
25

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

1. M. Al-Jarrah is with the Computer Engineering Department, Yarmouk University, Irbid, Jordan.

E-mail: jarrah@yu.edu.jo.

2. A. Al-Sawalqah is with the Communications & Electronics & Computer Engineering Department, Tafila Technical

University, Tafila, Jordan. E-mail: ahmadsw@ttu.edu.jo.

3. S. Al-Hamdan is with the Computer Engineering Department, Yarmouk University, Irbid, Jordan.

E-mail: shamdan@yu.edu.jo.

DEVELOPING A COURSE TIMETABLE SYSTEM FOR

ACADEMIC DEPARTMENTS USING GENETIC

ALGORITHM

 Mohammad A. Al-Jarrah1, Ahmad A. Al-Sawalqah2 and Sami F. Al-Hamdan3

 (Received: 13-Jun.-2016, Revised: 10-Nov.-2016, Accepted: 15-Jan.-2017)

ABSTRACT

 Preparing course timetables for universities is a search problem with many constraints. Exhaustive

search techniques in theory can be used to develop course timetables for academic departments, but

unfortunately these techniques are computation intensive, since the search space is very large and

therefore are impractical. In this paper, Genetic Algorithms (GA’s) are utilized to build an automated

course timetable system. The system is designed for any academic department. The proposed timetabling

system requires minimal effort from the administration staff to prepare the course timetable. Moreover,

the prepared course timetable considers faculties’ desires, students' needs and available resources, such

as classrooms and laboratories with optimal utilization.

The proposed timetabling process was divided into three stages. The first stage is the data collection

stage. In this stage, the administrative staff; usually the head of the department, is responsible for

preparing the required data, such as the names of the faculty personnel and their desires of courses and

laboratories ordered with some priority scheme. Number and type of theoretical and practical courses

are also fed to the system based on some statistics about student numbers and previous course timetable

history. The system is also fed with number of lecture rooms allocated for the department and number of

labs with information about theoretical courses they are able to serve. In the second stage, the program

generates an initial set of suggested schedules (chromosomes). Each chromosome represents a solution to

the problem, but usually is not satisfactory. Finally, the proposed timetabling system starts the search for

a good solution that satisfies best interests of the department according to a cost function. GA is applied

in search for a satisfactory course timetable based on a pre-defined criterion. The system has been

developed and tested utilizing benchmarked datasets developed by an international timetabling

competition (ITC2007) and for the Computer Engineering Department at Yarmouk University. In both

cases, the algorithm showed very satisfactory results.

KEYWORDS

Courses timetable problem, Courses timetable generation, Genetic algorithm, Chromosome generation,

Parents selection algorithm, Crossover, Mutation.

1. INTRODUCTION

The head of an academic department in any university is usually responsible for preparing a

course timetable every semester. Preparing course timetables is a time-consuming task which

academic colleges face. Course timetabling is not only formulating a timetable for courses, but

also has to be performed based on many constraints, such as classroom availability and capacity,

interference between rooms and courses and conflicts between courses and instructors. Very

early in 1999, class timetabling at Sirindhon International Institute of Technology has been

mailto:jarrah@yu.edu.jo
mailto:ahmadsw@ttu.edu.jo
mailto:shamdan@yu.edu.jo

26

"Developing a Course Timetable System for Academic Departments Using Genetic Algorithm", Mohammad A. Al-Jarrah, Ahmad

A. Al-Sawalqah and Sami F. Al-Hamdan.

tackled based on the mentioned constraints. A cost function was defined for each one to utilize

the existing facilities and resources effectively [1].

Generally, course timetabling in many universities is prepared manually based on administration

experience. The administrator should consider all available facilities and resources, such as

courses, instructors, rooms and laboratories. Moreover, the instructors’ time and time of course

sections are important constraints to handle. Therefore, based on all the mentioned constraints,

course timetabling is a very exhaustive and time-consuming task.

Course timetabling is one of the Nondeterministic Polynomial-time (NP) hard problems [1],

[12], [23]-[25]. Heuristic search algorithms are usually used in most of these problems to find a

near-optimal solution. Nevertheless, this only works for simple cases. For more complex inputs

and requirements, obtaining a considerably good solution can take long time and effort [2]-[3],

[26]-[27].

Genetic algorithms (GA's) are a class of non-traditional techniques which can handle complex

and large search spaces to a certain extent in problem solving [4]-[6], [14]-[16]. In some GA

approaches, the search space is divided into subspaces to increase the probability of having good

chromosomes in the initial population. This technique increases the chances of finding a near-

optimal solution resulting usually in a reduction of computation time [17]-[20]. In the following

sections, we propose an automated course timetabling system using genetic algorithms.

Preparing course timetables for academic departments usually utilizes different approaches,

such as tabu search, simulated annealing and fuzzy logic [7]-[8], [21]. A combined approach

including GA and Hill Climbing has been also introduced to prepare course timetables for

academic departments [9]. Another combined approach has also been presented for solving

timetabling problem using honey-bee mating optimization algorithm [10]. In [11], an

evolutionary approach to solve university course timetabling problems has been introduced.

Wren [22] defines timetabling as follows: “Timetabling is the allocation, subject to constraints,

of given resources to objects being placed in space time, in such a way as to satisfy as nearly as

possible a set of desirable objectives’’. Lü et al. [28] developed a timetabling algorithm based

on tabu search. Bonutti et al. developed a curriculum-based course timetabling for universities.

The best known solutions have been discussed and compared [29]. Muller, the winner of the

International Timetabling Competition 2007, introduced his algorithm based on hill climbing

and great deluge technique.

In the course timetabling problem, an optimal solution is defined as the best utilization of

available expertise, resources and time for best delivered services. The best utilization is defined

under a set of constraints. The constraints are divided into hard and soft constraints. In this

paper, the soft and hard constraints used are those related to time, room, instructors and courses.

Also, some of the constraints are defined based on type of room (availability of a data show for

example), instructor rank and type of course (theoretical or practical). All these constraints have

been considered in the proposed algorithm to develop a satisfactory course timetable with

minimal effort. Moreover, the proposed algorithm generates a course timetable that satisfies all

hard constraints.

The rest of this paper is organized as follows: In section 2, course timetabling using genetic

algorithms is discussed. In section 3, automated timetabling using GA’s is described. In Section

4, the implementation and experimental results are illustrated for the proposed course

timetabling using GA’s. Finally, conclusions are presented in section 5.

2. COURSE TIMETABLING USING GENETIC ALGORITHMS

Course timetable is a table which contains information about courses offered for students to

register in. Course timetabling is one of the major time-consuming tasks performed frequently

27

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

by heads of academic departments. The inputs for the process for preparing a course timetable

can be formulated as follows:

1- Set of courses (Co) and number of offered sessions for each course, such that Co = {(c1,

s1, ct1,sz1), (c2,s2, ct2,sz2)…., (cn,sn,ctn,szn)}, where ci is the ith course, si is the number of

sessions for course ci, cti is the course type and szi is the number of students. Course

type has two values; representing theoretical or practical.

2- Set of instructors (Ins), such that Ins= {(I1, L1), (I2, L2),….,(Im, Lm)}, where Ii is

instructor i and Li is the load of instructor i.

3- Set of lecture rooms and laboratories (R), such that R = {(r1, t1), …. , (rs, ts)}, where ri

is room number I and ti is the room type. Room type has two values; representing

lecture room or laboratory room.

4- Set of time slots (TS), such that TS= {(d1, s1), ….. (dn,Sn)}, where di is the day group

selection and Si is the ith slot of time from the selected day group. In universities, the

week days are divided into two groups. For example, the first group includes Sunday,

Tuesday and Thursday, whereas the second group includes Monday and Wednesday.

Moreover, the first group is divided into time slots, such that each slot is 60 minutes,

and the second group is divided into time slots, where the slot is 90 minutes. University

departments offer their courses on a daily basis. For example, the course may be offered

on Sunday, Tuesday and Thursday from 8:00AM to 9:00AM or on Monday and

Wednesday from 8:00AM to 9:30AM for the entire semester.

Based on the inputs, the task is to prepare course timetabling that satisfies all hard

constraints and most possible soft constraints. The hard constraints are:

H1- Scheduling all courses listed in Co list.

H2- Assigning an instructor to each course and satisfying instructors load according to

Ins set.

H3- Assigning a lecture room to each course and satisfying room type according to Co

list, where practical courses must be in a laboratory room.

H4- Sessions of the same course should not be in the same time slot.

H5- The lecture room size must be greater than the number of students in the Co set.

H6- An instructor must not have more than one lecture in the same time slot.

The soft constraints are:

S1- Room capacity to expected attending students. To satisfy this constraint, the ratio of

the number of students in Co list to room size must be more than 0.85.

S2- Room utilization. It is expected to utilize lecture room all the time. To satisfy this

constraint, the ratio of the utilization time to the total room time must be more than

0.90.

S3- Instructor preferable courses. This constraint is satisfied if the assigned course to an

instructor is one of the preferred courses of this instructor.

S4- Instructor preferable lecturing time slots and not preferable time slots. This constraint

is satisfied if the assigned course time to an instructor is one of the preferred time

slots of this instructor.

S5- Instructor teaching experience. It is preferred to assign a course to an instructor who

taught it. This constraint is satisfied if the course assigned to an instructor has been

previously

taught by this instructor.

S6- Instructor timetable compactness. This constraint measures the distribution of

instructor timetable. To satisfy this constraint, first, instructor timetable should not

include more than two adjacent lectures and the waiting time between lectures should

not be more than one time slot.

28

"Developing a Course Timetable System for Academic Departments Using Genetic Algorithm", Mohammad A. Al-Jarrah, Ahmad

A. Al-Sawalqah and Sami F. Al-Hamdan.

The process of preparing a course timetable considers the inputs, such that the resulting course

timetable must satisfy all hard constraints and all possible soft constraints. Therefore, the

process of preparing a course timetable is not a straight forward process and the solution is not

unique. Moreover, preparing a course timetable is very costly in terms of time and effort if it’s

prepared manually. Preparing a course timetable automatically using intelligent algorithms has

been investigated as mentioned earlier in the introduction section.

Genetic algorithms are one of the methods that reduce computation cost in comparison with

other artificial intelligence approaches, such as heuristic search tree, particularly for hard or

complex problems like preparing courses timetables. GA’s clone biological evolution and

consist of simple steps that go through several iterations (generations) until a satisfactory

solution is reached. For course timetabling system, a satisfactory solution is one that satisfies

all hard constraints and as much as possible of soft constraints. For example, the load for an

instructor of the rank assistant or associated professor should not exceed 12 credit hours, while

it is 9 credit hours for a full professor. This is a hard constraint; however, the desire of a certain

instructor of having his courses after 10 O’clock is a soft constraint that is good to satisfy, but is

not necessary. Assuming that the problem has an optimal solution, achieving 100% satisfactions

for all constraints (optimal) is computationally very costly.

In GA’s, a solution is represented as a chromosome. Population is a set of chromosomes that

represent the solution subspace. New generations of chromosomes are generated through two

basic genetic operations: crossover and mutation. In crossover, two genes, where a gene is a part

of a chromosome, containing a part of the solution, are swapped between the mated pair of

chromosomes. The new chromosome would be considered as an accepted, not accepted or

satisfactory solution [9]. In mutation, a gene is completely changed randomly for the selected

chromosomes. Crossover occurs much more frequently than mutation. GA’s assume that the

new generations of chromosomes will have better qualities than their ancestors. The process of

crossover and mutation is repeated until a near-optimal solution for the problem in hand is

reached [10].

GA’s have many features that make them in some occasions the best problem solving method.

GA’s can be used in problems where the search space is usually large and complex when

traditional methods need long time and high computation systems [13]. Furthermore, GA’s are

considered as intelligent systems, where the knowledge is built based on last best knowledge

until a satisfactory solution is reached. This means that GA’s do not require generating the full

search space.

GA’s have a parallel nature in which parallelism can be explored and used making it possible to

speed up the calculations. To identify a near-optimal solution, each chromosome in the

population has a fitness value. The fitness value for a chromosome defines how much it is close

to the optimal solution. Genetic processing is applied to improve the fitness value of new

generations of chromosomes. If near-optimal solution is not found after a reasonable number of

search iterations, then the process is started all over again with a new set of chromosomes.

Hopefully, the new running chromosomes will lead to the required near-optimal solution.

3. AUTOMATED COURSE TIMETABLING SYSTEM USING GENETIC

ALGORITHM

The proposed algorithm for course timetabling utilizes genetic algorithms to generate a near-

optimal course timetabling in a relatively short period of time and with a little effort from the

administrator side. Figure 1 illustrates the proposed algorithm for course timetabling system

utilizing GA’s. The final schedule is achieved if the solution satisfies all predefined hard

constraints. The main loop of search includes genetic operations, which include mutation and

crossover.

29

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

According to Figure 1, the timetabling is divided into two stages. The first stage includes

chromosome generation and population initialization. This stage starts after collecting data and

constraints from administrators who are responsible to prepare the course timetable. The second

stage includes the process of applying genetic operations, which are crossover and mutation of

selected chromosomes. Each chromosome represents a solution to the problem (course

timetable), but usually is not optimal. In this stage, we select chromosomes called parents to

apply genetic operations. Operations will generate new chromosomes that have properties better

than their parents. The generated chromosomes will be added to the population. The new

population is evaluated to check if one of the chromosomes achieved the targeted goal.

3.1 Chromosome Generation and Population Initialization

In this subsection, we discuss the first stage that handles the generation of chromosomes and

adding them to the population. The generated chromosomes are generated randomly. Each gene

is selected randomly from the gene pool. The following steps explain how to generate a

chromosome.

a. The course sessions that must be offered by the department are determined by the

department administration and considered as an input list for the population

initialization process. The set of courses is included in the Co set.

b. The chromosome genes are course genes, instructors’ genes, days and time of lectures

and lecture room or laboratory room.

c. Select session gene from the input list randomly and assign this value to a

chromosome; if the input list is empty, go to step h.

d. Complete the remaining genes for this chromosome part. For example, select

randomly an instructor from the instructor pool, a time from the time pool and a

lecture room from the halls’ pool. The process is accomplished for every gene in the

chromosome.

e. For the generated chromosome part, check if the course is a laboratory one, then

reselect the hall from the laboratory halls’ pool.

f. After considering all items of the input list, the obtained chromosome represents an

initial solution. Add this chromosome to the initial population and reload the input

list.

g. Repeat steps c to f N times, where N is the number of chromosome in the population.

h. End of population initialization.

The result of population initialization is a set of solutions. The near-optimal solution which we

are searching for is most probably not one of the initial generations. Therefore, the fitness value

is computed using the proposed fitness function for each chromosome generated during the

population initialization process.

3.2 Fitness Functions

The fitness function is computed and evaluated for every chromosome in the population. The

fitness is measured through quantifying constraints. The constraints are divided into two groups;

hard constraints and soft constraints. A hard constraint is a constraint that makes the course

timetable invalid if not satisfied by the solution. For example, an instructor is assigned to teach

two courses at the same time. Thus, for a valid course timetable, all hard constraints must be

achieved. A soft constraint is one that is strongly recommended to satisfy, but does not make the

solution invalid if not satisfied. For example, some instructors prefer to have their lectures early,

while others prefer to have them at late times. A satisfied constraint is a constraint that will have

a positive value (+2) on the fitness function and an unsatisfied one will have a negative value (-

2). However, a satisfied soft constraint will have also a positive contribution (+1) on the fitness,

while an unsatisfied one will have a zero effect on the fitness function (see Equations 1 and 2).

30

"Developing a Course Timetable System for Academic Departments Using Genetic Algorithm", Mohammad A. Al-Jarrah, Ahmad

A. Al-Sawalqah and Sami F. Al-Hamdan.

For hard constraints:

𝐻𝐶𝑖 = {
0. 𝑖𝑓 ℎ𝑎𝑟𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑

 2. 𝑖𝑓 ℎ𝑎𝑟𝑑 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑
 (1)

Figure 1. The proposed system for preparing a course timetable using GA’s.

For soft constraints, (SCi) is calculated as follows:

𝑆𝐶𝑖 = {
0. 𝑖𝑓 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑

 1. 𝑖𝑓 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑
 (2)

The fitness function will include all constraints. Thus, the fitness function is computed for a

certain chromosome x as follows:

𝐹(𝑥) = ∑ 𝐻𝐶𝑖

𝐿

𝑖=1

+ ∑ 𝑆𝐶𝑖

𝑀

𝑖=1

 (3)

where L is the number of hard constraints and M is the number of soft constraints. This fitness

function ranges from 0 to (2N+M). According to Equation (3), the chromosome with a fitness

value equal to zero is a chromosome that stratified all constraints. Thus, the ultimate goal for

our algorithm is to obtain a chromosome with a fitness value equal to zero. However, finding

Initial population & Select

initial parents

For any chromosome x,

 (F(x) < threshold)

Apply Crossover and/or mutation

For new chromosome x,

 (F(x)<threshold)

Exceeds no. of

tries limit

Report chromosomes and F(x)

Goal achieved, report course

timetable

New F(x) better than

exist

True

False

True

True

True

False

False

False

31

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

such a chromosome is not guaranteed by GA’s and if possible will usually be computationally

very costly. Thus, we defined the following condition, which we named GOAL in the proposed

algorithm, to stop the search loop as follows:

𝐺𝑂𝐴𝐿 = {
𝑇𝑟𝑢𝑒. 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥. 𝑖𝑓 𝐹(𝑥) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 𝑎𝑛𝑑 𝐻𝐶(𝑥) = 2𝐿

𝐹𝑎𝑙𝑠𝑒. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒
 (4)

The value of HC(x) = 2L if all constraints are achieved.

3.3 Chromosome Selection

After N chromosomes are added to the initial population, the fitness function is calculated for

each candidate in the population. Most likely, there is no chromosome in the initial population

which satisfies the GOAL; therefore, a process of genetic operations will be applied on the set of

solutions called parents. Two chromosomes will be mated together to produce new

chromosomes. The selection of these two chromosomes is dynamic and depends on the fitness

value for each chromosome. The probability of selecting a chromosome to be a parent depends

on its fitness value. The probability value for selecting a chromosome (x) is defined as:

𝑝(𝑥) = 1 −
𝐹(𝑥)

∑ 𝐹(𝑖)𝑁
𝑖=1

 (5)

where N is the number of chromosomes in the population and F(x) is the fitness of the

chromosome. According to Equation 5, the chromosome with a higher fitness value has a better

chance to be chosen for mating operations.

After selecting parents, the genetic operators are applied. From each operation, new

chromosomes are generated and the fitness values for these chromosomes are computed for the

next iteration.

3.4 Applying Genetic Algorithms Operation (Mutation and Crossover)

Genetic algorithms have two types of operation: crossover (mating) and mutation. Chromosome

mating operation is usually accomplished utilizing a pair of chromosomes that are selected as

parents by chromosome selection process. The crossover operation includes the exchanges of

instructor, classroom, course or time genes in a random manner. The result of the mating

operation is two new chromosomes that would have the good properties of their parents. The

fitness function is computed for the new chromosomes. If the fitness values for the new

chromosomes are greater than those of their parents, these new chromosomes are added to the

population. Otherwise, they are discarded and the process is repeated.

The mutation is the process of changing a gene in parent chromosome with a new gene. In the

proposed algorithm, the mutation is accomplished as follows:

1- Select a chromosome from the population as a parent one.

2- Randomly, select which gene is to be replaced. The targeted genes are course,

instructor, classroom or time slot.

3- Select randomly a new gene from the gene pool. The selected gene type must be

similar to that of the one selected in step 2. For example, if we decided to replace

an instructor gene, then the pool will be the instructors’ pool in the department.

4- Replace the new gene with the old one.

5- Calculate the fitness function for the new chromosome. If the fitness value for the

new one is better than that of the parent, then add the new chromosome to the

population. Otherwise, discard the new chromosome and repeat the process.

The mutation process is applied every while or when crossover operation does not achieve an

improvement. Thus, the probability of applying mutation is increased with respect to number of

32

"Developing a Course Timetable System for Academic Departments Using Genetic Algorithm", Mohammad A. Al-Jarrah, Ahmad

A. Al-Sawalqah and Sami F. Al-Hamdan.

unsuccessful crossover operations and with respect to the difference between the best fitness

values for the population before crossover and the fitness values for the population after

crossover operation. The implementation of randomly applying mutation is achieved through

defining a mutation counter. The value of the counter is initially zero and every time the

crossover failed to improve the fitness value, this counter is incremented by one. Then, at the

end of every loop, we randomly generate an integer between 0 and 10000. If the generated

number is less than the mutation counter, we apply the mutation process and reset the mutation

counter.

4. PROPOSED ALGORITHM IMPLEMENTATION AND RESULTS

The proposed algorithm for developing course timetables for academic departments using

genetic algorithms is implemented using Microsoft Visual Studio. We utilized C# language to

develop the application which generates the course timetable. The users for this application

include the head of the department and the department instructors. The head of the department

(HOD) interacts with the application using a Windows Application. HOD inserts the list of

courses and their attributes, list of instructors, as well as list of resources such as lecture rooms

and laboratories, list of hard constraints and list of soft constraints. Then, instructors interact

with the application through a web application. The instructors insert their soft constraints.

Finally, the HOD approves the constraints of the instructors and initiates the process of

generating the course timetable.

The developed application was tested and verified for the Department of Computer Engineering

at Yarmouk University. HOD inserted lists of 45 courses, 13 laboratories and number of section

to be offered for every course and laboratory. Then, every instructor inserted preferred courses

as well as preferred and not preferred time slots. Also, each instructor inserted a set of

previously taught courses.

The second phase of generating the course timetable was started through initiating the second

stage of the algorithm. The system generates 30 chromosomes. It took 33 seconds to generate

the initial population. This experiment was conducted utilizing Intel Pentium i3 CPU and 4 GB

memory. The next step was applying genetic operations according to the proposed algorithm.

Table 1 shows a sample output of applying mutation and crossover operations. The first row of

Table 1 shows that the processed crossover operation at iteration 10079 has two parents with 18

and 35 fitness values. The new chromosome has a fitness value of 42, which is better than the

parents’ value. Thus, this chromosome is added to the population. The second row of Table 1

shows the process of crossover at iteration number 10210. The new chromosome has a fitness

value equal to 22, which is less than its parents’ values. Thus, the new chromosome is ignored

and the process is restarted. The mutation operation is applied in iteration number 1209. The

new chromosome fitness value is equal to 41, which is better than its parents’ fitness values.

Therefore, this chromosome is added to the population.

The implemented algorithm generated a course timetable for the Department of Computer

Engineering at Yarmouk University. The best course timetable was generated after more than

32000 iterations. The generated course timetable was distributed to the instructors and they

were asked to evaluate it. The evaluation was 9.56 out of 10. This evaluation shows a high

degree of satisfaction among the instructors and the department administration. For the purpose

of validating the proposed system with other timetabling approaches, we modified our system to

read the input from text file. The file contains a dataset for curriculum-based course timetabling

prepared by international timetabling competition [29]-[30]. The dataset has information about

offered courses, rooms, curricula and unavailability constraints. Moreover, we have modified

the scheduling process in our proposed system to consider courses have minimum working

days. In our original proposed system, all offered courses span over one semester. Moreover, in

the original proposed system, the instructor can be selected from a pool. Thus, the preference of

33

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

lecturers to teach a course is considered as soft constraint, while the selection of a lecturer from

the pool is a hard constraint.

Table 1. Sample output for crossover and mutation operation.

GA's Operation Chromosome Situation Operation Fit Value

Crossover Chromosome accepted Iteration = 10079

F(1)= 18, F(11)= 35

F(Pc)= 42

Crossover Chromosome not accepted Iteration = 10210

F(1)= 17 , F(11)= 26

F(Pc)= 22

Mutation Chromosome accepted Iteration = 1209

F(8)= 24 , F(Pc) = 41

Table 2. Obtained minimum number of satisfied soft constraints of the proposed system for five

datasets and comparison with other algorithms.

Dataset Proposed system Lü et al. [28] Bonutti et al. [29] Muller [30]

comp01 4 4 5 5

comp02 20 22 75 43

comp03 34 41 93 72

comp04 21 19 45 35

comp05 203 224 326 298

comp06 18 25 62 41

comp07 6 4 38 14

After the modification of the proposed system to comply with all requirements of the

international timetabling competition, we downloaded 5 datasets from the international

timetabling competition website and computed the number of violated hard constraints and soft

constraints for each dataset. The scheduling process is stopped based on timeout condition

according to ITC-2007 competition [30]. Because the scheduling algorithm is stopped based on

timeout condition, the process may have different results for different runs. Thus, we applied the

proposed algorithm fifty times and considered the best results. Table 2 summarizes the obtained

results and the results of the other scheduling algorithms that utilized the same dataset.

According to Table 2, the proposed algorithm outperforms other approaches on most listed

datasets.

5. CONCLUSIONS

In this paper, we proposed a new approach to generate course timetables for academic

departments at universities. The proposed approach utilizes Genetic Algorithms to develop

course timetables. The proposed approach is divided into three stages. The first stage is

inputting the course list and number of sections in each one, instructors and their constraints,

rooms available, hard and soft constraints for rooms and lab resources. The second stage

generates a set of initial solutions (chromosomes) randomly called initial population. In the third

stage, the initial solutions are subjected to GA operations (crossover and mutation) repeatedly

34

"Developing a Course Timetable System for Academic Departments Using Genetic Algorithm", Mohammad A. Al-Jarrah, Ahmad

A. Al-Sawalqah and Sami F. Al-Hamdan.

until a near-optimal solution is reached that achieves a predefined (threshold) fitness function.

The closer to zero, the better is the solution.

The fitness function was computed for each solution. The value of the fitness function indicates

the goodness of the solution. After that, genetic operators which are crossover and mutation,

were applied. The goal of applying these operators is to obtain new solutions with better fitness

values. As a feature in genetic algorithm, crossover is applied more frequently than mutation.

Applying genetic operators was repeated until we obtained a satisfying solution according to an

instructors’ satisfaction questionnaire. The proposed algorithm was implemented and utilized to

generate a course timetable for the Department of Computer Engineering at Yarmouk

University. An evaluation process of the generated course timetable among instructors was

found to be very satisfactory. Moreover, we modified our code to read inputs from text file

formatted according to benchmarked datasets. Then, we tested the proposed algorithm utilizing

seven benchmarked datasets. The results of our algorithm outperformed other methods in most

datasets.

REFERENCES

[1] J. Nakasuwan, P. Srithip and S. O. Komolavanij, "Class Timetabling Optimization," Thammasat

International Journal of Science and Technology, vol. 4, no. 2, pp. 88-98, 1999.

[2] P. Chang, S. Chen and K. Lin, "Two-Phase Sub-Population Genetic Algorithm for Parallel

Machine-timetabling Problem," Expert Systems with Applications, vol. 29, no. 3, pp. 705-712,

2005.

[3] H. Babaei, J. Karimpour and A. Hadidi, "A Survey of Approaches for University Course

Timetabling Problem," Journal of Computers & Industrial Engineering, vol. 86, pp. 43-59, 2015.

[4] P. Guo, J. Chen and L. Zhu, "The Design and Implementation of Timetable System Based on

GA’s," IEEE International Conference on Mechatronics Science, Electric Engineering and

Computer (MEC), pp. 1497-1500, 2011.

[5] A. George, T. Marwala and F. Nelwamondo, "Use of Data Mining in Scheduler

Optimization," arXiv preprint arXiv:1011.1735, 2010.

[6] K. Deb, "Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test

Problems," Evolutionary Computation, vol. 7, no. 3, pp. 205-230, 1999.

[7] C. Teoh, A. Wibowo and M. Ngadiman, "Review of State of the Art for Metaheuristic

Techniques in Academic Timetabling Problems," Artificial Intelligence Review, vol. 44, no. 1,

pp. 1-21, 2015.

[8] S. Mir Hassani and F. Habibi, "Solution Approaches to the Course Timetabling Problem,"

Artificial Intelligence Review, vol. 39, no. 2, pp. 133-149, 2015.

[9] M. El-Sherbiny, R. Zeineldin and A. El-Dhshan, "Genetic Algorithm for Solving Course

Timetable Problems," International Journal of Computer Applications, vol. 124, no. 10, 2015.

[10] N. Sabar, M. Ayob, G. Kendall and R. Qu, "A Honey-bee Mating Optimization Algorithm for

Educational Timetabling Problems," European Journal of Operational Research, vol. 216, no. 3,

pp. 533-554, 2012.

[11] J. Obit, D. Ouelhadj, D. Landa-Silva and R. Alfred, "An Evolutionary Non-Linear Great Deluge

Approach for Solving Course Timetabling Problems," IJCSI International Journal of Computer

Science Issues, vol. 9, no. 4, pp. 1-13, 2012.

[12] V. Sapru, K. Reddy and B. Sivaselvan, "Timetabling Using Genetic Algorithms Employing

Guided Mutation," IEEE International Conference on Computational Intelligence and

Computing Research (ICCIC), pp. 1-4, 2010.

[13] A. Page and J. Naughton, "Dynamic Task Timetabling Using Genetic Algorithms for

Heterogeneous Distributed Computing," Proceedings of 19th IEEE International Symposium in

Parallel and Distributed Processing, pp. 189a-189a, April 2005.

35

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

[14] S. Wu, H. Yu, S. Jin, K. Lin and G. Schiavone, "An Incremental Genetic Algorithm Approach to

Multiprocessor Timetabling," IEEE Transactions on Parallel and Distributed Systems, vol. 15,

no. 9, pp. 824-834, 2004.

[15] E. Vallada and R. Ruiz, "A Genetic Algorithm for the Unrelated Parallel Machine Timetabling

Problem with Sequence-Dependent Setup Times," European Journal of Operational

Research, vol. 3, pp. 612-622, 2011.

[16] T. Dereli and H. Filiz, "Allocating Optimal Index Positions on Tool Magazines Using Genetic

Algorithms," Robotics and Autonomous Systems, vol. 33, no. 2, pp. 155-167, 2000.

[17] J. Chen, D. Goldberg, S. Ho and K. Sastry, "Fitness Inheritance in Multi-Objective

Optimization," Proceedings of the Genetic and Evolutionary Computation Conference, pp. 319-

326, 2002.

[18] F. Pezzella, G. Morganti and G. Ciaschetti, "A Genetic Algorithm for the Flexible Job-shop

Timetabling Problem," Computers & Operations Research, vol. 35, no. 10, pp. 3202-3212, 2008.

[19] M. Carvalho, A. Laender, M. Gonçalves and A. Da Silva, "A Genetic Programming Approach to

Record Deduplication," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 3,

pp. 399-412, 2012.

[20] G. Kim and C. Lee, "Genetic Reinforcement Learning Approach to the Machine Timetabling

Problem," Proceedings of IEEE International Conference on Robotics and Automation, vol. 1,

pp. 196-201, 1995.

[21] M. Ghaith and A. Masri, "Scatter Search for Solving the Course Timetabling Problem," 3rd IEEE

Conference on Data Mining and Optimization (DMO), Selangor, Malaysia, 28-29 June 2011.

[22] A. Wren, "Scheduling, Timetabling and Rostering – A Special Relationship?," International

Conference on the Practice and Theory of Automated Timetabling, pp. 46-75, 1996.

[23] A. Bettinelli, V. Cacchiani, R. Roberti and P. Toth, "An Overview of Curriculum-based Course

Timetabling," TOP, vol. 23, no. 2, pp. 313-349, 2015.

[24] V. Cacchiani, A. Caprara, R. Roberti and P. Toth, "A New Lower Bound for Curriculum-based

Course Timetabling," Computers & Operations Research, vol. 40, no. 10, pp. 2466-2477, 2013.

[25] E. Özcan, A. Parkes and A. Alkan, "The Interleaved Constructive Memetic Algorithm and Its

Application to Timetabling," Computers & Operations Research, vol. 39, no. 10, pp. 2310-2322,

2012.

[26] H. Rudová, T. Müller and K. Murray, "Complex University Course Timetabling," Journal of

Scheduling, vol. 14, no. 2, pp. 187-207, 2011.

[27] S. Jat and S. Yang, "A Hybrid Genetic Algorithm and Tabu Search Approach for Post Enrolment

Course Timetabling," Journal of Scheduling, vol. 14, no. 6, pp. 617-637, 2011.

[28] Z. Lü and J. Hao, "Solving the Course Timetabling Problem with a Hybrid Heuristic Algorithm,"

International Conference on Artificial Intelligence: Methodology, Systems and Applications, pp.

262-273, 2008.

[29] A. Bonutti, F. De Cesco, L. Di Gaspero and A. Schaerf, "Benchmarking Curriculum-based

Course Timetabling: Formulations, Data Formats, Instances, Validation, Visualization and

Results," Annals of Operations Research, vol. 194, no. 1, pp. 59-70, 2012.

[30] T. Muller, ITC2007: Solver Description, Technical Report, Purdue University, 2008.

36

"Developing a Course Timetable System for Academic Departments Using Genetic Algorithm", Mohammad A. Al-Jarrah, Ahmad

A. Al-Sawalqah and Sami F. Al-Hamdan.

 ملخص البحث:

 وهننا إنّ إعداد جداول المحاضرات في الجامعات مسألة بحثية تنطوي على العديد من المحنددّات

قسنا تقنيات يمك استخدامها م الناحية النظرينة من لجنع إعنداد جنداول المحاضنرات الخا نة باأ

ذا داًّ، وهناأكاديمية، إلا لنها لسوء الحظ تحتاج النى الكثينر من الحسنابات أن حينح الاحن واسن جن

لني آء نظنا اننايجعع تلك التقنيات غير عملية في هذه الورقة، يتم استخدا الخوارزمينات الورايينة ل

النظنا لإعداد جداول المحاضرات وهنذا النظنا مّنمّم بحين ي أينم ليّ قسنم لكناديمي ولا يتطلن

لخنرى، المقترح سوى القليع م الجهد م جان الطاقم الإداري لإعداد الجدول المطلوب م جهة

ارد الطلاننة والمننو يراعنني الجنندول المعنندّ بهننذه الطريقننة رغاننات لعدنناء هيتننة التنندري واحتياجننات

 المتاحة مثع الغرف الّفية والمختارات بفاعلية مثالية

وقننند تنننم تطنننوير النظنننا واختاننناره باسنننتخدا مجموعنننات بياننننات مرجعينننة عالمينننة لإعنننداد جنننداول

النظنا المحاضرات، وط اقّ النظا على قسم هندسة الحاسوب في جامعة اليرمو وقد لسفر اختاار

 رضية جداًّ وتطايقه ع نتايج م

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

