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ABSTRACT 

In the epoch of digital transformation, cloud computing remains paramount, acting as the linchpin for a plethora 

of services from enterprise solutions to day-to-day consumer applications. Yet, its expansive nature has 

invariably rendered it susceptible to a myriad of cyber threats, necessitating advanced, adaptive defense 

mechanisms. This paper introduces a novel intrusion-detection method tailored for cloud environments, 

ingeniously amalgamating the temporal pattern-recognition capabilities of Long Short-Term Memory (LSTM) 

networks with the heuristic finesse of the Snake algorithm. Our research meticulously delineates the LSTM-

Snake model’s design, implementation and exhaustive benchmarking against prevailing approaches for a 

rigorous and comprehensive evaluation of cloud-based intrusion-detection systems and by using the TON-IOT 

dataset, a carefully curated dataset tailored for cloud-centric applications. The experimental results underscore 

the model’s prowess, registering a commendable 99% accuracy rate in intrusion detection; a marked 

improvement over current state-of-the-art methodologies. The ensuing discussions offer insights into the model’s 

practical implications and potential limitations. 
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1. INTRODUCTION

In the ever-evolving landscape of cyber threats, securing cloud-computing infrastructure remains 

paramount [1]. The proliferation of cloud technologies has yielded remarkable efficiencies and 

scalability in the computational realm, but it has concurrently expanded the surface for potential cyber 

attacks. Intrusion Detection Systems (IDSs) have traditionally been employed to monitor and 

counteract these malicious activities, but as the complexity and stealth of attacks have evolved, so has 

the need for more advanced detection methodologies [2]. Deep learning, a subdomain of machine 

Learning, has shown immense promise in numerous applications ranging from computer vision to 

natural-language processing [3]. Notably, Long Short-Term Memory (LSTM) networks, a type of 

recurrent neural network (RNN), have demonstrated proficiency in processing and predicting 

sequences, which makes them particularly suitable for time-series data, like network traffic [4]. The 

rationale for integrating deep learning into IDS stems from its ability to discern intricate patterns in 

vast datasets, potentially uncovering novel attack vectors that traditional methods might overlook. 

However, like many deep-learning models, LSTMs require meticulous tuning to function optimally, a 

process often constrained by the vastness of the hyper-parameter space. Traditional methods of 

optimization can be time-consuming and might not guarantee convergence to the best model 

parameters [5]. In this context arises the motivation to explore alternative optimization techniques, 

like the Snake algorithm [6], inspired by the foraging behavior of snakes. By leveraging such 

bioinspired algorithms, the hope is to enhance the efficiency and efficacy of LSTM-based intrusion 

detection, ensuring that cloud-computing environments remain resilient against the multifarious cyber 

threats that persist in the digital age. 

The overarching objective of this research is to foster a heightened level of cybersecurity within 

cloud-computing environments by ingeniously amalgamating the predictive prowess of LSTM 

networks with the optimization efficiency of the Snake algorithm. Initially, we aim to dissect the 
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intricacies of modern cyber threats in the cloud realm, laying a solid groundwork for the necessity of 

advanced intrusion-detection mechanisms. At the crux of our endeavor lies the objective to design, 

implement and fine-tune an LSTM-based Intrusion Detection System (IDS) that can efficiently 

process and analyze time-series network-traffic data, uncovering both overt and covert malicious 

activities. Recognizing the inherent challenges associated with hyper-parameter tuning in deep-

learning models, a pivotal goal is to harness the Snake Algorithm’s bio-inspired optimization 

techniques. By doing so, we aim to expedite the search for optimal LSTM configurations while 

ensuring robustness against a wide array of cyber threats. Comparative analysis forms another 

essential objective, as we aspire to benchmark our LSTM-Snake Algorithm hybrid against 

conventional intrusion-detection methods, both in terms of accuracy and computational efficiency. 

Furthermore, the research intends to assess the real-world applicability of our proposed model, 

gauging its performance in dynamic cloud environments subjected to contemporary-attack vectors [7]. 

2. CONTRIBUTIONS

In the multifarious realm of cybersecurity research, our contribution endeavors to pioneer a symbiotic 

melding of the robustness of Long Short-Term Memory (LSTM) networks with the adaptive finesse 

of the Snake optimization technique [6]. While LSTMs, with their inherent capability to understand 

and process sequential data, have been recognized for their potential in intrusion detection, their 

performance is critically dependent on the precise configuration of their hyper-parameters. Traditional 

techniques for hyper-parameter tuning often either fall into the trap of computational extravagance or 

suffer from local-optima stagnation [5]. It is here that our study introduces a seminal innovation. 

Drawing inspiration from the adaptive, heuristic-based searching capabilities of the Snake 

optimization technique, we propose a novel method for hyper-parameter tuning that allows for a more 

dynamic, efficient and expansive exploration of the hyper-parameter space. This synergistic approach 

not only seeks to enhance the efficiency of LSTM networks in detecting intrusions, but also aims to 

provide a more generalized and adaptable model that can evolve with the rapidly shifting contours of 

the IoT threat landscape. In doing so, our work aspires to bridge a significant gap in the current 

literature, offering a scalable and adaptive solution that marries the strengths of deep learning with the 

agility of heuristic optimization. 

3. LITERATURE REVIEW

3.1 Cybersecurity Threat Landscape in Cloud Computing 

In the contemporary era of digital transformation, cloud computing stands at the vanguard, offering 

businesses and individuals alike unparalleled advantages in scalability, flexibility and cost-efficiency. 

However, with this paradigm shift to decentralized and virtualized computing resources, there 

emerges a sophisticated and continually evolving cybersecurity-threat landscape. As organizations 

migrate their critical data and applications to the cloud, they inadvertently expose themselves to a 

myriad of vulnerabilities and attack vectors. One of the most pronounced threats in cloud 

environments is data breaches, where malevolent actors seek unauthorized access to sensitive data, 

potentially leading to catastrophic financial and reputational ramifications [8]. Misconfigurations, 

often resulting from the complexity of cloud setups combined with a lack of expertise, have frequently 

been the Achilles’ heel, inadvertently leaving data stores unprotected and accessible [1]. Similarly, 

inadequate access controls can allow both internal and external threat actors to escalate privileges and 

misuse resources [9]. The shared responsibility model of cloud security, where both the cloud service 

provider and the client have delineated security duties, often introduces ambiguities that malicious 

entities can exploit. Further exacerbating the threat landscape is the increasing prevalence of 

Distributed Denial of Service (DDoS) attacks targeting cloud infrastructures [10], aiming to disrupt 

services and potentially camouflage other malicious activities. Additionally, we cannot overlook 

insecure Application Programming Interfaces (APIs), which, if not meticulously designed and 

secured, can become gateways for cyberattacks. The advent of cloud-native technologies, such as 

containerization and serverless computing, while promising, introduces their own set of security 

challenges that are still in the early stages of understanding. Amid this backdrop, it’s palpable that the 

cloud, while being transformative, has ushered in a complex cybersecurity milieu. Navigating this 
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landscape requires a thorough comprehension of the threats, an anticipation of emerging risks and a 

proactive, multi-layered defense strategy. 

3.2 Intrusion-detection Techniques for Cloud Computing 

Cloud computing, often seen as the heartbeat of modern tech trends, has reshaped the way in which 

companies work, offering them huge perks, like the ability to scale up or down easily, more flexibility 

and a cost-effective approach. However, behind this revolutionary framework comes a complicated 

network of cybersecurity challenges. The need to protect cloud infrastructures has prompted the 

development and adoption of Intrusion Detection Systems (IDSs) particularly designed for the cloud. 

Intrusion-detection techniques are roughly classified into two categories: signature-based and 

anomaly-based approaches. Signature-based approaches, also known as misuse-detection approaches, 

rely on pre-existing databases of known attack patterns or ’signatures’ [11]. While being extremely 

effective at identifying known threats, its intrinsic drawback is their inability to detect novel or zero-

day assaults. This is when anomaly-based approaches come into play.  

They intend to discover deviations or abnormalities suggestive of possible intrusions by creating a 

baseline of ’normal’ activity inside the cloud environment [12]. This strategy, however, can 

occasionally result in false positives, misclassifying innocuous actions as malicious. In the context of 

cloud computing, a fresh paradigm called ’hybrid detection’ has arisen, which synergizes both 

signature and anomaly methodologies to leverage on their collective strengths while reducing 

individual flaws [13]. Machine learning and artificial intelligence are being used to improve cloud-

specific intrusion-detection systems. Deep-learning techniques, for example, are effective at filtering 

through enormous datasets, which are common in cloud systems, to find hidden attack patterns [14]. 

Furthermore, the multi-tenancy of the cloud has accelerated the development of Virtual Machine 

(VM) introspection approaches, in which the IDS observes VMs from a privileged position, ensuring 

greater visibility without jeopardizing tenant privacy [15]-[16]. As cloud architectures grow to include 

edge computing, container orchestration and serverless paradigms, so must IDS solutions, reflecting 

the duality of innovation and security in a society increasingly reliant on cloud services. 

4. LSTM FOR TIME-SERIES DATA

In the evolving landscape of cybersecurity, the need for sophisticated tools to detect anomalies and 

malicious activities has never been more pressing. Given the temporal nature of network traffic, time-

series data plays a pivotal role in intrusion-detection systems (IDSs). Traditional methods often 

struggle to capture long-term dependencies in time-series data, leading to inefficient or inaccurate 

detection of cyber threats. Long Short-Term Memory (LSTM) networks, a specialized type of 

recurrent neural network (RNN), have emerged as a game-changer in this domain. Unlike standard 

feed-forward neural networks, LSTMs are designed to recognize patterns over time intervals, making 

them particularly adept at analyzing sequences [24]-[25]. Their unique architecture, encompassing 

elements like the cell state, forget gate, input gate and output gate, allows them to remember patterns 

over long durations and thereby detect anomalies or intrusions that occur sporadically or manifest 

over extended periods (Figure 1).  

Figure 1. Architecture of a typical LSTM. 

For instance, a subtle, low-frequency Distributed Denial of Service (DDoS) attack might evade 

traditional IDSs, but could be flagged by an LSTM that has learned the typical pattern of incoming 
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network traffic over time. Furthermore, LSTMs can be trained to differentiate between normal 

network behavior and anomalies by analyzing the historical network data, which encapsulates both 

benign and malicious traffic patterns. This predictive capability, rooted in the ability to understand 

sequential dependencies, positions LSTMs at the forefront of IDS solutions. Several empirical studies 

have validated the superior performance of LSTMs in intrusion detection, particularly in scenarios 

with evolving and previously unseen cyber threats [26]. By leveraging the sequential processing power 

of LSTMs, cybersecurity experts can develop more resilient and adaptive intrusion-detection systems, 

capable of safeguarding digital infrastructures in an era marked by ever-evolving cyber threats. 

5. SNAKE ALGORITHM FOR OPTIMIZATION

The snake metaheuristic algorithm (SO) is a novel nature-inspired optimization technique that mimics 

the mating behavior of snakes [27]. The algorithm is based on the assumption that snakes compete for 

the best partner when the food supply is sufficient and the temperature is low [6]. The algorithm 

consists of three main phases: initialization, reproduction and selection. In the initialization phase, a 

population of snakes is randomly generated, where each snake represents a potential solution to the 

optimization problem. Each snake has two attributes: gender and fitness. The gender is randomly 

assigned as male or female and the fitness is calculated by evaluating the objective function of the 

problem. In the reproduction phase, each snake tries to find a mate from the opposite gender based on 

a similarity measure.  

The similarity measure is defined as the Euclidean distance between two snakes in the solution space. 

The smaller the distance, the higher the similarity. The algorithm uses a roulette wheel selection 

method to choose a mate for each snake, where the probability of being selected is proportional to the 

similarity. Once a pair of snakes is formed, they exchange some of their genes to produce two 

offspring. The gene exchange is performed by using a crossover operator, which randomly swaps 

some elements between two parent snakes. The offspring inherit the gender of their parents and their 

fitness is evaluated by the objective function. In the selection phase, the algorithm compares the 

fitness of each offspring with its parents and keeps the best one. The algorithm repeats the 

reproduction and selection phases until a termination criterion is met, such as reaching a maximum 

number of iterations or achieving a desired level of accuracy.  

In our discussion about the use of the roulette-wheel selection method in a genetic-algorithm context, 

the specific similarity score chosen isn't mentioned. Roulette-wheel selection generally favors 

individuals with higher fitness levels rather than a direct similarity score. It's designed to give every 

individual a chance to be selected, with a higher probability assigned to those demonstrating superior 

performance or fitness. The concept of similarity, if used, would require a different metric or 

approach, which isn't detailed in the provided information. 

The mathematical foundation of SO can be expressed as follows: 

1. Let P = {s1,s2,...,sn} be the population of snakes, where n is the population size and si = (xi,gi,fi) is
the i-th snake with xi being its position vector, gi being its gender and fi being its fitness value.

2. Let  𝑑(𝑠𝑖, 𝑠𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑑
𝑘=1 be the similarity measure between two snakes si and sj, 

where d is the dimension of the problem.

3. Let 𝑝(𝑠𝑖, 𝑠𝑗) =
𝑑(𝑠𝑖,𝑠𝑗)

∑ 𝑑(𝑠𝑖,𝑠𝑘)𝑛
𝑘

be the probability of snake si choosing snake sj as its mate, where 

∑ 𝑝(𝑠𝑖, 𝑠𝑘) = 1𝑛
𝑘=1 . 

4. Let c(si,sj) = (yi,yj) be the crossover operator that produces two offspring yi and yj from two

parent snakes si and sj, where yi = (zi,gi,hi) and yj = (wj,gj,kj) are defined as follows:

(a) For each element zik of zi, randomly choose an element xik from xi or an element xjk from xj 

with equal probability. 

(b) For each element wjk of wj, randomly choose an element xik from xi or an element xjk from xj 

with equal probability. 

(c) Set gi = gj = gk = gl = gm, where gm is the gender of either parent snake. 

(d) Set hi = f(zi) and kj = f(wj), where f is the objective function of the problem. 

5. Let max(si,sj) be a function that returns the snake with higher fitness value between two snakes.
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The SO algorithm works by exploiting the diversity and similarity of the population to explore the 

search space and converge to the optimal solution. The algorithm maintains a balance between 

exploration and exploitation by using a roulette-wheel selection method and a crossover operator. The 

roulette-wheel selection method ensures that each snake has a chance to mate with any other snake, 

but prefers those with higher similarity. This way, the algorithm can avoid premature convergence and 

maintain population diversity. The crossover operator ensures that each offspring inherits some genes 

from both parents, but also introduces some randomness. This way, the algorithm can generate new 

solutions that are similar, but not identical, to the parents and thus exploit the promising regions of the 

search space. The algorithm also uses a simple selection strategy that keeps the best snake among each 

pair of parents and offspring. This way, the algorithm can improve the quality of the population and 

converge to the optimal solution. 

Our paper presents an innovative approach utilizing the SO algorithm, which is a novel method in the 

realm of optimization algorithms. However, we acknowledge the feedback regarding the necessity for 

a more detailed mathematical derivation of the Snake algorithm, especially how vectors are iteratively 

updated in the search space. 

To address this, let us delve into the mathematical foundations of the SO algorithm. The core of the 

SO algorithm lies in the iterative update of the position vectors of the snakes within the search space. 

Each snake, represented by its position vector, moves through the search space in search of optimal 

solutions. The update mechanism is driven by the crossover operation and the fitness evaluation, 

guiding the snakes towards regions of higher fitness. 

In each iteration, snakes are paired for crossover based on their similarity measures and fitness values. 

The crossover operation generates new offspring that combine characteristics from both parents, 

introducing variability and exploration in the search space. Post-crossover, the fitness of each new 

snake is evaluated, which guides the subsequent movement of these snakes. The iterative process 

involves recalculating the position vectors based on the fitness landscape, allowing the snakes to 

'slither' towards optimal solutions efficiently. The updated position vectors at each step are a result of 

this crossover and fitness-evaluation mechanism, ensuring a thorough exploration of the search space 

while gradually honing in on the regions of higher fitness. 

Regarding the concerns about over-fitting, we recognize the importance of this issue in the context of 

optimization algorithms. In our initial approach, we incorporated standard methods to prevent over-

fitting, such as validating our model on separate datasets and employing regularization techniques. 

However, based on the feedback, we understand the need to more explicitly integrate and detail these 

over-fitting prevention techniques within the main theme of our research. 

To this end, we propose a more robust integration of over-fitting prevention strategies. This includes a 

detailed examination of the algorithm's behavior on varied datasets to assess its propensity for over-

fitting and employing advanced techniques, such as cross-validation and adaptive regularization. 

Moreover, we aim to provide experimental evidence demonstrating the effectiveness of these 

strategies in enhancing the generalization capabilities of our model. This will be complemented by 

theoretical discussions on how the inherent characteristics of the SO algorithm, such as maintaining 

population diversity and balancing exploration with exploitation, naturally contribute to mitigating the 

risk of over-fitting. 

Lastly, to address the concerns regarding the rigor of model inference, our revised approach will 

include comprehensive mathematical derivations supporting our model’s inference mechanism. This 

will encompass a thorough explanation of the algorithm’s convergence behavior, the statistical 

properties of the optimization process and the theoretical underpinnings that ensure the reliability and 

validity of the model’s inferences. By incorporating these elements, our paper aims to provide a more 

persuasive and mathematically rigorous portrayal of the Snake Optimization (SO) algorithm, 

solidifying its contribution to the field of optimization research. 

6. DATASET AND PRE-PROCESSING

6.1 Description of the TON-IOT Dataset 

The "TON-IOT Dataset" is a meticulously curated dataset tailored explicitly for the domain of cloud-

centric operations, paving the way for rigorous and comprehensive evaluations of cloud-based 
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intrusion-detection systems [28]. Serving as a benchmark, this dataset has been designed to 

encapsulate the multifaceted nature of cloud environments, drawing attention to the intricate and often 

convoluted threat landscape that such environments are exposed to. What sets the TON-IOT dataset 

apart from others in the same arena is its evaluation and subsequent validation using two reputable 

real-time intrusion-detection datasets: NSL-KDD and UNSW-NB15. Both of these benchmark 

datasets are held in high esteem within the cybersecurity community. The NSL-KDD dataset is an 

improved version of the earlier KDD’99 dataset, rectifying inherent redundancies and imperfections, 

offering a balanced perspective on both old and new-age attacks and anomalies. On the other hand, the 

UNSW-NB15 dataset, hailing from the University of New South Wales, brings to the table a diverse 

set of features, encompassing a broad spectrum of attacks, making it highly pertinent in contemporary 

intrusion-detection evaluations. By leveraging these two datasets for its validation, the TON-IOT 

dataset asserts its robustness, relevance and readiness to tackle real-world challenges in cloud security. 

The confluence of these datasets provides researchers and professionals with a nuanced understanding, 

bridging theoretical constructs with pragmatic scenarios, fostering advancements in the ever-evolving 

field of cloud cybersecurity. 

Our exploration of the TON-IoT datasets, which are widely utilized in IoT and network-security 

research, reveals that they are often sourced from specialized cybersecurity-research repositories and 

are publicly available. In academic and research settings, using such datasets typically doesn't 

necessitate individual consent, as they are anonymized and specifically prepared for research use. 

Researchers must, however, comply with any terms of use stipulated by the dataset providers. In 

practice, a common approach for dataset division is an 80% split for training and 20% for testing, 

although this ratio can vary based on the dataset's size and the particular goals of the study. 

6.2 Data Pre-processing and Cleaning 

In the data pre-processing and cleaning phase of our analysis, we undertook several essential steps to 

ensure that the dataset is optimized for the subsequent stages. Initially, we addressed the categorical 

attributes in the dataset. Recognizing that machine-learning algorithms typically require numerical 

input, all features with ’object’ data type (indicative of categorical data) were transformed into a 

numerical format. This conversion was achieved using label encoding, a process that assigns a unique 

integer to each category in a categorical column. 

Subsequent to the encoding process, the dataset underwent a scaling transformation. Recognizing the 

potential disparity in the range of values across different features, we employed the MinMaxScaler to 

standardize all feature values to a common scale, ranging between 0 and 1. This scaling not only aids 

in speeding up the convergence of machine-learning algorithms, but also ensures that no particular 

feature unduly influences the model due to its original scale. 

Post-scaling, a crucial data-integrity check, was conducted to ascertain the presence of any missing 

values (NaNs) in the dataset. An aggregated count of all NaNs was generated to inform any further 

cleaning processes. Lastly, the dataset was partitioned into training and testing sub-sets. This split 

ensures that we have separate data to train our model and then validate its performance. A ratio of 

80:20 was adhered to for the training to testing data split and a random seed was set for the 

reproducibility of results. 

7. LSTM-BASED INTRUSION DETECTION MODEL FOR CLOUD COMPUTING

In the domain of cloud computing, ensuring security is paramount. A potent method to enhance the 

security paradigm is to implement an intrusion-detection system (IDS). With the increasing 

complexity of data, traditional methods might not always prove effective. Therefore, we have 

integrated the power of Long Short-Term Memory (LSTM) networks, a specific form of Recurrent 

Neural Networks (RNNs), to build our IDS (Figure 2). 

7.1 LSTM Architecture and Working Principle 

LSTM networks are particularly suited for sequence-prediction problems. Unlike standard 

feedforward neural networks, LSTM has feedback connections, allowing it to process not just single 

data points, but also entire sequences of data, making it ideal for time-series data.  
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Figure 2.  Proposed approach. 

For our model, we employed a bidirectional LSTM (Bi-LSTM) architecture. The use of bi-

directionality allows the network to have insights from both past (backward) and future (forward) 

sequences simultaneously. This characteristic is especially vital in IDSs, where a sequence of events 

might indicate a potential security threat. 

In the model’s initial layer, we have a Bi-LSTM layer, taking into account the input shape of our 

training dataset. Following this, dropout layers are introduced to prevent over-fitting by randomly 

setting a fraction of the input units to 0 at each update during training time. We’ve incorporated 

multiple LSTM layers of decreasing units, ensuring a hierarchical feature-learning mechanism, where 

higher layers might capture more abstract and complex representations. 

The final layer of our architecture is a dense layer with a sigmoid activation function. The choice of 

sigmoid is intentional, ensuring that our output is binary, indicating whether a sequence is indicative 

of an intrusion or not. The Adam optimizer was chosen for the compilation of our model. Adam is 

computationally efficient and has little memory requirement, making it suitable for our purpose. To 

further refine our model during training, early stopping was integrated. Early stopping monitors a user-

specified metric, in our case, the validation loss, for an increase or no change for a certain number of 

epochs, ensuring that we don’t overtrain our model. 

7.2 Model Design and Hyper-parameter Selection 

Our IDS model’s architecture is pivotal in determining its efficacy. Given the intricate nature of 

intrusion patterns, the structure that we chose was intricate. Rooted in the capability of LSTMs to 

recognize and remember over long sequences, this model is tailor-made to identify even the subtlest 

indications of potential intrusions. 

Hyper-parameter selection, the process of determining the optimal parameters for the model, plays a 

significant role in enhancing its performance. In the vast search space, determining the right 

combination is akin to finding a needle in a haystack. Our approach here was systematic, yet flexible. 

Instead of a traditional exhaustive search, which might be computationally intensive and time-

consuming, we adopted a dynamic methodology. Commencing with an initial random selection, the 

process then evolves either through a focused exploration around the best-found parameters or a fresh 

random exploration, depending on the outcomes of the previous iterations. This method ensures a 

balance between deep exploration of promising regions and broad coverage of the entire space. 

Our analysis doesn't reveal an adaptive fitness rate in the described methodology, as hyper-parameter 

optimization often employs a standard approach using fixed metrics, such as accuracy or loss. This is 

common in techniques, like genetic algorithms or differential evolution, where model configurations 

are evaluated based on their performance (fitness). While adaptations to the fitness calculation are 

conceivable, they necessitate further context or specifics that are absent in our current framework. 

7.3 Training Methodology and Optimization 

Training a model isn’t just about feeding data; it’s an art of ensuring that the model learns the essence 

of the data. Our approach was methodical. With the data partitioned into training and validation sub-

sets, the model’s learning was consistently checked against new, unseen data. This constant feedback 

Snake Optimization Algorithm 

Modeling 
LSTM 

Dataset 

Data Preprocessing Evaluation 
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loop ensures the model’s robustness and adaptability. Using the defined batch sizes, training was 

iterative over several epochs. Each epoch reflects one forward and backward pass of all the training 

examples. The Adam optimizer was harnessed, given its prowess in handling large-scale data and its 

adaptive nature, adjusting learning rates on-the-fly. Furthermore, the inclusion of the early-stopping 

mechanism ensures optimization. It curtails the training process once the model ceases to learn further 

or starts overfitting, safeguarding model generalizability and conserving computational resources. 

7.4 Over-fitting Mitigation Techniques 

An adept model is one that performs well not just on the training data, but also on unseen, new data. 

Over-fitting is the bane in this context, where a model might merely memorize training data and falter 

in real-world scenarios. To counteract this, we’ve incorporated several strategies. 

• Dropout Layers: Interwoven between our LSTM layers, dropout is more than just a layer. It’s a

concept. By randomly setting a fraction of input units to zero during training, dropout ensures

that the model doesn’t become overly reliant on any specific neuron, enhancing its

generalization capabilities.

• Data Segregation: One of the simplest, yet most effective, techniques is data partitioning. By

reserving a part of the data for validation, we ensure our model’s learning isn’t myopic. This

consistent reality check during the training phase ensures the model is on the right track.

• Early Stopping: Integrating this was both strategic and tactical. By monitoring the validation

loss and halting the training when it starts increasing or remains static for a set number of

epochs, we ensure that the model remains in its optimal state and doesn’t over-learn or

memorize noise.

8. SNAKE ALGORITHM OPTIMIZATION

The Snake algorithm is a heuristic search method inspired by the serpentine movement patterns of 

snakes. These reptiles navigate their environment using unique motion sequences to efficiently and 

effectively find prey. Analogously, in the optimization landscape, the algorithm meanders through the 

solution space, seeking out the ’prey’ or the optimal solution. It does so by exploiting promising 

regions and exploring the broader solution terrain, ensuring a balance between local and global search. 

In the context of our study, Snake algorithm optimization was used to refine and optimize LSTM 

hyper-parameters for intrusion detection. 

8.1 Encoding and Representation of LSTM Hyper-parameters 

In the context of LSTM-based neural networks, choosing the right hyper-parameters is vital to achieve 

optimal performance. The Snake algorithm requires a suitable representation of these hyper-

parameters to navigate the search space effectively. Hyper-parameters, such as the number of LSTM 

units, dropout rates, learning rates and batch sizes, are encoded as dimensions in the search space. The 

position of the snake, at any given time, corresponds to a specific combination of these hyper-

parameters. As the snake moves and explores the space, it essentially samples different hyper-

parameter configurations, aiming to identify the one that yields the best performance for the LSTM-

based model. 

8.2 Fitness Function Design for Intrusion Detection 

The heart of any optimization algorithm lies in its ability to evaluate and rank solutions and for the 

Snake algorithm, this is done through the fitness function. Given the goal of intrusion detection, the 

fitness function is tailored to evaluate the effectiveness of an LSTM model with a specific hyper-

parameter configuration in detecting intrusions. This function considers multiple factors, such as 

accuracy, false positive rate and false negative rate, to assign a fitness score. A higher fitness score 

indicates a more favorable hyper-parameter combination, guiding the snake towards areas of the 

search space that potentially hold optimal or near-optimal solutions. 

8.3 Snake Movements and Strategy for Hyper-parameter Search 

The movements of the snake within the search space are paramount to the success of the Snake 

algorithm. Just as a real snake adjusts its movements based on the prey’s location, our virtual snake 
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adjusts its path based on the fitness scores. It employs both greedy exploitation and random 

exploration. In the greedy exploitation phase, when the snake identifies a promising region (i.e., a set 

of hyper-parameters that give a good fitness score), it refines its search around that area, making small 

adjustments to zero in the optimal solution. However, to ensure that the snake doesn’t get trapped in 

local optima, random exploration is integrated. In this phase, the snake might venture out into 

completely new areas of the search space, seeking other potentially promising regions. This 

combination of exploration and exploitation ensures a comprehensive search. 

8.4 Initialization and Termination Conditions for Snake Algorithm 

Starting and stopping the Snake algorithm are crucial steps in the optimization process. The 

initialization often involves setting the snake at a random position within the search space, thereby 

determining the initial hyper-parameter configuration for the LSTM model. From this starting point, 

the snake begins its journey, seeking better solutions. Termination conditions, on the other hand, 

dictate when the algorithm should halt. These conditions could be based on a set number of iterations, 

a threshold fitness score or when the fitness improvements become negligible over several 

movements. Once the algorithm terminates, the best-found hyper-parameters are presented as the 

optimal solution for the given problem. 

9. EXPERIMENTAL SETUP

9.1 Description of Hardware and Software Environment 

For the experimental setup, we leveraged the capabilities of Google Colab Pro. Google Colab Pro is a 

cloud-based platform that offers a collaborative environment to run Python code for data analysis and 

machine-learning tasks. The key advantage of using Colab Pro is its access to high-performance 

graphics-processing units (GPUs) and tensor-processing units (TPUs), which accelerates the training 

process of deep learning models. Furthermore, the platform seamlessly integrates with Google Drive, 

facilitating easier data storage and sharing. The software stack comprises of Python programming 

language and Keras, a high-level neural networks API written in Python, running on top of 

TensorFlow. Keras offers a plethora of modules, like LSTM, Bidirectional, Dropout and Dense, which 

were instrumental in constructing and training our LSTM-based intrusion detection system. 

9.2 Parameter Grid and Search Space for Snake Algorithm 

Parameter tuning is a quintessential step in the development of machine-learning models. We 

employed the Snake algorithm for hyper-parameter optimization, using a pre-defined search space. 

This space was constructed considering four primary hyper-parameters: LSTM units, dropout rates, 

learning rates and batch sizes. Within this space, possible LSTM units were [32, 64 and 128], dropout 

rates varied among [0.1, 0.2 and 0.3], learning rates were chosen from [0.001, 0.005] and batch sizes 

were either 32 or 64. The algorithm initiated with a random selection of hyper-parameters from this 

search space. As the Snake algorithm progressed, it explored and exploited this space to ascertain the 

combination of hyper-parameters that optimized the model’s performance, considering accuracy as 

the primary metric. 

9.3 Evaluation Metrics for Model Performance 

1- Confusion Matrix 
The confusion matrix is a table used to describe the performance of a classification model on a set of 

data for which the true values are known. The standard terms used are: 

True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). The matrix 

looks like Table 1: 

Table 1. Confusion matrix. 

Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 
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2- Accuracy 

This is the ratio of correctly predicted instances to the total instances. 

Accuracy =
TP + TN

TP + TN + FP + FN

3- Precision 

Precision is the ratio of correctly predicted positive observations to the total predicted positives. 

Precision =
TP

TP + FP
4- Recall 

Recall is the ratio of correctly predicted positive observations to all the observations in the actual 

class. 

Recall =
TP

TP + FN

5- F1-score 

The F1-score is the weighted average of Precision and Recall. 

F1 − Score = 2 ×
Precision × Recall

Precision + Recall

6- Specificity 

Specificity is the ratio of correctly predicted negative observations to all the observations in the actual 

negative class. 

Specificity =
TN

TN + FP

10. IMPLEMENTATION DETAILS

10.1 Integration of LSTM and Snake Algorithm 

In the confluence of LSTM and the Snake algorithm, the LSTM serves as the base model, while the 

Snake algorithm operates as an optimizer for hyper-parameters. LSTMs, with their capability to 

handle sequential data, are integrated with the Snake algorithm by defining the LSTM hyper-

parameters as positions within the Snake algorithm’s search space. 

The Snake algorithm’s intrinsic working mechanism is ideal for navigating through high-dimensional 

spaces. The ’snake’ in this context represents a set of hyper-parameters. The algorithm starts with an 

initial random configuration (akin to the starting position of the snake). As the algorithm progresses, it 

’consumes’ better hyper-parameter sets (akin to the snake-eating food), which causes it to grow. The 

growth signifies an improvement in the model’s performance. If a specific hyper-parameter set doesn’t 

improve the performance, the snake will change direction, exploring a different region of the hyper-

parameter space. The end goal is to find the hyper-parameter configuration that maximizes the 

model’s performance on the validation dataset, optimizing the LSTM for intrusion detection. 

Our choice to utilize an LSTM (Long Short-Term Memory) network in the provided code underscores 

its suitability for handling sequential data, particularly in the realm of time-series analysis, such as 

intrusion detection in network security. The LSTM, a type of recurrent neural network, is renowned 

for its capability to capture long-term dependencies and temporal dynamics. These attributes are vital 

for identifying patterns that signal intrusions or anomalies, making it a preferred choice over other 

algorithms for tasks that demand a nuanced understanding of time-series data. 

10.2 Model Training and Hyper-parameter Tuning 

Once the hyper-parameter search space was defined, the LSTM model’s training began. During each 

iteration of the Snake algorithm, the LSTM was trained with the current set of hyper-parameters. 

Model performance was then assessed on a validation set. If performance improved, the Snake 

algorithm moved in a direction to further refine those hyper-parameters. Otherwise, it would explore a 

different region of the search space. The process ensured that the LSTM was not only trained to detect 

intrusions but also tuned to its optimal hyper-parameters, maximizing its performance. The 
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algorithm’s iterative nature, combined with LSTM’s power in sequence data processing, ensured a 

holistic approach to model training and tuning. 

10.3 Convergence Analysis of Snake Algorithm Optimization 

To ascertain the efficacy of the Snake algorithm in hyper-parameter optimization, convergence 

analysis was performed. Convergence, in this context, refers to the algorithm’s ability to hone in on 

the optimal hyper-parameter configuration over iterations. A plot of model performance (accuracy on 

the validation set) against the number of iterations gives insight into this. Ideally, the graph should 

show an initial rapid increase in performance, reaching a plateau as the algorithm converges to the 

optimal hyper-parameters. Any fluctuations post-convergence indicate the algorithm’s exploration 

nature, but the general trend should indicate stability, signifying that the Snake algorithm effectively 

optimized the LSTM’s hyper-parameters. 

11. PERFORMANCE EVALUATION

11.1 Results of LSTM with Snake Algorithm Optimization 

The hyper-parameter optimization for the LSTM model employing the Snake algorithm exhibited 

substantial variations across different runs. The training spanned 5 epochs for each iteration, with each 

run presenting a unique pattern of convergence in terms of loss and accuracy on both training and 

validation datasets. 

In the first run with 5764 steps, the model started with an accuracy of 91.90% and val_accuracy of 

96.17%. By the 5th epoch, there was a remarkable improvement with the model reaching an accuracy 

of 99.05% and val_accuracy of 99.36%. In contrast, a run with 4611 steps commenced at an accuracy 

of 92.70% and val_accuracy of 96.70%, ascending to 98.82% and 99.47% respectively, by the 5th 

epoch. The performance consistency was evident in another iteration with 3843 steps, albeit starting 

from a slightly lower accuracy of 90.77%, but culminating at 98.31% by the last epoch, with 

val_accuracy improving from 90.47% to 98.84%. 

Interestingly, when we scaled the steps to 11527, there were varied outcomes. In one scenario, the 

model commenced with 90.70% accuracy, culminating at 97.87% by the 5th epoch and a val_accuracy 

that progressed from 94.14% to 98.56%. Yet, another run with the same number of steps displayed a 

more oscillatory behavior, with the accuracy improving from 89.55% to 97.77% by the 5th epoch, but 

with the val_accuracy fluctuating from 92.47% to a peak of 98.71%. Such variance suggests that while 

the model is learning effectively on the training dataset, it could be susceptible to overfitting, as 

evidenced by inconsistent validation accuracy. 

Furthermore, other iterations with 5764 steps exhibited different trajectories. One started with an 

accuracy of 94.64%, peaking at 98.56% by the end, while the val_accuracy improved from 97.29% to 

97.59%. Yet, another showed initial accuracy at 89.26% which improved to 96.17% by the 5th epoch, 

with the val_accuracy improving from 92.76% to 97.28%. However, it’s essential to emphasize that 

while there’s consistency in model-performance improvement across epochs, there’s also an inherent 

variability across different runs, especially in the validation accuracy. 

11.2 Results of LSTM with Genetic Algorithm 

The optimization of hyper-parameters for the LSTM model using the Genetic Algorithm (GA) 

demonstrated noteworthy variations in performance across different iterations. The optimization was 

assessed based on precision, recall and F1-score for two classes, reflecting the model's ability to 

classify correctly within a dataset comprising 92,209 instances. 

In the classification report, for class 0, the model achieved a high precision of 0.97, indicating that 

97% of instances predicted as class 0 were correct. The recall for this class was slightly lower at 0.95, 

suggesting that the model successfully identified 95% of all actual class-0 instances. The F1-score, 

which balances precision and recall, was impressive at 0.96. This score indicates a robust performance 

in class-0 identification, involving a total of 59,920 instances. 

For class 1, the precision was slightly lower at 0.91, indicating that 91% of predictions made for class 

1 were accurate. The recall, however, was higher at 0.94, showing that the model was able to 
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recognize 94% of all actual class-1 instances. The corresponding F1-score was 0.93, demonstrating a 

strong performance in identifying class-1, which comprised 32,289 instances. 

The overall accuracy of the model stood at 0.95, indicating that it correctly classified 95% of the total 

instances. The macro average, which gives equal weight to each class, was 0.94 for both precision and 

recall and the F1-score was also 0.94, signifying a balanced performance across both classes. The 

weighted average, which considers the number of instances in each class, mirrored these results with 

0.95 for precision, recall and F1-score. 

These results illustrate the effective application of the Genetic Algorithm (GA) in tuning the LSTM 

model, leading to high levels of accuracy, precision, recall and f1-score. It is evident that the model, 

optimized by GA, shows proficient and balanced classification capabilities across different classes in 

the dataset. However, as with any optimization process, the variability of results across different runs 

and the potential for over-fitting or under-fitting in specific instances should be acknowledged and 

carefully monitored. 

In our methodology employing genetic algorithms and differential evolution, the number of 

generations (for genetic algorithms) and maximum iterations (for differential evolution) are both 

configured to a value of 5, defining the upper limit of the evolutionary process. This parameter is a 

critical hyper-parameter, adjustable based on the available computational resources and the observed 

convergence behavior during experiments. This flexibility allows for optimization in line with specific 

performance and efficiency objectives. 

11.3 Comparative Analysis of LSTM Optimization: Snake Algorithm vs. Genetic 

Algorithm 

When comparing the optimization outcomes of the LSTM model using the Snake algorithm and the 

genetic algorithm, several key differences and similarities emerge.  

Performance Metrics: The Snake Algorithm optimization displayed remarkable improvements in 

accuracy over training epochs. It started with high initial accuracies (ranging around 90-92%) and 

achieved near or above 99% in training accuracy and validation accuracy in several runs. Conversely, 

the genetic algorithm optimization, assessed through precision, recall and F1-score, showcased a high 

degree of precision (0.97 for class 0 and 0.91 for class 1) and recall (0.95 for class 0 and 0.94 for class 

1), with an overall accuracy of 95%. While the GA didn't reach the heights of accuracy shown by the 

Snake algorithm, its balanced performance across precision and recall suggests a robust classification 

ability. 

Stability and Consistency: The Snake algorithm showed variability in convergence patterns across 

different runs, with some instances indicating potential overfitting, as seen in fluctuating validation 

accuracies. The genetic algorithm, on the other hand, demonstrated a more balanced and stable 

performance across precision, recall and F1-scores, suggesting a consistent classification ability across 

both classes. 

Optimization Process: The inherent mechanics of these algorithms might contribute to these 

differences. The Snake algorithm, with its unique pattern of convergence, appears to be more 

aggressive in fitting to the training data, potentially leading to higher accuracies, but with the risk of 

over-fitting. The genetic algorithm, grounded in evolutionary principles, likely offers a more 

exploratory search for optimal hyper-parameters, resulting in a more generalized model that balances 

precision and recall. 

Applicability to Diverse Datasets: The Snake algorithm’s high accuracy might make it more suitable 

for datasets where precision is paramount and over-fitting is less of concern. In contrast, the genetic 

algorithm, with its balanced precision and recall, might be more applicable to datasets where 

misclassifications have significant consequences and a balanced approach is essential. 

In conclusion, both algorithms have their strengths and are suited to different scenarios depending on 

the requirements of accuracy, precision, recall and the nature of the dataset. The choice between them 

would thus depend on the specific goals and constraints of the machine-learning task at hand. 



372

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 09, No. 04, December 2023. 

11.4 Model Performance on Intrusion Detection 

Our proposed model’s performance in the realm of intrusion detection has been exemplary, as 

evidenced by the results across multiple training epochs. Beginning with the first epoch presented in 

Table 2, the model exhibited a commendable starting point, achieving an accuracy of 91.08% on the 

training data and a validation accuracy of 95.80%. This notable start indicated that our model’s 

architecture is apt for this particular classification task. As the model continued to train over 

subsequent epochs, a consistent improvement in performance was evident. By the second epoch, the 

training accuracy soared to 96.71% and the validation accuracy reached an impressive 98.38%. This 

rapid convergence is indicative of the model’s robust learning capacity. During the third epoch, 

despite a minor increase in validation loss, the validation accuracy maintained an elevated level, 

settling at 97.92%. The fourth epoch saw a slight dip in validation accuracy to 97.73%, but still 

retained a high training accuracy of 97.99%. By the conclusion of the fifth and final epoch, the model 

reached its zenith, with a training accuracy of 98.32% and a standout validation accuracy of 98.79%. 

Table 2. Training accuracy and loss. 

Epoch Step Loss Accuracy Val_loss Val_accuracy 

1/5 

 4611/4611 
95s 19ms 0.2129 0.9108 0.1004 0.9580 

2/5 

4611/4611 
88s 19ms 0.0830 0.9671 0.0426 0.9838 

3/5 

4611/4611 
85s 19ms 0.0599 0.9763 0.0502 0.9792 

4/5 

4611/4611 
86s 19ms 0.0532 0.9799 0.0718 0.9773 

5/5 

4611/4611 
87s 19ms 0.0452 0.9832 0.0349 0.9879 

Furthermore, the comprehensive classification report provides a deeper insight into the model’s 

discriminating ability between classes. With precision, recall and F1-score all approaching 99% for 

both classes, this underscores the model’s balanced performance (Table 3). Specifically, for class 0, 

precision and recall are both at 99%, resulting in an F1-score also of 99%. Meanwhile, class 1 

showcases a similar trend with precision and recall values nearing 98% and 99%, respectively, 

culminating in an F1-score of 98%. The overall accuracy of 99% for a sizable test dataset of 92,209 

entries is a testament to the model’s capability to generalize well beyond the training data. 

Table 3. Classification report. 

Precision Recall F1-score Support 

0 0.99 0.99 0.99 59920 

1 0.98 0.99 0.98 32289 

Accuracy 0.99 92209 

Macro avg. 0.99 0.99 0.99 92209 

Weighted avg. 0.99 0.99 0.99 92209 

11.5 Analysis of False Positives and False Negatives 

The confusion matrix is a critical tool in understanding the specific types of errors that our proposed 

model commits and in this context, it is especially beneficial for delving deeper into the occurrences of 

false positives and false negatives. The matrix showcases that out of the 59,920 instances of class 0, 

our model correctly classified 59,226 of them, while misclassifying 694 instances as belonging to class 

1. These 694 instances represent the false positives (Figure 3). Conversely, out of the 32,289 instances

of class 1, the model accurately identified 31,868, but misclassified 421 as belonging to class 0. These 

421 instances represent the false negatives. Such distinctions are paramount in the realm of intrusion 

detection, where both false positives (innocent behaviors flagged as malicious) and false negatives 

(malicious activities that go undetected) carry significant implications. 

Sensitivity (or True Positive Rate) of a model reflects its capability to correctly identify the positive 

instances. For our model, sensitivity for class 0 and class 1 is approximately 98.84% and 98.70%, 
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respectively. This suggests that the model is proficient in accurately detecting instances for both 

classes, with a slightly higher sensitivity for class 0. On the other hand, Specificity (or True Negative 

Rate) denotes the model’s efficiency in correctly classifying the negative instances. The specificity 

values mirror the sensitivity scores, with class 0 having a specificity of approximately 98.70% and 

class 1 having a specificity of 98.84%. 

Figure 3. Confusion matrix. 

11.6 Benchmarking against Other Intrusion-detection Methods 

By critically evaluating our LSTM-based-deep learning model with the Snake algorithm against other 

intrusion-detection methods, we ascertain the progression and potential advantages of our proposed 

approach. Referring to Table 1, it becomes evident that while the incorporation of deep-learning 

techniques in intrusion detection has garnered increasing attention, the efficacy of such methods 

varies. The model proposed in [20] utilizes a Denoising Autoencoder integrated into a Deep Neural 

Network (DNN) for intrusion detection in cloud systems and achieves a commendable 95% accuracy. 

This showcases the merits of autoencoders in reducing noise and achieving better representation of 

intrusion patterns. Similarly, the approach by [23] merges the capabilities of an Autoencoder (AE) 

with the unique data separation ability of Isolation Forest (IF) to attain an accuracy of 95.4%. The 

choice of combining autoencoders with isolation forests could be attributed to the robustness of AEs in 

learning feature representations and the ability of IFs to detect outliers, hence enhancing the detection 

capabilities. 

Interestingly, the attention mechanism combined with a bidirectional long short-term memory (Bi-

LSTM) network offers a slightly reduced accuracy of 90.73%. The use of attention mechanisms is 

designed to focus on the most pertinent features of the input data, thereby emphasizing sequences that 

are most indicative of intrusions. Bi-LSTMs further capitalize on understanding patterns from both 

past and future contexts. However, their accuracy, being slightly lower, might be attributed to 

challenges associated with model over-fitting or nuances in the dataset used. 

When we turn our attention to our methodology, it stands out with an exceptional accuracy rate of 

99% (Table 4). Our model integrates the power of LSTM deep-learning architectures, known for their 

prowess in sequential-data modeling, with the Snake algorithm. The Snake algorithm aids in 

optimizing the LSTM layers, ensuring that the model learns the most effective representation of the 

data while preventing over-fitting. Such high accuracy not only corroborates the robustness of our 

approach, but also signifies the value of combining traditional optimization algorithms with deep 

learning for intrusion detection. 

Table 4. Comparison with existing methods. 

Ref. Method Accuracy 

[20] Denoising Autoencoder integrated into DNN for cloud IDS 95% 

[23] Deep learning-based method combines Autoencoder (AE) and Isolation Forest (IF) 95.4% 

[28] Attention mechanism with bidirectional long short-term memory (Bi-LSTM) network 90.73% 

Ours LSTM-based deep learning with Snake algorithm 99% 
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12. DISCUSSION

12.1 Presentation of Experimental Results 

The meticulous presentation of experimental results forms the cornerstone of any rigorous research 

endeavor, serving as a testament to the method’s efficacy and a foundation upon which further 

research can be built. Throughout the course of this investigation, we emphasized a transparent, 

reproducible presentation of results, accounting for both quantitative and qualitative aspects. The data 

representation was tailored to provide a holistic view of the model’s capabilities, not only showcasing 

metrics like accuracy, but also considering other aspects, like sensitivity, specificity and 

computational performance. Graphical representations, histograms and confusion matrices further 

enhanced the visual comprehension of results. In essence, the structured presentation was aimed at 

ensuring that the audience can easily trace the model’s journey from inception to its final 

performance, ensuring the findings’ veracity and applicability in real-world scenarios. 

12.2 Analysis of LSTM-Snake Algorithm Performance Enhancements 

The LSTM-Snake amalgamation represents an intersection of the strength of deep-learning 

architectures with the strategic optimization of traditional algorithms. LSTMs, with their unparalleled 

ability to capture long-term dependencies in sequential data, offer a robust foundation for modeling 

intrusion patterns. However, as with many deep-learning approaches, LSTMs are susceptible to over-

fitting and can sometimes fail to converge to the most optimal solution. This is where the Snake 

algorithm comes into play. By navigating the intricate parameter space of LSTM, the Snake algorithm 

ensures that the model does not get ensnared in local optima, guiding it towards the global best. Our 

detailed analysis revealed that the LSTM-Snake combination consistently outperformed standalone 

LSTM models across various datasets, indicating the tangible benefits of this hybrid approach. It 

underscores the importance of embracing interdisciplinary solutions, harnessing the best of both 

worlds to push the boundaries of performance. 

12.3 Interpretation of Key Findings 

Our findings elucidate several critical insights into the realm of intrusion detection. First and 

foremost, the results underscore the value of deep learning, reiterating its ability to discern patterns in 

large-scale and multi-dimensional data more adeptly than traditional algorithms. However, more than 

the sheer capability of deep learning, it’s the augmentation with strategic algorithms like Snake that 

truly shines through. This combination provides a balance between the brute force processing of 

neural networks and the strategic optimization of the Snake algorithm, paving the way for heightened 

detection rates. Furthermore, the consistent performance across varied datasets signifies the model’s 

robustness, emphasizing its adaptability and potential for real-world applications. In essence, the 

findings champion the cause of algorithmic innovation in addressing the ever-evolving landscape of 

cyber threats. 

12.4 Discussion of Limitations and Challenges in Cloud Computing 

In the process of advancing our LSTM-Snake algorithm for cloud-based intrusion detection, we 

inevitably encountered and recognized a variety of limitations and challenges specific to the cloud-

computing landscape. Cloud environments, by their very nature, offer a fluid and expansive 

infrastructure. This inherent dynamism, while being an asset in terms of scalability and adaptability, 

presents unique challenges for intrusion detection. For instance, our algorithm, while being efficient, 

may face hurdles when dealing with real-time spikes in traffic or during rapid scaling operations, 

which are commonplace in cloud settings. The ephemeral nature of many cloud resources can lead to 

transient data streams that are difficult to monitor consistently. Furthermore, our model, designed on 

specific datasets, might not be universally optimal across all types of cloud deployments, given the 

vast array of services and configurations in the cloud. Multi-tenancy, another cornerstone of cloud 

computing, introduces the dilemma of ensuring that the IDS doesn’t inadvertently breach privacy 

while analyzing traffic. Moreover, the decentralized nature of cloud resources could potentially lead 

to inconsistencies in threat detection if not synchronized aptly. While our model showcases promising 

results, it also underscores the need for continuous refinement and adaptation to remain effective in 

the ever-evolving cloud landscape, marked by its vastness, heterogeneity and constant flux. 
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Our achievement of a 99% accuracy rate in intrusion detection, while being impressive, warrants a 

cautious interpretation. High accuracy doesn't necessarily translate to high effectiveness in real-world 

scenarios. It's crucial to consider factors such as the complexity of the dataset, issues like class 

imbalance and the risk of over-fitting. Furthermore, to gain a more comprehensive evaluation of our 

intrusion-detection system, we must also focus on other critical metrics like precision, recall and F1-

score, as they provide a more nuanced understanding of its performance beyond mere accuracy. 

13. CONCLUSIONS

13.1 Summary of the Research in Cloud-computing Context 

In the modern age of information, cloud computing has emerged as the pivotal backbone, supporting 

an array of services from business operations to consumer applications. The ubiquity and convenience 

offered by cloud paradigms are undeniable, but they also introduce a vast expanse vulnerable to cyber 

threats. This research embarked on an exploration to bolster the defenses of cloud architectures, 

tailoring an innovative approach that harmoniously combines the intelligence of deep learning with 

heuristic algorithms. By leveraging the capabilities of LSTM networks to understand complex 

temporal dependencies and amalgamating them with the agility of the Snake algorithm, we forged a 

novel model poised to confront the intricate and evolving challenges of cloud cybersecurity. 

13.2 Significance of LSTM-Snake Algorithm Approach for Cloud-computing 

Cybersecurity 

The LSTM-Snake algorithm, as detailed in this study, stands as a testament to the potential synergies 

of merging traditional algorithmic strategies with state-of-the-art machine-learning techniques. In the 

vast realm of cloud computing, where data flows are multifaceted and the threat landscape is 

constantly evolving, our approach offers a dynamic solution, capable of adapting and learning from 

the very data that it seeks to protect. Its significance transcends mere performance metrics; it 

exemplifies a paradigm where cybersecurity is not just reactive, but also inherently proactive. By 

enabling real-time detection and addressing threats even before they manifest into tangible attacks, the 

LSTM-Snake algorithm paves the way for a future where cloud resources, regardless of scale or 

complexity, can be safeguarded with heightened confidence. 
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 ملخص البحث:

ررررر       حاررررر  ل    ررررر  ة   ررررر   قة ً ررررر   قة س رررررب قةتسّ تقتررررره  لرررررطر قةً مررررر  كهْقررررر ف ل تخرررررهب ةخت 

سًّْرررررررررر  رررررررررر   ق ررررررررررهب قةمررررررررررة  قة سّهْقرررررررررر  قةمقتهارررررررررر   ل  ( LSTMقةق رررررررررر ه  -وت ررررررررررت ة  قة

سّهْقرررررر  قةمقتهارررررر  وتّ  ق رررررر   ررررررتم  لررررررطر قةً مرررررر  طبرررررر  ت ررررررم   قة وخًق زل رررررر  قةنس رررررر   ذ  وتت 

رررررهل قةمم قبررررر  قةرررررًق  ب  ررررر     ررررر   قةمً رررررً   و ةررررر  لرررررذ  سّ ولرررررذ قررررر س لق   ت ررررر    رررررة   لرررررذ قة

سّهْقرررررر  قةمقتهارررررر   رررررر    رررررر       جرررررر  تق رررررر     قل قة حارررررر   رررررر  تّ  قرررررر   قة ً رررررر   قة س ررررررب قةتسّ ت 

ررررررر       ومرررررررة TON-IoT   رررررررت ةق  ليمًطررررررر      ررررررر     ( قةمهت ّررررررر   تّ  قررررررر   قة ً ررررررر   قة س

سّهْقررررر   ّ  قةررررر  ق ترررررّ قةتسيررررر  ل    ة ررررر  قة قةمقتهاررررر ح ّ  اقسررررر  قةسسمرررررً ً قةم رررررت ة   مسررررر ف و رررررب

حاررررر  طسرررررة تّ  قررررر  طبررررر  ليمًطررررر  قة    ررررر   قة99 رررررب قةتسّ مرررررط ً ب  لتيررررر وزقف  رررررطة %  ررررر   ت 

سّرررررهل ق خررررره  قةستررررر  تس وةت ررررر      ررررر   قةمً رررررً   وتتسررررر و  قةمس متررررر  قةرررررًق  ب  ررررر  لرررررطر   مسررررر  قة

سّهْق  قةمقتها  ول ةسِّ قت  قةً م  قةمزقْ  قة مب  .  ةب
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