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ABSTRACT 

In challenging weather conditions, various visual impediments such as raindrops, shadows, haze and distortions 

from dirty camera lenses and codec errors adversely affect the quality of traffic-sign images. Existing methods 

struggle to address these issues comprehensively, necessitating an innovative approach to restoration. This paper 

introduces the Codec Dirty Rainy Shadow Haze Network (CDRSHNet) architecture, integrating self-attention (SA) 

and variance-guided multiscale attention (VGMA) mechanisms. SA captures global dependencies, enabling 

focused processing of relevant image regions, while VGMA emphasizes informative channels and spatial locations 

for enhanced representation. A hybrid loss function, combining Gradient Magnitude Similarity Deviation (GMSD) 

and Charbonnier loss, boosts image quality. When trained on a diverse dataset, CDRSHNet attains a remarkable 

99.3% restoration accuracy, yielding an average SSIM of 0.978 and an average PSNR of 39.58 on the Real Image 

Dataset (RID). On the Synthetic Image Dataset (SID), the average SSIM is 0.963 and the average PSNR is 39.46. 

The proposed model significantly improves image clarity and facilitates precise interpretation. 
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1. INTRODUCTION

Computer-vision tasks are pivotal in various applications, relying heavily on accurately interpreting 

visual data. However, these tasks encounter significant challenges when images are captured under 

adverse conditions or influenced by codec errors, rain, haze, shadows and blurry images due to dirty 

camera lenses. These adverse conditions introduce visual distortions, which diminish image quality and 

hinder visual elements' precise detection and classification. Real-world applications like automated 

driving systems and traffic-sign recognition systems require image restoration to recognize traffic 

symbols successfully. Concerning these challenges, traffic-sign image restoration becomes vital to 

enhance image quality and enable precise classification. Image restoration targets the improvement of 

degraded or corrupted images affected by factors, like noise, blur or compression, ultimately aiming to 

create high-quality images closely resembling the originals [2]-[3].  

The usage of deep-learning methods for image restoration has gained significant popularity, as they can 

effectively learn to model the complex relationships between degraded images and their corresponding 

clean versions. Autoencoders, Convolutional Neural Networks (CNNs), Deep Residual Networks 

(ResNets), Recursive Neural Networks (RNNs) and Generative Adversarial Networks (GANs) are some 

of the popular image-restoration techniques [2]-[3]. 

This study proposes a deep learning-based approach for restoring traffic-sign symbols under five 

challenging conditions: images captured with a dirty camera lens, images captured under rainy and hazy 

environments, shadow-influenced images and codec error images. These issues reduce image sharpness, 

resulting in compromised contrast, color accuracy and blurs. Codec errors impact visual artifacts, like 

pixelation and color distortion. The proposed CDRSHNet incorporates a fusion of attention blocks and 

group normalization to enhance the quality of the restored images. Attention blocks selectively highlight 

essential features in the image, improving the efficiency of the network to distinguish between different 

types of traffic signs. Group normalization decreases the internal covariate shift, improving network 

stability and performance. Furthermore, we introduce a custom loss function that combines the 
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Charbonnier loss and Gradient Magnitude Similarity Deviation (GMSD) to enhance the quality of the 

recovered images. The GMSD evaluates the structural similarity between the original and restored 

images, whereas the Charbonnier loss penalizes significant errors in the restored image. The proposed 

approach is assessed using the images in the CURE-TSR dataset. The performance of the proposed 

network is assessed by peak signal-to-noise ratio (PSNR), mean absolute error (MAE) and structural 

similarity index measure (SSIM). These metrics are extensively used in the image-processing 

community to gauge the quality of the restored images and their analysis provides a quantitative 

assessment of the recommended approach's effectiveness. The experiments showcase that the proposed 

method outperforms current practices in restoring traffic-sign images under challenging conditions. The 

findings underscore the potential of deep learning techniques to enhance object restoration in complex 

real-world scenarios.  

The paper is structured into several sections. Section two presents a literature review of existing works 

focusing on image-restoration techniques for challenging conditions, such as codec error, dirty lenses, 

rain, haze and images with shadows. Section three discusses our proposed architecture, including 

attention blocks, group normalization and custom loss function. Section four provides an in-depth 

analysis of the results obtained from the model, including the model loss and accuracy for both the 

training and validation datasets. Additionally, this section reports on the efficacy of the proposed 

approach in restoring traffic-sign symbols in challenging conditions. The performance of the proposed 

model is then assessed in Section 5 using a variety of measures, including peak signal-to-noise ratio 

(PSNR), mean absolute error (MAE) and structural similarity index measure (SSIM). These metrics are 

extensively used in the image-processing community to gauge the quality of the restored images and 

their analysis provides a quantitative assessment of the recommended approach's effectiveness. Finally, 

Section 6 provides the concluding remarks on the research work. 

1.1 Our Contributions 

The primary objective of this study is to implement a novel deep learning-based method designed 

explicitly for restoring traffic-sign symbols in the presence of five challenging conditions. Our proposed 

CDRSHNet model utilizes a fusion of attention blocks and group normalization to improve the quality 

of restored images. The attention blocks selectively emphasize essential features, enhancing the 

network's ability to distinguish between traffic signs. Moreover, group normalization assists in 

mitigating internal covariate shifts, improving stability and overall performance. We introduce a custom 

loss function that combines the Charbonnier loss and Gradient Magnitude Similarity Deviation (GMSD) 

to further enhance image recovery. The GMSD evaluates the structural similarity between images, while 

the Charbonnier loss penalizes significant errors. Together, these components contribute to the overall 

improvement in image quality. In our evaluations of the CURE-TSR dataset, we employ metrics, such 

as peak signal-to-noise ratio (PSNR), mean absolute error (MAE) and structural similarity index 

measure (SSIM). These well-established metrics provide a quantitative assessment of the effectiveness 

of our approach, clearly demonstrating its superiority over existing methods in restoring traffic-sign 

images under challenging conditions. 

2. LITERATURE REVIEW 

Image restoration aims to restore the original image from a damaged or noisy image. Over the years, 

various techniques have been developed to address this problem, each with advantages and limitations 

[4]. Some commonly used image-restoration techniques are filtering, statistical and model-based 

approaches, such as the blind-deconvolution method, inverse filter, Wiener filter and constrained least 

squares filter. These methods can be categorized as linear or nonlinear and are designed to mitigate the 

effects of noise and blur in the image. The techniques aim to recover the original image from a degraded 

version by applying mathematical operations that enhance its quality. The method chosen depends on 

the image-restoration problem and the type of degradation present in the image [4]-[5]. 

Diffusion-based methods use partial differential and variational restoration technology to propagate 

known information to the region to be repaired. This method works well for small-scale image damage, 

but cannot handle large missing areas or complex textures. Texture-based methods estimate information 

on corrupted regions using texture features in the original image and filling in the missing part with the 

best matching block. These methods are more suitable for severe damage in the image and can quickly 
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recover the texture details of the damaged image regions [6]. Researchers also use regularization-based 

methods to solve image-restoration problems. These methods aim to find a solution that satisfies 

constraints or regularization terms. Prior knowledge or assumptions about the underlying structure of 

the image are used to define the regularization terms [7]. Recently, various deep learning-based 

techniques have shown considerable success in image restoration. These methods use neural networks 

(CNNs) to learn the mapping between degraded images and their corresponding clean images. By 

training on large datasets consisting of degraded and clean images, these networks can learn to restore 

images accurately. A detailed discussion on deep-learning approaches to image restoration is given in 

[2]. 

Along with single neural network-based methods, generative adversarial networks (GANs) have also 

been used for image-restoration tasks. A discriminator and a generator are the two neural networks that 

comprise GANs. The generator network produces a restored image as an output from a degraded image 

as input. On the other hand, the discriminator network aims to differentiate between the cleaned and 

restored images. GANs can learn to generate highly realistic restored images by training these networks 

together. Overall, image restoration has advanced significantly over the years, with techniques ranging 

from linear filtering to deep learning-based methods [8]. 

G. Kwon et al. (2017) introduced a new and challenging dataset and comprehensively evaluated existing 

deep learning-based and traditional machine learning-based algorithms on this dataset. The CURE-TSR 

dataset includes images captured in real-world and simulated environments, including challenging 

weather, lighting and occlusions. The dataset includes various image degradations, such as blur, noise, 

shadows and codec errors, making traffic-sign recognition more difficult. Experimental results confirm 

that the performance of traffic-sign recognition algorithms varies significantly under different types of 

image degradations, with some algorithms being more robust than others [1]. S. Ahmed, U. Kamal et 

al. (2021) recommended a modular framework to detect and recognize traffic signs under difficult 

weather conditions. The offered solution implements a CNN for traffic-sign detection and recognition 

(TSDR) with prior image enhancement, comprising four modules: a challenge classifier, Enhance-Net 

(an image-enhancement module), a sign detection CNN and a classification CNN. Enhance-Net is 

trained to enhance traffic-sign regions specifically, enabling accurate detection instead of the entire 

image. The image enhancement component uses an encoder-decoder CNN architecture to augment input 

image quality by removing various image degradations, such as noise, blur and rain. The enhanced 

image is then fed into the region-based CNN detector for traffic-sign detection. The region-based CNN 

detector uses a two-stage approach, where, during the first stage, a set of candidate regions are generated, 

which are used during the second stage to classify a traffic sign or background. The image-enhancement 

block comprises five sub-blocks: rain, snow, haze, dirty lens and lens-blur removal blocks. Each block 

is designed to address a specific type of challenge. Each sub-block is applied to the input image only if 

the challenge classifier detects the corresponding type of challenge [9]. 

R. Huang et al. (2018) put forward an autoencoder-based architecture for restoring compressed images 

corrupted with codec errors. The autoencoder is first trained on a large set of clean images to learn a 

prior distribution of image patches. During the restoration process, the compressed image is first 

decompressed and then the autoencoder is used to predict the corrupted pixels in the decompressed 

image caused by the codec errors. To achieve this, the corrupted image is first divided into small 

overlapping patches and each patch is inpainted separately using the autoencoder. The autoencoder-

based inpainting method uses the prior knowledge of the autoencoder to predict the missing pixels in 

each patch. Then, the patches are merged to produce the final restored image [10]. S. Jeon, H. Kim et 

al. (2019) proposed a solution for restoring compressed images distorted by the compression process. 

The authors advocated for an autoencoder-regularization approach to restore the images to their original 

quality. The proposed method involves training an autoencoder network on a large dataset of 

uncompressed images. The trained network is then used to regularize the restoration process for 

compressed images by imposing a constraint on the restored image to be similar to the output of the 

encoder part of the autoencoder [11]. 

K. Zhang et al. (2020) addressed the problem of concealing errors that occur during the compression of 

video streams. The authors introduced a two-stage method that uses deep-learning techniques to enhance 

the reconstructed video frames. The suggested method uses a CNN model to estimate the missing 

information in the corrupted video frames. This estimation is then used to generate a "confidence map" 

that indicates the reliability of the estimation at each pixel location. The next stage uses another CNN 
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to refine the estimated frames based on the confidence map [12]. M. Uricar et al. (2021) introduced a 

method for detecting image staining due to a camera lens in self-driving scenarios using a data-

augmentation approach using a GAN. The recommended method uses a CycleGAN architecture to 

generate synthetic images that simulate different levels of camera-lens soiling with the help of two pairs 

of generator and discriminator networks to learn the mapping between clean and soiled image domains. 

The first generator inputs a clean image and outputs a corresponding soiled image. In contrast, the 

second generator inputs a soiled image and outputs a corresponding clean image. The two discriminator 

networks help ensure that the generated images are realistic and belong to their respective domains. The 

synthetic images generated by CycleGAN are then used to augment the original dataset of clean and 

soiled images. The augmented dataset trains a convolutional neural network (CNN) classifier that can 

accurately detect camera-lens soiling in autonomous driving scenarios. The authors use a dataset of 

10,000 images from a camera attached to the front of a car. The dataset contains clean and soiled images, 

with varying levels of soiling caused by rain, snow and mud [13].  

X. Li, B. Zhang et al. (2021) presented a solution for removing artifacts caused by contaminants (such 

as dust, dirt and moisture) on camera lenses in videos captured by moving cameras. The solution consists 

of three stages: detection, localization and removal. In the recognition stage, a deep CNN is trained to 

detect the presence of contaminants in each video frame. In the localization stage, a motion-analysis 

method is used to estimate the movement of the contaminants in each frame. In the removal stage, using 

the estimated motion information, a temporal filtering method is applied to remove the artifacts caused 

by the contaminants. To evaluate the suggested approach, the authors created a dataset of 30 video 

sequences with varying levels of contaminants captured by a moving camera. The dataset includes 

videos with rain, snow, dirt and clean reference videos. The authors additionally offer annotated ground 

truth and the extent of the contaminants in each frame. The method achieves PSNR of 35.37 and SSIM 

of 0.980 in stage one [14]. J. Mohd, S. M. Reyes et al. (2021) described a novel approach to detect dust 

particles in camera lenses mounted on moving robots. The suggested method also includes a technique 

for correcting the recorded or live image data by selectively removing the dust areas using an adaptive 

tiling-based approach. Dust particles are a significant issue for camera lenses in different disciplines, 

such as traffic-sign identification and geospatial data capture. The method aims to improve dust 

detection and correct image data by comparing consecutive frames captured by moving robots and 

removing the dust particles using the proposed technique while preserving the original data. Simulation 

results achieved 90-92% accuracy in removing the dust particles without affecting the actual data, which 

is a significant improvement [15]. 

H. Wang et al. (2021) suggested a deep CNN-based solution, "SRNet," to remove rain from a single 

image, integrating a structural residual learning framework with a residual block and a multiscale 

structure-extraction network. The residual block is designed to distinguish between the input and output 

images, while the multiscale structure-extraction network is employed to extract structure information 

from input images. This method achieved satisfactory performance on rain removal in a single image 

with PSNR=35.31 and SSIM=0.9448 [16]. Rainy images can adversely impact multimedia and 

computer-vision applications. CNN-based solutions have been employed to address this issue and 

eliminate rain from a single image. S. Li, W. Ren et al. (2019) presented a novel multi-task learning 

architecture that enhances performance by reducing excessive mapping between ground truth and output 

images. This architecture features a decomposition network that separates the rainy image into a clear 

background and multiple layers for the main component. During training, the composition structure is 

reconstructed to enhance the image quality by integrating clean input images and rain-related 

information. Experimental results demonstrated that this approach produces high-quality image 

restoration for synthetic and real images and surpasses contemporary techniques. Furthermore, the 

technique can be applied to other tasks, such as dust abstraction. Their method achieves PSNR of 

33.7508 and SSIM of 0.9412 on the Rain50 dataset [17]. 

By analyzing urban video scenes, vision-based traffic analytic systems can significantly benefit 

Intelligent Transportation Systems (ITSs). However, vehicle detection and tracking can be challenging 

due to moving cast shadows, resulting in inaccuracies. M. U. Arif et al. (2022) conducted a 

comprehensive analysis of traditional and cutting-edge shadow identification and removal algorithms 

for traffic scenes based on 70 research papers published over the past 30 years. The study emphasizes 

the need for a hybrid approach combining traditional and well-known shadow-detection and removal 
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techniques before applying CNN-based vehicle-detection methods. The study also recommends using 

Highway I, II and III datasets for comparative evaluations; despite many CNN-based techniques for 

vehicle detection, moving cast shadow is still a challenge, necessitating pre-processing steps for accurate 

vehicle detection in traffic scenes [18]. Eliminating shadows from images can improve their visual 

appeal and has numerous applications in computer vision. Currently, based on deep-learning techniques, 

CNN is deemed the most efficient way to remove shadows. These methods can be trained using paired 

data of both the shadowed and clean images. Training CNN on unpaired data is typically favored in 

practice owing to the simplicity of data collection. In 2021, Z. Liu et al. proposed a new approach to 

shadow removal, referred to as the Lightness-Guided Shadow Removal Network (LG-ShadowNet), 

which employs unpaired data for training. The method comprises two CNN modules, with the first 

compensating for lightness and the second removing the shadow based on the information obtained from 

the previous module. It also introduces a loss function that utilizes the color before the existing data. 

Comprehensive experiments were conducted on popular datasets, such as the Image Shadow Triplets 

Dataset (ISTD), adjusted ISTD and USR. The proposed method performs well compared to available 

methods trained on unpaired data, with PSNR=25.92 and SSIM=0.909 [19].  

The limited availability of paired shadow and ground truth images hinders the development of robust 

and large-scale shadow extraction algorithms. This limitation restricts the variety and size of shadow-

removal datasets, making it difficult to train such algorithms. H. V. Le et al. (2020) presented a new 

shadow-removal technique that uses shadow and non-shadow regions from images for training to 

address this challenge. The approach uses an adversarial framework that incorporates a physical shadow-

formation model. The method is handy for video shadow removal and achieves good results compared 

to the existing works [20]. H. Fan et al. (2019) examined the difficulties that current shadow-removal 

methods face in image segmentation and target recognition. They recommended a deep CNN composed 

of an encoder-decoder and refinement network to address these issues. The network predicts the alpha 

shadow scale factor and generates sharper edge information. A new image database (RSDB) is built and 

tested against various databases to evaluate the algorithm. Compared to other methods, the suggested 

algorithm significantly improves PSNR and SSIM metrics, producing sharper and shadow-free images 

that retain the image's color and texture close to the original image [21]. X. Hu et al. (2019) introduced 

Mask-ShadowGAN, a novel technique for removing shadows using unpaired data. The approach uses a 

deep-learning framework to generate a shadow mask based on an input shadow image. The generated 

mask is then employed to guide the process of shadow generation, incorporating cycle-consistency 

constraints. The framework is designed to simultaneously learn the generation of shadow masks to 

optimize overall performance. The effectiveness of this approach was evaluated on an unpaired dataset 

for removing shadows; it exhibited promising results across various experiments [22]. 

A unique image-fusion technique was introduced in 2021 by L. Ren et al. It improves the guided filter 

for better decomposition and artifact reduction. Before fusion, the contrast of viewable pictures is 

improved to address low light and noise. The authors divide the visible and infrared images vertically 

into sub-images, separate them into base and detail layers and use two fusion techniques. They also 

suggest a gradient-brightness criterion for adaptive output. Compared to earlier fusion techniques, 

experimental results show more significant performance in maintaining visible image details and 

improving infrared object clarity [23]. 

Q. Yang et al. (2022) tackled the problem of small-object detection. Feature Pyramid Networks (FPNs) 

represent a revolutionary technique that the authors suggested for enhancing small item detection. 

Small-Object Feature Enhancement (SOFE) and Variance-guided Region of Interest Fusion (VRoIF) 

are the two modules that makeup SV-FPN. To extract small-object features, SOFE improves finer-

resolution level feature maps. In addition, VRoIF uses the variation in RoI features to determine the 

degree to which various RoI characteristics from various layers are all present. Ablation tests 

demonstrate the efficiency of SV-FPN on three open datasets, which achieved mean Average Precision 

(mAP) values of 41.5%, 53.9% and 38.3% on the KITTI, PASCAL VOC 07+12 and MS COCO 2017 

datasets, respectively [24]. X. Yang (2020) conducted a comprehensive review of the attention 

mechanisms in computer vision. It discusses several attention mechanisms: self-attention, channel 

attention and spatial attention. The author emphasizes using attention mechanisms in image synthesis, 

object detection and picture classification. The author also investigates various attention-incorporating 

models, such as Transformer-based models and Convolutional Neural Networks (CNNs) and evaluates 

their benefits and drawbacks. In computer vision, the importance of attention mechanisms in improving 
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visual perception and task performance is substantial [25]. 

DehazeFormer distinguishes itself by showcasing its superior performance across multiple datasets, 

highlighting its efficacy in image dehazing. The authors introduce several enhancements to the Swin 

Transformer architecture, incorporating modifications, such as replacing LayerNorm and Gaussian 

Error Linear Unit (GELU) with RescaleNorm and ReLU, respectively. Furthermore, they propose a 

shifted window-partitioning scheme and a spatial information-aggregation scheme, contributing to the 

model's resilience and efficiency in dealing with dehazing tasks. Importantly, these improvements 

transcend the scope of DehazeFormer, as they offer minor, yet impactful, enhancements that can be 

applied to other networks. The model's features are exceptionally noteworthy regarding its performance 

on a substantial remote-sensing image-dehazing dataset [26]. 

A task-related contrastive network for single-image dehazing is introduced by W. Yi et al. (2023). It 

focuses on a compact autoencoder-like architecture with FEM and AFM, utilizing contrastive learning 

for improved performance. The proposed strategy involves effective data augmentation and a task-

friendly embedding network. TC-Net outperforms existing methods, but limitations include reliance on 

common data-augmentation approaches and increased GPU-memory usage due to dynamic parameter 

updates in the training process [27]. 

To summarize, image-restoration techniques encompass various methodologies targeting specific image 

flaws. Diffusion methods excel at rectifying minor damages, while texture-based approaches effectively 

recover severe image flaws. Regularization methods rely on prior knowledge to meet image-structure 

constraints for restoration. Deep-learning techniques employing Convolutional Neural Networks 

(CNNs) efficiently restore images by learning from extensive datasets. GANs, with their generator and 

discriminator, produce realistic image restorations. Autoencoder-based methods predict and restore 

corrupted pixels in decompressed images, while autoencoder regularization aids in restoring compressed 

images. Deep-learning techniques efficiently enhance reconstructed video frames post-compression 

errors. GAN-based augmentation effectively detects lens staining in autonomous driving scenarios. 

Techniques for detecting and removing camera-lens contaminants in moving videos follow systematic 

stages. Rain removal relies on CNN-based approaches using structural learning and residual networks. 

Multi-task CNN architectures efficiently handle shadow removal with minimal mapping. Hybrid 

methods combine pre-processing with CNN-based detection for shadow detection. Innovations, like 

Lightness-Guided ShadowNet, use unpaired data for effective shadow removal. Techniques involving 

physical shadow models and CNN-based refinement effectively address shadow-removal issues. Mask-

ShadowGAN, utilizing unpaired data, showcases a comprehensive approach to shadow removal. Image-

fusion techniques employ guided filters and adaptive output for improved clarity in restorations. 

Collectively, these techniques contribute to the broad landscape of image restoration, each offering 

unique solutions for diverse image imperfections. 

3. PROPOSED CDRSHNET ARCHITECTURE

The CDSRHNet architecture accepts colored noisy images with a resolution of 128x128x3 (height, 

width, RGB channels) and outputs a restored noiseless image. The network design has five levels with 

a cascade succession of convolutional operations. On each level, there are residual blocks. Two 

convolutional layers with Rectified Linear Unit (ReLU) activation and a group-normalization layer 

comprise each residual block. Small batch-size issue is addressed using group normalization. The feature 

map is normalized using group normalization, which divides the channels into groups and generates 

unique normalization statistics for each group based on the channel mean and variance. This strategy 

ensures independence from batch size when batch sizes are small. Padding is used throughout the model 

during convolutional operations to preserve the edge information of the image. The feature maps' spatial 

dimensions are preserved through padding, allowing the convolutional layers to capture important 

spatial data effectively. A skip connection is formed by element-wise summing the output of each 

residual block with its corresponding input. By propagating significant features from earlier blocks to 

later ones, this skip link aids in preserving those features. Figure 1 shows the proposed architecture of 

CDSRHNet. 

The output of the final block in a level is passed as a skip connection to the self-attention module after 

the execution of all three residual blocks. The self-attention module captures global dependencies, so  



80

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 01, March 2024. 

Figure 1. Proposed CDSRHNet model architecture. 

that the network focuses on relevant image regions. The Variance Guided Multi-Scaled Attention 

(VGMA) module continues to process the output of the self-attention module and improves the image 

representation by emphasizing informative channels and spatial locations. Also, skip connections are 

used in deep neural networks to solve the vanishing-gradient problem, because the gradient signal has a 

shorter path to follow during backpropagation. The spatial dimensions of the feature maps produced at 

the end of the third residual block in each level are down-sampled using pooling layers. This 

downsampling reduces the parameter count in the network and increases its insensitivity to small spatial 

translations. Additionally, pooling layers increase the neurons' receptive field, which improves the 

network's ability to record spatially invariant data. Equation (1) determines the output down-sampled 

feature map of a tensor. 

𝐷 =
(𝐼+2𝑃−𝐾)

𝑆
+ 1          (1) 

where, I is the input feature map, P is the padding, K indicates convolutional kernel and S is the stride 

of convolutional operation. 

The dilatation process introduces gaps or spaces between the kernel elements, allowing neurons to 

perceive a larger area of the input-feature map. The dilation rate determines the size of the gap in the 

kernel. The proposed method has a dilation rate of (2,2), which increases the receptive field without 

increasing the parameters. The mathematical formula for a dilated convolutional operation with dilation 

rate d can be expressed as follows with the help of Equation (2). 

y=∑  [𝑖 + (𝑘 ∗ 𝑑)] ∗ 𝑤[𝑘]𝑘=𝑘−1
𝑘=0                      (2) 

where, i is input feature map, y is output feature map, w is the kernel of size k and d is the dilation rate. 

The spatial dimensions of output-feature map y are identical to those of input-feature map i, but a factor 

of d expands each neuron's receptive field. The final bottleneck layer is 8x8x512 in dimension and 

represents a compressed-input representation. The most important and pertinent data from the preceding 

layers is collected in this layer. The expansion path uses subpixel convolution to improve efficiency, 

capture global dependencies and retain spatial information. The outputs from the VGMA module and 

the preceding level's subpixel convolution layer are combined at each level of the expansion path. 

Concatenation enables the model to recover spatial data that was lost during down-sampling. 

3.1 Self-attention 

The self-attention module, illustrated in Figure 2, captures long-range dependencies and selectively 

attends to relevant information within the input sequence or feature map. It requires three parallel 1x1 

convolutions, to produce the query(Q), key(K) and value(V) vectors. While the key vectors represent 

all the other positions or elements, the query vector represents the current position or element being 
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attended to. The attention mechanism establishes position weights through the element-wise dot product 

of query and key vectors, followed by obtaining attention weights using a Softmax function. 

The value vectors (V) containing features related to each position are multiplied by the respective 

attention weights. The self-attended feature representation is obtained by combining the resulting 

weighted value vectors using a summation operation or weighted average. The self-attended 

characteristics are then refined and transformed using a 1x1 convolution. Self-attention effectively 

captures the intra-correlation of an input matrix X = [x1, x2,⋯, xn]∈ ℝ(d×n), where d is the dimensionality

of the input vectors and n is the number of vectors in the sequence. In this self-attention, Q, K, V and X 

are kept equal and the self-attention is computed as in Equation (3). 

SA = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑋𝑇 𝑋

√𝑑
) ∗  𝑋  (3) 

here, SA is the self-attended feature representation calculated based on the attention mechanism which 

captures the intra-correlation or dependencies between each pair of input vectors, reflecting the 

significance of each vector in understanding or representing other vectors in the sequence. 

Figure 2. Self-attention architecture. 

3.2 Variance-guided Multiscale Attention 

The proposed approach combines channel attention with variance and spatial-attention modules to 

improve image-reconstruction quality while reducing network depth and computational complexity. By 

emphasizing channels with high variance, which indicates the presence of important or distinctive 

features, the channel-attention mechanism based on variance enables us to capture channel variability. 

The network can adjust its weighting based on variance by prioritizing informative channels and 

suppressing noisy or less informative channels. Each spatial position in the feature maps is taught to 

receive weight from the spatial-attention module, reflecting the significance of that region during feature 

fusion. This allows the network to adaptively adjust the contribution of each spatial location based on 

its significance, enhancing the representation of local and global details. 

We perform an element-wise summation between the weighted feature maps obtained from the channel-

attention mechanism and the spatial-attention weights to fuse the outputs of the channel attention and 

spatial-attention modules. By combining the informative channel-level weights with the spatially 

adaptable weights, this fusion process maximizes the benefits of both methods. This novel approach 

presents practical solutions to address the specific challenges outlined in this paper, offering advanced 

capabilities for various image-enhancement tasks. Figure 3 shows the architecture in more detail. 

Figure 3. Variance-guided multiscale attention architecture. 
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3.2.1 Channel Attention 

The channel-attention mechanism offers several benefits when variance is used to adjust the weights of 

all channels. First, emphasizing channels with high variance, which denotes the presence of significant 

or distinctive features, enables the capture of channel variability. The network can prioritize channels 

that contribute more to the overall task by using this adaptive weighting based on variance, which 

enhances performance. Incorporating variance-based weights further improves channel-noise 

robustness by minimizing the impact of noisy or uninformative low-variance channels. In addition to 

increasing the network's computing performance, this reduces noise and redundant data. The following 

are the steps involved in extracting significant channel-level features. 

3.2.1.1 Variance Computation: The variance (Vc) for each channel (c) is calculated for a feature map 

(F) with dimensions H x W x C, where H represents height, W signifies width and C denotes the 

number of channels. The formula for Vc is expressed as follows: 

Vc = 
1

(𝐻∗𝑊) 
∗  ∑ ∑ (𝐹(𝑖, 𝑗, 𝑐) − 𝜇𝑐)2𝑊

𝑗=1
𝐻
𝑖=1  (4) 

Here, H and W denote the height and width of the feature map, respectively; i and j are indices 

representing spatial positions within the feature map; F(i, j, c) is the value of the feature map at position 

(i, j) in channel c and µc represents the mean value of channel c along a particular dimension in the 

input-feature map.  

3.2.1.2 Variance Normalization: Channel-specific variances are normalized to obtain weights that sum 

up to 1. The calculation of Normalized Variance (NVc) is articulated as follows: 

NVc = 
𝑉𝑐

∑ 𝑉𝑐
                                                                        (5) 

3.2.1.3 Weight Adjustment: To adjust the importance of each channel, normalized variances are 

applied as weights. The weight assigned to a channel increases with its variance. Equation (6) calculates 

the adjusted weighted feature map (Woc) for spatial position (i, j) and channel c: 

Woc (i, j, c) = NVc * F (i, j, c)                 (6) 

Each member of the matrix F is represented by F (i, j, c), denoting the value at the position (i, j) in 

channel c of the feature map. 

3.2.2 Spatial Attention 

Integrating spatial attention with variance-based channel attention offers a comprehensive approach to 

identify spatial dependencies and channel-wise variability, improving feature representation. Spatial 

attention improves feature representation by considering the spatial dependencies within the feature 

maps, whereas variance-based channel attention concentrates on capturing inter-channel relationships 

and significant features. Spatial attention captures contextual information and fine-grained features by 

modeling the relationships between spatial locations and allocating weights accordingly. This leads to 

improved feature discrimination and improved model performance. 

Consider ʄ (⋅) being the function to compute the spatial-attention weights denoted by SW(i,j), for an 

original feature map represented by O(i,j) at each spatial location (i, j). This involves a sequence of 

mathematical operations applied to the original feature map. After these operations, a nonlinear 

activation function is applied in conjunction with a weighted convolution. The spatial weights SW(i,j) 

at spatial location (i,j) are given by Equation (7). 

SW(i,j) = ʄ(O(i,j))        (7) 

 3.2.3 Adjusting Contribution by Feature Fusion 

The weighted feature maps from the channel-attention mechanism created from Equation (6) are 

multiplied element-wise with the spatial-attention weights acquired from Equation (7) in the previous 

step to adjust the contribution of each spatial location during feature fusion. 

WocAdjusted (i, j) = Woc(i, j) * SW(i,j)     (8) 

WocAdjusted (i, j) in Equation (8) represents the adaptively adjusted channel weights at each spatial 

location (i,j). 
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3.3 Hybrid Loss Function 

This study proposes a novel custom loss function that combines the GMSD (Gradient Magnitude 

Similarity Deviation) and Charbonnier loss functions. Compared to the conventional single loss 

function, which can only handle one type of issue, the proposed loss function can simultaneously address 

noise, blurriness and sharpness problems. X. Zhu et al. [28] employed an integrated loss function made 

up of MSE, VGG19-based perceptual loss and Novel Quality Loss inspired by IQA (Image Quality 

Assessment) metric and GMSD to create an image that is in line with human vision, utilizing the GAN 

network. 

The Charbonnier loss and the VGG16 perceptual loss were both employed by B. Wu et al. [29]. Their 

results outperformed previous-study methods in producing images with intricate features and sharp 

edges. In order to reduce noise in CT-scan images, B. Gajera et al. [30] proposed an enhanced GAN that 

combined Charbonnier loss and VGG19 perceptual loss. The authors found that this network 

significantly improves denoising performance by bringing soft-tissue noise levels closer to those of a 

Normal Dose CT (NDCT) scan. In Equation (9), LM shows the final loss function of the proposed model. 

The weights for each loss term are α and β, respectively. 

LM = αLGMSD + βLCharbonnier (9)

Each weight has an initial value of 0.5 at the beginning of the training. The weights are dynamically 

modified after each epoch throughout the training based on their relative contribution to the validation 

loss. This method optimizes the model to minimize loss functions based on their relative importance in 

the overall validation loss, improving overall performance and achieving a better balance between 

reconstruction accuracy and perceptual quality. 

3.3.1 Gradient Magnitude Similarity Deviation (GMSD) 

To measure the similarity between two images, the Low-Resolution Image (LRI) (a distorted image) 

and the High-Resolution Image (HRI) (a ground truth image), W. Xue et al. created the Gradient 

Magnitude Similarity Deviation (GMSD) in 2014. GMSD evaluates how the global variation of the 

gradient-based local-quality map is used. GMSD is highly consistent with how people perceive the 

quality of an image and is computationally efficient. GMSD is robust to various visual artifacts, such as 

noise, blur and compression [31].   

GMSD is calculated using the following steps: 

a. Gradient Magnitude Calculation: Use the Prewitt filter to compute horizontal and vertical

gradient magnitudes for the Low-Resolution Image (LRI) and the High-Resolution Image

(HRI).

b. Gradient Magnitude Similarity (GMS): Calculate the Gradient Magnitude Similarity (GMS)

between LRI and HRI by considering the relationship between their gradient magnitudes.

c. Mean GMS: Compute the mean GMS values across the entire image for LRI and HRI.

d. GMSD Calculation: Determine the GMSD, representing the deviation in gradient magnitude

similarity, by assessing the differences between individual GMS values and their mean values.

3.3.2 Charbonnier Loss 

The Charbonnier loss is a smooth approximation of the Huber loss that preserves its robustness while 

being more differentiable and simpler to optimize. Huber loss has a non-smooth quadratic to linear 

transition, which makes gradient-based optimization challenging. The epsilon parameter in the 

Charbonnier loss regulates the smoothness of the transition from the quadratic to linear region. The 

Charbonnier loss acts like the L2 loss (MSE) when the epsilon is small and the L1 loss (MAE) when the 

epsilon is large. For this experiment, the epsilon was set to 0.001. For image-restoration tasks, like 

denoising, deblurring and super-resolution, Charbonnier loss is better suited, because it penalizes 

substantial errors less severely than the MSE loss. Compared to MSE loss, Charbonnier-loss outcomes 

are more visually pleasing. MSE loss function may produce fuzzy edges. This occurs, because the 

Maximum Likelihood Estimator (MLE) for MSE is the arithmetic mean, while the edges in images 

typically have two unique modes or values, making them bimodal. Charbonnier loss is expressed by 

Equation (10). 
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L(y, y’) = 
1

𝑛
∑ √(𝑦 − 𝑦′)2 + Ɛ2           (10) 

where, y and y’ are the original and predicated images, respectively, while Ɛ is a small constant.   

For minor errors, the square root term in the formula behaves like an L1-norm penalty; for more 

enormous errors, it behaves like an L2-norm penalty. 

3.3.3 Optimizer 

"Reduce LR on Plateau" technique at run time dynamically decreases the learning rate by a 

predetermined factor when validation loss of the model stops improving after a certain number of 

iterations. For this study, initial learning rate was set to 1e-2 and learning rate reduction factor was 10% 

with a waiting of 3 epochs. At around 73% accuracy, the model started to show prolonged improvement, 

after which the learning rate was changed to 1e-3; finally, at 98.16% accuracy, it was changed to 1e-4. 

3.4 Dataset Preparation 

The dataset used for this research is derived from the CURE-TSR dataset [1]. The CURE-TSR dataset 

contains over two million images of traffic-sign symbols cropped from the CURE-TSD video dataset. 

The CURE-TSR dataset is introduced to analyze and evaluate the efficiency of algorithms under 

challenging conditions. The CURE TSR dataset contains 14 different sign types and 12 challenging 

conditions. For this study, we created two subsets of the CURE TSR dataset. The first subset is the real-

image dataset (RID) and the second is the synthesized-image dataset (SID). The real-image dataset 

(RID) contains 84K images with five challenging conditions and 14 sign types. The SID dataset contains 

16800 images and is mainly used to evaluate the model and compare the results with the RID test dataset. 

The RID dataset is partitioned into Training RID and Testing RID sub-sets with a ratio of 80:20. The 

training dataset contains 67200 images and the testing dataset contains 16800 images. Similarly, the test 

SID dataset contains 16800 synthesized images. This study considered 14 traffic signs with five visual 

challenges: codec error, dirty lens, rain, shadow and haze images. 

4. TRAINING AND VALIDATION LOSS

Graph 1 shows the training versus validation loss for the proposed model developed to restore traffic-

sign images. The x-axis signifies the number of epochs (i.e., the number of times the model has been 

trained on the entire dataset). At the same time, the y-axis represents the loss, which measures the 

distinction between the predicted output of the model and the actual output. The training loss and 

validation loss were relatively high during the initial training process, indicating that the model was not 

accurately predicting the restored images. However, as the number of epochs increased, the training loss 

and validation loss decreased gradually. This suggests that the model was learning to restore the images 

better over time. 

Graph 1. Training loss and validation loss. Graph 2. Values of alpha and beta. 

Initially, the training loss was 7935 and the validation loss was 7922. After 178 epochs, the training loss 

and validation loss dropped to 186 and 139, respectively, which shows that the model has learned the 

weights much more accurately. Further, there was no improvement in the loss. This encouraging 

outcome indicates that the model can restore traffic-sign images with high accuracy and could be used 

for practical applications. 
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4.1 Loss Tuning Parameters-Alpha and Beta 

As shown in Equation (9), the alpha and beta weights are the weights of the GMSD and Charbonnier 

losses, respectively. Updating these weights gives more weight to the more critical loss function and 

less weight to the less important loss function. Suppose that the ratio of the validation loss to the training 

loss decreases. In that case, the model performs better on the validation sub-set than on the training sub-

set, which may indicate that the Charbonnier loss contributes more to the total loss. In this case, the beta 

weight is increased and the alpha weight is decreased; so, the model gives more weight to the 

Charbonnier loss. 

On the other hand, if the ratio of the validation loss to the training loss increases, this indicates that the 

model performs worse on the validation sub-set than on the training sub-set. This could happen if the 

model overfitted to the training sub-set, which means that it fits the noise in the training sub-set rather 

than the underlying pattern. In such cases, the GMSD loss, which measures the structural similarity 

between the ground truth and the predicted image, becomes more critical, as it encourages the model to 

generate visually similar images to the ground truth rather than just fitting the training-set noise. 

Therefore, increasing the alpha weight and decreasing the beta weight ensure that the model gives more 

weight to the GMSD loss and tries to generate visually similar images to the ground truth rather than 

just fitting the training-set noise. 

The decay parameter controls the rate at which the weights are updated, which increases or decreases 

the weights in each epoch. The decay parameter is a ratio of validation loss to training loss. A small 

constant (epsilon) is added to prevent alpha and beta from becoming absolute zero. If either alpha or 

beta becomes zero, the corresponding loss function will not contribute to the overall loss and the model 

will not be able to learn any further from that loss function. The alpha and beta factors are clamped 

between a minimum value (epsilon) and a maximum value (1.0). The sum of alpha and beta is fixed at 

1.0; therefore, the distribution graph of alpha and beta looks like a mirror image of each other, as shown 

in Graph 2. 

4.2 Comparing Hybrid Loss Function and Single Loss Functions 

As discussed in sub-section 3.2, to demonstrate the effectiveness of our novel custom loss function that 

combines the GMSD (Gradient Magnitude Similarity Deviation) and Charbonnier loss functions, we 

conducted ablation experiments, as shown in Graphs 3-6; the proposed hybrid loss has optimal 

convergence of 139 after 178 epochs. Charbonnier, GMSD and MSE have optimal losses of 1206, 1238 

and 0.211, respectively. The proposed hybrid loss also has smooth progression compared to other 

individual loss functions. 

  Graph 3. Charbonnier loss.     Graph 4. GMSD loss. 

        Graph 5. Hybrid loss (Proposed).  Graph 6. MSE loss. 
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During the experiment, we also captured quantitative matrices PSNR, SSIM and MAE of the model 

with each of the loss functions; as shown in Table 1. The proposed hybrid function exceeds all the 

parameters except for RMSE, where MSE loss has the least value of 105.651 against 106.151. 

Table 1. Loss-function comparison. 

Loss Function PSNR SSIM MAE 

Hybrid 41.024 0.9726 0.040 

MSE 31.940 0.9169 0.090 

Charbonnier 29.091 0.8628 0.127 

GMSD 28.315 0.8390 0.164 

5. MODEL PERFORMANCE EVALUATION

The model's performance has been evaluated based on the image-processing domain's three most 

frequent evaluation metrics. These are: The Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM). 

5.1 Mean Absolute Error (MAE) 

MAE measures the average absolute difference between the restored and ground truth images. Lower 

MAE indicates a better resemblance of the input image with the ground truth image. Equation (11) is 

used to calculate MAE. 

MAE = 
1

𝑁
* ∑ |yi - xi|       (11) 

where, N represents the total number of pixels in the restored and ground truth images, yi and xi are the 

pixel values at the corresponding positions in the restored and ground truth images. The summation is 

taken over all pixels in the images. The absolute value (|.|) ensures that the differences are positive and 

the average is calculated by dividing the sum by N. Table 2 shows the MAE values when the model is 

tested on the total test images in individual challenging conditions. 

Table 2. MAE for each challenging condition in the test dataset. 

Challenging 

Condition 

No. of 

Signs 

Number of 

Images 

MAE value for Test RID MAE value for Test SID 

Min. Max. Avg. Min. Max. Avg. 

Codec Error 14 2800 0.0140 0.046 0.022 0.0146 0.048 0.022 

Dirty Lens 14 2800 0.0026 0.038 0.018 0.0028 0.044 0.018 

Rainy Images 14 2800 0.0034 0.042 0.020 0.0036 0.042 0.020 

Shadow Images 14 2800 0.0012 0.032 0.016 0.0014 0.036 0.018 

Haze 14 2800 0.0038 0.042 0.026 0.0038 0.042 0.026 

5.2 Peak Signal-to-Noise Ratio (PSNR) 

PSNR calculates the relationship between the signal's highest possible power and the noise's power, 

which affects its accuracy in representing the signal. The equation that defines PSNR is Equation (12). 

PSNR = 10 log (
𝑅2

𝑀𝑆𝐸
)    (12) 

where, R is the maximum pixel value of the image, which is 255 for a coloured image. MSE is the mean 

squared error between the original image and the restored image. Equation (13) describes the calculation 

of MSE between the y-original image and y' – restored image for n-data points.  

MSE = 
1

𝑛
∑ (𝑦 − 𝑦′)2𝑛

1  (13) 

Table 3 shows the PSNR values when the model is tested on the total test images in individual 

challenging conditions. 
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Table 3. PSNR for each challenging condition in the test dataset. 

Challenging 

Condition 

No. of 

Signs 

Number 

of Images 

PSNR value for Test RID PSNR value for Test SID 

Min. Max. Avg. Min. Max. Avg. 

Codec Error 14 2800 36.45 39.89 38.17 34.56 40.02 37.86 

Dirty Lens 14 2800 38.23 41.57 39.90 37.95 40.86 38.54 

Rainy Images 14 2800 39.78 42.58 41.18 39.89 43.53 39.44 

Shadow Images 14 2800 42.68 44.34 43.52 42.34 45.46 43.34 

Haze 14 2800 32.84 36.74 34.79 31.08 37.98 34.86 

5.3 Structural Similarity Index Measure (SSIM) 

SSIM is a metric used to measure the similarity between two images. SSIM is commonly used to 

evaluate how well a restored image matches the original image. The mathematical formula for SSIM is 

given in Equation (14). 

SSIM(x,y) = 
(2 ∗ μ𝑥  ∗ μ𝑦 + C1) ∗ (2 ∗ σ𝑥𝑦 + C2)

(μ𝑥
2 + μ𝑦

2 + C1) ∗ (σ𝑥
2 + σ𝑦

2 + C2)
     (14) 

where, x and y are the two images being compared, μ represents the mean of an image, σ represents the 

standard deviation and σ𝑥𝑦 represents the covariance of the two images. C1 and C2 are constants that 

stabilize the division by the weak denominator. Table 4 shows the SSIM values when the model is tested 

on test images in individual challenging conditions of both test datasets. 

Table 4. SSIM for each challenging condition in the test dataset. 

Challenging 

Condition 

No. of 

Signs 

Number of 

Images 

SSIM value for Test RID SSIM value for Test SID 

Min. Max. Avg. Min. Max. Avg. 
Codec Error 14 2800 0.716 0.980 0.977 0.782 0.979 0.963 

Dirty Lens 14 2800 0.834 0.982 0.979 0.824 0.972 0.968 

Rainy Images 14 2800 0.886 0.987 0.976 0.842 0.982 0.976 

Shadow Images 14 2800 0.898 0.988 0.982 0.912 0.984 0.978 

Haze 14 2800 0.742 0.926 0.934 0.788 0.965 0.924 

Overall, the SSIM values suggest that both datasets contain restored images that are highly similar to 

the original images, with some variations in the levels of similarity across different restored images in 

each dataset. Thus, the proposed method provides better image restoration even if the traffic sign is 

captured in challenging conditions. 

5.4 Performance Enhancement with Self-attention and Variance-guided Multiscale 

Attention 

An ablation experiment has been performed to evaluate the contribution of self-attention and VGMA in 

the proposed architecture. Results have been gathered using a real image dataset (RID), as shown in 

Table 5. Initially, the model was built without any attention mechanism where average PNSR and SSIM 

were obtained as 30.35 and 0.4525, respectively. In the next iteration, we added only a self-attention 

module and achieved an average PNSR of 34.46 and an average SSIM of 0.6642. Later on, the model 

was created using only VGMA and got an average PNSR of 38.42 and an average SSIM of 0.8288. 

Finally, both self-attention and VGMA modules were added to the model to obtain an average PNSR of 

41.024 and an average SSIM of 0.9726. This experiment demonstrates that the proposed model performs 

better after including both attention modules.  

Table 5. Contribution of self-attention and VGMA. 

No attention Self-attention VGMA Self + VGMA 

Challenge Type PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Codec Error 26.36 0.1235 29.53 0.8109 34.47 0.8094 39.89 0.9800 

Dirty Lens 31.65 0.2833 38.98 0.4724 42.45 0.8012 41.57 0.9820 

Rain 34.58 0.6285 37.87 0.5572 39.71 0.7243 42.58 0.9870 

Shadow 28.88 0.5300 38.76 0.8613 42.94 0.8918 44.34 0.9880 

Haze 30.28 0.6970 27.16 0.6191 32.55 0.9175 36.74 0.926 

Average 30.35 0.4525 34.46 0.6642 38.42 0.8288 41.024 0.9726 
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5.5 Experimental Results 

Figures 4-8 show the model results for a few test images in each challenging condition: Codec Error, 

Dirty Lens, Rain, Shadow and Haze. As shown in the figure, the input image in the first column(a) for 

every table is effectively restored by the model image shown in column (b), which is almost similar to 

the ground truth image shown in column (c). 

Figure 4. Codec Error. Figure 5. Dirty Lens. Figure 6. Rainy Images. Ground 

Truth 

Images (c) 
I/P Image (a) Restored Image 

(b) 

I/P Image (a) Restored Image 

(b) 

I/P Image (a) Restored Image 

(b) 

Figure 7. Images with Shadow. Figure 8. Hazy Images. Ground Truth 

Images (c) 
I/P Image (a) Restored Image (b) I/P Image (a) Restored Image (b) 
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5.6 Comparative Analysis 

The comparative analysis of CDRSHNet against existing methods in the literature reveals the model's 

significant prowess in diverse image-restoration challenges. As shown in Table 6, when addressing 

codec errors, CDRSHNet achieves a PSNR of 39.89 and an SSIM of 0.9800 for single images, 

outperforming other models not specifically tailored for this challenge. The model excels for dirty-lens 

correction, presenting a PSNR of 41.57 and an SSIM of 0.9820, surpassing previous techniques designed 

for single images and videos. CDRSHNet outshines prominent models in rain restoration, exhibiting a 

PSNR of 42.58 and an SSIM of 0.987, highlighting its superiority in handling rain-induced distortions. 

Moreover, in shadow removal, CDRSHNet remarkably outperforms existing techniques, demonstrating 

a PSNR of 44.34 and an SSIM of 0.9880, showcasing its effectiveness in eliminating shadows. However, 

in the domain of haze restoration, while CDRSHNet displays competitive results with a PSNR of 36.74 

and an SSIM of 0.926, there are no metrics from previous methods in the literature for direct comparison. 

Overall, the CDRSHNet model consistently showcases superior performance across diverse image-

restoration challenges, setting a new benchmark in the field. 

Table 6. Comparison with existing methods. 

Method Challenge Type Image / Video PSNR SSIM 

Proposed Codec Error Single Image 39.89 0.9800 

X. Li et al., [14] Dirty lens Video 35.37 0.9800 

Y. Wang et al., [33] Dirty lens Single Image 23.43 0.8640 

Proposed Dirty lens Single Image 41.57 0.9820 

H. Wang et al., [16] Rain Single Image 35.31 0.9448 

S. Li et al., [17] Rain Single Image 33.75 0.9412 

D. Ren et al., [32] Rain Single Image 33.78 0.977 

Proposed Rain Single Image 42.58 0.987 

Z. Liu et al., [19] Shadow Single Image 25.92 0.9090 

H. Fan et al., [21] Shadow Single Image 25.70 0.9826 

X. Hu et al., [22] Shadow Single Image 25.07 0.8930 

Proposed Shadow Single Image 44.34 0.9880 

W. Yi et al., [34] Haze Single Image 19.1736 0.8864 

D. Zhao et al., [26] Haze Single Image 16.032 0.626 

Proposed Haze Single Image 36.74 0.926 

To demonstrate generalization of the model, it is tested on the German Traffic Sign Recognition 

Benchmark (GTSRB) dataset and the Belgium Traffic Sign Dataset, as per the results in Table 7. The 

proposed model exhibits commendable performance across these datasets. Starting with the CURE-TSR 

dataset, the model achieves a substantial PSNR of 41.02, indicating high fidelity in image reconstruction. 

At the same time, the SSIM of 97.26 denotes a robust structural similarity to the original images. On the 
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GTSRB dataset, PSNR and SSIM show improvement, with values of 41.96 and 98.34, respectively. 

This signifies enhanced image-restoration capabilities, excelling in preserving image quality and 

structural details. The model's performance peaks on the BelgiumTS dataset, recording a PSNR of 42.62 

and an impressive SSIM of 98.96. These values reflect the model's exceptional ability to restore images, 

surpassing its performance on previous datasets. In summary, the model consistently delivers superior 

results across datasets, with higher PSNR and SSIM values indicative of its proficiency in reconstructing 

images while maintaining structural fidelity, making it exceptionally reliable for scenarios where 

preserving fine details is paramount. 

Table 7. PSNR and SSIM across diverse datasets. 

CURE-TSR Dataset PSNR 41.02 

SSIM 97.26 

GTSRB Dataset PSNR 41.96 

SSIM 98.34 

BelgiumTS Dataset PSNR 42.62 

SSIM 98.96 

6. CONCLUSION

In this paper, we presented a novel CDRSHNet architecture for restoring traffic-sign images affected by 

different types of image degradation, including rain, shadow and haze, images taken with dirty lenses 

and corrupted due to codec error. This work introduces the fusion of self-attention and variance-guided 

multiscale attention modules with a custom-made loss function to effectively restore the images captured 

in adverse conditions. The proposed method uses varying learning-rate techniques, group normalization 

and dilation for better model performance. The experimental results show that the proposed model 

effectively restores images with high-quality metrics. The overall SSIM average of 0.978 for the Test 

RID dataset and an overall SSIM average of 0.963 for the Test SID dataset indicate the high restoration 

quality of our model. Similarly, the overall average PSNR values of 39.58 and 39.46 for Test RID and 

Test SID datasets, respectively, with an overall accuracy of 99.3%, further confirm the superior 

performance of the proposed novel architecture. The proposed model exhibits commendable 

performance across different datasets. 

REFERENCES 

[1] D. Temel, G. Kwon, M. Prabhushankar and G. AlRegib, "CURE-TSR: Challenging Unreal and Real 

Environments for Traffic Sign Recognition," arXiv (Cornell University), DOI: 

10.48550/arxiv.1712.02463, Dec. 2017. 

[2] J. Su, B. Xu and H. Yin, "A Survey of Deep Learning Approaches to Image Restoration," 

Neurocomputing, vol. 487, pp. 46–65, DOI: 10.1016/j.neucom.2022.02.046, May 2022. 

[3] Z. Shen and D. Dang, "Mixed Hierarchy Network for Image Restoration," arXiv (Cornell University), , 

DOI: 10.48550/arxiv.2302.09554, Feb. 2023. 

[4] M. Maru and M. C. Parikh, "Image Restoration Techniques: A Survey," Int. Journal of Computer 

Applications, vol. 160, no. 6, pp. 15–19, DOI: 10.5120/ijca2017913060, Feb. 2017.  

[5] L.-Y. Chang and A. I. Kirkland, "Comparisons of Linear and Nonlinear Image Restoration," Microscopy 

and Microanalysis, vol. 12, no. 6, pp. 469–475, DOI: 10.1017/s1431927606060582, Oct. 2006. 

[6] Z. Liu, "Literature Review on Image Restoration," Journal of Physics, Conference Series, vol. 2386, no. 

1, p. 012041, IOP Publishing, DOI: 10.1088/1742-6596/2386/1/012041, Dec 2022. 

[7] L. Yu, J. Guo and Y. Chen, "Research Status and Development Trend of Image Restoration Technology," 

Journal of Physics, vol. 2303, no. 1, DOI: 0.1088/1742-6596/2303/1/012081, 2022. 

[8] C. Zhang, F. Du and Y. Zhang, "A Brief Review of Image Restoration Techniques Based on Generative 

Adversarial Models," Lecture Notes in Electrical Engineering, pp. 169–175, DOI: 10.1007/978-981-32-

9244-4_24, 2019. 

[9] S. Ahmed, U. Kamal and Md. K. Hasan, "DFR-TSD: A Deep Learning Based Framework for Robust 

Traffic Sign Detection under Challenging Weather Conditions," IEEE Transactions on Intelligent 

Transportation Systems, pp. 1–13, DOI: 10.1109/tits.2020.3048878, 2021. 

[10] R. Huang, Y. Zhang and Z. Luo, "Inpainting of Compressed Images with Autoencoder-based Prior 

Learning," Proc. of the 26th ACM Int. Conf. on Multimedia, 236-244. 

https://doi.org/10.1017/s1431927606060582
https://doi.org/10.1109/tits.2020.3048878


91

"CDRSHNET: Variance-guided Multiscale and Self-attention Fusion with Hybrid Loss Function to Restore Traffic-sign Images Captured in 

Adverse Conditions," M. V. Parse and D. Pramod. 

[11] S. Jeon, H. Kim and H. Kwon, "Compressed Image Restoration Using Autoencoder Regularization," 

Journal of Imaging Science and Technology, vol. 63, no. 6, pp.060403-1 - 060403-11, DOI: 

10.2352/J.ImagingSci.Technol.2019.63.6.060403, 2019. 

[12] K. Zhang, Y. Li and Y. Wang, "A Two-stage Method for Video Codec Error Concealment Using Deep 

Learning," IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 7, pp. 2102-

2115, DOI: 10.1109/TCSVT.2020.2977168, 2020. 

[13] M. Uricar et al., "Let’s Get Dirty: GAN Based Data Augmentation for Camera Lens Soiling Detection in 

Autonomous Driving," Proc. of the IEEE/CVF Winter Conf. on Applications of Computer Vision, pp. 

766-775, [Online], Available: http://arxiv.org/pdf/1912.02249.pdf, Dec. 2021. 

[14] X. Li, B. Zhang, J. Liao and P. V. Sander, "Let’s See Clearly: Contaminant Artifact Removal for Moving 

Cameras," Proc. of the Int. Conf. on Computer Vision, pp. 2011–2020, Montreal, Canada, Oct. 2021.  

[15] J. Mohd, Sandra Mamani Reyes and J. Xiao, "Camera Lens Dust Detection and Dust Removal for Mobile 

Robots in Dusty Fields," Proc. of the 2021 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), DOI: 

10.1109/robio54168.2021.9739233, Dec. 2021.  

[16] H. Wang, Y. Wu,  Q. Xie,  Q. Zhao, Y. Liang et al., "Structural Residual Learning for Single Image Rain 

Removal," Knowledge-based Systems, vol. 213, p. 106595, Feb. 2021. 

[17] S. Li, W. Ren, J. Zhang, J. Yu and X. Guo, "Single Image Rain Removal via a Deep Decomposition–

Composition Network," Computer Vision and Image Understanding, vol. 186, pp. 48–57, Sep. 2019. 

[18] M. Umair Arif, M. U. Farooq, R. H. Raza, Z. U. A. Lodhi and M. A. R. Hashmi, "A Comprehensive 

Review of Vehicle Detection Techniques under Varying Moving Cast Shadow Conditions Using 

Computer Vision and Deep Learning," IEEE Access, vol. 10, pp. 104863–104886, 2022. 

[19] Z. Liu, H. Yin, Y. Mi, M. Pu and S. Wang, "Shadow Removal by a Lightness-guided Network with 

Training on Unpaired Data," IEEE Transactions on Image Processing, vol. 30, pp. 1853–1865, Jan. 2021. 

[20] H. van Le and D. Samaras, "From Shadow Segmentation to Shadow Removal," arXiv (Cornell 

University), DOI: 10.48550/arxiv.2008.00267, Aug. 2020.  

[21] H. Fan, M. Han and J. Li, "Image Shadow Removal Using End-to-End Deep Convolutional Neural 

Networks," Applied Sciences, vol. 9, no. 5, p. 1009, DOI: 10.3390/app9051009, Mar. 2019.  

[22] X. Hu, Y. Jiang, C.-W. Fu and P.-A. Heng, "Mask-ShadowGAN: Learning to Remove Shadows from 

Unpaired Data," Proc. of the 2019 IEEE/CVF Int. Conf. on Computer Vision (ICCV), vol. 2019, pp. 

2472–2481, Seoul, S. Korea, Jan. 2019.  

[23] L. Ren, Z. Pan, J. Cao, J. Liao and Y. Wang, "Infrared and Visible Image Fusion Based on Weighted 

Variance Guided Filter and Image Contrast Enhancement," Infrared Physics & Technology, vol. 114, p. 

103662, DOI: 10.1016/j.infrared.2021.103662, May 2021.  

[24] Q. Yang, C. Zhang, H. Wang, Q. He and L. Huo, "SV-FPN: Small Object Feature Enhancement and 

Variance-guided RoI Fusion for Feature Pyramid Networks," Electronics, vol. 11, no. 13, pp. 2028–2028, 

DOI: 10.3390/electronics11132028, Jun. 2022.  

[25] X. Yang, "An Overview of the Attention Mechanisms in Computer Vision," Journal of Physics: 

Conference Series, vol. 1693, p. 012173, DOI: 10.1088/1742-6596/1693/1/012173, Dec. 2020.  

[26] D. Zhao, L. Xu, Y. Yan, J. Chen and L.-Y. Duan, "Multi-scale Optimal Fusion Model for Single Image 

dehazing," Signal Processing-Image Communication, vol. 74, pp. 253–265, DOI: 

10.1016/j.image.2019.02.004, May 2019.  

[27] W. Yi et al., "Towards Compact Single Image Dehazing via Task-related Contrastive Network," Expert 

Systems with Applications, vol. 235, p. 121130, 2024. 

[28] X. Zhu et al., "GAN-based Image Super-resolution with a Novel Quality Loss," Mathematical Problems 

in Engineering, vol. 2020, p. e5217429, DOI: 10.1155/2020/5217429, Feb. 2020.  

[29] B. Wu, H. Duan, Z. Liu and G. Sun, "SRPGAN: Perceptual Generative Adversarial Network for Single 

Image Super Resolution," arXiv (Cornell University), DOI: 10.48550/arXiv.1712.05927, Dec. 2017.  

[30] B. Vasant Gajera, S. Raj Kapil, D. Ziaei, J. Mangalagiri, E. L. Siegel and D. Chapman, "CT-Scan 

Denoising Using a Charbonnier Loss Generative Adversarial Network," IEEE Access, vol. 9, pp. 84093–

84109, DOI: 10.1109/access.2021.3087424, Jun. 2021.  

[31] W. Xue, L. Zhang, X. Mou and A. C. Bovik, "Gradient Magnitude Similarity Deviation: A Highly 

Efficient Perceptual Image Quality Index," IEEE Transactions on Image Processing, vol. 23, no. 2, pp. 

684–695, DOI: 10.1109/tip.2013.2293423, Feb. 2014.  

[32] D. Ren, W. Zuo, Q. Hu, P. Zhu and D. Meng, "Progressive Image Deraining Networks: A Better and 

Simpler Baseline," Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition 

(CVPR), pp. 3937-3946, DOI: 10.1109/cvpr.2019.00406, Long Beach, USA, Jun. 2019.  

[33] Y. Wang, R. Wan, W. Yang, B. Wen, L.-P. Chau and A. C. Kot, "Removing Image Artifacts from 

Scratched Lens Protectors," arXiv (Cornell University), DOI: 10.48550/arxiv.2302.05746, Feb. 2023.  

[34] W. Yi, M. Liu, L. Dong, Y. Zhao, X. Liu and M. Hui, "Restoration of Haze-free Images Using Generative 

Adversarial Network," Proceedings of the SPIE, vol. 11432, DOI: 10.1117/12.2541893, Feb. 2020.  

https://doi.org/10.2352/J.ImagingSci.Technol.2019.63.6.060403
https://doi.org/10.1109/TCSVT.2020.2977168
https://doi.org/10.1109/robio54168.2021.9739233
https://doi.org/10.48550/arxiv.2008.00267
https://doi.org/10.3390/app9051009
https://doi.org/10.1016/j.infrared.2021.103662
https://doi.org/10.3390/electronics11132028
https://doi.org/10.1109/access.2021.3087424
https://doi.org/10.1109/tip.2013.2293423


92

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 01, March 2024. 

البحث:ملخص   

ييييي متن  ييييي  ل  أ يييييل     فييييي   لّ يييييل ن     ييييي   اييييي ط  عيييييتلل أحيييييلطّ ط الصييييي  ط  لّ عليييييي ةلعلليييييت ط 

يييييييياّن  ط  لييييييييل  ط  ل   ييييييييت عيييييييي  ع   هيييييييي  غل    سيييييييي   ميييييييي  ل ط    ل  يييييييي تن  ط مايييييييي ن  ط لل

 شييييي        طييييي ل      يييييت هيييييمة ط  ليييييل  ط ص لميييييت  ييييي  أ ييييي  ط   للييييي  علل ييييي  عليييييي ة يييييل   كييييي ف   

ييييييل لّ   ط مشييييييلرت ريييييي  ل   يييييي  نل   ييييييّ   الليييييي   ص ليييييي    ر طعلييييييت  حلييييييل    م كيييييي    سيييييي      ط 

لّل  طلأصللت ط    لت    ط  لل  ط  لل  س  ف ت ط ملم  ر لث  كلن أ        مك   ل

ييييي  عليييييي ه ل ييييي     ييييي فل   ييييي  عييييي     ييييي  ط  ص لييييي   ط م  لل هيييييمة ط ل  يييييت ةل  ييييي    صييييي ل   عيييييت ط ل ييييي    مل

ييييييلل ت  ييييييل  ط مل صاييييييت   يييييي   يييييي    ط الصيييييي  ط  ل لّ  يييييي ل   يييييي        ييييييت  لط ييييييا ط  لييييييل  فيييييي  ط 

 ييييييي     ط  للييييييي   ط مص ييييييي م   صللميييييييئ ر سييييييي   ط    ملعييييييي   رل ةييييييي    الميييييييت     رل ييييييي    ليييييييت 

لّل  )  (%3 99ط  لل   ف  طس       ط 

ط يييييلط    فييييي   مص ييييي م فييييي  هيييييمة ط   طسيييييت  يييييا عييييي     ييييي  طلأةلميييييت ط ص  ةيييييت ط  للييييي    ييييي     ييييي  

ل ط  لليييييي   ط مص يييييي م نل   أ مييييييلن حلييييييث أ رليييييي   ط مل ييييييل  علييييييي  يييييي  سييييييلطة  يييييي  حلييييييث   فييييييلل

لّل  طلأصللت  لّل  ط م   َ ت   ُ ر      ط    لم ط 
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