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ABSTRACT 

Due to limited resource capacity in the edge network and a high volume of tasks offloaded to edge servers, edge 

resources may be unable to provide the required capacity for serving all tasks. As a result, some tasks should be 

moved to the cloud, which may cause additional delays. This may lead to dissatisfaction among users of the 

transferred tasks. In this paper, a new agent-based approach to decision-making is presented about which tasks 

should be transferred to the cloud and which ones should be served locally. This approach tries to pair tasks 

with resources, such that a paired resource is the most preferred resource by the user or task among all 

available resources. We demonstrate that reaching a Nash Equilibrium point can satisfy the aforementioned 

condition. A game-theoretic analysis is included to demonstrate that the presented approach increases the 

average utility of the users and their level of satisfaction.  

KEYWORDS 

Edge computing, Task offloading, Nash equilibrium, Agent, User satisfaction. 

1. INTRODUCTION 

Offloading is a solution that enhances the capabilities of mobile systems by migrating computations to 

more resourceful and powerful nearby devices, such as edge nodes, fog nodes and cloudlet or base 

stations. Nearest nodes, like edge nodes, are the first choice for offloading purposes, because 

offloading to edge nodes alleviates congestion in cellular networks. Edge node resource capacity may 

not always allow for the handling of computation-intensive tasks and large data storage from mobile 

devices. Therefore, such tasks must be transferred to the cloud. However, especially in peak times, due 

to many offloaded tasks, edge resources may not be able to provide the needed capacity for all tasks. 

Therefore, inevitably, some tasks should be transferred to the cloud, which may result in additional 

delays. This may lead to dissatisfaction among users of the transferred tasks. This paper proposes a 

decentralized approach for task offloading without a central decision-maker component. The proposed 

approach incorporates user satisfaction level in decision-making about which tasks should be 

transferred to the cloud and which ones should be served on edge nodes locally. This approach tries to 

pair tasks with resources, such that a paired resource is the most preferred one by the user or task 

among all available resources. We show that reaching an NE point can satisfy the mentioned 

condition. Additionally, a game-theoretic analysis is given to demonstrate how the proposed approach 

raises the total satisfaction level of users and the acceptability of results by rational users. To the best 

of the authors’ knowledge, this is the first work in the literature that addresses task-offloading strategy 

optimization based on user satisfaction level. The satisfaction of different users depends on different 

criteria. Each user understands which decision will maximize his/her utility and satisfy him/her. The 

user ranks available resources based on his/her criteria. Improving user satisfaction, our approach can 

handle offloading processes in a decentralized manner with heterogeneous users. The rest of this paper 

is organized as follows: There is a brief review of related works in Section 2. Section 3 describes the 

task offloading problem. Section 4 models the problem as a pairing process and explains the mapping 

of the pairing process to a pairing game. The results of the conducted experiments are reported in 

Section 5. Section 6 concludes the paper. 

2. RELATED WORKS 

Task and computation offloading is a significant feature for task performance and resource use 

optimization in edge computing, which has become one of the preferred methods to increase the 
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performance of user tasks for smart devices. Computation offloading has been extensively studied in 

order to shorten the execution time of mobile devices and energy saving [1]-[2]. [3] investigated the 

problem of multi-user computation offloading in a single-channel wireless environment, where each 

user must decide whether or not to offload. [4] looked into an energy-harvesting mobile edge 

computing system. It suggests a Lyapunov-based dynamic computation offloading technique that 

jointly determines the offloading decision and the transmit power for computation offloading. [5] 

suggested offloading computational tasks to the mobile edge. The collective pool of resources for 

mobile devices is referred to by the authors as mist computing or cloudlets. They don't go into detail 

about how resource management might be carried out. Nevertheless, they place a strong emphasis on a 

hierarchical offloading of tasks from mobile nodes to mist, from mist to fog and finally from fog to 

cloud, all depending on application requirements. A Stackelberg game is used to model the interaction 

between cloud nodes and edge servers with the goal of increasing the benefits of cloud services [6]. 

Their analysis yields a unique Nash point. Two primary issues are addressed by their suggested 

strategy. First, a cloud server must decide whether to accept or deny a request to offload data to an 

edge server when it is made. The second issue is what to offer the edge node in the way of an 

incentive. [7] studied the issue of workload assignment and VM placement for mobile edge-computing 

applications. The paper develops a mathematical model to reduce the amount of hardware required by 

virtual machines (VMs) to support specified workloads in a multi-application scenario while satisfying 

the latency needs of various applications. According to the results, the users' request load, the 

hardware capacity of MEC servers and the latency requirements of applications all have a substantial 

impact on the amount of hardware used overall. MEC server utilization can be improved by utilizing 

remote VM deployment and workload aggregation. A novel approach is put out in [8] to address the 

issues of energy consumption and VM placement. The suggested approach can cut down on both 

energy usage and placement time. It proposes an OEMBA algorithm which integrates idle servers and 

reduces energy consumption. Using an improved Long Short-Term Memory model, virtual machine 

placement is then accelerated and latency is reduced based on historical data. According to the 

reported findings, the improved learning model can reduce placement latency and save energy. [9] 

suggested a method that allows for communication channel selection and virtual machine placement. It 

takes advantage of user movement prediction to manage the system's dynamic nature. According to 

anticipated user-movement, the prediction is used for dynamic VM placement and to identify the best 

communication path. The authors assert that their method reduces work offloading delays by 10% to 

66% while maintaining a constant level of energy consumption by user equipment. In [10], the 

distributed task-offloading optimization issue is examined. First, a fresh optimization scheme is 

suggested that seeks to maximize the anticipated offloading rate of multiple agents by enhancing their 

offloading limits. Then, the issue is formulated in terms of game theory, which ultimately results in the 

development of a distributed best-response (DBR) iterative optimization system. Because of the 

frequently limited resources supplied by edge servers, not all IoV users' requirements can be met at 

once. A task offloading strategy built on fuzzy neural network (FNN) and game theory was developed 

in [11] to address the aforementioned issue. Following the load balancing of each RSU, game theory is 

used to determine the best task-offloading strategy for the users. Following this, the edge server acts as 

an agent to allocate computing resources for the offloaded tasks by the Q-learning algorithm. A task-

offloading scheduling approach that combines multi-agent reinforcement learning and meta-learning 

was suggested by [12]. A first-order approximation technique is suggested to effectively train the 

policy network. Experiment results show that the MRL-based strategy has an outstanding overall 

performance and can be quickly applied in a variety of environments with good stability and 

generalization. [13] suggested a multi-agent deep reinforcement learning-based priority-driven joint 

task-offloading method where each edge server's decision-making is influenced by both its own state 

and shared global information. The work continues to create a worldwide state-sharing model that 

greatly lowers transmission overhead between peripheral servers. The performance analysis done on a 

dataset of mobile device movement trajectories shows that the suggested method can shorten job-

completion times and increase the efficiency of edge computing resources. In [14], an approach, called 

NFSP, was proposed for adopting the architecture to offload decision-making. NFSP explicitly tackles 

the non-stationarity issue with the built-in self-play mechanism and uses a mixed strategy consisting of 

deep RL and the past average strategy, which is approximated by supervised deep learning. The 

conducted simulation experiments show that the proposed method outperforms the raw Independent 

RL (IRL) approaches. IRL approaches emerge as promising solutions for scenarios in which, due to 
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privacy and security concerns, mobile devices may be unwilling to expose their local information. 

3. TASK OFFLOADING PROBLEM 

Assume that there are limited resources at the edge network that offer computing or other services to 

users. For reasons of resource limitation, all tasks cannot be provided locally at the edge and some of 

them should be transferred to the cloud. One simple approach is to consider the deadlines of the tasks 

when making a decision about transferring some of them to the cloud. However, involving users or 

their agents in decision-making is a better approach for reaching an acceptable solution for all users 

and decreasing their dissatisfaction.  

3.1 The Proposed Approach 

There are two different types of agents in the approach presented in this paper. After initiation, agents 

interact with each other in the EOM module. First, we introduce these modules and entities in detail 

and then, we present the proposed approach and related analyses. Figure 1 depicts the components of 

the edge environment in the proposed approach. "DEVICES" are user devices that offload tasks to the 

edge. The edge layer contains some nodes or resources that provide the computing needs for user 

tasks. As illustrated in this figure, there are two sets of agents. eAgents interact as the brokers of edge 

nodes, with tAgents as the brokers of user devices. In our approach, EOM is only used to facilitate 

interactions among tAgents and eAgents; it plays no key role in decision-making and can be replaced 

by a decentralized platform for communications and interactions. Details of interactions are described 

in the following sections in details. In the cloud layer, there are data centers that, when the resources 

of the edge layer are not enough to provide all offloaded tasks, some tasks will be sent to these centers 

in the cloud. 

 

 

 

 

 

 

Figure 1. Components of edge environment in the proposed approach. 

Edge Orchestrator Module (EOM): The edge orchestrator module makes decisions in the system. 

To determine how and where to handle incoming client requests, it consults the data gathered from the 

other modules.  

tAgent: A tAgent is a broker or representative of a user task that tries to find a proper resource in edge 

or cloud for running its task. EOM initiates a tAgent when a new task is received in iteration t. 

eAgent: An eAgent is a broker of EOM. According to the current number of tAgents and available 

resources in the system during iteration t, EOM generates eAgents. Each eAgent gets information 

about current tasks from all or some tAgents and gives them information about available capacity. 

Then, the pairing process of eAgents and tAgents in iteration t is initiated in the EOM. The pairing 

process is described in detail in the following section. We model the pairing process by using two 

games and show that the result of pairing is an NE point of them. Reaching an NE point means that the 

obtained result by our approach satisfies every rational agent or broker (resource broker (eAgent) or 

user broker (tAgent)). 

4. PAIRING PROCESS 

As said before, there are two sets of brokers, called task brokers (tAgents) and edge brokers (eAgents). 

By receiving an offloaded task, a new tAgent is initiated by the EOM and assigned to the task. tAgent 
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tries to maximize its user's utility. At the other side, there are eAgents which are policy-aware brokers 

or agents of edge resources. A tAgent offers its requirements (which include specific task needs) to all 

eAgents and waits to receive their proposals. When an eAgent receives offloading requests from 

tAgents, it queries the EOM for information, such as current workload and network congestion, among 

other things. Based on the information received from the EOM and the eAgent's resource management 

policy, it calculates the task-completion quality (TCQ) and announces the calculated value to the 

tAgent. Algorithm 1 shows how to calculate the TCQ for each tAgent. Notice that even when tAgent1 

has a closer deadline than that of tAgent2, an eAgent may calculate a lower TCQ for tAgent1 than for 

tAgent2. However, when paired, it chooses tAgent1 due to its closer deadline. It announces a lower 

TCQ to tAgent1 to convince tAgent1 that it is better to choose another eAgent. A tAgent prefers to 

reach agreement with an eAgent the TCQ of which has the highest value among available 

eAgents. Between two tAgents, an eAgent chooses a tAgent with a closer task deadline. It’s assumed 

that each eAgent contracts with up to one tAgent and vice versa. Since the capacity of each edge 

resource is different, the EOM may initiate multiple eAgents for each edge resource. Therefore, an 

edge resource may accept multiple tasks in iteration t. Each tAgent has an ordered list of eAgents 

based on their proposed TCQ. Similarly, each eAgent has an ordered list of tAgents based on their 

deadline. While the ordered lists of tAgents may be different, eAgents have similar ordered lists. 

These ordered lists are referred to as preferred lists.  

Calculating TCQ: We use a meta-heuristic optimization algorithm for the 0-1 Knapsack problem to 

obtain an acceptable solution and then, we use the solution to calculate TCQ values. The meta-

heuristic approach, that is used here, is simulated annealing. Note that finding an optimal solution for 

0/1 Knapsack is possible, but for a large number of objects, time complexity makes it hard to use non-

heuristic algorithms for finding optimal solutions. A task is considered as object and resource capacity 

is considered as Knapsack capacity. The details of the Simulated Annealing implementation are 

described as shown below:   

Representation: A 0/1 representation is used, where 1 indicates that the task is chosen for running on 

the resource (object is placed in the Knapsack), while a value of 0 means that the task is not chosen 

(the object is left behind). 

State Generation: State generation in our SA approach is done by randomly choosing a bit from the 

current state and flipping it to create the next state. This procedure is shown in Figure 2 for four 

objects. 

 

 

 

 

Figure 2. Simulated annealing state generation. 

Pseudocode: The pseudocode of Figure 3 illustrates the heuristic that Simulated Annealing uses to 

search the solution space for an optimal solution for 0/1 Knapsack. The best_state contains the best 

state found up to the t-th step. In line 6, the function "value" calculates the value of the input state 

based on the objects in the Knapsack. Making the transition from the current_state to new_state is 

specified by the value(next_state) and value(current_state) (see line 7). States with a greater value are 

better than those with a smaller value. Even if value(next_state) is less than value(current_state), the 

probability of the transition must be positive. This feature prevents the method from becoming stuck at 

a local minimum that is worse than the global one (see lines 13 and 14). Transition is also affected by 

a global time-varying parameter Tt known as temperature. When Tt tends to zero (see line 18), the 

probability acceptance_function must also tend to zero (see line 13). For sufficiently small values of 

Tt, the system will then increasingly favor moves that go "downhill" and avoid those that go "uphill." 

With Tt = 0, the procedure reduces to the greedy algorithm, which makes only the downhill 

transitions. The system reaches equilibrium at Tt when we have no more state changes (see line 17). 
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Termination Criteria: When the temperature hits the system's lowest allowable temperature, the 

algorithm stops, signalling that the system is frozen. In our implementation, the temperature starts at 

1000 and gradually drops to 0.0001 before freezing. To adjust the temperature, multiply the system 

temperature by = 0.9999.  

After finding an acceptable solution, the EOM maps the solution to an array and first sorts them based 

on 0/1 and then sorts the selected and unselected objects separately based on task deadlines. After the 

sorting phase, objects are assigned TCQ values. The first selected object with the closet deadline has 

the maximum TCQ. Figure 4 illustrates the TCQ assignment process. Notice that the selection of tasks 

is done independently of their deadlines. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pseudocode of algorithm 1 for SA implementation. 

 

Figure 4. TCQ assignment process. 

Definition 1: Preferred series of agents are loop-less if and only if there is no wrap-around order of 

agents  
kbbb ,...,, 21
 (k is even and 2k  ) where each agent 

ib  likes 
1ib  more than 

1ib   (if ki    then 

replace  i+1 with 1). Keep in mind that in 
kbbb ,...,, 21
 for each i, 

1ib  and 
1ib  are both either tAgents or 

eAgents (have similar type) and are different from ib . 

Lemma1. The generated preferred series are loop-less if eAgents sort their preferred series based on 

the deadline of the tAgents, independent of the tAgents' preferred series. 

Proof. There is a wrap-around order of agents, kbbb ,...,, 21 , such that each agent 
ib  prefers 

1ib  to 
1ib , 

if the preferred series are not loop-less. Assume ib  to be an eAgent. Because eAgents organize their 
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preferred series according to deadlines of tAgents, they will obtain similar preferred series. This means 

that if eAgent ib  prefers tAgent 1ib  to tAgent 1ib , all other eAgents do so. Because the order is 

wrap-around and preferring is transitive, after first loop over the order we conclude that eAgent ib  

prefers tAgent 
1ib  to tAgent 

1ib . This outcome conflicts with the definition of the order. 

Consequently, it is impossible to have such a chain of brokers to exist and the preferred series are 

loop-less. 

Definition 2: A set of tAgents and eAgents is Pair-able if we can identify two agents (one tAgent and 

one eAgent) that favor each other above all other agents of the other type already present in the set at 

each cycle of an iterative process. The set for the following cycles or iterations no longer includes 

these two agents. After the last iteration, the set is either empty or contains agents of similar type.  

Theorem 1. Set of tAgents and eAgents is Pair-able. 

Proof. Begin with arbitrary tAgent such as 
1b from agent set and form a sequence ,..., 21 bb  in which 

1ib  

is the most preferred agent by agent ib  among existing agents of the set which have the opposite type. 

Because there are only a certain number of agents, the sequence has a loop or cycle. Using lemma 1, 

the acquired preferred series are loop-less and hence the loop or cycle length is 2. Two agents that 

favor each other the most are present in this loop. A similar process will be carried out with fewer 

agents at the following iteration by removing these two agents from the group of brokers. This process 

is repeated until the final iteration. 

Theorem 1 proves that sets of agents are pairable. The pairing approach in Figure 5 illustrates an 

algorithm for this pairing. Because each agent acts as a user’s or edge resource agent, it should try to 

maximize its utility. We now want to be certain that the pairing specified in Theorem 1 satisfies both 

rational users and edge resources. For this purpose, in the following, we provide a description of this 

pairing from a game-theoretic perspective. Two games, an eGame and a tGame, are used to describe 

the situation. Let )( jri  represent the position of eAgent/tAgent j’s (rank) in preferred serie of 

tAgent/eAgent i. The player i's strategy is indicated by is  and S is the collection of all available 

strategy profiles for players. 

4.1 tGame 

tGame players are tAgents and eAgents which are part of the environment. Because agents of both 

types are rational, they select the strategy with maximum utility. The set of actions in tGame represent 

the tAgents' strategy space. Every action is the same as selecting a particular eAgent. For every 

strategy profile Ss , utility of tAgent i is 1)()(  jrnsu ii
 if and only if jsi  (selection of  eAgent 

j) and there is not another tAgent  k )( ik   such that jsk   and )()( irkr jj  , otherwise 0)( su i
. 

4.2 eGame 

Similar to tGame's definition, but this time, eAgents are the game players. 

4.3 Game Theoretic Analysis 

Theorem 2.  A Pure Nash Equilibrium point of tGame and eGame is the result of Algorithm 1. 

Proof. Assume that the current strategy profile of players in tGame and eGame is an equivalent point 

to the outcome of algorithm 1. All the eAgents have same preferred list and hence they have similar 

ranking of tAgents. Let iuB  denote a tAgent which is in i-th place of this ranking and iiB is the paired 

eAgent to iuB  in the pairing procedure of algorithm 1.  

In tGame, if itB deviates unilaterally and selects keB  ( ik  ), then for the case )()( itBktB eBreBr
ii

 , this 

deviation is not profitable, but if )()( itBktB eBreBr
ii

 , then keB  has paired with a ktB  such that ktB  

has a closer deadline than itB  and every eAgent prefers ktB  to itB . So, keB  refuses itB  and 
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according to the definition of tGame 0)(  ktBtB eBsu
ii

. Therefore, for the case of )()( itBktB eBreBr
ii

  

deviation is not profitable as well. This means that the outcome of Algorithm 1 is a pure Nash 

Equilibrium of tGame. 

For eGame, All eAgents prefer tAgent 
itB to 

1itB . This means deviation of 
1eB is not profitable. 

Deviation of 2eB can be profitable, if 1tB  prefers 2eB  to 1eB . But this is not true, because based on 

algorithm 1, 
1tB  and 

1eB  are two brokers that prefer each other the most. So, deviation of 
2eB is not 

profitable as well. It can be concluded in a similar way that for the rest of eAgents deviation is not 

profitable and the outcome of algorithm 1 will be a pure Nash Equilibrium of eGame as well.  

Theorem 3. Both eGame and tGame have unique a Pure Nash Equilibrium (PNE) point. 

Proof. Assume the PNE of eGame and tGame is not unique and there is another Nash 

Equilibrium NE . Let NE  denote the PNE which is equivalent to the outcome of algorithm 1 and 

definitions of itB  and ieB  are like to Theorem 2. )(NsB  denotes the strategy of broker B in a 

strategy profile N of game.  

For tGame, if 
1)(

1
eBNEstB  , then deviation of 1tB to 1eB  will be profitable and NE  is not a Nash. 

For the case of 
1)(

1
eBNEstB  , we have )()(

11
NEsNEs tBtB  . It can be shown that for all tAgents, the 

condition of )()( NEsNEs
ii tBtB   is required for NE  to be a Nash point. So, NE  is unique. Proof for 

eGame can be done in a similar way. 

 
Figure 5. Pairing algorithm of eAgents and tAgents. 

Based on Theorems 2 and 3, the result of algorithm 1 corresponds to the unique pure NE point of 

eGame and tGame. Following the best response strategy, when the game has a unique pure NE point, 

this leads to convergence at that unique pure NE point [15]. This means that algorithm 1 produces a 

unique pure NE that satisfies rational tAgents and eAgents.  

5. EXPERIMENTS AND RESULTS 

In this section, we present the results of the conducted experiments. First, we introduce two criteria 

that are used for evaluation of the proposed approach. These criteria are User Satisfaction Level (USL) 

and Edge Utility Level (EUL). 

5.1 User Satisfaction Level 

We define User Satisfaction Level (USL) based on the average utility of users, as shown in Equation 

(1). 

usersofnumbertrutUSL
Usersi

ii __/))(()( 


                                                 (1) 

At iteration t, the utility function u(r(t)) measures the utility that a user attaches to the allocated 

resource )(tr . Note that the service provider is not aware of the utility functions of a user. 
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If user i or its tAgent prefers resource A to resource B, then ))(())(( tButAu ii  . For example, we 

can define the utility function as Equation 2, where )(CPUVMC j
 is CPU capacity of 

jVM . 

)(CPUMinNeedi  and )(CPUMaxNeedi are the minimum and maximum requirements of task i for 

the CPU, respectively. The symbols )(MemoryVMC j
, )(MemoryMinNeedi  and 

)(MemoryMaxNeedi  have the same meaning but for memory. 
cpuw  and 

memoryw  are weights that 

illustrate importance of CPU and Memory capacity for user task. CPU and 
Memory show the 

importance of wasting resources for users.  
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MemoryMinNeedMemoryVMC
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cpuji





              (2) 

5.2 Edge Utility Level 

The utility of edge is defined based on the used capacity and rate of successfully completed tasks for 

all received tasks in iteration t. 

)(____

)(____

)(__

)(__
)(

ttasksreceivedallofnumber

ttaskscompletedlysuccessfulofnumber

tcapacityresourceavailable

tcapacityresourcesused
tEUL        (3) 

5.3 Experiments 

This sub-section illustrates the efficiency of the proposed approach using USL and EUL. In the 

conducted experiments, the resource needs of each category of tasks are expressed based on their 

minimum and maximum requirements. Here, the CPU needs of a task are illustrated using the [C, D] 

range. C is the minimum CPU need and D is the maximum CPU capacity consumed by the task. If 

there are two resources with different CPU capacities greater than C, both are capable of running and 

completing the task before its deadline. However, the task broker prefers to be paired with a resource 

that has a higher CPU capacity. Memory needs are also illustrated using ranges. For example, a task 

with a low memory requirement and the availability of extra memory results in faster running. Task 

brokers score the resources based on their available CPU and memory capacities.  

There are three types of virtual machines (VMs) and their capacity details are listed in Table 1. The 

<cpu, memory> vector represents the available capacity of a VM and the user task requirement. The 

vectors are unitized for simplicity. Table 2 illustrates CPU and memory requirements for different task 

types. According to the table information, any task of any type can be executed on any type of VM, 

though the results may differ in terms of execution speed. For example, a task of type 1 prefers VM of 

type 3 to the other types, while a task of type 2 prefers VM of type 2 to VM of type 3. This is due to 

the fact that a task of type 2 cannot consume more CPU and memory capacities of VM type 3. Its 

maximum requirements are <3, 5>, which can be met by a weaker VM such as a VM of type 2. 

Table 1. CPU and memory capacity of VMs. 

Resource Types VM Type 1 VM Type 2 VM Type 3 

CPU Capacity 4 5 6 

Memory Capacity 4 5 6 

Table 2. CPU and memory needs of different task types. 

Task Requirements Task Type 1 Task Type 2 Task Type 3 Task Type 4 Task Type 5 

CPU Need Range [1~2] [1~3] [2~4] [3~5] [4~6] 

Memory Need Range [4~6] [3~5] [2~4] [1~3] [1~2] 
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5.3.1 Workloads of the Experiments 

Following a task-type-based distribution, each user device generates a workload with a 

specific task type. The times at which tasks are generated are defined by a Poisson process. 

Each task type has a certain expected value. The time interval between two tasks of a device 

is generated at random by an exponential distribution with this expected value. The number of 

edge servers and user devices is 10 and 200, respectively. The Poisson parameter ( ) for all 

task types is 1. Each edge server's CPU and memory capacity are assumed to be 100. 

Therefore, an edge server can host 25 VMs of type 1, 20 VMs of type 2 or 16 VMs of type 3. 

An edge server usually hosts multiple VMs of different types. To evaluate the proposed 

approach against the existing works in the literature, we selected two rival approaches to 

compare, called RW1 and RW2 in this paper. RW1 and RW2 are described in [14] and [8], 

respectively. For details on these approaches, please see the related work section. There are 

200 user devices in the experiments that generate workloads. Workload1 is generated by 40 

user devices for each task type. Workloads 2 and 3 are generated by (80, 60, 40, 20, 0) and (0, 

20, 40, 60, 80) users, respectively. The tuples show the number of users per each task type 

according to (TaskType1, TaskType2, TaskType3, TaskType4, TaskType5) tuple. 

Figure 6 shows the utility of a user with a specific task type on each type of VM. The utility function 

of a user is defined using (2), where 5.1CPU , 8.0Memory  and 5.0 MemoryCPU ww . Here, 

MemoryCPU    means that preventing CPU wastage is more important than preventing memory 

wastage. As illustrated by this figure, tasks of type 1 or 5 prefer VMs of type 3 to the other types. In 

addition, VM of type 2 is preferred by tasks of type 4 or 2 and tasks of type 3 prefer VM of type 1. 

These utility values will be used to calculate the USL of users in the following. Figure 7 illustrates the 

average of USL over 1000 consecutive iterations by the proposed approach, RW1 and RW2, during 

workload 1. The workload is generated according to the approach described at the beginning of this 

section. USL in iteration t is calculated using (1). The higher values of USL mean a higher average 

utility of the users and, as a result, a higher satisfaction level. Figures 8 and 9 show similar diagrams 

for workload2 and workload3, respectively. The proposed approach leads to higher USL in 

comparison to rival approaches. The proposed approach achieves higher USL, because it takes user 

preferences into account during the pairing process, whereas competing approaches do not. Since a 

user ranks the available resources according to the amount of utility it gets from each of them, 

incorporating the user's preference during the pairing process will increase the level of USL. During 

workload 2 (Figure 8), tasks have less CPU requirement than Workloads 1 and 3. Because 

MemoryCPU   , the difference in USL levels in different approaches during workload 2 is smaller 

than in workloads 1 and 3. This means that the proposed approach has a better performance when 

there are high CPU requirements in workloads. 

 
Figure 6. Utility of different VMs for each task type. 

According to the diagrams in Figure 10, it is clear that when the majority of users have high CPU 

needs (e.g. Workload3), CPU wastage is very low. Furthermore, when the majority of users have high 

memory requirements (e.g. Workload2), CPU wastage is high. This is due to the fact that there is a 

positive correlation between the processing power and the amount of available memory at each virtual 
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machine (see Table 1). In other words, VMs with more processing power have more available 

memory.  Since
MemoryCPU    in (2), we have a smaller USL during workload 2 compared to both 

workload 1 and workload 3 (see Figures 7, 8 and 9). During workload 2, tasks of type 1, which waste 

more CPU compared to the other types, constitute 40% of all the tasks. To be more specific, the 

majority of the tasks in workload 2 are of types 1 and 2, which resulted in more CPU wastage than in 

workloads 1 and 3. According to the results, the proposed approach always performs better than 

similar works in terms of USL. In addition to this advantage, the proposed approach can perform 

better under different workloads in terms of CPU usage rate. 

 
Figure 7. Average USL of users during workload 1. 

 
Figure 8. Average USL of users during workload 2. 

Now, we compare the results of the proposed approach with rival methods using EUL measure. We 

use EUL as a criterion to measure resource capacity usage and task-completion rates. Here, each 

iteration is a time interval in which task-completion rate and average resource usage are used to 

compute EUL of that iteration using (3). Task-completion rate is reported by dividing the number of 

successfully completed tasks by the total number of all received tasks in the mentioned time interval. 

As it can be seen in Figure 11, the proposed approach has achieved better results in most iterations. In 

the proposed method, the allocation of extra, unutilized capacity to tasks is avoided. For example, 

when a task of type 4 prefers a VM of type 2 to a VM of type 3, the proposed method instantiates a 

VM of type 2. Therefore, the capacity of a physical server machine can be allocated to more virtual 

machines and more tasks have a chance to be completed successfully. This is why the proposed 

approach performs better compared to the other approaches. 

 
Figure 9. Average USL of users during workload 3. 
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Figure 10. CPU wastage during workloads 1, 2 and 3.  

 
Figure 11. EUL measure using different approaches. 

6. CONCLUSIONS 

Due to the limited capacity, edge nodes may not be able to provide the total capacity necessary for 

delivering all user tasks offloaded to the edge. Therefore, it remains a challenge to reduce user-task 

handling delays when there are insufficient resources. One solution to avoid further delays is 

offloading some tasks to cloud data centers. But, finding an efficient approach for decision-making 

about which tasks should be handled by edge servers and which ones by the cloud is not easy. In 

addition to the complexity of interactions and relations in edge environments, some nodes or devices 

may be unwilling to expose their local information due to privacy and security concerns. This makes 

centralized control and decision-making very difficult and inefficient. Distributed and decentralized 

approaches, like agent-based approaches, emerge as promising solutions for such scenarios. In this 

paper, an agent-based approach for task offloading in edge computing environments is proposed. The 

proposed approach incorporates user satisfaction into decentralized decision-making. To the best of 

the authors’ knowledge, this is the first work in the literature that addresses task-offloading strategy 

optimization based on user satisfaction level. In our work, user satisfaction level is defined based on 

the average utility that users attach to the CPU and the memory capacity of the allocated edge 

resources. But, the utility functions of different users may depend on different criteria. Each user 

knows better what will make him/her satisfied. As a future work, the definition of utility function can 

be extended to include complex criteria, such as energy efficiency. For example, dynamic frequency 

scaling (also known as CPU throttling) is a power management technique in today’s computer 

architectures, whereby the frequency of a microprocessor can be automatically adjusted "on the fly" 

depending on the actual needs, to conserve power and reduce the amount of heat generated by the 

chip. In our approach, each user device, according to its condition, e.g. battery level, can attach a 

utility to the local running of a task (high frequency and energy consumption) or offloading to edge 

(low frequency and energy consumption). Regardless of what improves a user's satisfaction level, our 

approach can be extended to handle offloading processes in a fully decentralized way with users with 

heterogeneous satisfaction criteria. Another contribution of our work is representing the task-

offloading problem in the form of two decentralized games. We proved that the proposed pairing 

process reaches the Nash equilibrium point of the games. It is also demonstrated that achieving Nash 

equilibrium is the best possible pairing for both tasks and VMs. A game-theoretic analysis is also 
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provided to prove that the presented approach increases the average utility of users and their 

satisfaction level. We also conducted some experiments to evaluate the proposed approach. The results 

illustrate that the proposed approach significantly improves the average utility of users and the EUL 

measure. 
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البحث:ملخص    

لرررررد  رررررري د  ة عرررررردد نلاررررر  اررررر   لم رررررر     ة  لمرررررري شد ةرررررف ةرررررل ة  لح ة ررررررة و   لرررررلمحدوديرررررنظررررر    

ررررر ة رررررة ح لح ة رررررةّ ةرررررال  اررررري شد  ل رررررةة  لميذي رررررة ل   اررررر   ماررررر   دوشه قرررررد ن ي ررررريل  م   أل ترررررية    لا 

رررررح  ةّ   اررررر   لررررر   اررررر  ةررررر ن  أل ون اجرررررة   لم ررررر      لررررر لعّ ت ةرررررا      لرررررة  ةرررررب  لم ررررر     لرررررد  لا 

ضرررررر  لررررررد  وهرررررر    ضرررررر ةاة  ي اررررررل أ ةررررررف ترررررر  ا       رررررردوشق قررررررد ي رررررريد  لررررررد  يرررررر د  عررررررد   ل  

رررره ا رررر    ت ةذ رررر    رررر   لررررد  لا ررررح  ة   هرررر ق  ليشقررررةّ يجرررر    ق رررر    ةررررف  لمارررر نداا   ل رررر ي  ترررر  ن  

رررررح  ة وأي ررررر  يررررر    اررررر  أ ررررره  تنررررر ّ  ل ررررر  ش  ررررري  أ    لم ررررر     نظررررر    ديرررررد يررررر    ن ذ ررررر   لرررررد  لا 

 ل  ظررررررر    لم  ررررررر   ت ررررررريي  أ و د  اررررررر   لم ررررررر    و لمررررررري شدّ  حاررررررر  ويحررررررر و    اررررررر   ت  اررررررر ه  احذ  

اا   ارررررلةت ررررريل هررررر ق    و د اررررر   لم ررررر    و لمررررري شد هرررررف أن ررررر   لمررررري شد ت  رررررا     ل    لذماررررر ند 

يمُ ررررر   أل   ليصررررري   لرررررد ن يرررررة "نررررر  " لذ  ررررري  ل    ررررر ا  وقرررررد اررررر   رررررا   ماررررر   لمررررري شد  لم   رررررة  

ررررر     أل   ل  ظررررر    لم  ررررر   ي يرررررد اررررر   لرررررةةحذارررررهت   مررررر ند   نظ يرررررة  لذ  ت  و رررررا  أل يذل رررررف هررررر    ل  

اا  وي ة  ا  اا ي   ل     لدي    ض اةد    نم   د  لد   لما ند 
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