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ABSTRACT 

 Preparing course timetables for universities is a search problem with many constraints. Exhaustive 

search techniques in theory can be used to develop course timetables for academic departments, but 

unfortunately these techniques are computation intensive, since the search space is very large and 

therefore are impractical. In this paper, Genetic Algorithms (GA’s) are utilized to build an automated 

course timetable system. The system is designed for any academic department. The proposed timetabling 

system requires minimal effort from the administration staff to prepare the course timetable. Moreover, 

the prepared course timetable considers faculties’ desires, students' needs and available resources, such 

as classrooms and laboratories with optimal utilization.  

The proposed timetabling process was divided into three stages. The first stage is the data collection 

stage. In this stage, the administrative staff; usually the head of the department, is responsible for 

preparing the required data, such as the names of the faculty personnel and their desires of courses and 

laboratories ordered with some priority scheme. Number and type of theoretical and practical courses 

are also fed to the system based on some statistics about student numbers and previous course timetable 

history. The system is also fed with number of lecture rooms allocated for the department and number of 

labs with information about theoretical courses they are able to serve. In the second stage, the program 

generates an initial set of suggested schedules (chromosomes). Each chromosome represents a solution to 

the problem, but usually is not satisfactory. Finally, the proposed timetabling system starts the search for 

a good solution that satisfies best interests of the department according to a cost function. GA is applied 

in search for a satisfactory course timetable based on a pre-defined criterion. The system has been 

developed and tested utilizing benchmarked datasets developed by an international timetabling 

competition (ITC2007) and for the Computer Engineering Department at Yarmouk University. In both 

cases, the algorithm showed very satisfactory results. 
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1. INTRODUCTION 

The head of an academic department in any university is usually responsible for preparing a 

course timetable every semester. Preparing course timetables is a time-consuming task which 

academic colleges face. Course timetabling is not only formulating a timetable for courses, but 

also has to be performed based on many constraints, such as classroom availability and capacity, 

interference between rooms and courses and conflicts between courses and instructors. Very 

early in 1999, class timetabling at Sirindhon International Institute of Technology has been 
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tackled based on the mentioned constraints. A cost function was defined for each one to utilize 

the existing facilities and resources effectively [1]. 

Generally, course timetabling in many universities is prepared manually based on administration 

experience. The administrator should consider all available facilities and resources, such as 

courses, instructors, rooms and laboratories. Moreover, the instructors’ time and time of course 

sections are important constraints to handle. Therefore, based on all the mentioned constraints, 

course timetabling is a very exhaustive and time-consuming task.  

Course timetabling is one of the Nondeterministic Polynomial-time (NP) hard problems [1], 

[12], [23]-[25]. Heuristic search algorithms are usually used in most of these problems to find a 

near-optimal solution. Nevertheless, this only works for simple cases. For more complex inputs 

and requirements, obtaining a considerably good solution can take long time and effort [2]-[3], 

[26]-[27].  

Genetic algorithms (GA's) are a class of non-traditional techniques which can handle complex 

and large search spaces to a certain extent in problem solving [4]-[6], [14]-[16]. In some GA 

approaches, the search space is divided into subspaces to increase the probability of having good 

chromosomes in the initial population. This technique increases the chances of finding a near-

optimal solution resulting usually in a reduction of computation time [17]-[20]. In the following 

sections, we propose an automated course timetabling system using genetic algorithms. 

Preparing course timetables for academic departments usually utilizes different approaches, 

such as tabu search, simulated annealing and fuzzy logic [7]-[8], [21]. A combined approach 

including GA and Hill Climbing has been also introduced to prepare course timetables for 

academic departments [9]. Another combined approach has also been presented for solving 

timetabling problem using honey-bee mating optimization algorithm [10]. In [11], an 

evolutionary approach to solve university course timetabling problems has been introduced.  

Wren [22] defines timetabling as follows: “Timetabling is the allocation, subject to constraints, 

of given resources to objects being placed in space time, in such a way as to satisfy as nearly as 

possible a set of desirable objectives’’. Lü et al. [28] developed a timetabling algorithm based 

on tabu search. Bonutti et al. developed a curriculum-based course timetabling for universities. 

The best known solutions have been discussed and compared [29]. Muller, the winner of the 

International Timetabling Competition 2007, introduced his algorithm based on hill climbing 

and great deluge technique.  

In the course timetabling problem, an optimal solution is defined as the best utilization of 

available expertise, resources and time for best delivered services. The best utilization is defined 

under a set of constraints. The constraints are divided into hard and soft constraints. In this 

paper, the soft and hard constraints used are those related to time, room, instructors and courses. 

Also, some of the constraints are defined based on type of room (availability of a data show for 

example), instructor rank and type of course (theoretical or practical). All these constraints have 

been considered in the proposed algorithm to develop a satisfactory course timetable with 

minimal effort. Moreover, the proposed algorithm generates a course timetable that satisfies all 

hard constraints.  

The rest of this paper is organized as follows:  In section 2, course timetabling using genetic 

algorithms is discussed. In section 3, automated timetabling using GA’s is described. In Section 

4, the implementation and experimental results are illustrated for the proposed course 

timetabling using GA’s. Finally, conclusions are presented in section 5. 

2. COURSE TIMETABLING USING GENETIC ALGORITHMS  

Course timetable is a table which contains information about courses offered for students to 

register in. Course timetabling is one of the major time-consuming tasks performed frequently 
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by heads of academic departments. The inputs for the process for preparing a course timetable 

can be formulated as follows: 

1- Set of courses (Co) and number of offered sessions for each course, such that Co = {(c1, 

s1, ct1,sz1), (c2,s2, ct2,sz2)…., (cn,sn,ctn,szn)}, where ci is the ith course, si is the number of 

sessions for course ci, cti is the course type and szi is the number of students. Course 

type has two values; representing theoretical or practical. 

2- Set of instructors (Ins), such that Ins= {(I1, L1), (I2, L2),….,(Im, Lm)}, where Ii is 

instructor i and Li is the load of instructor i. 

3- Set of lecture rooms and laboratories (R), such that R = {(r1, t1), …. , (rs, ts)}, where ri 

is room number I and ti is the room type. Room type has two values; representing 

lecture room or laboratory room. 

4- Set of time slots (TS), such that TS= {(d1, s1), ….. (dn,Sn)}, where di is the day group 

selection and Si is the ith slot of time from the selected day group. In universities, the 

week days are divided into two groups. For example, the first group includes Sunday, 

Tuesday and Thursday, whereas the second group includes Monday and Wednesday. 

Moreover, the first group is divided into time slots, such that each slot is 60 minutes, 

and the second group is divided into time slots, where the slot is 90 minutes. University 

departments offer their courses on a daily basis. For example, the course may be offered 

on Sunday, Tuesday and Thursday from 8:00AM to 9:00AM or on Monday and 

Wednesday from 8:00AM to 9:30AM for the entire semester. 

Based on the inputs, the task is to prepare course timetabling that satisfies all hard 

constraints and most possible soft constraints. The hard constraints are: 

H1- Scheduling all courses listed in Co list. 

H2-  Assigning an instructor to each course and satisfying instructors load according to 

Ins set. 

H3- Assigning a lecture room to each course and satisfying room type according to Co 

list, where practical courses must be in a laboratory room. 

H4- Sessions of the same course should not be in the same time slot. 

H5- The lecture room size must be greater than the number of students in the Co set. 

H6- An instructor must not have more than one lecture in the same time slot. 

The soft constraints are: 

S1-   Room capacity to expected attending students. To satisfy this constraint, the ratio of 

the number of students in Co list to room size must be more than 0.85.  

S2- Room utilization. It is expected to utilize lecture room all the time. To satisfy this 

constraint, the ratio of the utilization time to the total room time must be more than 

0.90. 

S3- Instructor preferable courses. This constraint is satisfied if the assigned course to an 

instructor is one of the preferred courses of this instructor. 

S4- Instructor preferable lecturing time slots and not preferable time slots. This constraint 

is satisfied if the assigned course time to an instructor is one of the preferred time 

slots of this instructor.  

S5- Instructor teaching experience. It is preferred to assign a course to an instructor who 

taught it. This constraint is satisfied if the course assigned to an instructor has been 

previously 

taught by this instructor. 

S6- Instructor timetable compactness. This constraint measures the distribution of 

instructor timetable. To satisfy this constraint, first, instructor timetable should not 

include more than two adjacent lectures and the waiting time between lectures should 

not be more than one time slot.  
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The process of preparing a course timetable considers the inputs, such that the resulting course 

timetable must satisfy all hard constraints and all possible soft constraints. Therefore, the 

process of preparing a course timetable is not a straight forward process and the solution is not 

unique. Moreover, preparing a course timetable is very costly in terms of time and effort if it’s 

prepared manually. Preparing a course timetable automatically using intelligent algorithms has 

been investigated as mentioned earlier in the introduction section. 

Genetic algorithms are one of the methods that reduce computation cost in comparison with 

other artificial intelligence approaches, such as heuristic search tree, particularly for hard or 

complex problems like preparing courses timetables. GA’s clone biological evolution and 

consist of simple steps that go through several iterations (generations) until a satisfactory 

solution is reached.  For course timetabling system, a satisfactory solution is one that satisfies 

all hard constraints and as much as possible of soft constraints. For example, the load for an 

instructor of the rank assistant or associated professor should not exceed 12 credit hours, while 

it is 9 credit hours for a full professor. This is a hard constraint; however, the desire of a certain 

instructor of having his courses after 10 O’clock is a soft constraint that is good to satisfy, but is 

not necessary. Assuming that the problem has an optimal solution, achieving 100% satisfactions 

for all constraints (optimal) is computationally very costly.  

In GA’s, a solution is represented as a chromosome. Population is a set of chromosomes that 

represent the solution subspace. New generations of chromosomes are generated through two 

basic genetic operations: crossover and mutation. In crossover, two genes, where a gene is a part 

of a chromosome, containing a part of the solution, are swapped between the mated pair of 

chromosomes. The new chromosome would be considered as an accepted, not accepted or 

satisfactory solution [9]. In mutation, a gene is completely changed randomly for the selected 

chromosomes. Crossover occurs much more frequently than mutation. GA’s assume that the 

new generations of chromosomes will have better qualities than their ancestors. The process of 

crossover and mutation is repeated until a near-optimal solution for the problem in hand is 

reached [10]. 

GA’s have many features that make them in some occasions the best problem solving method. 

GA’s can be used in problems where the search space is usually large and complex when 

traditional methods  need long time and high computation systems [13]. Furthermore, GA’s are 

considered as intelligent systems, where the knowledge is built based on last best knowledge 

until a satisfactory solution is reached. This means that GA’s do not require generating the full 

search space.  

GA’s have a parallel nature in which parallelism can be explored and used making it possible to 

speed up the calculations. To identify a near-optimal solution, each chromosome in the 

population has a fitness value. The fitness value for a chromosome defines how much it is close 

to the optimal solution. Genetic processing is applied to improve the fitness value of new 

generations of chromosomes. If near-optimal solution is not found after a reasonable number of 

search iterations, then the process is started all over again with a new set of chromosomes. 

Hopefully, the new running chromosomes will lead to the required near-optimal solution. 

3. AUTOMATED COURSE TIMETABLING SYSTEM USING GENETIC 

ALGORITHM 

The proposed algorithm for course timetabling utilizes genetic algorithms to generate a near- 

optimal course timetabling in a relatively short period of time and with a little effort from the 

administrator side. Figure 1 illustrates the proposed algorithm for course timetabling system 

utilizing GA’s. The final schedule is achieved if the solution satisfies all predefined hard 

constraints. The main loop of search includes genetic operations, which include mutation and 

crossover.  
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According to Figure 1, the timetabling is divided into two stages. The first stage includes 

chromosome generation and population initialization. This stage starts after collecting data and 

constraints from administrators who are responsible to prepare the course timetable. The second 

stage includes the process of applying genetic operations, which are crossover and mutation of 

selected chromosomes. Each chromosome represents a solution to the problem (course 

timetable), but usually is not optimal. In this stage, we select chromosomes called parents to 

apply genetic operations. Operations will generate new chromosomes that have properties better 

than their parents. The generated chromosomes will be added to the population. The new 

population is evaluated to check if one of the chromosomes achieved the targeted goal.  

3.1 Chromosome Generation and Population Initialization 

In this subsection, we discuss the first stage that handles the generation of chromosomes and 

adding them to the population. The generated chromosomes are generated randomly. Each gene 

is selected randomly from the gene pool. The following steps explain how to generate a 

chromosome. 

a. The course sessions that must be offered by the department are determined by the 

department administration and considered as an input list for the population 

initialization process. The set of courses is included in the Co set.   

b. The chromosome genes are course genes, instructors’ genes, days and time of lectures 

and lecture room or laboratory room.  

c. Select session gene from the input list randomly and assign this value to a 

chromosome; if the input list is empty, go to step h.  

d. Complete the remaining genes for this chromosome part. For example, select 

randomly an instructor from the instructor pool, a time from the time pool and a 

lecture room from the halls’ pool. The process is accomplished for every gene in the 

chromosome.  

e. For the generated chromosome part, check if the course is a laboratory one, then 

reselect the hall from the laboratory halls’ pool.  

f. After considering all items of the input list, the obtained chromosome represents an 

initial solution. Add this chromosome to the initial population and reload the input 

list. 

g. Repeat steps c to f N times, where N is the number of chromosome in the population.  

h. End of population initialization. 

The result of population initialization is a set of solutions. The near-optimal solution which we 

are searching for is most probably not one of the initial generations. Therefore, the fitness value 

is computed using the proposed fitness function for each chromosome generated during the 

population initialization process. 

3.2 Fitness Functions  

The fitness function is computed and evaluated for every chromosome in the population. The 

fitness is measured through quantifying constraints. The constraints are divided into two groups; 

hard constraints and soft constraints. A hard constraint is a constraint that makes the course 

timetable invalid if not satisfied by the solution. For example, an instructor is assigned to teach 

two courses at the same time. Thus, for a valid course timetable, all hard constraints must be 

achieved. A soft constraint is one that is strongly recommended to satisfy, but does not make the 

solution invalid if not satisfied. For example, some instructors prefer to have their lectures early, 

while others prefer to have them at late times. A satisfied constraint is a constraint that will have 

a positive value (+2) on the fitness function and an unsatisfied one will have a negative value (-

2). However, a satisfied soft constraint will have also a positive contribution (+1) on the fitness, 

while an unsatisfied one will have a zero effect on the fitness function (see Equations 1 and 2). 
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For hard constraints:  

𝐻𝐶𝑖 = {
0.   𝑖𝑓 ℎ𝑎𝑟𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑

 2.  𝑖𝑓 ℎ𝑎𝑟𝑑 𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑
 (1) 

Figure 1. The proposed system for preparing a course timetable using GA’s. 

For soft constraints, (SCi) is calculated as follows: 

𝑆𝐶𝑖 = {
0.   𝑖𝑓 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  𝑖 𝑖𝑠 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑

     1.  𝑖𝑓 𝑠𝑜𝑓𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐ℎ𝑒𝑖𝑣𝑒𝑑
 (2) 

The fitness function will include all constraints. Thus, the fitness function is computed for a 

certain chromosome x as follows:  

𝐹(𝑥) =  ∑ 𝐻𝐶𝑖

𝐿

𝑖=1

+ ∑ 𝑆𝐶𝑖

𝑀

𝑖=1

 (3) 

where L is the number of hard constraints and M is the number of soft constraints. This fitness 

function ranges from 0 to (2N+M). According to Equation (3), the chromosome with a fitness 

value equal to zero is a chromosome that stratified all constraints. Thus, the ultimate goal for 

our algorithm is to obtain a chromosome with a fitness value equal to zero. However, finding 
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such a chromosome is not guaranteed by GA’s and if possible will usually be computationally 

very costly. Thus, we defined the following condition, which we named GOAL in the proposed 

algorithm, to stop the search loop as follows: 

𝐺𝑂𝐴𝐿 =  {
𝑇𝑟𝑢𝑒.   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥. 𝑖𝑓 𝐹(𝑥) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 𝑎𝑛𝑑 𝐻𝐶(𝑥) = 2𝐿

𝐹𝑎𝑙𝑠𝑒.     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒                                                  
 (4) 

The value of HC(x) = 2L if all constraints are achieved. 

3.3 Chromosome Selection 

After N chromosomes are added to the initial population, the fitness function is calculated for 

each candidate in the population. Most likely, there is no chromosome in the initial population 

which satisfies the GOAL; therefore, a process of genetic operations will be applied on the set of 

solutions called parents. Two chromosomes will be mated together to produce new 

chromosomes. The selection of these two chromosomes is dynamic and depends on the fitness 

value for each chromosome. The probability of selecting a chromosome to be a parent depends 

on its fitness value. The probability value for selecting a chromosome (x) is defined as:                       

𝑝(𝑥) = 1 −  
𝐹(𝑥)

∑ 𝐹(𝑖)𝑁
𝑖=1

 (5) 

where N is the number of chromosomes in the population and F(x) is the fitness of the 

chromosome. According to Equation 5, the chromosome with a higher fitness value has a better 

chance to be chosen for mating operations. 

After selecting parents, the genetic operators are applied. From each operation, new 

chromosomes are generated and the fitness values for these chromosomes are computed for the 

next iteration.  

3.4 Applying Genetic Algorithms Operation (Mutation and Crossover)  

Genetic algorithms have two types of operation: crossover (mating) and mutation. Chromosome 

mating operation is usually accomplished utilizing a pair of chromosomes that are selected as 

parents by chromosome selection process. The crossover operation includes the exchanges of 

instructor, classroom, course or time genes in a random manner. The result of the mating 

operation is two new chromosomes that would have the good properties of their parents. The 

fitness function is computed for the new chromosomes. If the fitness values for the new 

chromosomes are greater than those of their parents, these new chromosomes are added to the 

population. Otherwise, they are discarded and the process is repeated. 

The mutation is the process of changing a gene in parent chromosome with a new gene. In the 

proposed algorithm, the mutation is accomplished as follows: 

1- Select a chromosome from the population as a parent one. 

2- Randomly, select which gene is to be replaced. The targeted genes are course, 

instructor, classroom or time slot.  

3- Select randomly a new gene from the gene pool. The selected gene type must be 

similar to that of the one selected in step 2. For example, if we decided to replace 

an instructor gene, then the pool will be the instructors’ pool in the department. 

4- Replace the new gene with the old one. 

5- Calculate the fitness function for the new chromosome. If the fitness value for the 

new one is better than that of the parent, then add the new chromosome to the 

population. Otherwise, discard the new chromosome and repeat the process. 

The mutation process is applied every while or when crossover operation does not achieve an 

improvement. Thus, the probability of applying mutation is increased with respect to number of 
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unsuccessful crossover operations and with respect to the difference between the best fitness 

values for the population before crossover and the fitness values for the population after 

crossover operation. The implementation of randomly applying mutation is achieved through 

defining a mutation counter. The value of the counter is initially zero and every time the 

crossover failed to improve the fitness value, this counter is incremented by one. Then, at the 

end of every loop, we randomly generate an integer between 0 and 10000. If the generated 

number is less than the mutation counter, we apply the mutation process and reset the mutation 

counter.  

4.  PROPOSED ALGORITHM IMPLEMENTATION AND RESULTS 

The proposed algorithm for developing course timetables for academic departments using 

genetic algorithms is implemented using Microsoft Visual Studio. We utilized C# language to 

develop the application which generates the course timetable. The users for this application 

include the head of the department and the department instructors. The head of the department 

(HOD) interacts with the application using a Windows Application. HOD inserts the list of 

courses and their attributes, list of instructors, as well as list of resources such as lecture rooms 

and laboratories, list of hard constraints and list of soft constraints. Then, instructors interact 

with the application through a web application. The instructors insert their soft constraints. 

Finally, the HOD approves the constraints of the instructors and initiates the process of 

generating the course timetable.   

The developed application was tested and verified for the Department of Computer Engineering 

at Yarmouk University. HOD inserted lists of 45 courses, 13 laboratories and number of section 

to be offered for every course and laboratory. Then, every instructor inserted preferred courses 

as well as preferred and not preferred time slots. Also, each instructor inserted a set of 

previously taught courses.  

The second phase of generating the course timetable was started through initiating the second 

stage of the algorithm. The system generates 30 chromosomes. It took 33 seconds to generate 

the initial population. This experiment was conducted utilizing Intel Pentium i3 CPU and 4 GB 

memory. The next step was applying genetic operations according to the proposed algorithm. 

Table 1 shows a sample output of applying mutation and crossover operations. The first row of 

Table 1 shows that the processed crossover operation at iteration 10079 has two parents with 18 

and 35 fitness values. The new chromosome has a fitness value of 42, which is better than the 

parents’ value. Thus, this chromosome is added to the population. The second row of Table 1 

shows the process of crossover at iteration number 10210. The new chromosome has a fitness 

value equal to 22, which is less than its parents’ values. Thus, the new chromosome is ignored 

and the process is restarted. The mutation operation is applied in iteration number 1209. The 

new chromosome fitness value is equal to 41, which is better than its parents’ fitness values. 

Therefore, this chromosome is added to the population.  

The implemented algorithm generated a course timetable for the Department of Computer 

Engineering at Yarmouk University. The best course timetable was generated after more than 

32000 iterations. The generated course timetable was distributed to the instructors and they 

were asked to evaluate it. The evaluation was 9.56 out of 10. This evaluation shows a high 

degree of satisfaction among the instructors and the department administration. For the purpose 

of validating the proposed system with other timetabling approaches, we modified our system to 

read the input from text file. The file contains a dataset for curriculum-based course timetabling 

prepared by international timetabling competition [29]-[30]. The dataset has information about 

offered courses, rooms, curricula and unavailability constraints. Moreover, we have modified 

the scheduling process in our proposed system to consider courses have minimum working 

days. In our original proposed system, all offered courses span over one semester. Moreover, in 

the original proposed system, the instructor can be selected from a pool. Thus, the preference of 
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lecturers to teach a course is considered as soft constraint, while the selection of a lecturer from 

the pool is a hard constraint.  

Table 1. Sample output for crossover and mutation operation.  

GA's Operation  Chromosome Situation Operation Fit Value  

Crossover  Chromosome accepted  Iteration = 10079 

F(1)= 18, F(11)= 35 

F(Pc)= 42  

Crossover  Chromosome not accepted  Iteration = 10210 

F(1)= 17 , F(11)= 26 

F(Pc)= 22 

Mutation  Chromosome accepted Iteration = 1209 

F(8)= 24 , F(Pc) = 41  

Table 2. Obtained minimum number of satisfied soft constraints of the proposed system for five 

datasets and comparison with other algorithms.  

Dataset Proposed system Lü et al. [28] Bonutti et al. [29] Muller [30] 

comp01 4 4 5 5 

comp02 20 22 75 43 

comp03 34 41 93 72 

comp04 21 19 45 35 

comp05 203 224 326 298 

comp06 18 25 62 41 

comp07 6 4 38 14 

After the modification of the proposed system to comply with all requirements of the 

international timetabling competition, we downloaded 5 datasets from the international 

timetabling competition website and computed the number of violated hard constraints and soft 

constraints for each dataset. The scheduling process is stopped based on timeout condition 

according to ITC-2007 competition [30].  Because the scheduling algorithm is stopped based on 

timeout condition, the process may have different results for different runs. Thus, we applied the 

proposed algorithm fifty times and considered the best results. Table 2 summarizes the obtained 

results and the results of the other scheduling algorithms that utilized the same dataset. 

According to Table 2, the proposed algorithm outperforms other approaches on most listed 

datasets. 

5.   CONCLUSIONS 

In this paper, we proposed a new approach to generate course timetables for academic 

departments at universities. The proposed approach utilizes Genetic Algorithms to develop 

course timetables. The proposed approach is divided into three stages. The first stage is 

inputting the course list and number of sections in each one, instructors and their constraints, 

rooms available, hard and soft constraints for rooms and lab resources. The second stage 

generates a set of initial solutions (chromosomes) randomly called initial population. In the third 

stage, the initial solutions are subjected to GA operations (crossover and mutation) repeatedly 
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until a near-optimal solution is reached that achieves a predefined (threshold) fitness function. 

The closer to zero, the better is the solution.  

The fitness function was computed for each solution. The value of the fitness function indicates 

the goodness of the solution. After that, genetic operators which are crossover and mutation, 

were applied. The goal of applying these operators is to obtain new solutions with better fitness 

values. As a feature in genetic algorithm, crossover is applied more frequently than mutation. 

Applying genetic operators was repeated until we obtained a satisfying solution according to an 

instructors’ satisfaction questionnaire. The proposed algorithm was implemented and utilized to 

generate a course timetable for the Department of Computer Engineering at Yarmouk 

University. An evaluation process of the generated course timetable among instructors was 

found to be very satisfactory. Moreover, we modified our code to read inputs from text file 

formatted according to benchmarked datasets. Then, we tested the proposed algorithm utilizing 

seven benchmarked datasets. The results of our algorithm outperformed other methods in most 

datasets. 
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 ملخص البحث:

 وهننا  إنّ إعداد جداول المحاضرات في الجامعات مسألة بحثية تنطوي على العديد من  المحنددّات 

قسنا  تقنيات يمك  استخدامها م  الناحية النظرينة من  لجنع إعنداد جنداول المحاضنرات الخا نة باأ

ذا داًّ، وهناأكاديمية، إلا لنها لسوء الحظ تحتاج النى الكثينر من  الحسنابات أن حينح الاحن  واسن  جن

لني آء نظنا  اننايجعع تلك التقنيات غير عملية  في هذه الورقة، يتم استخدا  الخوارزمينات الورايينة ل

النظنا   لإعداد جداول المحاضرات  وهنذا النظنا  مّنمّم بحين  ي أينم ليّ قسنم لكناديمي  ولا يتطلن 

لخنرى،  المقترح سوى القليع م  الجهد م  جان  الطاقم الإداري لإعداد الجدول المطلوب  م  جهة

ارد الطلاننة والمننو يراعنني الجنندول المعنندّ بهننذه الطريقننة رغاننات لعدنناء هيتننة التنندري  واحتياجننات

 المتاحة مثع الغرف الّفية والمختارات بفاعلية مثالية 

وقننند تنننم تطنننوير النظنننا  واختاننناره باسنننتخدا  مجموعنننات بياننننات مرجعينننة عالمينننة لإعنننداد جنننداول 

النظنا   المحاضرات، وط اقّ النظا  على قسم هندسة الحاسوب في جامعة اليرمو   وقد لسفر اختاار

 رضية جداًّ وتطايقه ع  نتايج م  
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