
306

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

1. A. Dhaouadi is with LISTIC, Savoie Mont Blanc University, France and RIADI, University of Tunis El Manar, Tunisia. Email:

asma.dhaouadi74@gmail.com, ORCID 0000-0002-9832-5000.
2. K. Bousselmi is with LISTIC, IUT, Savoie Mont Blanc University, France. Email: khadija.arfaoui@univ-smb.fr

3. S. Monnet is with LISTIC, Polytech, Savoie Mont Blanc University, France. Email: sebastien.monnet@univ- smb.fr

4. M.M. Gammoudi is with RIADI Lab, ISAM La Mannouba, Tunisie. Email: gammoudimomo@gmail.com

5. S. Hammoudi is with ERIS, ESEO-TECH Angers, France. Email: slimane.hammoudi@eseo.fr

A MACHINE LEARNING BASED DECISION SUPPORT

FRAMEWORK FOR BIG DATA PIPELINE MODELING

AND DESIGN

Asma Dhaouadi1, Khadija Bousselmi2, Sébastien Monnet3, Mohamed Mohsen

Gammoudi4 and Slimane Hammoudi5

(Received: 25-Mar.-2024, Revised: 13-May-2024, Accepted: 27-May-2024)

ABSTRACT

The data warehousing process requires an architectural revolution to settle big-data challenges and address

new data sources, such as social networks, recommendation systems, smart cities and the web to extract value

from shared data. In this respect, the pipeline-modeling community for the acquisition, storage and processing of

data for analysis purposes is enacting a wide range of technological solutions that present significant challenges

and difficulties. More specifically, the choice of the most appropriate tool for the user’s specific business needs

and the interoperability between the different tools have become primary challenges. From this perspective, we

propose in this paper a new interactive framework based on machine learning (ML) techniques to assist experts

in the process of modeling a customized pipeline for data warehousing. More precisely, we elaborate first (i) an

analysis of the experts’ requirements and the characteristics of the data to be processed, then (ii) we propose the

most appropriate architecture to their requirements from a multitude of specific architectures instantiated from a

generic one, by using (iii) several ML methods to predict the most suitable tool for each phase and task within

the architecture. Additionally, our framework is validated through two real-world use cases and user feedback.

KEYWORDS

Big data, Data-warehousing modeling, Modeling assistance, Tools and technologies, ML methods.

1. INTRODUCTION

The technological revolution, the emergence of new Internet services, the blooming growth of smart

devices and sensors, mobile and web applications and social media (Facebook, Twitter, Instagram,

…etc.) generate a large amount of data daily, known as "Big Data". Notably, Big Data is facing several

challenges labeled Vs, like: (i) the Volume presenting the massive amount of data collected by a

company, (ii) the Variety which refers to the heterogeneity of data, including structured, semi-

structured or unstructured types and (iii) the Velocity, which refers to the speed by which data is

collected and needs to be taken into account for eventual processing and decision-making. To address

these big-data challenges, numerous platforms, software systems and architectural frameworks have

been developed for data warehousing and analysis. However, the diverse landscape of available

solutions introduces additional challenges, including the deployment requirement, which addresses

verifying the interoperability between the tools, their performance and the experts’ technical

constraints, such as the resources provided at the deployment phase of the architecture. Consequently,

experts need help to select the most suitable tools from a wide range of options. Furthermore,

modeling big-data pipelines is crucial before deployment and certain tools prioritize addressing some

big-data challenges over others. For example, Apache Kafka does not focus on the veracity of data but

rather on its transfer and, thus, on Volume and Velocity [1], while column-oriented tools dedicated to

data storage, such as HBase, MongoDB and Cassandra, specifically favor data Variety by supporting

different formats and data types [5]. Additionally, the need for adaptability and evolution of data-

warehousing and analytics systems is pressing and currently needs to be a standardized architectural

solution that guarantees the best selection of tools based on experts’ requirements and constraints. To

overcome these challenges, we propose in this paper ArchiTectAI: an AI-driven framework to assist

experts in selecting the most appropriate tools to meet their particular requirements and constraints

mailto:asma.dhaouadi74@gmail.com
mailto:khadija.arfaoui@univ-smb.fr
mailto:gammoudimomo@gmail.com
mailto:slimane.hammoudi@eseo.fr

307

"A Machine Learning Based Decision Support Framework for Big Data Pipeline Modeling and Design", A. Dhaouadi et al.

when elaborating big-data warehousing and analysis solutions. The main target is to assist the experts’

pipeline modeling by considering the specificities of the data to be processed (i.e., the Volume,

Velocity, Veracity and Variety) and respecting their preferences. This is achieved by selecting the best

tools dedicated to their corresponding needs through the use of personalized ML models employing

various ML methods, such as Decision Trees, Random Forest, Support Vector Machine and Gradient

Boosting.

In this paper, the main contributions are outlined as follows:

 A hybrid, generic, two-level architecture that supports batch and stream-data processing is

proposed to guide the instantiating of architecture models specific to big-data platforms and

tools.

 ArchiTectAI: a decision-support framework based on ML that assists experts in modeling big-

data pipelines, considering their specific needs and ensuring tool interoperability.

 An ad-hoc method for generating a base of tools that considers its alignment with big-data

characteristics. This method employs an algorithm that ensures easy maintenance and

scalability of the tool base.

 The use of several ML classifiers to predict the most suitable tool for each phase and task of

the architecture.

This paper is structured as follows. Section 2 displays the proposed generic big-data pipeline

architecture and its phases and tasks. Subsequently, in Section 3, we detail the proposed architecture to

support the proposed framework for big-data pipeline modeling. Next, in Section 4, we validate and

evaluate the introduced proposals. Section 5 provides a summary of the most prominent related works.

Eventually, in Section 6, we conclude the whole work and offer new perspectives for future research.

2. TOWARDS A GENERIC BIG DATA PIPELINE ARCHITECTURE

In this section, we propose a generic architecture for end-to-end big-data warehousing and analysis.

The specificities of this architecture are that: (i) it is a generic and Tools Independent Architecture

(TIA) that supports two different scenarios. The first one is only for data collected using a single

acquisition mode: batch or stream. The second one is the most complete hybrid scenario, which

supports both batch and stream-data acquisition modes. As shown in Figure 1, the TIA generic

architecture consists of the following four phases:

Figure 1. The generic architecture: tool independent architecture.

1) Data Sources phase: This layer gathers the different types of input data, which are classified

into structured, semi-structured and unstructured data. The structured data is provided by the

tabular data and traditional systems, like data warehouses, data mart, Customer Relationship

Management (CRM) or Enterprise Resource Planning (ERP) systems. The semi-structured

308

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

data constitutes the NoSQL databases, HTML, JSON, XML and CSV files and e-mails. The

unstructured data are generated from social networks, images, audio, videos and data streams,

including chat messages shared on the Internet from WhatsApp and mobile SMS text and

many other data types like geo-localization data and sensor data from smart devices [2].

2) Data Acquisition phase: Our architecture allows treating three different scenarios at this stage.

The first scenario occurs when the data to be acquired, processed and stored is streaming data

that necessitates real-time processing and must be ingested instantaneously as it is generated.

This scenario is well-suited for mission-critical applications, such as cyber-security

monitoring, financial-transaction processing and early-warning systems for natural disasters.

The second scenario is when the data to be handled is ingested over a certain period and then

processed all at once; this is known as the batch mode. Unlike real-time processing, this

deferred processing concerns static data, such as relational tables and Hadoop files [3]. Finally,

the third scenario combines streaming and batch data and the architecture will support both

data types simultaneously.

3) Data Processing and Storage phase: In our architecture, we merged processing and storage

tasks into a single layer to generalize as much as possible and cover stream and batch-

processing modes. This middle layer is slightly divided horizontally into two sub-layers: the

top layer is specific to stream processing, while the bottom layer corresponds to batch

processing. For the batch mode, the data gathered is stored in its raw form and its processing is

planned according to the experts’ requirements. The processing involves tasks, such as data

cleaning, outlier removal and preparation for storage in specific supports dedicated to analysis.

Different methods for data cleaning and outlier removal have been outlined in [4]. ML type

processing is also proposed at this level to perform increasingly sophisticated treatments in

response to the business requirements of experts. In this phase, stream processing, batch

processing, ML processing, raw-data storage and data analytic storage constitute the TIA tasks.

4) Data Analytics phase: Data analysis is based on creating dashboards, OLAP navigation,

statistics, charts and reports. The stream or batch-data analysis type depends mainly on the

data-processing type and data availability in the repositories. It also depends on the level of

interactivity that the expert requires to be provided by the dedicated tool. Indeed, the analysis

is adapted to experts’ needs. Supposing that they require interactive queries, instantaneous

processing answers on data collected in real-time or answers on batches of stored data. Each

type of analysis is presented by a different icon. For instance, there are forecasting, real-time

alerting, dashboards, mobile applications, reporting and visualization for streaming analysis.

However, the most frequent business intelligence applications for batch analysis are

dashboard, reporting, data visualization and data statistics on which recommendation engines,

like Amazon and YouTube videos, can be based.

This generic architecture is designed to be invested for different deployment requirements, meeting the

business constraints and the specificities of the experts’ needs each time. From this perspective, we can

derive different Tools Specific Architectures (TSAs) according to the use case. While, for lack of space

in this paper, we will not mention details about the modeling approach formalizing the transition

between the TIA level and the TSAs one, we highlight that a modeling approach has been proposed to

establish the transition between the generic level and the applicative one by taking full advantage of

the Model-Driven Architecture (MDA) approach for software design and development. The modeling

details will be provided in a separate paper.

The following section presents the proposed framework for generating different concrete pipelines of

TSAs, taking advantage of TIA’s genericity.

3. ARCHITECTAI: PERSONALIZED BIG DATA WAREHOUSING ADVISOR

In this section, we present our interactive ML-based framework, assisting the expert in the

composition of his/her big-data pipeline and allowing the automatic generation of several TSAs.

Figure 2 shows the ArchiTectAI framework’s architecture, including three modules: tools database

generation, ML-model generation and architecture generation process. In the following part, we detail

the role of each module.

309

"A Machine Learning Based Decision Support Framework for Big Data Pipeline Modeling and Design", A. Dhaouadi et al.

3.1 Tools Database Generation

This module is based on an ad-hoc method for generating tool databases for big-data warehousing. In

these databases, we specified the characteristics of each tool from the categorical variables defining the

big data Vs (Volume, Velocity, Veracity and Variety). Among these categorical variables, we note the

acquisition mode of data, the data type, the size of data, among others. As detailed in the pseudo-code

of Algorithm 1, considering the specific list of tools for each phase and task of TIA and the different

categorical variables, we peruse the TIA process and we determine all possible combinations between

the different features and the corresponding tools based on predefined rules. The output of this method

is a tools database for each TIA phase and task, containing the tools with their corresponding and

valuable characteristics for the ongoing step. As depicted in Figure 2, there are distinct databases for

data acquisition, raw-data storage, analytical data and data analysis. Regarding data processing, as

previously mentioned, there are three types of processing: stream, batch and ML (see Figure 1). In

classifying tools into databases, we utilize the criteria of "mode". Tools are categorized based on

whether they support stream mode or batch mode, resulting in a single database for both processing

modes. Conversely, for ML processing tools, we allocate a separate database, as we consider that ML

is a type of treatment supported, rather than a processing mode. In all instances, there are tools

performing more than one task, thus being shared by more than one base. For example, Spark, Python

and Flume handle ML, batch and stream processing and are therefore present in both the ML data

processing and data processing databases.

Algorithm 1 An Ad-Hoc Method for Generation of Tools Databases

Input 1: Tool Independent Architecture TIA Input 2:

List of Tools ToolsList

Input 3: categoricalVariables catVars

Output: Tools Databases ToolsDBs

T IA ← {T IAphs, T IAtsks} ▷ The TIA phases and tasks T

oolsList ← T Lacqui ∪ T LrawStor ∪ T LanalStor ∪ T LprocT ∪ T LprocM LT ∪ T Lanal catV ars ←

{Acquisition_mode : {“Stream”, “Batch”},

SizeData : {“over1P eta”, “in1T 1P ”, “less1T era”},

D_type : {“U N S”, “SEM I”, “ST RU C”},

P otentielT imeAcqui : {“RT ”, “N RT ”, “Batch”},

Quality : {“LossDup”, “LossData”, “DupData”, “N oLossN oDup”},

N b_DS : {“over20”, “in5_20”, “less5”},

Latency : {“less5”, “in5_15”, “over10”},

Complexity : {“one”, “multiple”}}

foreach T IAphs AND T IAtsks in T IA do

foreach T in T oolsList do

T _V alues ← Assign(V al) ▷ Assign characteristic values to each tool

{V al is a value from catV ars}

end

end
foreach T in T oolsList do

▷ Generate specific combinations of each tool by using zip

foreach t_V alues in zip(T _V alues) do

csv_writer.writerow(t_V alues + [T]) ▷ Write rows in the “ToolsDBs.csv" file

end

end

return ToolsDBs

This proposed ad-hoc method for generating tool bases is conducive to easy updates and maintenance.

The process automatically handles all updates by adding the tool with its characteristics expressed in

categorical values and developing new data combinations. Then, the generated tool databases will be

leveraged as input data by ML methods to predict the most suitable tools while ensuring adherence to

the experts’ constraints and preferences. As for the categorical variables, they are also used as features

in the ML module (sub-section 3.2) and to express user constraints (Tab 2 in subsection 3.3).

310

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

Figure 2. The architecture of ArchiTectAI framework.

3.2 ML Model Generation

This second module of the proposed framework, as shown in Figure 3, is based mainly on two steps:

the first is for feature extraction and the second is for ML processing and determining the best ML

method. The input data consists of the tool databases specific to each TIA phase and task. Each

database contains around 15 tools and their big-data characteristic satisfaction values. Until now, the

number of tools handled in the training dataset is 64 and is expected to evolve in line with the

technological revolution. As for the result of this module, the generated ML models are to be used in

predictions of the best tools for subsequent use by the experts. In the following part, we outline the two

steps of this module and provide a comprehensive overview of the experiment conducted to motivate

the chosen ML method.

Figure 3. The machine-learning model generation process.

3.2.1 Feature Extraction

Since each phase and task of TIA has specific characteristics and must meet particular constraints, the

features expressed as categorical variables in the above tool databases generation module are different

for every task and phase of the pipeline. Moreover, each tool database has dedicated tools to perform

the processing required for the corresponding task. For these reasons, for each TIA step, we have

specified a particular ML processing with the corresponding tool database as input; the features are the

tool characteristics and their target variables are the names of the tools.

3.2.2 ML Processing and Determining the Best ML Method

Our framework aims to predict the tool that best meets the experts’ constraints and the specific data to

be processed by the architecture. Leading to this prediction, we have opted for supervised learning, a

branch of ML using algorithms to analyze the relationship between the constraints of each TIA phase

and the tasks designated as features (e.g. SizeData, D_type, Latency, …etc.) and the tools stored in the

corresponding database. However, in this instance, since each phase has its specific tool database and

characteristics and to provide our framework with greater flexibility, we have opted to implement

several ML methods and conduct performance tests, assuming that each ML method can perform

differently and provide different results. The implemented ML methods in our process consist of

Decision Trees, Random Forest, Support Vector Machine and Gradient Boosting.

311

"A Machine Learning Based Decision Support Framework for Big Data Pipeline Modeling and Design", A. Dhaouadi et al.

The performance-evaluation measures examined in this module include Accuracy, Precision, Recall

and F1-Score. In our context, we performed the following steps: Initially, we divided the input data

into training, validation and testing sets. Then, we compared the performance of the different ML

methods based on the specified performance metrics. Next, we trained each method on the training set

using the extracted features. We optimized the hyperparameters of each classifier using grid search and

cross-validation with a fold value of 5 (cv=5). The performance of each classifier was evaluated on the

validation set utilizing the defined performance metrics. Finally, we choose the model generated by the

best ML classification method in each phase to be used later in the architecture-generation process

module.

As shown in Table 1, the evaluation of the implemented ML methods shows excellent results in the

different phases. This asserts the effectiveness and reliability of the models generated, which are

extremely useful for the framework’s ability to provide precise, helpful advice on tool selection and

pipeline implementation.

Despite the results on most phases (5/6) leading to the deduction that the decision tree has performed

well, we have consolidated the evaluation by calculating the average of measures per metric over the

whole pipeline. This confirms that the decision tree is the best method deployed to generate ML

models and predict the best tool for each phase and task in the pipeline to the expert.

Table 1. Experimental results to determine the best ML method.

ML Method Decision Tree Random Forest
Support Vector

Machine
Gradient Boosting

Performance Metrics

F
1

-S
c
o

r
e

R
e
c
a

ll

P
r
e
c
isio

n

A
c
c
u

r
a

c
y

F
1

-S
c
o

r
e

R
e
c
a

ll

P
r
e
c
isio

n

A
c
c
u

r
a

c
y

F
1

-S
c
o

r
e

R
e
c
a

ll

P
r
e
c
isio

n

A
c
c
u

r
a

c
y

F
1

-S
c
o

r
e

R
e
c
a

ll

P
r
e
c
isio

n

A
ccu

ra
cy

A
r
ch

it
e
c
tu

r
e

T
a

sk
s

Data Acquisition 0,83 0,79 0,84 0,81

0,82 0,79 0,84 0,81

 0,8 0,71 0,8 0,75

0,83 0,8 0,86 0,82

0,82 0,76 0,87 0,81

0,81 0,79 0,88 0,83

0,83 0,78 0,8 0,79

0,8 0,74 0,83 0,78

0,84 0,81 0,84 0,82

0,83 0,78 0,82 0,80

0,78 0,76 0,81 0,78

0,8 0,74 0,82 0,78

0,81 0,75 0,79 0,77

0,8 0,75 0,79 0,77

0,78 0,57 0,71 0,63

0,76 0,66 0,73 0,69

0,77 0,68 0,78 0,73

0,79 0,69 0,81 0,75

0,8 0,75 0,83 0,79

0,79 0,76 0,79 0,77

0,76 0,61 0,78 0,68

0,78 0,67 0,78 0,72

0,76 0,69 0,78 0,73

0,77 0,77 0,85 0,81

Data Processing

ML Data Processing

Raw Data Storage

Data Analytic Storage

Data Analytics

Average Measures 0,82 0,77 0,85 0,81 0,81 0,77 0,82 0,79 0,79 0,68 0,77 0,72 0,78 0,71 0,80 0,75

Overall, in these experiments, we observed that the limited size of the tool databases slightly impacted

the performance of the ML methods. However, the scalability and ease of maintenance and updating of

the various modules of the framework allow for improving the performance of ML methods by

expanding the number of supported tools. Indeed, the developed prediction models in the different

pipeline phases and tasks can be easily updated when new data traces are available or the process

model changes. This flexibility stems from the prediction model incorporating independent databases

for each phase and task and we have appropriate characteristics for each corresponding tool. Finally,

by leveraging ML methods and the relationships identified through supervised learning, we evaluated

and validated the best ML method, allowing our proposed framework for effective tool selection at

each pipeline phase and task.

In the next sub-section, we will detail the generation process of TSAs that meet the experts’ needs and

we will explain how they exploit the generated ML models.

3.3 Architecture Generation Process

The interactivity of our framework is based on multiple real-time exchanges between the expert and

the framework during the various phases of the process of generating a tailored model of the TSA. As

shown in Figure 4, this process consists of five phases: Predesign phase, Data Acquisition, Data

Storage and Processing, Data Analytics and Data Consumption. After the authentication step, in the

Predesign phase, the expert expresses the constraints related to his/her application case and the data

specificities to be supported by the pipeline, such as data size, data type, acquisition mode and many

other details like the intended analytic application, using a form. We have categorized the expert

constraints in Table 2 according to the big-data V-challenges and the categorical variables previously

used as features for generating ML models. Then, in each phase, the framework first displays all the

tools available to perform the current task. Next, it runs the ML model corresponding to this task to

predict the most suitable tools for the expert’s needs, gathered from the form and the task’s

312

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

specificities. Given the variety of tools studied in the ML phase, the prediction result may consist of

several proposed tools. In this case, the expert selects the tool according to his/her preferences and

validates his/her choice before proceeding to the next task.

Figure 4. Architecture generation process’s pipeline.

Moreover, given the importance of interoperability checking between tools of different phases and the

subsequent issues arising during the deployment of a big-data architecture, we have conducted a

detailed an interoperability study as detailed in [5] to which we refer interested readers. We have

leveraged this study’s results to deploy our framework. In this way, when the expert selects a tool that

is non-interoperable with the tool already chosen in the previous phase, an alert message is displayed

and consequently, the expert should choose another tool from the list predicted by the ML model. On

the other hand, in some phases of the process, tasks require more details from the expert. For example,

in the data processing task, to allow the process to predict the best tool, the framework requests the

expert to express its requirements regarding the response time that the proposed tool should meet. The

expert’s interaction with the framework continues until the data consumption phase, which contains

the data results to be consumed by the chosen tool in the data-analytics phase. We then find the

analytical applications requested by the expert in the initial form, such as OLAP Navigation,

dashboard, reporting, mobile application, forecasting, real-time analytics, statistics, visualization,

…etc. Finally, at the end of the process, the expert recovers a tailored pipeline model that meets his/her

specific constraints and the requirements of his/her application case, which he/she has been involved

in composing step by step; this is its tailor-made end-to-end pipeline model for TSA.

Table 2. Experts’ constraints expressed in terms of big-data features.

Big-data

Features Volume Velocity Veracity Variety

Expert’s

Constraint Size of Data
Time

Acquisition

Response

Time Quality
Number of

Data Sources Data Type Complexity

Categorical

Value

over1Peta Real Time less5
Loss and

duplicate data
over20

Table, CSV,

SQL DB,

Spreadsheets,

Log File

Structured One model

in1T1P Near Real Time in515 Loss data in5_20
JSON, XML,

Social Media
Semi-

structured
Multiple

models

less1Tera Batch over15 Duplicate data less5

Sensor Data,

NoSQL DB,

Video, Images,

Geo-spacial

Data

Unstructured

No loss nor
duplicate

313

"A Machine Learning Based Decision Support Framework for Big Data Pipeline Modeling and Design", A. Dhaouadi et al.

In summary, our interactive, ML-based framework provides an entirely automatic process. The expert

needs to express his/her requirements and is guided step by step to the final phase, where he/she

obtains a pipeline model in which all the tools are interoperable. The following section will validate

this framework by applying it to two use cases.

4. ARCHITECTAI: VALIDATION AND EVALUATION OF RESULTS

For ArchiTectAI evaluation, we opted for the ISO/IEC 25022 SQuaRE standard1, in particular the

user-satisfaction characteristic [6]. As defined in [7], satisfaction involves three sub-characteristics:

 Usefulness: "The degree of user satisfaction with achieving the objectives, including the

results and consequences of use" [7].

 Trust: "The degree to which a user has confidence that a software product will perform as

intended" [7].

 Comfort: "The extent of the user’s satisfaction with physical comfort" [7].

We have developed a specific module for collecting and analyzing expert feedback to measure these

criteria. As shown in Figure 5, we propose five levels of evaluation: Excellent, Good, Average, Poor

and Very Poor. Next, we reached out to twenty experts who engage with big data for various

purposes,requesting their participation in testing the framework against their respective requirements.

Subsequently, we gathered their feedback, obtained upon the completion of the pipeline-generation

process. Table 3 presents a comprehensive summary of these findings. Overall, the responses are very

satisfactory for the majority and show that the framework has met the specific expectations of the

experts.

For ArchiTectAI validation, we defined valuable criteria that were adapted to our context. For each

criteria, we proposed the following evaluation questions:

 The consistency of the pre-design phase. Q1: Does the questions asked in the form cover all

the experts’ requirements and data specificities?

 Expert-framework interaction. Q2: Are the interactions satisfactory from an ergonomic

perspective, particularly regarding usability and guidance?

 Clarity of the process for proposing and validating tool choice. Q3: Is it clear how the

predicted tools are presented to the experts? Is the task of validating the choices simple?

Table 3. Satisfaction evaluation.

Figure 5. ArchiTectAI evaluation by measuring the

 experts' satisfaction levels.

 Functional framework. Q4: When I implement the proposed TSA, do I have problems with

tool interoperability?

 The expected results. Q5: After implementing the proposed TSA, do the analytical

applications identified in the data-consumption phase meet the business needs?

 Technical constraints addressed. Q6: Did the ArchiTectAI consider the technical environment

1 Systems and software-quality requirements and evaluation

Satisfaction Usefulness Trust Comfort

Excellent 7 8 9

Good 10 10 9

Average 3 2 2

Poor 0 0 0

Very Poor 0 0 0

314

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

of the experts when proposing the tools?

 Framework evaluation. Q7: Does the ArchiTectAI enable experts to express their satisfaction?

For the validation process, we have applied ArchiTectAI to two use cases, which have been addressed

in previous works: [5] and [8]. For each use case, we proceeded as follows: We acted as the expert and

followed the steps proposed by ArchiTectAI to generate the corresponding TSA. We checked how it

assisted us and we assigned the symbol ’X’ if ArchiTectAI validates the criteria expressed by the

corresponding question. The results of this evaluation are displayed in Table 4.

4.1 Twitter Data Use Case Validation

In our previous work in [5], an interoperability and experimental study revealing the capabilities of the

tools and their resource-consumption requirements were conducted. Two different pipelines were

deployed for this experimental study to evaluate the popularity of teams and players before the start of

the 2022 World Cup. In order to lead the validation process, we used ArchiTectAI to re-generate the

two pipelines (examples of TSA). In the first pipeline, we acquired a dataset of approximately 80

million tweets in JSON format extracted from Twitter’s general thread around November 2022,

amounting to 500GB of data to be processed for batch-processing purposes. In the second one, we

emulated a stream of approximately 1200 tweets per second for stream-processing purposes. In the

pre-design phase, we selected in the form the options that addressed the specific characteristics of the

data to be processed, e.g. data size, acquisition mode, data type, …etc. (Q1 validated). We then

proceeded with all the steps guided by ArchiTectAI in continuous exchange throughout the process.

For example, in the processing phase, ArchiTectAI demands the required response time as an

additional request specific to the current phase (Q2 validated). At each step, the selection and

validation of tool choices are simple and clear. Furthermore, in each phase of ArchiTectAI, a dynamic

architecture diagram is generated using the Mermaid2 technique, which assigns the tool to the current

phase (Q3 validated). The previous work aimed to perform statistical reporting to achieve our

analytical objective. The ArchiTectAI framework suggested uses Tableau tool, which we had already

deployed in our architecture for generating reports; thus, the result was satisfactory (Q5 validated).

Moving forward in the process, in the end, as shown in Figure 6, with the assistance of

ArchiTectAI, we reproduced the pipeline-architecture model that we deployed in our case study. When

implementing the architecture, we did not meet any issues of tool interoperability or a bottleneck for

our processing engine. This proves that the proposed pipeline by ArchiTectAI is aligned with our

technical constraints (Q4 and Q6 validated).

Figure 6. Tools specific architecture model generated for the Twitter data case study.

4.2 The Covid Pandemic Use Case Validation

In our previous work in [8], we introduced a multi-layer model for generating architectures for big-

data warehousing. In this research study, we implemented an architecture for storing and analyzing

multi-source data to examine the impact of the COVID-19 pandemic evolution on Twitter. This hybrid

architecture supported streaming data from Twitter and batch data corresponding to the statistics

collected on vaccination campaigns. To validate ArchiTectAI, we applied all its phases, initially, by

specifying in the form all the business requirements and data specificities defined in this case study.

Then, the responses to this form were analyzed and processed by ArchiTectAI in order to be available

for the ML prediction model. As shown in Figure 7, particularly in the data-storage and processing

phase, ArchiTectAI proposed a set of tools, in which we found those already deployed in the previous

2 https://mermaid.js.org/

315

"A Machine Learning Based Decision Support Framework for Big Data Pipeline Modeling and Design", A. Dhaouadi et al.

case study architecture [8]. Thus, we selected them, validated the choices and proceeded to the next

phase (Q1 validated). Even for analysis tools, ArchiTectAI suggested tools already in previous use for

dashboard creation, reporting and statistics to track the pandemic and vaccination campaigns. So, the

expected result of the analysis would also be the same (Q5 validated). Regarding questions Q2 and Q3,

we have encountered no problems. In fact, ArchiTechtAI’s tool recommendations were clear, the

choice was simple and the navigation to move from one phase to another was seamless. Moreover,

during the implementation of our architecture, we had no interoperability problems. However, using

Excel with a large amount of data caused a bottleneck (Q4 and Q6 validated). Finally, for both case

studies, we completed the satisfaction survey proposed at the end of the ArchiTectAI process (Q7

validated).

Figure 7. Tools specific architecture model generated for the Covid-19 pandemic case study:

An overview of tool selection.

In summary, our ArchiTectAI interactive framework provided TSAs implemented in both use cases,

proving that they are functional, consistent and support all data specifics and required constraints.

They also proved that they met the professional requirements of both studies, with careful analysis of

these requirements and supported by ML methods to predict the corresponding tools. Therefore, we

have successfully validated ArchiTectAI, a decision-support framework, for big-data pipeline

modeling, with particular emphasis on these two specific use cases on which we have extensively

worked. However, the applicability of our framework extends far beyond these scenarios. Indeed, our

overarching goal was to develop a highly generic framework that can be tailored to a diverse array of

big-data application domains and use cases. For example, this includes processing streaming videos in

real-time (e.g. ground traffic control), images (medical, satellite, …etc.), textual data (e.g., analyzing

sentiment on social media) and other similar applications.

Table 4. Evaluation of validation questions by application of use cases.

Use Case
Validation Question

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Twitter Data X X X X X X X

Covid Pandemic Data X X X X X X X

5. RELATED WORKS AND ASCERTAINMENTS

This section is structured as follows. Sub-section 5.1 focuses on approaches addressing big-data

challenges, while other approaches examine and evaluate big-data tools. In sub-section 5.2, we review

a selection of research work that classifies some big-data tools within proposed architectures, with the

purpose of facilitating a choice between them.

316

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

5.1 Big-data Warehousing and Analysis: Tools, Technologies and Big-data Features

Day to day, big-data features are raising new challenges for data-warehousing systems. Research

studies have been conducted in the literature tackling particular challenges [9][10][11]. In [9], the

authors focused on the variety issue by proposing an architectural design of a schema-less big-data

repository aiming at capturing all data types. To cope with velocity, the authors in [10] elaborated an

approach for detecting concept drift by investing in ML techniques utilizing both real and artificial

data. As for Yousfi et al., they proposed in [11] a framework combining different processing engines in

order to handle velocity. These engines operate parallel to perform the relevant matching and deliver

the most complete and accurate data insight. On the other side, with the emergence of a wide variety of

big-data tools, we notice that many surveys have been conducted to discuss and even evaluate these

tools [12]-[13], [18]-[19]. However, none of these comparisons have classified the tools according to

their satisfaction with big-data features. In particular, in [12], the authors compared some popular big-

data frameworks based on the employed-programming model, the types of data sources utilized, the

programming languages supported, the fault-tolerance support, the scalability and whether or not

iterative processing is supported. Additionally, in [13], the authors considered scalability, distributed

architecture, parallel computation and fault tolerance as comparison criteria. Recently, in [20], the

author addressed a theoretical study of the big-data value chain, without focusing on specific

technological solutions or practical implementations. It explored the conceptual relationships between

big-data characteristics and the different stages of the value chain, but did not provide operational

details on implementation and interoperability constraints between technologies.

5.2 Big-data Warehousing and Analysis: Approaches to Tool Selection

In [14], the authors defined criteria for choosing big-data tools and proposed a customer data analytics

architecture. Despite the originality of their work, the approach has been limited to a restricted

selection of tools, focusing only on smart-grid application. In [15], the authors proposed an approach

utilizing key performance indicators (KPI), weightage and scores to help choose the best-ranked data

warehousing tool for enterprises. In [16], the authors set forward a big-data analytical approach

architecture. They classified the investigated approaches for analytical processing into NoSQL-based

architecture, parallel relational database-based architecture and graph-based architecture. For each type

of these architectures, they examined a set of tools according to these criteria: query language used,

scalability, OLAP support, fault-tolerance support, cloud support, programming model and ML

support. Moreover, the work in [17] is relevant to the scope of our research. The authors aimed to

incorporate an iterative methodology for defining big-data analytics architectures. With its various

phases, this methodology covers all the modeling tasks that a designer should perform to define a big-

data pipeline. By considering the phase requirements regarding big-data characteristics, the authors

introduced some technologies that can be deployed to meet these needs. Despite the importance of the

proposed methodology, we note that they did not propose an automatic and interactive solution to

guide the users in their choice of tools for each phase of the pipeline. In [20], by examining 110

significant and recently published articles, the authors conducted a comprehensive and systematic

literature review on big-data management (BDM) techniques in the Internet of Things (IoT). They

categorized the investigated mechanisms into four groups: BDM processes, BDM

architectures/frameworks, quality attributes and types of big-data analysis. A detailed comparative

analysis was provided for each category. Moreover, the authors presented a holistic BDM framework

for IoT, including the following steps: data collection, communication, data ingestion, storage,

processing and analysis and post-processing. The reviewed articles were classified according to these

framework steps. Additionally, the study evaluated and compared various tools, platforms and

frameworks used in the IoT domain based on qualitative criteria, such as performance, efficiency,

accuracy and scalability. Finally, despite the comprehensive study presented in this paper and the

advice derived from the authors’ and other researchers’ experiences, it’s important to note that it

exclusively focuses on techniques deployed in IoT.

Despite the community’s awareness of the technological revolution associated with big data and the

numerous efforts enacted to compare tools and propose approaches for designing big-data pipelines,

we note the following shortages: 1- None of these works has proposed a generic architecture from

which we can instantiate multiple specific pipeline models dedicated to different use cases. 2- The

proposed approaches are limited to specific case studies. 3- The proposed approaches handle a limited

317

"A Machine Learning Based Decision Support Framework for Big Data Pipeline Modeling and Design", A. Dhaouadi et al.

number of big-data tools and often do not focus on checking the interoperability between the proposed

tools and the overall consistency of the proposed pipeline. 4- None of the studies proposed a method

for creating a tool database classified according to satisfaction with big-data characteristics. 5- None of

these works erected an automatic framework based on interaction with the experts to deduce from an

exchange form all the particular needs, data specificities and technical constraints. 6- None of the

proposed solutions relies on an ML model to analyze the experts’ specific needs and identify the most

appropriate tools. 7- None of the suggested approaches provide step-by-step assistance to experts

composing their end-to-end big-data pipeline model. To address all these issues, we have proposed this

ML-based interactive framework driven by a generic architecture to assist experts step-by-step in

designing a big-data pipeline customized to their specific needs.

6. CONCLUSION

This research paper proposes an architecture to support a big data pipeline modeling interactive

framework based on ML (ArchiTectAI). This architecture is based on three main modules. An ad-hoc

method for generating tool databases has been developed for the first module. This method, from the

list of tools for each Tools Independent Architecture phase and task and the different categorical

variables characterizing big-data challenges, generates tool bases categorized according to their

characteristics for each task in the big-data pipeline. The second module generates ML models. This

module has implemented and evaluated several ML methods to choose the best one. The third module

relies on these ML models to predict the best tool for each task and pipeline phase for the experts

while respecting the constraints and specificities of the data. At the completion of this research, we

evaluated the satisfaction of our interactive framework based on the ISO/IEC 25022 standard and

validated it on two use cases. The consistency of the resulting pipeline proves the framework’s

effectiveness in its choice for suggesting tool choices. As a final note, this research work is extremely

valuable and promising, as it opens further fruitful lines of investigation and offers promising future

research directions. Indeed, our framework has been developed to be generic and scalable. Its

adaptability allows for future updates with changes to existing tools or the addition of new ones,

facilitated by the flexible underlying method for generating the tool database on which it depends.

Furthermore, it can also be enriched with additional forms to address more constraints and expert-

specific requirements. We also intend to enrich the framework with comprehensive guidelines for

deploying the proposed architecture, specifying the connectors between tools. In addition, the tools

and platforms for big-data governance and security are beyond this research’s scope. In this respect,

the elaborated work can be extended by incorporating this type of tools.

REFERENCES

[1] T. P. Raptis and A. Passarella, "A Survey on Networked Data Streaming with Apache Kafka," IEEE

Access, vol. 11, pp. 85333-85350, 2023.

[2] S. Mishra and A. Misra, "Structured and Unstructured Big Data Analytics," Proc. of the 2017 IEEE Int.

Conf. on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), pp. 740-

746, Mysore, India, 2017.

[3] A. Davoudian and M. Liu, "Big Data Systems: A Software Engineering Perspective," ACM Computing

Surveys (CSUR), vol. 53, no. 5, pp. 1-39, 2020.

[4] K. Rahul, R. K. Banyal and N. Arora, "A Systematic Review on Big Data Applications and Scope for

Industrial Processing and Healthcare Sectors," Journal of Big Data, vol. 10, Article no. 133, 2023.

[5] A. Dhaouadi, W. Paccoud, K. Bousselmi, S. Monnet, M. M. Gammoudi and S. Hammoudi, "Big Data

Tools: Interoperability Study and Performance Testing," Proc. of the IEEE Int. Conf. on Big Data, MIDP

Workshop (MIDP-2023), pp. 2386-2395, 2023.

[6] ISO/IEC, "ISO/IEC 25022:2016 - Systems and Software Engineering — Systems and Software Quality

Requirements and Evaluation (SQuaRE) — Measurement of Quality in Use," ISO/IEC 25022:2016,

[Online], Available: https://www.iso.org/standard/35746.html, 2016.

[7] J. Sulla-Torres, A. Gutierrez-Quintanilla, H. Pinto-Rodriguez, R. Gómez-Campos and M. A. Cossio-

Bolaños, "Quality in Use of an Android-based Mobile Application for Calculation of Bone Mineral

Density with the Standard ISO/IEC 25022," IJACSA, DOI: 10.14569/IJACSA.2020.0110821, 2020.

[8] A. Dhaouadi, K. Bousselmi, S. Monnet, M. M. Gammoudi and S. Hammoudi, "A Multi-layer Modeling

for the Generation of New Architectures for Big Data Warehousing," Proc. of the 36th Int. Conf. on

Advanced Information Networking and Applications (AINA- 2022), vol. 2, pp. 204–218, 2022.

[9] A. M. Olawoyin, C. K. Leung, C. CJ. Hryhoruk and A. Cuzzocrea, "Big Data Management for Machine

http://www.iso.org/standard/35746.html

318

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024.

Learning from Big Data," Proc. of the 37th Int. Conf. on Advanced Information Networking and

Applications (AINA-2023), vol. 1, pp. 393–405, 2023.

[10] A. Abbasi, A. R. Javed, C. Chakraborty, J. Nebhen, W. Zehra and Z. Jalil, "ElStream: An Ensemble

Learning Approach for Concept Drift Detection in Dynamic Social Big Data Stream Learning," IEEE

Access, vol. 9, pp. 66408–66419, 2021.

[11] S. Yousfi, D. Chiadmi and M. Rhanoui, "Smart Big Data Framework for Insight Discovery," Journal of

King Saud University-Computer and Information Sciences, vol. 34, no. 10, pp. 9777–9792, 2022.

[12] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri and E. M. Nguifo, "An Experimental Survey on Big Data

Frameworks," Future Generation Computer Systems, vol. 86, pp. 546–564, 2018.

[13] S. Riaz, M. U. Ashraf and A. Siddiq, "A Comparative Study of Big Data Tools and Deployment

Platforms," Proc. of the IEEE Int. Conf. on Engineering and Emerging Technologies (ICEET), pp. 1–6,

Lahore, Pakistan, 2020.

[14] H. Daki, A. El Hannani, A. Aqqal, A. Haidine and A. Dahbi, "Big Data Management in Smart Grid:

Concepts, Requirements and Implementation," Journal of Big Data, vol. 4, no. 1, pp. 1–19, 2017.

[15] M. R. Sureddy and P. Yallamula, "Approach to Help Choose Right Data Warehousing Tool for an

Enterprise", Int. J. of Advance Research, Ideas and Innovat. in Technol., vol. 6, no. 4, pp. 579-583, 2020.

[16] Y. Cardinale, S. Guehis and M. Rukoz, "Classifying Big Data Analytic Approaches: A Generic

Architecture," Proc. of the 12th Int. Joint Conf. on Software Technologies (ICSOFT), Part of the Book

Series: Communi. in Computer and Information Science, vol. 868, pp. 268-295, Madrid, Spain, 2018.

[17] R. Tardio, A. Mate and J. Trujillo, "An Iterative Methodology for Defining Big Data Analytics

Architectures," IEEE Access, vol. 8, pp. 210597–210616, 2020.

[18] S. Alkatheri, S. A. Abbas and M. A. Siddiqui, "A Comparative Study of Big Data Frameworks," Int. J. of

Computer Science and Information Security (IJCSIS), vol. 17, no. 1, pp. 66-73, 2019.

[19] M. Khalid and M. Murtaza Yousaf, "A Comparative Analysis of Big Data Frameworks: An Adoption

Perspective," Applied Sciences, vol. 11, no. 22, p. 11033, 2021.

[20] A. A. Aydin, "A Comparative Perspective on Technologies of Big Data Value Chain," IEEE Access, vol.

11, pp. 112133 – 112146, 2023.

[21] A. Naghib, N. J. Navimipour, M. Hosseinzadeh and A. Sharifi, "A Comprehensive and Systematic

Literature Review on the Big Data Management Techniques in the Internet of Things," Wireless

Networks, vol. 29, no. 3, pp. 1085-1144, 2023.

ملخص البحث:

سةةةةةةة ا اةةةةةةةتّ رة ثيرةةةةةةةةرة ّ ةةةةةةة ما إنّ عمليةةةةةةةا اةةةةةةة يت ل ثيرةةةةةةةةرة تلةّةةةةةة ةةةةةةة ي ةةةةةةةا

ةةةةةةةا مةةةةةةةرع ظ و ة مةةةةةةةا و عّرمةةةةةةةا مةةةةةةةا ماةةةةةةةرم ثيرةةةةةةةةرة لات ةةةةةةةت ظ م ةةةةةةةا ةةةةةةةث رة ّ

ظ و مةةةةةتن ،وّيةةةةةاظ و ةةةةةث ا ةةةةة اةةةةة با َيمةةةةةا مةةةةة ثيرةةةةةةرة م ثرم ةةةةةا و ةةةةة ّ ةةةةةيا

 هةةةةةر هةةةةة، فةةةةةر ظ ةةةةة نّ ملا مةةةةةا ةم، ةةةةةا اتةةةةة ف ثيرةةةةةةرة مةةةةة ةةةةةا و سةةةةةر ثيرةةةةةةرة و

ومعر لا هةةةةةةر هةةةةةةتظ اليلهةةةةةةر نّةةةةةة فيّةةةةةةر و اةةةةةةعر مةةةةةة الةةةةةة ّ يةةةةةةا ّ ةةةةةة تةةةةةة

 ةةةةةةتو هر علةةةةةةه اةةةةةةتّ رة مهمّةةةةةةا و ةةةةةةع رة مّةةةةةةا و ةةةةةة ا و ةةةةةة ات ةةةةةةت ظ ةةةةةة نّ ا يةةةةةةر م

 م لةةةةةةه مبتمةةةةةةا ل ير ةةةةةةرة عمةةةةةةا رّ ةةةةةةا ر مسةةةةةة ت وم ةةةةةة ل ثرم يةةةةةةا ّ ةةةةةة يا ةةةةةةي

ّا ثح م ي اّت رة ارايا مو ة م ل

مةةةة هةةةة، م تلةةةةةذظ ةل ةةةة إ ةةةة هةةةةة،ا ت اةةةةا إفةةةةر عمةةةةةا ّرعليةةةةر ت ةةةةت مث يةةةةةر علةةةةه ل يةةةةةرة

 علُّةةةةةة م ةةةةةا مسةةةةةرعت ثةةةةة ت ةةةةة ةم، ةةةةةا اةةةةةّ يرةةةةةةرة مةةةةة ةةةةةا اةةةةة يت ل ثيرةةةةةةرة وعلةةةةةه

ةا مقّّظ ة ر ةعما عله:

 ثيرةرة متل معر لا هر (اليا م تلثّرة ث ت واارتص

 (َ إ ث يا مبتما لك م تلثّرة م ي ملام عا م ث ه

م راةةةةثا ج(اليةةةةذ م ةةةةك مةةةة اةةةةب عةةةةتم مةةةة فةةةة ق علةّةةةة م ةةةةا َُّةةةةا و ةةةة مو ة

 اي ث اا م اّ م للا و اّ مهمّا

 رلةةةةةة ت اةةةةةةر إ ةةةةةةلم امةةةةةةع رفةةةةةةإ ايةةةةةةلعر مةةةةةة ذلُّةةةةةةا ّ ى ةةةةةة ظك ةةةةةةم ه ةةةةةةإ ا ر ةةةةةة ر

 يمت سم م اع ّ ا ، ّ ةر ه إ ظ ليلا ة رع م ت ا

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

