process, but they frequently resulted in performance issues 

and very blurry restored photos. In order to overcome this restriction, Yue et al. [29] put out an 

effective IR diffusion model that greatly decreased the number of necessary diffusion steps without 

sacrificing image quality. By doing away with the requirement for post-acceleration during inference, 

their method prevented performance deterioration. By modifying their residuals, they specifically 

created a Markov chain to ease the transitions between high- and low-quality images, significantly 

increasing transition efficiency. Furthermore, in order to regulate the noise strength and the varying 

speed during the diffusion process, they created a noise schedule. According to experimental 

assessments, the suggested method only required four sample steps and performed better than or on 

par with SOTA methods in four important IR tasks: image high resolution, inpainting, blind facial 

restoration and deblurring. 

In order to increase versatility in face-image restoration, Pang et al. [11] created a method using 

DDPM and made use of an unbiased DDPM model that had already been trained. Pang et al. [11] 

found that the quality of the recovered photos suffered when there were not as many iterations in the 

resampling procedure. An optimization strategy for the inversion process was put out to address this 

problem and produce better restoration quality by combining sample scheduling with progressive 

sampling. Numerous tests with the CelebA-HQ[55] and FFHQ datasets[54] showed that their approach 

outperformed other methods in face-image restoration. It performed outstandingly in terms of LPIPS 

and PSNR measurements, specifically. Additionally, the restoration method increased the accuracy of 

detection of faces by 15.7% for facial photos with random masks and by 26% for images with central 

masks. 

Welker et al. [25] tackled the problem of blind JPEG restoration at high compression levels by 

leveraging the high-fidelity generating capabilities of diffusion models. S. Welker et al. [25] named 

their approach DriftRec and suggested a change to the forward stochastic differential equation in 

diffusion models. DriftRec successfully avoided the blurriness typical in other approaches and 

substantially better restored the distribution of clean images, as evidenced by a comparative study 

against an L2 regression baseline using the same network design and cutting-edge JPEG restoration 

techniques. This method’s applicability to different restoration jobs is increased, because it merely 

needed a dataset of clean/corrupted image pairings and did not require any prior knowledge of the 

corruption process. DriftRec took use of the closeness of both clean and damaged image distributions, 

which are far closer to one another than they are to the usual Gaussian prior utilized in diffusion 

models, in contrast to other conditional and unconditional diffusion models. Because of this, even in 

the absence of additional improvements, it only required small amounts of extra noise and fewer 

sample steps. Despite not being trained on instances of this nature, the study demonstrated that 

DriftRec extended well to difficult circumstances, including unaligned double JPEG compression and 
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blind restoration of JPEGs received from the internet. 

PD-CR is patch-based diffusion with constrained refinement that uses the diffusion processes to 

improve images through refinement of local patches. The method introduced by Cho et al. [26] 

improved the noise estimates that were produced by patch-based diffusion models so that the restored 

image, with maintained brightness of the damaged input image, could be given. In the proposed 

method, patch- based diffusion models were applied to efficiently address high-resolution photos with 

minimal memory usage. The experimental results indicated that the proposed method was superior to 

existing leading-edge approaches in various image-restoration tasks, which included image denoising 

and raindrop removal. 

Table 9 presents a comparison of diffusion-based models, outlining their methodologies, datasets, 

accuracy and key limitations in image restoration. 

Table 9. Comparison of diffusion-based models. 

Study Methods/ Algorithms Used Dataset Used Accuracy/ 
Performance 

Limitations 

[24], 2023 Denoising Diffusion Models 
for Plug-and-Play Image 
Restoration 

FFHQ[54], 

ImageNet 

PSNR: 31.01, 

LPIPS: 0.152 

High computational cost  and slow 
inference due to iterative denoising 
steps 

[27], 2023 Enabling Large-Size 

Realistic Image Restoration 

with Latent-Space Diffusion 

Models 

Flickr1024 PSNR: 21.88, 

SSIM: 0.6977, 

LPIPS: 0.121 

Limited generalization to diverse 
degradations and training stability 
challenges. 

[28], 2024 Learning Diffusion 
Functions for Image 
Restoration 

BSD500 [63] PSNR: 29.5, 

SSIM: 0.83, 

LPIPS :0.15 

High computational cost 

[29], 2024 Efficient Diffusion Model 
for Image Restoration by 
Residual Shifting 

RealSR-V3,       
Re- alSet80 

PSNR: 25.02, 

SSIM: 0.6833, 

LPIPS: 0.2076 

Limited generalization to unseen 
noise types 

[11], 2024 Denoising Diffusion 
Probabilistic Models 

CelebA-HQ [55] 
and FFHQ [54] 

PSNR: 33.2055, 

SSIM: 0.8662, 

LPIPS: 0.0966 

Slow convergence 

[25], 2024 Diffusion models adapted 
for JPEG restoration 

JPEG image 
datasets 

PSNR: 25.78, 
SSIM: 0.73,  
FID: 29.7 

Limited to JPEG artifacts 

[26], 2024 Patch-based diffusion SIDD [60] and 

Raindrop dataset 

[64] 

PSNR: 38.21, 

SSIM: 0.901, 

LPIPS: 0.134, 

NIQE: 13.72 

Edge artifacts 

2.7 Hybrid Models 

Hybrid models in image restoration exploited the advantages of multiple methods, including 

generative models, deep learning and traditional machine learning for added performance and 

adaptability. Hybrid models can be constructed by combining the global contextual understanding of 

transformers, localizing the feature-extraction capacities of CNNs to specific interest regions and the 

qualities of image-creation realism as provided by diffusion models or GANs. This synergy allows for 

stronger image restoration solutions that can handle a variety of degradation types and challenging 

restoration tasks. Future research on hybrid models is likely to focus on more effective structures that 

balance performance with complexity. Innovations, such as attention processing, adaptive feature 

extraction and knowledge distillation, may enhance the effectiveness of hybrid methods even further. 

Hybrid models are expected to be pivotal for optimal performance in many image-restoration tasks as 

the current developments progress. Table 10 compares various hybrid approaches, highlighting their 

combined methodologies, performance across datasets, accuracy and associated limitations in image 

restoration. 

Hybrid Unfolding Reconstruction (HybrUR) is a deep-learning model aimed towards image-

reconstruction tasks in MRI and other imaging modalities. It combines elements of traditional image-

reconstruction techniques and modern deep-learning methods with the goal of improving image-
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restoration quality and efficiency. Yan et al. [30] provided an unsupervised framework for underwater 

photo restoration using unpaired underwater and airborne photos, based on data and physics. To 

improve image quality and perform effective colour correction, an explicit degeneration model of 

underwater photos was developed using well-established optical-physics concepts. The loss of 

underwater vision was modelled using neural networks and a generator based on the Jaffe-McGlamery 

degeneration theory was created. The scene depth and degeneration factors for backscattering estimate 

were additionally physically restricted in order to solve the vanishing-gradient problem during hybrid 

physical-neural model training. The experimental results demonstrated that the proposed method 

successfully restored high-quality unmanaged underwater photographs without supervision. On many 

benchmarks, their technique outperformed several cutting- edge supervised and unsupervised 

algorithms, indicating that it will perform well in real-world situations. 

Table 10. Comparison of Hybrid approaches. 

Study Methods/ Algorithms 
Used 

Dataset Used Accuracy/ 
Performance 

Limitations 

[30], 2023 Hybrid physical- neural 
approach using GANs 

RUIE[65] UICM: 5.142, 
UCIQE: 0.495 

Struggles with edge retention 

[9], 2023 Deep priors, low- rank 
tensor factorization 

Hyperspectral 
datasets 

PSNR: 32.943, 
SSIM: 0.9704 

Computational complexity 

Combined Deep Priors with Low-rank Tensor Factorization for Hyperspectral Image (HSI) 

Restoration is a novel approach designed to improve the quality of HSIs, which often suffer from 

noise, distortions and incomplete data. This method integrates deep-learning techniques with low-rank 

tensor factorization to effectively restore and reconstruct HSIs while preserving essential details and 

spectral information. 

The global spectral low-rank criterion was represented by Tucker-tensor factorization in the proposed 

technique. Two deep denoising priors were then used to optimize the spectral orthogonal basis and the 

spatial reduction factor. With this combined approach, Zhang et al. [9] were able to benefit from the 

low-rank characteristics of HSIs and the potent feature-extraction capabilities of deep learning for HSI 

restoration. The DP-LRTF outperformed both model-driven and data-driven approaches in terms of 

execution efficiency and mixed-noise removal from HSIs in a number of simulated and real-world 

studies. 

2.8 Domain-specific Approaches (Underwater, Hyperspectral, Remote Sensing, 

Medical Imaging, …etc.) 

In image restoration, domain-specific approaches focus on adapting methods and algorithms to better 

adapt to the specific challenges each particular application domain has, such as medical imaging, 

remote sensing, underwater imaging and hyperspectral imaging. These domains often display 

characteristic degradation types and quality of restoration requirements that necessetate highly 

specialized procedures that capitalize upon the features of the domains and the type of images. Table 

11 summarizes domain-specific approaches, focusing on their tailored methodologies, performance on 

specialized datasets and key limitations in image restoration. 

Chang et al [31] explored the low-rank features across spatial, spectral and non-local self-similarity 

modes in hyperspectral images (HSIs), showing that the internal low-rank correlations within every 

mode affect restoration results to different extents. Their results identified the potential of spectral, 

along with non-local induced low-rank features toward HSI modeling, therefore resulting in the 

development of an optimal low-rank tensor (OLRT) model for improved HSI recovery. This work also 

investigated the existence of low-rank properties in both the image and sparse error parts, such as 

stripe noise in HSIs. Taking advantage of low-rank tensor priors for sparse errors and HSIs, OLRT 

developed into OLRT-robust principal-component analysis. The earlier methods were not versatile; 

they were often designed for specific HSI tasks, whereas the ideal low-rank prior was highly versatile 

across different HSI restoration applications. Thorough assessments on different benchmarks indicated 

that the proposed approaches significantly outperformed the SOTA methods. 

The iterative model Non-local meets Global provides an all-inclusive approach for hyperspectral 

image (HSI) restoration, which is based on both non-local and global information for better quality. He 
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et al. [32] proposed that the spectral sub-spaces of each full-band patch group align with the global 

spectral low-rank sub-space, which covers the whole HSI. This observation led to the development of 

a unified model for HSI restoration that integrates both spectral and spatial elements. The approach 

uses non-local spatial denoising and low-rank orthogonal basis exploration to streamline 

computational demands. The restoration process begins with updating the latent input image by 

resolving a fidelity term, followed by implementing an efficient alternating minimization method with 

adaptive-rank selection. It learns an orthogonal basis in the low-dimensional space and decreases the 

image representation. Re-iteration of non-local low-rank denoising refines restoration further. The 

experiments conducted on both the simulated as well as the real-world dataset show that the proposed 

approach achieves superior performance compared to any existing SOTA HSI restoration techniques. 

The low contrast and color distortion in underwater photographs brought on by wavelength-dependent 

light attenuation were the subjects of this investigation. Color restoration is more difficult with 

underwater images than with terrestrial ones due to the different attenuation across wavelengths that 

depends on the water body and the three-dimensional structure of the scene. Berman et al. [33] 

proposed the method, which considered multiple spectral profiles of different types of water and 

reduced the problem to single-image dehazing by computing two global parameters: the attenuation 

ratios of the blue-red and blue-green channels. Because the type of water was unknown, a variety of 

characteristics from an existing library of water types were evaluated. The color distribution was 

utilized to automatically identify the optimal solution. The collection includes 57 underwater 

photographs taken in various locations; stereo photography was used to determine the 3D structure and 

color charts were applied to the scenes for ground truth. 

Zhang et al. [37] addressed the problems of limited visibility and color aberrations in underwater 

photographs brought on by light scattering and absorption that varies with wavelength. Zhang et al. 

[37] developed MLLE, an effective and reliable technique for enhancing underwater images, to get 

around these problems. Using a maximum attenuation map-guided fusion technique and a minimum 

color-loss concept, they first locally altered an image’s color and features. In order to adaptively 

improve the image contrast, the mean and variance of local image blocks were then calculated using 

integral and squared integral maps. Furthermore, a color-balance technique was presented to rectify 

color discrepancies between CIELAB color space channels a and b. The improved photos had more 

contrast, vibrant colors and better detail retention. Three datasets for underwater-picture enhancement 

were used in extensive studies, which showed that MLLE performed better than the SOTA techniques. 

A single CPU could handle 1024 x 1024 × 3 photos in a single second, demonstrating the method’s 

computational efficiency. Further tests showed that the MLLE-realized improvement greatly enhanced 

saliency detection, keypoint recognition and underwater-picture segmentation. 

Zhang et al. [38] focused on how light scattering and absorption degraded underwater image quality, 

making them less useful for analysis and applications. Zhang et al. [38] developed Weighted Wavelet 

Visual Perception Fusion (WWPF), an underwater image-augmentation technique, to address these 

problems. To fix color aberrations in underwater photos, they first used a color-correction technique 

guided by an attenuation map. To enhance the overall contrast, they then used a maximum information 

entropy optimized global contrast-augmentation approach. At the same time, localized details were 

enhanced using a quick integration optimized local contrast-enhancement technique. A WWPF 

technique was presented in order to integrate the advantages of both local and global contrast-

enhanced images. High-quality underwater photos were created by fusing low-frequency and high-

frequency components at various scales. Comprehensive tests on three benchmark datasets showed 

that WWPF performed better than current SOTA techniques in both qualitative and quantitative 

assessments. 

Li et al. [34] proposed a fast simulation approach for image acquisition with the remote sensing TDI 

camera, employing image resampling to simulate degraded image qualities with high accuracy. This 

process considered various degradation factors, enabling the creation of a rather large dataset suitable 

for most modern supervised learning-based approaches to image restoration. Moreover, the work 

presented a new network architecture, containing a row-attention block and a row-encoder block, 

especially tailored to tackle row-variant blur and restore degraded images efficiently. The method was 

tested through real-world images and simulated degraded datasets with good experimental 

performances. In contrast to previously blind image-restoration techniques, the technique here showed 

superior results without resorting to multi-spectral bands or high-frequency sensor data. 
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Table 11. Domain-specific approaches. 

Study Methods/ Algorithms Used Dataset Used Accuracy/ 
Performance 

Limitations 

[31], 2020 Low-rank property modeling Hyperspectral 
datasets 

PSNR: 57.02, 

SSIM: 0.9985, 

SAM: 0.0216 

Computationally intensive 

[32], 2020 Non-local and global priors CAVE dataset , WDC datasets PSNR: 3.03,  

SSIM: 0.9807 

Computational complexity 

[33], 2020  Haze-lines, color restoration  
algorithm 

New quantitative 
underwater dataset 

PCC: 0.85 Limited to specific 
underwater conditions 

[37], 2022 Minimal Color Loss and Locally 
Adaptive Contrast Enhancement 
(adaptive enhancement of contrast 
and color preservation) 

UCCS, UIQS, 
UIEB 

PCQI: 1.136, 

UIQM: 5.293, 

CCF: 46.872 

Cannot handle the 
underwater images 
acquired in low light 
conditions well 

[38], 2023 Weighted Wavelet Visual Perception 
Fusion (WWPF) using wavelet 
transform for multi-scale frequency 
decomposition and contrast 
enhancement 

UCCS, UIQS, 
UIEB 

UCIQE: 0.617, 

AG: 10.818, 

CCF: 40.851 

Cannot suppress image 
noise well 

[34], 2023 Fast imaging simulation, image 
resampling 

Remote sensing 
datasets 

PSNR: 30.970, 
SSIM: 0.882 

Trade-off between Speed 
and Accuracy 

[35], 2023 Dehazing algorithm Outdoor/remote 
sensing datasets 

PSNR: 27.08, 
SSIM : 0.94,  

PI: 2.24 

Limited to specific 
atmospheric conditions 

[36], 2024 Semiblind unsupervised learning 
for co-phase errors 

Optical synthetic 
aperture imaging 
datasets 

PSNR: 25.72, 
SSIM: 0.758 

Dependence on Phase 
Initialization 

An efficient image-dehazing method that works with both outdoor and remote-sensing photos is 

presented by Li et al. [35]. The plan combined the benefits of image enhancement and repair methods. 

To increase transmittance and fix errors in transmittance estimations reported in previous methods, the 

researchers employed Gaussian-weighted image fusion. After dehazing, color distortion was also 

corrected using an unsharp mask technique. The approach suggested by Li et al. [35] outperformed 

current dehazing techniques in the effective removal of haze from images, according to experimental 

results on both synthetic and real-world datasets. The solution outperformed other approaches with a 

PSNR of 27.08 and SSIM of 0.94 when applied to the RICE dataset. 

Zhong et al. [36] introduced RPIR, a semi-blind, unsupervised learning technique for image 

restoration in OSAI systems with co-phase faults. Based on the traditional maximum a posteriori 

(MAP) model, RPIR used a multi-scale neural network that required no prior training. This network 

gathered input blur kernel flaws for use as residual priors in the MAP model. To solve the data and 

earlier terms, they employed alternating minimization. RPIR reduced erroneous blur kernels in OSAI 

systems due to co-phase error variations. The results indicated that RPIR considerably enhanced image 

resolution and clarity in treating co-phase faults in OSAI systems, exceeding other unsupervised deep-

learning techniques and standard deconvolution methods. 

Machine-learning models are frequently tailored to meet the unique requirements of specific domains, 

such as underwater imaging, hyperspectral analysis, remote sensing and medical imaging. While 

general- purpose architectures, such as CNNs, transformers, GANs and diffusion models, are 

frequently used in a variety of applications, applying them directly to domain-specific tasks may not 

necessarily produce the best results. These tasks frequently necessitate specialized architectures, task-

specific loss functions and domain-aware pre-processing approaches to improve model performance. 

For example, underwater-image restoration requires models capable of correcting color aberrations 

and scattering effects, which are specific to aquatic environments. Likewise, medical-imaging models 

need to consider low contrast and anatomical features, necessitating domain-specific training 

procedures and domain-aware regularization methods. In remote sensing and hyperspectral imaging, 

models must maintain spectral fidelity and handle high-dimensional data efficiently. By adding such 

domain-specific adaptations, machine-learning models can perform much better than their general-

purpose equivalents. 
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2.9 Comprehensive Image-restoration and Denoising Datasets 

In recent years, a wide variety of datasets have been developed to benchmark the performance of 

image-restoration and denoising algorithms. These datasets vary in content, type of degradation and 

complexity, providing diverse scenarios for evaluating model effectiveness. Table 12 summarizes key 

datasets frequently used in image-restoration and denoising research, highlighting characteristics, such 

as dataset size, types of degradation (e.g. noise, blur, low resolution) and typical applications. This 

compilation serves as a foundation for comparing algorithm performance across different degradation 

scenarios and understanding the suitability of specific datasets for various restoration tasks. 

Table 12. Comprehensive image-restoration and denoising datasets. 

Name of Dataset Year Brief Description 

BSD500 [63] 2012 Part of the Berkeley Segmentation Dataset, containing 500 images used for enoising and 
segmentation. 

URBAN100 2015 Contains 100 high-resolution images of urban scenes, featuring buildings, streets and 
architectural structures. It is widely used in image super-resolution and restoration tasks to 
evaluate model performance on complex textures and fine details. 

GoPro [66] 2017 Contains paired blurred and sharp images from GoPro cameras, used for motion-deblurring 
research. 

DIV2K [57] 2017 High-quality dataset with 1,000 images for super-resolution and general image restoration, 
with multiple degradation levels. 

SIDD [60] 2018 A dataset consisting of more than 30,000 noisy images under different lighting conditions, 
along with ground-truth images. 

Color BSD68 [67] 2018 Part of Berkeley Segmentation Dataset and Benchmark, it contains 68 images for measuring 
image-denoising algorithms’ performance. 

PIRM [68] 2018 Comprises 200 diverse images divided for validation and testing, used for perceptual image-
restoration tasks. 

HAC [69] 2019 Contains 316K pairs show casing various weather conditions for testing restoration under 
adverse circumstances. 

FFHQ [70] 2019 Contains 70000 high-quality face dataset from NVIDIA, used for inpainting and denoising, 
with diverse ages, ethnicities and lighting conditions. 

SCISR [71] 2019 Synthetic and camera-based image super-resolution dataset, used for super-resolution in low-
quality smartphone-captured images. Contains 50000+ images. 

Hide [72] 2019 It consists of 8,422 blurry images and with them their corresponding image pairs with 
65,784 densely annotated FG human bounding boxes. 

Raindrop [73] 2020 A dataset containing 1,119 pairs of images, where one is degraded by raindrops and the other 
is clean. 

UHDS [74] 2022 A dataset of 29,500 rain and rain-free image pairs covering various natural rain scenarios. 

Sentinel-2 Satellite 
Images [75] 

2022 Includes 3,740 pairs of overlapping image crops with cross-band and cross-detector parallax 
effects for analysis. 

TinyPerson [76] 2022 A dataset focusing on tiny objects with 72,651 annotated images, collected from high-
resolution videos. 

LSDIR [77] 2023 A large-scale dataset containing 84,991 training images, 1,000 validation images and 1,000 test 
images. 

HQ-50K [78] 2023 Introduces 50,000 high-quality images with rich textures for image-restoration applications. 

 

3. EVALUATION METRICS USED FOR IMAGE RESTORATION 

Various evaluation metrics have been utilized in the literature survey to effectively evaluate 

performance and compare different image restoration algorithms. They are essential to objectively 

quantify how good image quality is after restoration, thus allowing researchers to compare different 

approaches in different degradation conditions. Table 13 provides a detailed summary of widely used 

evaluation metrics, highlighting their specific purposes and the aspects of image quality they focus on. 

4. RESULTS AND DISCUSSION 

The evaluation of multiple image-restoration models was conducted on a high-performance hardware 

configuration comprising a Tesla T4 GPU equipped with 15,360 MB of VRAM, supported by 

NVIDIA-SMI 535.104.05, Driver Version 535.104.05 and CUDA Version 12.2. The hardware 

operated under optimal conditions, maintaining a stable temperature of 54°C. The models were 
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evaluated using the SIDD (Smartphone Image Denoising Dataset) and DND (Darmstadt Noise 

Dataset), a benchmark dataset widely utilized for assessing image-restoration techniques. This 

experimental setup facilitated precise benchmarking of inference times and PSNR values, which are 

pivotal metrics for assessing the performance of pre-trained models in image-restoration tasks. The 

results, summarized in Table 14, provide a comprehensive comparison of the evaluated models. 

Table 13. Summary of evaluation metrics for image restoration. 

Evaluation Metric Description 

Peak Signal to Noise Ratio (PSNR) Calculates the ratio between maximum signal power and noise power. 

Structural Similarity Index Measure 
(SSIM) 

Evaluates similarity between two images based on brightness, contrast and 
structure. Values closer to 1 indicate higher similarity. 

 Perception-based Contrast Quality Index 
(PCQI) 

Measures image quality by evaluating contrast and structural fidelity, 
considering human visual perception. 

Underwater Image Quality Measure 
(UIQM) 

A composite metric used to assess underwater image quality based on 
colorfulness (UICM), sharpness (UISM) and contrast (UIConM). Higher 
UIQM values indicate better visual quality. 

Color Contrast Factor (CCF) Quantifies color contrast in images by analyzing pixel-intensity differences 
across different channels. Higher values indicate more vibrant and enhanced 
images. 

Fréchet Inception Distance (FID) It quantifies the disparity in feature distributions between real and generated 
images using deep-learning features, where lower FID scores signify improved 
visual quality. 

Average Gradient (AG) Evaluates image sharpness by calculating the mean gradient magnitude across 
the image. 

Natural Image Quality Evaluator 
(NIQE) 

A no-reference image-quality assessment metric that compares statistical 
deviations from natural image characteristics. Lower NIQE scores indicate 
better image quality. 

Signal-to-Reconstruction Error (SRE) Measures the ratio of signal strength to reconstruction error, assessing 
restoration accuracy. Higher SRE values indicate better restoration 
performance. 

Mean Absolute Error (MAE) Computes the average of absolute differences between original and restored 
images. Lower MAE indicates higher restoration accuracy. 

Normalized Root Mean Squared Error 
(NRMSE) 

Provides a normalized measure of deviation between restored and original 
images, making it suitable for comparing images with different brightness 
levels. 

Feature Similarity Index Measure 
(FSIM) 

Assesses similarity by focusing on high-frequency components, capturing 
perceptual differences aligned with human vision. 

Visual Information Fidelity (VIF) Measures the amount of visual information preserved in the restored image 
compared to the original, reflecting human visual perception. 

LPIPS Uses deep neural-network features to evaluate perceptual similarity, 
emphasizing visual quality as perceived by humans. 

Diversity Index for Image Denoising Analyzes the variability between multiple denoising outputs for the same 
noisy input, useful for exploring alternative restoration methods. 

Perceptual Loss Metric Leverages features from pretrained models to assess perceptual quality, 
optimizing image restoration for human-like perception rather than pixel-level 
accuracy. 

No-reference Evaluation Metric Evaluates image quality without needing the original image, using methods 
like NIQE and BRISQUE to assess naturalness and perceptual features 
important to human observers. 

Transformer models showed high restoration performance, with Restormer realizing a PSNR of 39.12 

and an SSIM of 0.913 at an inference rate of 0.7581 images per second, while MIRNet realized a 

PSNR of 38.86 and an SSIM of 0.940 but at a much slower processing rate. SwinIR kept a balance 

between accuracy and efficiency with a PSNR of 36.30 and an inference rate of 1.12 images per 

second.  

CNN-based models, including SRCNN, MPRNet and NAFNet, demonstrated mixed compromises 

between accuracy and speed. MPRNet had a comparable inference rate of 2.18 images per second with 

a PSNR of 33.86. In the same way, NAFNet had a PSNR of 32.93 along with an SSIM of 0.867, 

proving its stability. From models of denoising, DDNM recorded a PSNR of 24.32 and an SSIM of 

0.794, while in this class, CycleISP led others with a PSNR of 39.43 and an SSIM of 0.955. Other 

models of denoising, including CBDNet, RidNet and DREAMNet, also performed robustly in 

removing noise, with RidNet recording a PSNR of 38.26 and an SSIM of 0.945. 
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Table 14. Comparison of various models based on inference time, PSNR and SSIM for both SIDD and 

DND datasets. 

Model Inference Time 
SIDD Dataset DND Dataset 

PSNR SSIM PSNR SSIM 

Restormer 0.7581 39.12 0.913 36.41 0.926 

SRCNN 0.075 34.80 0.7184 32.75 0.862 

MIRNet 0.033 36.30 0.950 38.86 0.940 

DDNM 0.153 22.07 0.832 24.32 0.794 

CWR 0.0315 27.85 0.817 26.76 0.851 

SwinIR 1.120 36.30 0.847 34.52 0.896 

MPRNet 2.180 33.86 0.844 34.56 0.817 

NAFNET 0.7382 32.93 0.867 30.09 0.865 

HINET 0.8737 29.97 0.906 30.65 0.894 

GFPGAN 1.063 26.01 0.763 26.42 0.713 

ESRGAN 0.790 27.24 0.791 26.30 0.711 

DnCNN 0.058 21.96 0.571 31.74 0.780 

CycleISP 0.132 36.81 0.930 39.43 0.955 

CBDNet 0.15 30.44 0.795 36.12 0.920 

RidNEt 0.3921 36.01 0.903 38.26 0.945 

DREAMNET 0.417 35.72 0.916 38.23 0.940 

Super-resolution and enhancement frameworks, such as GFPGAN and ESRGAN, weighed perceptual 

quality against efficiency, with GFPGAN delivering a PSNR of 26.42 at a rate of 1.063 images per 

second. ESRGAN, however, had a PSNR of 27.24, making it suitable for perceptual restoration. The 

Contrastive Underwater Restoration (CWR) framework, developed specifically for underwater image 

restoration, posted a PSNR of 27.85 and an SSIM of 0.817, making it more domain-specific to 

restoration. 

The SSID and DND dataset served as a critical benchmark, offering realistic noisy images captured 

from smartphones, which posed a challenging yet relevant scenario for image restoration models. 

These findings underline the diverse trade-offs between speed and accuracy among contemporary 

image restoration techniques. The summarized results provide valuable insights for guiding future 

advancements in the development of image restoration methodologies. 

In general, the research points to significant trade-offs between restoration performance and 

computational cost, with transformer-based models producing high image quality at the expense of 

processing speed, while CNN-based methods keep accuracy and real-time feasibility in balance. 

Denoising methods, especially CycleISP and RidNet, exhibited robust noise reduction performance 

and super-resolution models such as ESRGAN improved image perceptual quality well. The results 

indicate that hybrid methods combining transformers, CNNs and self-supervised learning would 

potentially further enhance image restoration performance under various imaging conditions. 

 

 

 

 

 

 

 

Figure 6. A comparison of PSNR values across various models on the SIDD and DND datasets. 
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To offer a thorough comparison, the PSNR and SSIM values of several image-restoration techniques, 

assessed on the SIDD and DND datasets, were shown in Figure 6 and Figure 7. These bar graphs 

illustrated how performance varied among several methods, emphasizing variances in restoration 

quality. In addition to providing insights on general-performance trends in picture restoration, the 

visual representation highlighted how different approaches maintained structural features and 

perceived quality. 

 

 

 

 

 

 

Figure 7. A comparison of SSIM values across various models on the SIDD and DND datasets. 

5. OPEN CHALLENGES FOR FUTURE RESEARCH 

Despite substantial advancements in image-restoration techniques, several open challenges remain that 

warrant further investigation. One significant area requiring attention is the treatment of multiple and 

complex types of degradation commonly encountered in real-world situations. These include 

combinations of blur, noise and compression artifacts, where existing models, often calibrated for a 

single type of degradation, frequently underperform in multi-faceted scenarios. Therefore, there is a 

critical need for methods that can adaptively address a range of real-world degradation levels, ensuring 

that restoration techniques are robust against diverse degradation types. 

Another pressing challenge is achieving an optimal balance between model complexity and processing 

speed. Many advanced restoration techniques demand substantial computational resources, which 

limits their scalability and practicality in real-time applications, particularly on mobile devices. Future 

research should focus on developing lightweight, yet effective, models that facilitate image restoration 

across a broader spectrum of applications, particularly in resource-constrained environments where 

efficient processing is essential. Maintaining the fidelity of natural textures and minute details in 

restored images presents an ongoing challenge. Restoration techniques that excessively enhance 

sharpness or contrast can distort the original essence of the scene, leading to unrealistic outcomes. It is 

imperative that successful restoration processes not only enhance visual appeal, but also faithfully 

represent the scene as it was originally depicted, preserving the integrity of visual information. 

Lastly, the lack of effective domain adaptation poses a significant limitation to the applicability of 

image-restoration models. General-purpose restoration frameworks often fail to capture features 

unique to specific application domains, such as medical imaging, underwater photography and remote 

sensing. To enhance the impact and functionality of IR techniques, the development of adaptable or 

domain-specific methodologies is essential, as these can effectively address the unique requirements of 

diverse contexts. In summary, addressing these challenges will not only improve existing image-

restoration techniques, but also expand their applicability across various fields, paving the way for 

innovative solutions in an increasingly visual-centric world. 

6. CONCLUSION 

A comprehensive analysis of the existing literature reveals both the advantages and limitations of 

current approaches, as well as outlining prospective directions for future research. In light of recent 

advancements in deep learning, traditional machine-learning and innovative architectures, such as 

Transformers and GANs, significant progress has been made in enhancing image restoration across 

various applications, including mobile photography, remote sensing and medical imaging. These 

methodologies have consistently demonstrated improvements in the clarity, quality and utility of 

degraded images. Nevertheless, several challenges persist that warrant further investigation. These 

challenges encompass the effective management of complex mixed degradation types, achieving a 
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balance between computational efficiency and restoration quality and ensuring adaptability across 

diverse imaging scenarios. 

Future-research endeavors are anticipated to concentrate on the development of more flexible and 

efficient models capable of addressing a wide spectrum of degradation scenarios while remaining 

suitable for real-time applications, particularly on resource-constrained devices. Furthermore, 

advancing hybrid models alongside domain-specific strategies will be essential in propelling research 

initiatives forward. Addressing these unresolved issues and enhancing image quality and accessibility 

will amplify the impact of image-restoration technologies in an increasingly visual-centric society. 
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 ملخص البحث:

ّ   تتتتتتيو تتتتتتّصويو تتتتتتيو ق  تتتتتت يورات  تتتتتتةصّورا تتتتتتة –خلقتتتتتتطورات اتتتتتتة ريوران  و-ب تتتتتت و  عتتتتتت وررتتتتتتتو   ورا  

تتتتتة  و صتوتتتتت   وٍلتتتتتةو لتتتتت ورات ق  تتتتت يو و تتتتتيودىتتتتت لوررتتتتتتو   ورا   و و  اتتتتتيت اودتًرصتتتتتنراوٍلتتتتتةو ق  تتتتت يت طلبتتتتت 

و تتتتتتة  و ص تتتتتت  ّو    تتتتتتةصكو راّ بتتتتتت  و ر   تتتتتت  و   تتتتتتيورا   ودتتتتتت وراو تتتتتتة وودختتتتتتّوراتّ  دو اىتتتتتتيوٍتتتتتتن ت

تتتتيو تتتتيوراونصتتتتنودتتتت ورات اب قتتتت يوودختتتتّورات  تتتتةصّوراا ب تتتتيوررتتتتتو  تتتتة و وتتتتن ودتتتت ور دتتتتة ورا ع     ورا  

يو ر رتّتتتتتتو  اوٍتتتتتت وب وتتتتتتنوو  تتتتتت و  و و رات  تتتتتتةصّورا نتتتتتت    تتتتتتة  و دتتتتتتّراو  رتتتتتت   وتتتتتتن ولتتتتتتة  ورا  

 وا  حيورات حل ّو راقّر  

تّووهتتتت ووراة  تتتتيو قتتتتن طودّرلوتتتتياو  اتتتتة وٍلتتتتةودنتتتت تو تتتتة ورا تتتتتيو    اوشتتتت د تعتتتت واا تتتتّتوررتتتتتو   ورا  

تتتتتتّتورات قل نصتتتتتتيو رات ق  تتتتتت يوراحنصختتتتتتيوراق   تتتتتتيوٍلتتتتتتةو  تتتتتت   و   ب تتتتتت يورا ةمتتتتتتةاووب تتتتتت و  عتتتتتت وراا 

تتتتتتتة و راتتتتتتتت وليقوراو  تتتتتتتمو را   تتتتتتت   ورا نتتتتتتتت ن وراتتتتتتتةورا حتتتتتتتة  ي و  وتتتتتتت ا و ق  تتتتتتت يوررتتتتتتتتو   ورا  

تتتتتة  تتتتتةصكو راّ بتتتتت  و وصتتتتت   و حل تتتتتّوراتقل نصتتتتتيوٍتتتتتن راودتتتتت وٍ تتتتتة ورا   ؛و تو تتتتتّوٍلتتتتتةوشوراتتتتتيوراتّ 

تتتتتة وب تتتتت  او ّ  قودتتتتت و ى ٍتتتتتيو لتتتتت وورا ي تتتتتي و ٍلتتتتتةوراتتتتت ٍلتتتتتةو  تتتتت   و ص متتتتت يو خةر ود تتتتت يوخ ن 

و تتتتتت ا و تتتتتتيوبوتتتتتت،ورات و تتتتتتة ورا نتتتتتتتو   وو   عتتتتتت واتتتتتتقو  تتتتتت   ٍ  تتتتتتة ورا   ق  تتتتتت يو تتتتتتيوشوراتتتتتتيوبوتتتتتت،و

 ور    صةه يوراو اقوراحق قي 

و تّ وٍتتتتت ط و راتتتتتت وليقوراو  تتتتتموبّتتتتت  تّ   تتتتتنو ىحتتتتتطورات اتتتتتة  ريوراحنصختتتتتيو تتتتتيودىتتتتت لو وليتتتتتقورلاتتتتتيوبّتتتتت 

وب رتتتتتت ن تتتتتب  يوراو تتتتتب يور ات    تتتتتيو تتتتتيوش ىتتتتت ووطتتتتتّتتوختتتتت س   ّ وب اب   تتتتت يوص    عتتتتت وورطورا دن ةٍتتتتتيت

تتتتتتت  يو  ت نتتتتتتتقوبتتتتتتت ا خ ّودتتتتتتت ورا و ا تتتتتتتيواتتتتتتتن و راتتتتتتتت ول قودب شتتتتتتتّ اودتتتتتتت ودى ةٍتتتتتتت يوراب   تتتتتتت يوراى 

اوو قتتتتتنو اعتتتتتّيورا   تتتتت   وراق   تتتتتيوٍلتتتتتةورا حتتتتتة  يوراقتتتتتن  وودق   تعتتتتت وبتتتتت اا ّتورات قل نصتتتتتي    تتتتتنصخ 

و رمتتتتت واتلتتتتت ورا   تتتتت   و تتتتتيوٍلتتتتتةوراتقتتتتت طور ٍت تتتتت  ريور تت تتتتتة وودق  صتتتتتياوشاتتتتتةو  تتتتتة  ا  د تتتتتيو تتتتتيورا  

و لتتتتت و تتتتتة ورا نتتتتتتو    و  تتتتتنو بتتتتت  و    ٍ  تتتتتة ورا   ودتتتتت ورا عتتتتت ط ورا وق تتتتتن ورا ّ باتتتتتيوب وراتتتتتيو ٍتتتتتن ت

و ررعو  ود ودى ةٍ يوراب    يو ريوراولا ي را      و   طو  لوياو يودو اىيودن ا

تتتتت دّورا تتتتت  و قن دتتتتت وهتتتتت ووراة  ّ   تتتتتيورات حتتتتتن ص يورا تتتتتتيوص اتتتتتة وٍل عتتتتت ودةمتتتتتةاوصت تتتتت  لورا نتتتتت ورا

تتتتتتة ووشمتتتتتت  ياوشاتتتتتتةو    تتتتتتيودو اىتعتتتتتت وو د عتتتتتت و حتتتتتتن  ورات ل تتتتتتيوراحةرتتتتتتب يو  حتتتتتتن  و ررتتتتتتتو   ورا  

تتتتتتتة و اولنصتتتتتتتن وابحتتتتتتتةوودنتتتتتتتتقبل يو تتتتتتتيودىتتتتتتت لودو اىتتتتتتتيوٍ تتتتتتتة ورا   رات و تتتتتتت قوو ص تتتتتتتت وب   تتتتتتت 

وورا نتو    
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