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ABSTRACT 

Heart disease is the leading cause of mortality worldwide. The precise heartbeat classification usually requires a 

higher number of extracted features and heartbeats of the same class may also behave differently in patients. This 

will lead to computation overhead and challenges in hardware implementation due to the large number of nodes 

utilized in reservoir computing (RC) networks. In this work, a reservoir computing-based stochastic spiking neural 

network (SSNN) has been proposed for heartbeat rhythm classification, enabling a patient adaptable and more 

efficient hardware implementation with low computation overhead caused by minimum extracted features. Only a 

single feature is employed in template matching to achieve patient adaptability with minimal computation 

overhead. The single feature, QRS complexes, was extracted and fed into the neural reservoir with 20 neurons in 

a cyclic topology for arrhythmia similarity calculation and classification. 43 recordings of Electrocardiogram 

(ECG) signals that included both normal and arrhythmic beats from MIT-BIH arrhythmia database obtained from 

Physio-Net were used in this work. The proposed stochastic spiking reservoir achieves a sensitivity of 99.6% and 

an accuracy of 96.91%, signifying that the system is accurate and efficient in classifying normal and abnormal 

arrhythmias.  
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1. INTRODUCTION

According to the Centers for Disease Control and Prevention (CDC), heart disease caused the deaths of 

approximately 659,000 people in the United States each year [1]. The United States spent $363 billion 

on heart disease per year between 2016 and 2017. This comprises the expenditures of medical services 

and medications, as well as lost productivity as a result of mortality. 

ECG signals are a useful instrument that has been widely employed in numerous applications for the 

investigation of cardiac diseases [2]–[4]. ECGs use electrodes to monitor the electric activity generated 

by the flexion and contraction of heart muscles [5].  The ECG results show the physical activity of the 

heart, indicating whether the heart is healthy or has an abnormal rhythm. Abnormal rhythm is often 

known as arrhythmia, which is the most common cause of cardiac illness. 

In recent years, various computer-assisted diagnostic approaches for classifying heartbeats for 

arrhythmia prediction have been proposed. To achieve automated real-time classification approaches, 

lower computational cost and easy adaptability to hardware are necessary [6]-[8]. Neuromorphic 

computing is a potential alternative to conventional von Neumann computers for specialized sensory-

processing or classification applications. Neuromorphic systems imitate the biophysics of neuro-

biological networks by imitating the information processing mechanism of biological neurons and 

synapses [9]. Through repeating this basic cortical columnar arrangement of neurons and synapses, a 

biological brain discovers a cognitive computing pattern that is highly energy-efficient. Neuromorphic 

architectures are known for their ability to perform complex machine-learning tasks with high 

connectivity and parallelism on a smaller footprint more than conventional von Neumann systems [10]–

[13]. These characteristics contribute to the implementation of neuromorphic architectures in hardware 

development. 

However, a high number of features in ECG recognition leads to excessive hardware calculation 
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overhead that most of the previous research works have paid less consideration to. C. Venkatesan 

proposed a k-Nearest Neighbours-based (kNN) arrhythmic beat classification approach that classified 

normal and abnormal ECG signals utilizing 14 time domain and frequency domain heart rate variability 

(HRV) features with an accuracy of 97.5 % [14]. In another study, Ye et al. employed multiclass 

classification with Support Vector Machine (SVM) with 5 features comprising morphological, wavelet, 

RR interval, independent component analysis (ICA) and principal component analysis (PCA) to 

differentiate between normal and abnormal signals [15]. Vedavathi et al. used the kNN algorithm to 

classify abnormal beats based on three features: higher-order statistics (HOS), spectral characteristics 

and temporal features [16]. S. Savalia et al. used deep neural network approaches, such as multi-layer 

perceptron (MLP) and convolution neural network (CNN) with three characteristics: P wave, QRS 

complex wave and T wave for arrhythmia classification [17]. S. Nahak suggested a fusion-based SVM 

for arrhythmia classification, which achieved a three-class classification accuracy of 93.33% [18]. Thus, 

in this work, template matching technique has been proposed using minimum feature extraction from 

the ECG signal while still maintaining accuracy in order to reduce the computational burden of the 

system, achieving efficient hardware implementation. 

In terms of adaptability to hardware, field programable gate array (FPGA) is a potential hardware 

solution for this application, where a large portion of the electrical functionality inside the device can 

be customized with low implementation cost [19]-[21]. Mariel et al. proposed a parallel continuous 

neural network (CoNN) using FPGA for arrhythmia detection [19]. The categorization algorithms in 

prior study utilized characteristics including amplitude, phase and signal shape. The identifier is 

implemented using a total of 50284 lookup tables (LUT) and 471 flip-flops (FF). An FPGA-based back 

propagation neural network (BPNN) implementation was proposed by Egila et al. to categorize ECG 

signals [20]. The developed module employs Discrete Wavelet Transform (DWT) for feature extraction 

to extract four features while using significantly less hardware. W. Matthias et al. presented multiple 

MLP-based ECG anomaly detection implemented in Zynq FPGA; however, it still requires a lot of 

hardware resources. For instance, the proposed 10-6-2 12-bit multilayer perceptron requires 1613 FF 

and 1963 LUTs [21]. Although BPNN and MLP require significantly lower hardware resources, there 

are still difficulties in dealing with inter-patient variability. However, it must be noted that the hardware 

implementation of neural network suffers from resource constraints because of the typically large 

number of nodes utilized in RC networks and the high chip area required by the activities engaged with 

each processing node [22]. The proposed stochastic computing (SC) approach and simple cycle reservoir 

(SCR) architecture implemented in SSNN significantly minimized the number of connections, resulting 

in a more efficient hardware implementation. 

Inter-patient variability is a crucial concern in ECG data, since heartbeats of the same class can behave 

differently in patients. Template matching approach was implemented to overcome the concern of inter-

patient variability. Most of the research in the literature focused on simple arrhythmia classification, 

which categorizes arrhythmia based on distinct features without patient adaptability feature. In this 

work, we propose a high-performance arrhythmia detection system that uses stochastic spiking RC to 

have a minimal processing overhead and minimize inter-patient variability concerns. In contrast to other 

research in the literature, a high performance for arrhythmia classification is achieved by utilizing only 

one feature, the QRS complex.  

Section 1 presents an extensive assessment of recent studies on arrhythmia classification, while Section 

2 presents literature on spiking reservoir learning machine and architecture. Section 3 presents the 

proposed ventricular heartbeat classifier, including Pan Tompkins beat detection algorithm, feature 

extraction and stochastic neuron design. Section 4 presents the performances of R-peak detection and 

arrhythmia classification. Hardware resource utilization and feature size of the proposed classifier are 

then compared with those of previous studies. The conclusion is made in Section 5. 

2. SPIKING RESERVOIR LEARNING MACHINE 

Spiking reservoir network is a class of brain-inspired recurrent algorithms known as RC networks, 

aiming to reduce computational complexity and cost of training machine-learning models by using 

random, fixed synaptic strengths. In this work, the RC network has been built using a three-layer spiking 

neural network (SNN) to compute spikes encoded, a dynamic system and a readout mechanism and with 

little effort, it can achieve machine-learning functionality. 
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2.1 Spiking Neural Network (SNN) 

Spiking neural networks are the most recent generation of Artificial Neural Networks (ANNs), in which 

neuron models communicate by sequences of spikes to process large amounts of data [14]-[15]. The 

information is encoded in the rate and timing of the spikes' arrival. 

Figure 1shows two connected biological neurons which communicate through sequences of spikes. The 

incoming signals from connected neurons accumulated by dendrites are spatially and temporally 

summed by the cell’s body. The neuron will generate a spike if it receives enough input that exceeds the 

threshold. The action potential is transmitted along the axon to other neurons of the nervous system. If 

the threshold is not surpassed, this indicates that insufficient input was received; the inputs fade quickly 

and no action potential is produced. 

The conventional artificial sigmoidal neuron is used to model the spiking neuron, which uses firing rate 

to relay neural information. The sigmoidal unit’s operation is depicted in Figure 2. A weight variable 

describing the strength of the influence on the postsynaptic neuron is used to simulate the synapse 

between two neurons. Positive and negative weights are used to represent excitatory and inhibitory 

synapses, respectively. The potential of a sigmoidal neuron is calculated by adding together all of the 

weighted firing rates of its presynaptic neurons. The activation function is used to determine the neuron’s 

output from this potential which has a sigmoid form. 

 
                

 

 

Figure 1. Biological neurons.                           Figure 2. Basic operation of sigmoid neuron. 

2.2 Reservoir Computing (RC) 

RC is a computational architecture developed by recurrent neural network theory that maps input signals 

into higher-dimensional computational spaces utilizing the dynamics of a reservoir, which is a fixed, 

non-linear system. The reservoir is expected to be sophisticated enough to collect a significant number 

of input stream properties that can be utilized by the reservoir-to-output readout mapping [23]. 

Contrary to conventional Recurrent Neural Networks (RNNs) that need to adjust all connections to 

minimize the training error, the key characteristic of RC is that only the readout weights Wout are trained 

with a basic learning method such as linear regression, whereas the input weights Win and recurrent 

connection weights W inside the reservoir are not trained [16], [18]. General RNN architecture and RC 

system are illustrated in Figure 3. This strategic design simplifies the complicated and time-consuming 

training procedure of traditional fully trained RNNs to a simple linear regression issue, which is greatly 

simplifying RNN implementation [19]-[20]. 

 
Figure 3. (a) General RNN architecture (b) RC system. 

3. PROPOSED VENTRICULAR HEARTBEAT CLASSIFIER 

Figure 4 depicts the procedures of the proposed technique. Signal denoising minimizes baseline drift 

and power-line interference that are typically emphasized in ECG signals. The peak detection detects 

the R-peak location and amplitude. The samples around each R-peak location are retrieved in a window 

by QRS segmentation. QRS complex is then employed in the spiking neural network for machine 

learning and classification. The correlation coefficient calculated from template matching was used to 

analyze the similarity between typical normal beats and the test beat. In this project, the well-known Pan 
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Tompkins beat detection algorithm is applied. This algorithm used band-pass filtering, signal 

differentiation, squaring, moving window integration and two sets of adaptive thresholds to filter and 

integrate signals for beat detection [24].  

3.1 Signal Denoising 

There are a variety of sounds and anomalies in polluted signals, but baseline drift and power-line 

interference [26] are two types of noise that are often highlighted in ECG signals. The impression of 

baseline wander (BW) occurs when a signal's base axis appears to "drift" up and down, causing the 

entire signal to deviate from its baseline. Baseline wander is a low-frequency distortion in the ECG 

caused by electrically charged electrodes, patient movement and respiration [27]. Power-line 

interference is another common cause of noise which must be removed from the signals, because it fully 

obliterates the low frequency P and T waves in ECG signals. These noises and artifacts can impede the 

extraction of useful information from the raw ECG signal, resulting in an incorrect diagnosis and having 

a significant impact on the performance of algorithms during classification [23], [28]-[29]. 

The initial step was to use band-pass filtering composed of a cascaded high-pass and low-pass filters 

with a passband of 5-15 Hz, to remove BW and 50 Hz power- line interference and reduce the T wave 

amplitude. Figure 5 shows the ECG signal pre-processing process. 

  

Figure 4. Schematic representation of ventricular                    Figure 5. ECG signal denoising. 

               heartbeat classifier [25]. 

3.2 Peak Detection 

The signal was differentiated after the band-pass filtering stage to highlight the severe slopes of the QRS 

complex. The squaring operation increases the slope of the derivative’s frequency response curve to 

extract the R-peaks. The moving window integrator generates a signal including slope and QRS complex 

width information. The locations and amplitudes of R-peaks in the ECG signal were detected and stored 

in Rn×m matrix in a row-wise format, where n = 2 consists of location and amplitude of the R-peak and 

m is the number of detected R-peaks. Figure 6 shows an example of applying the Pan Tompkins 

algorithm for R-peak detection in the MIT-BIH arrhythmia database. 

 

 

 

 

 

 

 

 

Figure 6. ECG signal peak detection.            Figure 7. QRS segmented area in the ECG signal. 

3.3 QRS Segmentation 

The R-peak location contained in the Rn×m matrix is chosen as a reference point. After determining the 

R-peak location, 75 samples around each R-peak were extracted in the window and counted as a single 
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heartbeat. The window only spans the duration of the QRS complex rather than the whole cardiac cycle.            

Figure 7 depicts the segmented region based on the QRS complex. The Q wave and S wave reflect the 

beginning and end point of the highlighted beat, whereas the R wave represents the peak area. The 

heart’s ventricular depolarization is represented by the combination of Q, R and S waves [30]. 

3.4 Temporal Feature Extraction 

The main interest of this research is to extract representative features with minimal calculation overhead 

and avoid inter-patient variability concerns. The simple and patient-adaptive technique template 

matching is utilized to alleviate the inter-patient variability difficulties outlined in Section 1. This 

approach is utilized to determine the similarity between the signal beat and the same class-specific 

template, then employed a normalized correlation coefficient defined as an equation to classify the data 

as shown in Figure 8. 

𝛾𝑥𝑦(𝑘) =
∑ [𝑥(𝑛)−�̅�]𝑁−1

𝑛=0 [𝑦(𝑛−𝑘)−�̅�]

√∑ [𝑋(𝑛)−�̅�]2𝑁−1
𝑛=0 ∑ [𝑦(𝑛−𝑘)−�̅�]2𝑁−1

𝑛=0

                                                 (1) 

where γxy represents the correlation coefficient, 𝑁 represents the number of template points, x(n) 

represents the template points, y(n) represents the signal points under investigation, x̄ represents the 

average of the template points and ȳ represents the average of the signal points and k represents the time 

index of the signal y(n) at which the template is placed. The correlation coefficient is in the range -1< 

γxy <+1, where +1 means that the signal and template are perfectly matched.  

Template matching approach is implemented in this work with a lower computation complexity while 

retaining a high compression ratio and a minimal reconstruction error. This study excludes from 

consideration those signals for the feature extraction phase that have contamination in their sections. 

 
Figure 8. Template matching of segmented heartbeat. 

The classification of normal and abnormal heartbeats is proposed by medical specialists in previous 

research [31]-[32]. Normal heartbeats have regular RR intervals, with the existence of a P-wave and a 

narrow QRS complex, whereas abnormal heartbeats have a shorter RR interval, no P-wave and a broader 

QRS complex. 

3.5 Stochastic Spiking Neural Network 

SSNNs are a recently proposed hardware solution based on a simple spiking neuron model capable of 

reproducing the probabilistic nature of synaptic transmissions, thus replicating the intrinsic stochastic 

behaviour of real biological neurons. The main distinction between SNNs and other neural networks is 

that SNNs explicitly model time. The concept is that neurons in the SNN do not communicate 

information at the end of each propagation cycle, but rather only when a membrane potential exceeds 

the threshold. 

The retrieved QRS complex in the preceding section was employed as an input signal for the neural 

reservoir with 20 neurons. The stochastic neuron system contains three fundamental stages, as shown in 

Figure 9, binary to pulse conversion, SC and pulse to binary conversion. The input from the feature 

extraction process is converted into a binary number in the SSNN process by using analog-to-digital 

converter which transforms the analog input signal into the binary output signal. The binary value data 



187 
"Neuromorphic Computing Based on Stochastic Spiking Reservoir for Heartbeat Classification", C. Y. Saw and Y. C. Wong. 

 
is first transformed into a pulse signal for stochastic computation and then the pulse signal is converted 

into its equivalent binary value again. 

 
Figure 9. Stochastic computing system's fundamental stages. 

3.5.1 Stochastic Computing (SC) 

SC is a paradigm that counts the number of ones in a bitstream called a stochastic number, which is 

expressed as a fraction p=n/N, where n is the number of 1s in binary sequences and N is the length of 

binary sequences. For instance, the bitstream 01000010 contains two ones in an eight-bit stream, 

corresponding to a represented number of p=P(X=1) = 2/8 = 0.25. Figure 10 depicts the basic SC 

circuits, where the real number x is represented in unipolar format (UP) in the range [0, 1] and bipolar 

format (BP) in the range [-1, 1]. 

SC is utilized in this research by implementing digital gates in the SSNN. The proposed method reduces 

the amount of hardware required to perform arithmetic operations by employing probabilistic computing 

concepts. The multiplication in multiple-accumulate (MAC) operation could be easily realized by using 

a two-input XNOR gate for the bipolar coding format, as shown in Figure 10(b), followed by the scaled 

addition operation with a multiplexer (MUX), as shown in Figure 10(d). 

 
Figure 10. Basic circuits used in stochastic computation (a)AND (b)XNOR (c)NOT (d)MUX. 

3.5.2 Binary-to-Pulse Converter (B2P) 

The conversion from binary magnitudes (X) to pulsed stochastic signals (x) is performed by the B2P 

block shown in Figure 11. A random number generator (RNG) is used to create a pseudo-random binary 

number in each clock cycle, which is then compared to the n-bit input binary number with evaluation 

period Teval. The comparator is actively high when X > RN; otherwise it is maintained low. The 

comparator's output results in a bitstream x = X/2n with probability of getting 1. 

3.5.3 Pulse-to-Binary Converter (P2B) 

The P2B block is shown in Figure 11. Figure 12 is used to complete the process of converting the pulse 

signal x into its equivalent binary value X. It consists of two n-bit counters and an n-bit register. The 

first counter counts the number of high values (1s) given by the stochastic signal throughout the Nc clock 

cycle. The second counter is used to reset the first counter and load a new value for the register every 

Nc clock cycle. Therefore, the P2B block generates an n-bit number that changes per Nc cycle. 

The block’s output is a binary number that will remain stored for Nc =2n-1 clock cycles until being 

updated with the next integration value. However, this conversion incorporates a statistical error. Thus, 

linear feedback shift register (LFSR) was implemented in this project and extended bit sequences were 

analyzed to obtain correct results. The probability of receiving an output corresponding to high-level 

values in a series of the random variable p(t) over Nc clock cycles is calculated using the binomial 

distribution equation: 

𝑃𝑟𝑜𝑏(𝑋) = (
𝑁𝑐
𝑋

) 𝑝𝑋(1 − 𝑝)𝑁𝑐−𝑋                                                    (2) 

3.6 Stochastic Neuron Design 

The proposed stochastic neuron design consists of a few simple digital blocks: logic gates, a multiplexer, 

an LFSR, a register and a comparator. Figure 13 shows a single two-input sigmoid SC-based neuron 

with n=8 and evaluation time to Nc=28-1 clock cycles. 
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Figure 11. B2P converter block.                            Figure 12. P2B converter block. 

 

 

 

 

 

 

 

Figure 13. Two-input SC-based sigmoid neuron. 

The input and weight binary values are first converted into pulsed signals using B2P converter before 

being processed by the stochastic circuit. The first input signal I1 is a binary magnitude that is externally 

supplied to the system, but the second input signal i2 is a stochastic bitstream that receives directly from 

another neuron. An XNOR gate and a multiplexer are used in the stochastic computing architecture to 

perform multiplication and addition operations. The resultant bitstream from the input weighting and 

addition is converted into a binary integer through P2B converter. The binary result is transformed back 

into a stochastic bitstream for further processing by another neuron. 

20 stochastic neurons that make up the SSNN have been arranged based on SCR architecture as shown 

in Figure 14. This topology decreased the number of connections and simplified the automated network 

design, allowing for more efficient hardware implementation, when compared to previous research that 

employed random connections. 

 

 

 

 

 

 

 

 

 

Figure 14. SSNN composed of 20 stochastic neurons in cyclic topology. 

 

3.7 SNN Activity 

The SNN’s activity is depicted in    Figure 15. The input spikes entering the counter appear to contribute 

to an increase in the membrane over-voltage. During the evaluation process, the incoming pulses are 

added up per clock cycle Tclk in the counter, where the evaluation period is basically a definite number 

of clock cycles: Teval =Nc∙Tclk. A random number generator is used to produce the value of the variable 

threshold Vk. The value of the estimated over-voltage corresponding to the preceding evaluation period 

is compared to the reference voltage per clock cycle. If membrane over-voltage Sk exceeds Vk, the 
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neuron emits a spike Xk =1; otherwise it remains at a low level Xk =0. 

Figure 16 depicts QRS complex as the input signal associated with the output of various nodes in the 

reservoir. Each neuron state oscillates in response to the input stimuli and this information is utilised to 

calculate the network's prediction output. It can be observed that a good match occurs as the number of 

neurons trained increases. 

 
 

 

 

   Figure 15. Temporal evolution of the different       Figure 16. Three chosen neurons' output from the 

                     signals in the SNN model.                       reservoir along with QRS complex input signal. 

4. RESULTS, ANALYSIS AND DISCUSSION 

The classification was carried out using the MIT-BIH arrhythmia database, which includes 43 

recordings of ECG signals that included both normal and arrhythmic beats, each with a 30-min duration 

and a sampling rate of 360 Hz. 

4.1 Performance of R-peak Detection 

The Pan-Tompkins algorithm is used for R-peak detection and QRS segmentation. The performance of 

R-peak detection was evaluated using the following metrics: sensitivity (SEN), positive predictive value 

(PPV) and cumulative statistical index (CSI) and detection error rate (Fd) which are described in detail 

as follows: 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                               (3) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                                               (4) 

𝐶𝑆𝐼 =
1

2
(𝑆𝐸𝑁 + 𝑃𝑃𝑉 − 𝐹𝑃𝑅 − 𝐹𝑁𝑅) × 100                                       (5) 

𝐹𝑑 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                                  (6) 

Table 1 reveals the overall performance of the R-peak detection on the MIT-BIH database, where out 

of a total of 97,963 beats, 205 and 227 beats were recognized as FP and FN, respectively. In addition, 

the proposed approach attained a minimum detection error of 0.44% with SEN, PPV and CSI at 99.8%, 

99.8% and 99.6%, respectively. As a result, the Pan-Tompkins algorithm has an outstanding detection 

with minimal error detection, with high PPV indicating that a high proportion of R-peaks in the test 

beats are correctly detected, where high sensitivity indicates that the proposed approach is patient-

adaptive and capable of detecting small outbreaks that behave differently in patients and larger CSI 

values indicate better overall detection performance. 

 
Table 1. Evaluation results of R-peak detection. 

 

 

TP FP FN SEN (%) PPV (%) CSI (%) Fd (%) 

Total 97963 205 227 99.8 99.8 99.6 0.44 
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True positive (TP) indicates a correctly detected R-peak, false negative (FN) indicates a missing R-peak 

and false positive (FP) indicates an incorrectly identified R-peak. False positive rate is FPR = 

FP/(FP+TP) and false negative rate is FNR = FN/(FN+TP). Fd was employed to calculate the detection 

error rate. Better detection performance is predicted by higher SEN, PPV and CSI values, while a lower 

Fd is expected. In Table 1, the TP, FP, FN, SEN, PPV, CSI and Fd values of each record are listed. 

4.2 Arrhythmia Classification Performance 

The proposed stochastic SNN architecture, which is made of 20 neurons and has a cyclic topology, was 

trained to complete a basic nonlinear prediction task. The evaluation duration has been set to Teval =(28-

1)∙Tclk and the clock frequency is 1 kHz (Tclk=1ms). Figure 17 depicts the register transfer level (RTL) 

design. The network's performance was assessed for several patient datasets with QRS complex. Figure 

18 depicts an example of one patient's ECG classification performance. 

    Figure 17. RTL of proposed SNN classifier.                    Figure 18. ECG classification performance. 

Table 2 shows the confusion matrix for the performance of the proposed ventricular heartbeat classifier. 

The sensitivity, accuracy and specificity indicators are computed from the confusion matrix using 

Equations (3), (7) and (8) which are represents as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
× 100                                                    (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                                                       (8) 

The template matching approach demonstrates that high performance was achieved with sensitivity, 

accuracy and specificity of 97.41%, 95.10% and 93.68%, respectively. The high accuracy indicates that 

the system is accurate and efficient in classifying normal and abnormal arrhythmias, while high 

specificity of abnormal diagnosis indicates the existence of disease with confidence. 

Table 2. Confusion matrix of SNN classification. 

 True Normal True Abnormal 

Prediction Normal 70085 3173 

Prediction Abnormal 1862 27578 

4.3 Comparison with Previous Study 

Previous researchers have worked extensively on reducing the feature size of arrhythmia detection 

systems. However, they encountered computational burdens. Table 3 highlights the methodologies, 

feature size and classification performance achieved in the proposed methodology and related studies. 
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The proposed approach demonstrates that a great performance has been achieved by employing only a 

single feature as compared to previous research. 

Table 3. Comparison with other studies. 

The Authors Method Feature Size Accuracy 

Venkatesan et al. [14] kNN 14 97.5% 

Ye at al. [15] SVM 5 86.4% 

Vedavathi et al. [16] kNN 4 98.40% 

S. Savalia [17] MLP; CNN 3 88.7%; 83.5% 

S. Nahak et al. [18] SVM 3 93.33% 

Proposed Approach SNN 1 96.91% 

After verifying that the proposed method is effective in classifying heartbeats even with a single-feature 

size, the proposed system has been implemented in FPGA to demonstrate the hardware efficiency 

achieved by the minimum feature size used, thus reducing the computational burdens. Table 4 shows 

the hardware resources needed to implement the proposed SNN ventricular heartbeat classifier 

synthesized on a Xilinx Zynq-7000 FPGA. The proposed SNN classifier uses the least LUT and FF 

numbers to accomplish ventricular heartbeat classification, due to the hardware improvements in the 

MAC designs. 

Table 4. Hardware resource utilization comparison. 

Reference [19] [20] [21] This Approach 

FPGA Zynq 7000 Spartan 3AN Zynq 7000 Zynq 7000 

Classifier type CoNN BPNN MLP SNN 

LUT 50284 4321 1963 692 (0.65%) 

FF 471 3893 1613 440 (0.83%) 

5. CONCLUSIONS 

In this study, a simple and patient-adaptable heartbeat rhythm classification system based on SSNN was 

developed to obtain the highest performance with the minimum account load. The model only employs 

QRS complex as the only feature for classification. Moreover, the non-random structure of stochastic 

neurons connection in reservoir topology makes SSNN models easily implemented in hardware, also 

resulting in quick processing. The results demonstrate that the detection of QRS complex in MIT-BIH 

database using Pan-Tompkins and template matching achieves a sensitivity of 99.65%. Meanwhile, the 

proposed SSNN with correlation coefficient shows high effectiveness in classifying arrhythmia with 

sensitivity, specificity and accuracy of 99.6%, 98.93% and 96.91%, respectively. Simple processing and 

hardware resource saving of the architecture in this work provide a substantial contribution to the field 

of Medical Internet of Things (MIoT). 
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 ملخص البحث:

ددددد   ددددد    ددددد ي تعُدددددرا  اددددد في ف     دددددعير ف عددددد           اددددد  ف  اّ اّ  يعدددددا  ادددددت ع ف ا يددددد ل ا دددددي ف 

ل  ددددد  ا  ددددد   ل ف   ددددد   ددددد  ل ف  ض    ّدددددا  ا  ددددد  ددددد  ادددددر فل  تتددددد  ادددددأ ف ضاب ف دددددراضيب   ددددد   ل ف    

دددد   كفتددددت  ُ  ددددأ    ت ّدددد ا  ا ددددي آخدددداذ ا   دددد ذ اددددأ ادددد    ف ددددي   دددد     دددد ف اددددأ  اّب اددددأ ف 

  ال ف ددددددي تخددددددرا  لذ تدددددد تت    عددددددرافل شدددددد آت      ددددددا  ف ددددددي  فحتسدددددد  ذ  دددددد  ت  سددددددا ف خااددددددتا    دددددد

دددددد   اددددددأ ف عُ  ددددددر  دددددد  شددددددت  ل  ااددددددتا  ف خااددددددتا ف  ضدددددد  راا   ك ددددددد  دددددد   ال  ف ددددددي ف عددددددر  ف  ا

ف  )  (  RCف  زا

ف   ددددد   ددددد ف ف تخددددد    تددددد ا فض ددددد فب شدددددت اذ اّدددددتيا آ تىدددددا الددددداف يا ات يددددداذ ا دددددي  اادددددتا ف  دددددزا

(SSNN ّددددددد ي      اددددددد ل  ددددددد   ل ف   ددددددد    خيددددددد  تضددددددد     اددددددد  رف  اعدددددددرافل  اادددددددتاذ   )

دددددد  ل  الا  ددددددا      ددددددي     سدددددداب  ااددددددتاذ  ضدددددد ا  ضددددددت  فادددددد  رف  ف خددددددرا ف  آددددددي اددددددأ اددددددر  ف ضاب

دددددت ا      دددددي  ت  يددددد   اذ  ف دددددرر   ددددد    خ يدددددب الا  دددددا ف لا ددددد   ف  ض   ّدددددا   ضدددددر تددددد ا فاددددد  رف  اب

دددددد   دددددد ا  دددددد  ا ت     ضددددددر تدددددد ت فا  لا دددددد    ت دددددد      ف ددددددي QRSت  سددددددا ف خااددددددتاة ت ددددددد ف ضاب

ح  اددددددأ  تدددددد   ضدددددد ع  تّدددددد ي  اددددددر  ل ا ددددددي آخدددددداذ     دددددد  أ اُّددددددتاآ  ف  ف عّددددددت   عل  ف  ددددددزا

دددددد   دددددد   ل ف   دددددد   43فآ لدددددد    دددددد   ل ف   دددددد    ضددددددر تدددددد ا فادددددد  لا   اددددددأ تضددددددريلال ا  ا

ف  خ ا دددددا ا دددددي  ددددد   ل ض ددددد   تيعيدددددا    ددددد ت ليددددد   تيعيدددددا ادددددأ ض ادددددرر ف تي آددددد ل ف    دددددا 

( ف  دددددددد  تدددددددد ا ف خّددددددددا  ا ي دددددددد  اددددددددأ شددددددددت ا MIT-BIH   دددددددد   ل ف   دددددددد  ) عددددددددر  فآ لدددددددد 

(Physio-Net   ف  ف    ددددددد ب  ض ادددددددياذ ا دددددددرفح %   ضادددددددا ا دددددددرفح   6 99(   ضدددددددر   دددددددب ف  دددددددزا

ددددد  ف دددددي   ا ف  الددددد   ف    ددددد ب  ضيدددددب   عاددددد    ددددد  تّددددد ي   ددددد  ل 91 96 %  ف اددددد  ف ددددد    نشا

ار  فآ ل       ل ف     ف  تيعيا  لي  ف  تيعيا 
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