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ABSTRACT 

Two-dimensional principal component analysis (2DPCA) is a subspace technique used for facial image 

representation and recognition. Standard 2DPCA may be unable to extract informative features to adequately 

describe the inherent structural information of the original facial images with the presence of irrelevant variations, 

such as lighting conditions, facial expressions and so on. To deal with this, an improved fractional two-

dimensional principal component analysis (IF2DPCA) is proposed in this paper. It is an extension of fractional 

2DPCA (F2DPCA), which was developed based on the concept of fractional covariance matrix (FCM). IF2DPCA 

employs the same principle as F2DPCA for learning a projective matrix, but further extends the use of fractional 

transformed 2D images throughout the entire recognition task. As a result, the feature subspace modeled by 

IF2DPCA maintains the most informative content of the 2D face images and is relatively insensitive to irrelevant 

variations. Experimental results on three face datasets confirm the effectiveness of the suggested IF2DPCA method 

in facial recognition. 
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1. INTRODUCTION 

Face recognition has earned much popularity because of its wide applications in the areas of video 

surveillance, machine learning and pattern recognition. Among the vast approaches introduced over the 

years [1]–[4], the most attractive ones are those based on subspace learning techniques [5]. A common 

paradigm in subspace-based face recognition is to find a subset of features maintaining the informative 

content of a training set consisting of facial images from distinct classes to be able to correctly assign a 

class membership to an unknown facial image with the aid of a classifier. Of the subspace learning 

techniques, the earliest and most widely used is probably the principal component analysis (PCA) [6]–

[9]. The PCA procedure consists of mapping high-dimensional input image vectors into a small set of 

principal components (eigenfaces), describing the most representative content of the input images. 

Besides, the construction of the eigenfaces is fundamentally dependent on the predominant eigenvectors 

of the covariance matrix determined from the training image vectors.   

Although PCA-based facial recognition methods have exhibited satisfactory recognition accuracy, their 

formulation requires a preliminary step that unfolds the 2D training images into 1D vectors, inducing 

high computational cost and loss of inherent structural characteristics of the facial images. To 

circumvent the implications of image vectorization, two-dimensional principal component analysis 

(2DPCA) [10] has been developed, wherein the facial images are treated as matrices instead of vectors. 

The primary purpose of 2DPCA is to create a projective matrix in which the columns are the leading 

eigenvectors of the covariance matrix evaluated from the row directions of the training instances. In 

other words, 2DPCA converts each input image to a much smaller feature matrix. This can offer both 

low computational cost and preservation of the facial structure, so that 2DPCA performs markedly better 

in most cases than PCA. Following the success of 2DPCA in the representation and recognition of face 

images, a number of 2DPCA variants have been suggested to improve its performance. Some of them 

include the bilateral 2DPCA (B2DPCA) [11], horizontal and vertical 2DPCA-based discriminant 

analysis (HVDA) [12], two-directional two-dimensional 2DPCA ((2D)2PCA) [13], incremental 

(2D)2PCA (I(2D)2PCA) [14], block-wise (2D)2PCA (B(2D)2PCA) [15] and sequential row-column 

2DPCA (RC2DPCA) [16]. The key concept underlying these methods is the projection of face images 
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onto two (row-wise and column-wise) projection matrices, simultaneously. While this indeed correlates 

the row-column information and produces far fewer coefficient features than 2DPCA, it generally yields 

only a slight improvement in recognition accuracy.    

Other efforts have concentrated on the adoption of alternative reconstruction error criteria instead of the 

L2-norm employed in 2DPCA. The representative ones are L1-norm 2DPCA [17], Lp-norm 2DPCA 

[18], F-norm 2DPCA [19], nuclear-norm 2DPCA [20], R1-norm [21] and Angle-2DPCA [22]. One 

major advantage of such type of methods is that they perform quite well in image compression. 

Nonetheless, their solution relies on iteratively evaluating the projective matrices and as such reducing 

the flexibility of facial recognition. On the other hand, methods like in [23] and [24] extend classical 

2DPCA to class-wise 2DPCA (CW2DPCA) to increase the recognition performance. Instead of 

establishing a holistic projection matrix from the entire training dataset, CW2DPCA builds multiple 

projective matrices according to the number of classes that constitute the training dataset. However, this 

results in a longer computational time when dealing with a large training dataset.  

Another approach based on the theory of the fractional covariance matrix (FCM) has been introduced 

to improve the recognition performance of PCA and 2DPCA. The original idea was presented by Gao 

et al. [25], who replaced the typical covariance matrix in PCA and 2DPCA with an FCM computed from 

the fractional transformed training images. The new versions of PCA and 2DPCA are named fractional 

PCA (FPCA) and fractional 2DPCA (F2DPCA), respectively. This approach has three interesting 

properties. First, adequate selection of the fractional-order to establish the FCM plays a crucial role in 

the recognition performance. Second, both FPCA and F2DPCA share the same computational 

complexity as their classical counterparts. However, third, the features subspace is defined in terms of 

the dominant eigenvectors of the FCM and original training images, which may deteriorate the spatial 

quality of the captured information. Within this context, to define better projection while avoiding the 

curse of dimensionality when dealing with image-as-vector, De Carvalho et al. [26] extended FPCA to 

fractional eigenfaces (FE), where the feature vectors are generated by applying the eigenface technique 

to the fractional transformed image vectors. Although FE has demonstrated a recognition advantage 

over FPCA, it still suffers from drawbacks similar to those of 1DPCA-like methods.    

It is important to point out that neither [25] nor [26] have provided a clear justification for why the 

applications of FCM theory in PCA, eigenfaces and 2DPCA could improve face recognition accuracy. 

In fact, since in these subspace learning techniques, the learned projection matrix maximizes the overall 

scatter of the entire training samples, they often retain undesirable variations caused by lighting 

conditions, shadows, facial expressions and so on [6], [27].  Due to this, it makes sense to employ the 

FCM theory for scaling down, to some extent, the weights of such variations, thereby mitigating their 

adverse influence on the performance of face recognition. More details can be found in [28], but 

regarding the modeling of fractional-order singular value decomposition.   

Furthermore, Gao et al. [25] demonstrated the superiority of F2DPCA over 2DPCA in terms of the 

attained recognition accuracy. Later, F2DPCA is performed in the frequency domain to extract texture 

information [29]. Despite this endeavor, the main drawback with the F2DPCA model is that the original 

2D images are directly involved in the calculation of feature matrices. This could pose a remarkable 

obstacle towards achieving high recognition performance, as the existence of unwanted variations in the 

original images may affect the facial appearances and may be substantially high in weight, which can 

result in a large level of uncertainty in the feature matrices. A practical remedy to this drawback is to 

extract the feature matrices by means of FCM and fractional transformed 2D images.  

In this paper, an extension of F2DPCA, termed improved F2DPCA (IF2DPCA), is proposed to enhance 

the capability of F2DPCA in face recognition tasks. The proposed IF2DPCA is largely inspired by the 

fractional transformation in FE and the fractional-order covariance matrix in F2DPCA. In mathematical 

terms, the IF2DPCA determines a projective matrix, based on the FCM theory, to map the fractional 

transformed 2D images from the image space to the features subspace, such that the measure of the total 

scatter in the new subspace is maximal. As a consequence, the feature matrices obtained via the 

IF2DPCA model are not only explained by the structural information of the facial images, but also 

relatively insensitive to the irrelevant variations, leading to better recognition accuracy than either FE 

or F2DPCA alone.   

In the remainder of this paper, background information and related work are presented in Section 2. 

Section 3 describes the proposed IF2DPCA method for face recognition. Then, experimental results 
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demonstrating the performance of the IF2DPCA method are reported in Section 4. Finally, conclusions 

are given in Section 5. 

2. BACKGROUND AND RELATED WORK 

2.1 PCA 

The computational goal of standard PCA [30] is to identify a set of principal component vectors 

(eigenvectors) from the covariance matrix of the input dataset such that this set characterizes the 

variations across the dataset samples, in our case the facial images. Formally, let 𝑨 = {𝑨𝑖}𝑖=1
𝑠 , 𝑨𝑖 ∈

ℝ𝑚×𝑛, be a face training dataset with 𝑠 images and its vectorized version is 𝑽 = {𝒂𝑖}𝑖=1
𝑠 , 𝒂𝑖 ∈ ℝ𝑑 (𝑑 =

𝑚𝑛). By defining �̅� = 1/𝑠(∑ 𝒂𝑖) 𝑠
𝑖=1 as the total mean of the image vectors, the covariance matrix (𝑪𝑃𝐶𝐴) 

of 𝑽 can be evaluated as: 

𝑪𝑃𝐶𝐴 =
1

𝑠
∑(𝒂𝑖 − �̅�)

𝑠

𝑖=1

(𝒂𝑖 − �̅�)𝑇 ∈ ℝ𝑑×𝑑

                                      

=
1

𝑠
𝑯𝑯𝑇, (1) 

where 𝑯 = {𝒂𝑖 − �̅�}𝑖=1
𝑠 ∈ ℝ𝑑×𝑠.  In practice, applying eigenvalue decomposition to the 

1

𝑠
𝑯𝑯𝑇 matrix 

is infeasible for typical images. As noted in [31], a simpler alternative solution is determining the 

eigenvalues and eigenvectors of the matrix 
1

𝑠
𝑯𝑇𝑯 ∈ ℝ𝑠×𝑠. Now, suppose that 

1

𝑠
𝑯𝑇𝑯 has the 

eigenvalue-eigenvector pairs {(𝜆𝑖, 𝒘𝑖) ∶ 𝑖 = 1, 2, ⋯ , 𝑠}, where 𝜆1 ≥  𝜆2 ≥ ⋯ ≥ 𝜆𝑠 and that 𝑾 =
[𝒘1, 𝒘2, ⋯ , 𝒘𝑘] ∈ ℝ𝑠×𝑘 is formed by keeping the 𝑘 top eigenvectors. It follows that the PCA projection 

matrix is 𝑾𝑃𝐶𝐴 = 𝑯𝑾 ∈ ℝ𝑑×𝑘, in which the column vectors are indeed the first 𝑘 eigenfaces of 𝑽. 

With 𝑾𝑃𝐶𝐴, the image vectors of 𝑽 can be simply transformed into a set of reduced training feature 

vectors written as:  

𝒀 = {𝒚𝑖}𝑖=1
𝑠 ,     𝒚𝑖 = 𝑾𝑃𝐶𝐴

𝑇 (𝒂𝑖 − �̅�) ∈ ℝ𝑘 . (2) 

Furthermore, the classification of a test image vector 𝒃 ∈ ℝ𝑑 is carried out by comparing its 

corresponding feature vector 𝒙 = 𝑾𝑃𝐶𝐴
𝑇 (𝒃 − �̅�) ∈ ℝ𝑘 with the training feature vectors and 𝒃 ascribes 

to the class that displays the maximum similarity score. This is usually accomplished through the 

Euclidean minimum distance procedure. 

2.2 Fractional PCA 

Fractional principal component analysis (FPCA) [25] is a modified version of PCA. From a formulation 

perspective, the single difference between standard PCA and FPCA is that the former uses a typical 

covariance matrix, while the latter utilizes the fractional (𝑟 −order) covariance matrix, where 0 < 𝑟 ≤
1. Note that when 𝑟 = 1, FPCA becomes equivalent to PCA. In this sense, PCA can be viewed as a 

special case of FPCA.  

Under the FPCA assumptions, the FCM (𝑪𝐹𝑃𝐶𝐴) of the training dataset 𝑽 is defined by: 

𝑪𝐹𝑃𝐶𝐴 =
1

𝑠
∑(𝒂𝑖

𝑟 − (�̅�)𝑟)

𝑠

𝑖=1

(𝒂𝑖
𝑟 − (�̅�)𝑟)𝑇 ∈ ℝ𝑑×𝑑

                                        

=
1

𝑠
(𝑯𝑟)(𝑯𝑟)𝑇 , (3) 

where 𝒂𝑖
𝑟 = (𝑎𝑖1

𝑟 , 𝑎𝑖2
𝑟 , ⋯ , 𝑎𝑖𝑑

𝑟 )𝑇 and 𝑯𝑟 = {𝒂𝑖
𝑟 − (�̅�)𝑟}𝑖=1

𝑠 ∈ ℝ𝑑×𝑠.  

Like standard PCA, FPCA constructs the projection matrix 𝑾𝐹𝑃𝐶𝐴 = [𝒘1, 𝒘2, ⋯ , 𝒘𝑘] ∈ ℝ𝑑×𝑘 by 

staking the 𝑘 leading eigenvectors of the 𝑪𝐹𝑃𝐶𝐴. The training feature vectors 𝒀 = {𝒚𝑖}𝑖=1
𝑠  are 

subsequently obtained using Eq. (2), but replacing 𝑾𝑃𝐶𝐴 with 𝑾𝐹𝑃𝐶𝐴 and likewise for the test samples.    

As discussed earlier, with respect to Eq. (1), due to the high dimensionality of the typical images, PCA 

is unable to directly perform the eigenvalue decomposition to 𝑪𝑃𝐶𝐴. Unfortunately, this intrinsic 

limitation is also present in FPCA. One way to address this limitation is by employing the fractional 

eigenfaces (FE) technique [26], which follows the same procedure as the eigenfaces technique, but 

assumes fractional transformed image vectors. To be specific, let the column vectors of 𝑾 =

[𝒘1, 𝒘2, ⋯ , 𝒘𝑘] ∈ ℝ𝑠×𝑘 be the 𝑘 leading eigenvectors of the matrix 
1

𝑠
(𝑯𝑟)𝑇(𝑯𝑟) ∈ ℝ𝑠×𝑠. In this way, 

one can obtain 𝑾𝐹𝐸 = 𝑯𝑟𝑾 ∈ ℝ𝑑×𝑘 as a projection matrix composed by the first 𝑘 fractional 

eigenfaces of the dataset 𝑽. With 𝑾𝐹𝐸 in hand, the training feature vectors can be calculated by the 
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following fractional transformation: 

𝒀 = {𝒚𝑖}𝑖=1
𝑠 ,     𝒚𝑖 = 𝑾𝐹𝐸

𝑇 (𝒂𝑖
𝑟 − (�̅�)𝑟) ∈ ℝ𝑘. (4) 

Moreover, 𝒙 = 𝑾𝐹𝐸
𝑇 (𝒃𝑟 − (�̅�)𝑟) ∈ ℝ𝑘 is the feature vector of a particular test sample 𝒃 ∈ ℝ𝑑.    

Apart from facilitating the application of FPCA, the FE provides a noticeable enhancement in face 

recognition accuracy. This can mainly be attributed to the projection of the fractional transformed 

images in place of the original images in FPCA. 

2.3 2DPCA 

In [10], Yang et al. introduced 2DPCA, which, unlike PCA, evaluates the covariance matrix using the 

2D images without going through the image-vectorization step. As a result, 2DPCA guarantees 

appropriate preservation of the facial statistical information with low computational cost, hence 

benefiting the representation and recognition of the facial images.    

In the basic formulation, 2DPCA learns a projection matrix such that the overall scatter of the projected 

training samples is maximized. More concretely, for the training dataset 𝑨 = {𝑨𝑖}𝑖=1
𝑠 , 𝑨𝑖 ∈ ℝ𝑚×𝑛 , 

2DPCA first determines the image covariance matrix (𝑪2𝐷𝑃𝐶𝐴) as: 

𝑪2𝐷𝑃𝐶𝐴 =
1

𝑠
∑(𝑨𝑖 − �̅�)𝑇

𝑠

𝑖=1

(𝑨𝑖 − �̅�) ∈ ℝ𝑛×𝑛, (5) 

where �̅� = 1/𝑠(∑ 𝑨𝑖)𝑠
𝑖=1  denotes the mean image of 𝑨. After that, the projective matrix 𝑾2𝐷𝑃𝐶𝐴 =

[𝒘1, 𝒘2, ⋯ , 𝒘𝑘] ∈ ℝ𝑛×𝑘 is made with the 𝑘 top orthonormal eigenvectors of 𝑪2𝐷𝑃𝐶𝐴. It follows that the 

projection of each training sample 𝑨𝑖 onto 𝑾2𝐷𝑃𝐶𝐴 makes a set of feature matrices according to the 

number of training samples; that is: 

𝒀 = {𝒀𝑖}𝑖=1
𝑠 ,     𝒀𝑖 = 𝑨𝑖𝑾2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑘. (6) 

For classification, the feature matrix 𝑿 = 𝑩𝑾2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑘  of a test image 𝑩 ∈ ℝ𝑚×𝑛  is matched 

with the training feature matrices and is given a class membership of its nearest neighbor. 

2.4 Fractional 2DPCA 

F2DPCA [25] is similar to 2DPCA, except that the covariance matrix is calculated using the fractional 

transformed 2D images. This implies that, in addition to the inherited properties from 2DPCA, F2DPCA 

preserves the facial structural information with less impact from the unwanted variations. In more detail, 

for the training dataset 𝑨, the FCM (𝑪𝐹2𝐷𝑃𝐶𝐴) is computed as: 

𝑪𝐹2𝐷𝑃𝐶𝐴 =
1

𝑠
∑(𝑨𝑖

𝑟 − (�̅�)𝑟)𝑇

𝑠

𝑖=1

(𝑨𝑖
𝑟 − (�̅�)𝑟) ∈ ℝ𝑛×𝑛. (7) 

Here, 𝑨𝑖
𝑟 = (𝑎𝑗𝑙

𝑟 )
𝑖
, where 𝑗 = 1,2 ⋯ , 𝑚 and 𝑙 = 1,2 ⋯ , 𝑛. As in 2DPCA, suppose that 𝑾𝐹2𝐷𝑃𝐶𝐴 =

[𝒘1, 𝒘2, ⋯ , 𝒘𝑘] ∈ ℝ𝑛×𝑘 is the F2DPCA projection matrix. And along similar lines, the training feature 

matrices can be produced using Eq. (6) with 𝑾2𝐷𝑃𝐶𝐴 replaced by 𝑾𝐹2𝐷𝑃𝐶𝐴 as follows: 

𝒀 = {𝒀𝑖}𝑖=1
𝑠 ,     𝒀𝑖 = 𝐴𝑖𝑾𝐹2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑘 . (8) 

This also applies to the test images. So, for a given test image 𝑩, the feature matrix is obtained as 𝑿 =
𝑩𝑾𝐹2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑘. 

3. IMPROVED F2DPCA 

Essentially, the proposed IF2DPCA method can be regarded as an appearance-based modeling problem. 

In the training phase, IF2DPCA generates compact representations of the facial appearances from a set 

of fractional transformed 2D images. During the testing phase, given an unknown face image, the face 

identity can be revealed from the compact representations with the aid of a classifier.  

3.1 IF2DPCA Formulation 

As aforementioned, in the formulation of the F2DPCA model, both the selected eigenvectors of 

fractional (𝑟 −order) covariance matrix and the original training samples have participated in the 

computation of the feature matrices. In the majority of cases, assuming the original images, there is still 
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a potential for retaining a high level of unwanted information in the projected subspace. Further to this, 

according to the 2DPCA theory, it is supposed that the projection matrix maximizes the overall scatter 

of the projected training samples. Arguably, F2DPCA lacks this property. For the sake of dealing with 

these two concerns, the proposed IF2DPCA method considers the fractional transformed images rather 

than the original images in the formation of feature matrices. In other words, IF2DPCA and F2DPCA 

are identical with regard to the definition of the FCM, but differ in the way that they compute the feature 

matrices. More specifically, IF2DPCA projects the fractional transformed images while F2DPCA 

projects the raw images.  

Let 𝑨𝑟 = {𝑨𝑖
𝑟}𝑖=1

𝑠 , 𝑨𝑖
𝑟 ∈ ℝ𝑚×𝑛, be the fractional transformed version of the training data 𝑨 and let 𝑾 ∈

ℝ𝑛×𝑛 be a projection matrix. The projection of each fractional transformed sample into 𝑾 yields the 

following projected feature matrices: 

𝒀𝑖 = 𝑨𝑖
𝑟𝑾 ∈ ℝ𝑚×𝑛, 𝑖 = 1, 2, ⋯ , 𝑠. (9) 

As indicated in [10], the criterion of the total scatter, 𝐽(𝑾), can be modeled by means of the trace of the 

covariance matrix, 𝑪, of the feature matrices; that is: 

𝐽(𝑾) = 𝑡𝑟(𝑪). (10) 

In our case, the covariance matrix 𝑪 is defined by 

𝑪 =
1

𝑠
∑(𝒀𝑖 − �̅�)(𝒀𝑖 − �̅�)𝑇

𝑠

𝑖=1

∈ ℝ𝑚×𝑚 ==
1

𝑠
∑[(𝑨𝑖

𝑟 − (�̅�)𝑟)𝑾] [(𝑨𝑖
𝑟 − (�̅�)𝑟)𝑾]𝑇 ,

𝑠

𝑖=1

            (11) 

where �̅� denotes the mean of the feature matrices. Therefore,  

𝑡𝑟(𝑪) = 𝑾𝑇 [
1

𝑠
∑(𝑨𝑖

𝑟 − (�̅�)𝑟)𝑇(𝑨𝑖
𝑟 − (�̅�)𝑟)

𝑠

𝑖=1

] 𝑾 ∈ ℝ𝑛×𝑛 = 𝑾𝑇𝑪𝐼𝐹2𝐷𝑃𝐶𝐴𝑾,               (12) 

where 𝑪𝐼𝐹2𝐷𝑃𝐶𝐴 ∈ ℝ𝑛×𝑛 is the fractional covariance matrix of 𝑨𝑟 and it is by default positive semi-

definite. Given this, the goal is now to find a set of orthonormal projection vectors, 𝒘1, 𝒘2 ⋯ , 𝒘𝑘, 

maximizing 𝐽(𝑾); that is: 

   

{𝒘1, 𝒘2 ⋯ , 𝒘𝑘} = argmax𝐽(𝑾)

                     𝑠. 𝑡.  𝒘𝑖
𝑇𝒘𝑗 = {

1,   𝑖 = 𝑗
0,   𝑖 ≠ 𝑗

    𝑖, 𝑗 = 1,2, ⋯ , 𝑘 .  
(13) 

This says that these vectors are the 𝑘 predominant orthonormal eigenvectors of 𝑪𝐼𝐹2𝐷𝑃𝐶𝐴. Having thus 

obtained the projection vectors, the IF2DPCA projective matrix can be formed as follows: 

𝑾𝐼𝐹2𝐷𝑃𝐶𝐴 = [𝒘1, 𝒘2, ⋯ , 𝒘𝑘] ∈ ℝ𝑛×𝑘. (14) 

The 𝑾𝐼𝐹2𝐷𝑃𝐶𝐴 is then used to transform each fractional transformed image into a features matrix, 

creating a set of training feature matrices: 

𝒀 = {𝒀𝑖}𝑖=1
𝑠 ,     𝒀𝑖 = 𝑨𝑖

𝑟𝑾𝐼𝐹2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑘 . (15) 

3.2 Face Classification 

After the training phase, the extracted feature matrices are employed for classification. During testing, 

upon computing the feature matrix 𝑿 = 𝑩𝑟𝑾𝐼𝐹2𝐷𝑃𝐶𝐴 ∈ ℝ𝑚×𝑘 of the fractional transform test image 

𝑩𝑟, the minimum distance between 𝑿 and 𝒀 = {𝒀𝑖}𝑖=1
𝑠 is the evidence that the test image belongs to any 

of the 𝑐 classes of the training dataset. More specifically, let 𝐷𝑗 denote the minimum distance between 

𝑿 and the feature matrices in the 𝑗th class, calculated as follows:  

𝐷𝑗 = min
𝑖∈𝑗

(‖𝑿 − 𝒀𝑖‖𝐹) , 𝑗 = 1, 2, ⋯ , 𝑐. (16) 

Here, ‖∙‖𝐹 stands for the standard Frobenius norm. Accordingly, the test image is assigned to the class 

𝑗 for which 𝐷𝑗 is the minimum among all the classes. 

4. EXPERIMENTAL RESULTS 

In this section, a set of experiments is presented to confirm the utility of the proposed IF2DPCA model 

in face recognition. Three public facial datasets (ORL [32], Yale [6] and Georgia Tech [33]) are used to 
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evaluate the recognition performance of IF2DPCA and compare it against PCA [31], FPCA [25], FE 

[26], 2DPCA [10] and F2DPCA [25]. Throughout experiments, the nearest neighbor classifier is 

deployed to carry out the classification task. Note that this classifier is based on the Euclidean distance 

and the Frobenius norm for the 1D and 2D methods, respectively. 

4.1 Results on ORL 

The ORL facial dataset is made up of 40 classes, each with 10 grayscale images. The samples of a 

distinct class are collected under different lighting conditions, facial expressions, poses and facial details 

(such as glasses or no glasses). Within this dataset, all images are resized from 112 × 92 to 28 × 23 

pixels [25]. Figure 1 shows the samples of one class in the ORL. 

 

 

Figure 1. Samples of one class in the ORL dataset. 

In the experiments, the first 𝑞 (𝑞 = 2, 3, 4, 5) images per class are kept to act as the training set and the 

leftover images compose the testing set. In addition, the value of 𝑟 is set to 0.01, as this value exhibits 

the best recognition performance for FPCA-like methods [25] and FE [26] on the ORL dataset. For a 

certain 𝑞, the number of eigenvectors (𝑘) increases form 1 to 20. Under this setting, the size of the 

learned projection matrices for PCA, FPCA and FE is 644 × 𝑘 and for 2DPCA, F2DPCA and IF2DPCA 

is 23 × 𝑘. Figure 2 depicts the recognition rates of the six methods. Figure 2 a, b, c and d show the 

results when 𝑞 is set to 2, 3, 4 and 5, respectively. As observed, compared with other methods, the 

recognition rate of the IF2DPCA method is the most dominant when considering the same number of 

eigenvectors in all cases. 

 
                                (a) 𝑞 = 2                                                               (b) 𝑞 = 3 

 
                             (c) 𝑞 = 4                                                         (d) 𝑞 = 5 

Figure 2. The recognition rates of the IF2DPCA and competitor methods on the ORL dataset. 
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The experimental results of each method in terms of maximal recognition rate (MRR) and average 

recognition rate (ARR) are presented in Table 1. Note that the number of eigenvectors corresponding to 

the achieved MRR is displayed in parentheses. Based on the results shown in Table 1, the IF2DPCA 

model consistently produced the MRR at the lowest dimension among the tested methods. For example, 

with 𝑞 = 3, IF2DPCA achieved MRR of 89.28% (𝑘 = 5), whereas the MRRs for F2DPCA, 2DPCA, 

FE, FPCA, and PCA are 87.07% (𝑘 = 5), 85.35% (𝑘 = 15), 84.64% (𝑘 = 17), 82.14% (𝑘 = 19), and 

79.64% (𝑘 = 20), respectively. From this table, it can be seen again that IF2DPCA outperformed the 

competitors regarding the ARR with the same number of eigenvectors. In the comparison with the FCM-

based methods, IF2DPCA showed improvement over F2DPCA, FE, and FPCA by about 2.5%, 14%, 

and 17.5%, respectively. This set of results emphasizes the benefits of using the fractional transformed 

images instead of the original ones in F2DPCA. 

4.2 Results on Yale 

The Yale faces dataset is composed of 165 frontal-view grayscale images representing 15 different 

classes, where for each class, there are 11 images acquired with various variations in lighting conditions, 

face expressions and face details. In this group of experiments, the head part of each image is manually 

cropped and normalized to 40 × 40 pixels. The cropped images of one class are shown in Figure 3. 

 

 
Figure 3. Cropped samples of one person in the Yale dataset. 

Table 1.  The MRR (%) and ARR (%) on the ORL dataset. 

Method 

𝒒 = 𝟐 𝒒 = 𝟑 𝒒 = 𝟒 𝒒 = 𝟓 

MRR (𝒌) ARR MRR (𝒌) ARR MRR (𝒌) ARR MRR (𝒌) ARR 

PCA 76.87 (20) 65.70 79.64 (20) 67.55 83.75 (20) 71.62 87.00 (19) 74.77 

FPCA 80.31 (20) 68.53 82.14 (19) 70.32 85.41 (19) 74.06 88.50 (19) 77.25 

FE 83.12 (19) 72.53 84.64 (17) 73.50 87.50 (19) 75.41 91.50 (17) 79.07 

2DPCA 84.37 (4) 81.87 85.35 (15) 84.32 89.16 (8) 87.89 92.00 (10) 90.22 

F2DPCA 86.31 (2) 83.48 87.07 (5) 85.75 90.16 (9) 88.87 93.50 (6) 91.85 

IF2DPCA 88.43 (2) 87.07 89.28 (5) 87.91 92.08 (9) 90.75 95.50 (8) 94.00 

In the following experiments, for each class, the first 𝑞 (𝑞 = 2, 3, 4, 5) images are chosen to constitute 

the training set and the rest are used for testing purposes. For the FCM-based methods, the value of 𝑟 is 

assigned to be 0.2 [25]. Further, with each 𝑞, the recognition performance of each method is tested by 

changing the number of eigenvectors (𝑘) from 1 to 20. This implies that the size of the projective 

matrices for the 1D methods is 1600 × 𝑘, whereas for the 2D methods, it is 40 × 𝑘.  

 

 

 

 

 

 

 

 

                             (a) 𝑞 = 2                                                                (b) 𝑞 = 3 
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                             (c) 𝑞 = 4                                                                (d) 𝑞 = 5 

Figure 4. The recognition rates of the IF2DPCA and competitor methods on the Yale dataset. 

The obtained recognition rates of the PCA, FPCA, FE, 2DPCA, F2DPCA and IF2DPCA methods are 

shown in Figure 4. More specifically, Figures 4a, b, c and d display the recognition rates in the cases 

that = 2, 3, 4 𝑎𝑛𝑑 5, respectively. Table 2 lists the MRRs and ARRs of the six methods. 

Table 2. The MRR (%) and ARR (%) on the Yale dataset. 

Method 

𝒒 = 𝟐 𝒒 = 𝟑 𝒒 = 𝟒 𝒒 = 𝟓 

MRR (𝒌) ARR MRR (𝒌) ARR MRR (𝒌) ARR MRR (𝒌) ARR 

PCA 83.18 (17) 69.03 83.50 (19) 70.46 87.61 (19) 71.95 90.00 (16) 73.07 

FPCA 84.44 (15) 70.77 84.50 (15) 72.54 88.57 (17) 73.40 88.66 (16) 75.10 

FE 85.18 (14) 73.88 85.16 (11) 75.70 88.57 (17) 77.30 91.11 (12) 80.67 

2DPCA 85.92 (12) 83.07 87.83 (9) 84.58 89.52 (9) 87.60 93.33 (13) 90.11 

F2DPCA 86.92 (10) 84.82 88.80 (9) 85.44 90.31 (8) 88.86 93.82 (11) 91.09 

IF2DPCA 88.88 (8) 87.03 91.50 (3) 89.33 93.33 (8) 92.04 94.44 (8) 93.27 

4.3 Results on Georgia Tech 

The Georgia Tech face dataset comprises color images of 50 persons, each with 15 facial images taken 

under different illumination conditions, facial expressions, details and viewpoints. In the experiments, 

all the images are converted into grayscale and the head part of each image is manually cropped into a 

size of 50 × 40 pixels. The cropped images of one person are shown in Figure 5. 

For evaluation purposes, the first 𝑞 = 10 and 13 images per person are employed to construct the 

training set and the others served as testing samples. With this dataset, following the suggestion in [25], 

the value of 𝑟 is set to 0.01 based on the cumulative contribution rate of the dominant eigenvalues. As 

before, for each 𝑞, the number of the eigenvectors (𝑘) is increased from 1 to 20. Accordingly, the sizes 

of the resulting projective matrices for the 1D and 2D methods are 2000 × 𝑘 and 40 × 𝑘, respectively. 

 

 

Figure 5. Cropped images of one person in Georgia Tech face dataset. 

The results of the experiments on this dataset are displayed in Figures 6 a and b when 𝑞 = 10 and 13, 

respectively. As shown, IF2DPCA consistently gives a better recognition rate than any of the five 

competitor methods. Table 3 reports the achieved MRRs and ARRs by the six methods. As can be seen 

in the table, with 𝑞 = 10, IF2DPCA reached an MRR of 83.80% at the lowest dimension (𝑘 = 4) among 

all the methods. Results from Table 3 also show that IF2DPCA achieved ARRs surpassing those of 

F2DPCA, 2DPCA, FE, FPCA and PCA by about 1.5%, 2%, 15%, 16% and 18%, respectively. 
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Furthermore, as shown in the same table, when 𝑞 = 13, the reported MRRs and ARRs of the six methods 

exhibit the same tendencies as with the previous case. These results further affirm the potential utility 

of IF2DPCA as an alternative to F2DPCA. 

 
                            (a) 𝑞 = 10                                                              (b) 𝑞 = 13 

Figure 6. The recognition rates of the IF2DPCA and competitor methods on the Georgia Tech dataset. 

Table 3.  The MRR (%) and ARR (%) on the Georgia Tech dataset. 

Method 

𝒒 = 𝟏𝟎 𝒒 = 𝟏𝟑 

MRR (𝒌) ARR MRR (𝒌) ARR 

PCA 75.00 (13) 64.15 83.00 (19) 70.20 

FPCA 76.40 (14) 65.90 84.00 (19) 72.45 

FE 77.80 (13) 67.45 84.00 (11) 74.95 

2DPCA 82.40 (6) 80.12 88.00 (2) 85.00 

F2DPCA 82.80 (5) 80.74 88.00 (2) 85.85 

IF2DPCA 83.80 (4) 82.23 90.00 (2) 87.40 

4.4 Discussion 

As stated in the introduction, the primary objective of this paper is to utilize the theory of FCM and 

fractional transformed 2D images in order to develop IF2DPCA as an extension of F2DPCA. The key 

difference between IF2DPCA and F2DPCA lies in the fact that the former uses fractional transformed 

images throughout the entire recognition task. Judging by the results of experiments on two facial 

datasets, the recognition rates are consistently better with the feature matrices extracted by IF2DPCA, 

so it can be considered as a suitable alternative to F2DPCA. The same remark can also be made when 

comparing FE with FPCA. In other words, among all the competing methods, IF2DPCA offered the 

best recognition performance in terms of MRR and ARR, whilst FE outperformed its counterpart 

methods; i.e., FPCA and PCA. Such results strengthen the significance of fractional transformation in 

the face recognition task as a way to reduce the negative impact of undesirable variations that are present 

in facial images.  

According to the theory of FCM, the value of the order 𝑟 in FCM-based methods can affect their 

recognition performances. Moreover, the optimal value of this parameter depends on the characteristics 

of a particular facial dataset. However, in this work, the values of 𝑟 for the ORL, Yale and  Georgia 

Tech face datasets are set following the procedure in [25], where these values are empirically derived 

based on the cumulative contribution rate of the first 𝑘 eigenvalues.  

5. CONCLUSIONS 

In this paper, a direct extension of F2DPCA for face recognition, the IF2DPCA, is proposed. The 

IF2DPCA and F2DPCA methods are conceptually similar, but differ in that the former uses the 

fractional transformed 2D images not only for evaluating the fractional (𝑟 −order) covariance matrix, 

but also for extracting the feature matrices. With this formulation, the redefined feature matrices capture 

the inherent characteristics of facial images and are relatively insensitive to undesirable variations. The 

experiments on the ORL, Yale and Georgia Tech face datasets demonstrate the utility of the suggested 

method and exhibit that in all cases, IF2DPCA outperforms F2DPCA, 2DPCA, FE, FPCA and PCA in 

terms of maximal and average recognition rates. 
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Obviously, the idea of the proposed IF2DPCA method can be easily adapted for other versions of 

2DPCA. Another future work may focus on developing a sophisticated algorithm for identifying the 

optimal value of the fractional order. 
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ث:البحملخص   

تعدددددددة تحليلددددددداتتالرددددددديتالبُعددددددددالتالليرتدددددددراتز تالرععدددددددةي  ت ددددددد تال  ل ردددددددالتزالتالار ددددددد تال ل ددددددد ت

البتددددد فة اتثددددد تتب رددددديتالعلدددددعكتنتبرر مدددددايتنللم بددددداتقدددددا تالددددد  ب تالبعردددددا  ت ددددد تمددددد كتال ل ردددددات

(2DPCAت لدددددددمتدادددددددعِتقددددددداِ ت ددددددد   دددددددبالتالبعلع دددددددالتلنر  ن (تغردددددددلتلدددددددا ِ ت لدددددددمتا ددددددد فعلت ن

تنلدددددع تالبعلع دددددالت ددددددع تاد ددددددلراتللعلدددددعكتثدددددد ت ددددددي  تغر ددددددلالِتثدددددد تالر رعيدددددداتالُا  دددددداتثددددد تال  

تلعلعكتن اتالمتزلكيلتا لن تالإضاءةتنتعامر

ددددد اتتلدددددع ت لدددددمتال  الرددددديتالج يددددد ت نلبعالجددددداتزلدددددكتالل دددددع رتتل دددددلحتمددددد كتالع لددددداتحليلدددددات ات 

دددددددالتالليرتددددددرات) ا  ددددددةا ت(رتنمدددددد تمب امدددددداتIF2DPCAز تالرععددددددةي  تالبتدددددد  ةتالددددددمتتالردددددديتالبُع 

(تالددددددد  تF2DPCA تز تالرععدددددددة ي تما ددددددد فةا تتالرددددددديتالبُعددددددددالتالليرتدددددددرات)يدددددددلل  الرددددددديتالج 

ت لددددددددمت  دددددددد عثاتال  غر ددددددددلالتالب دددددددد لقاتالج يرددددددددات) (يتنتتدددددددد فة تFCMتدددددددده تتاددددددددعيلكتم دددددددداءا

تF2DPCA(تنت)IF2DPCAالاليل دددددددددا ت) (تالبردددددددددةعتد تدددددددددقتلددددددددد عل هت  ددددددددد عثات  دددددددددلاحرت   تع  

ددددد ت ددددد تا ددددد دددددع تزالتالرععدددددة ي ت ردددددلتالاليلددددداتالبل لسددددداتتع    فةا تادلددددد اءتالب اعلدددددات ددددد تال  

ددددد ات ددددد   تثددددد تالا ليلددددداتالبات  تالار ددددد تال ل ددددد تالبع  ب   هبددددداتال  بررددددد تمُا لهدددددايتند رجدددددااتلددددد لكرتثدددددف  

دددددع تالعلدددددعكت البل لسددددداتياددددداثتت لدددددمتالبا دددددعّتالددددد  تي ادددددع ت لدددددمتعمددددده تالبعلع دددددالتثددددد ت ع

تستا  دددددددراتلل  غر دددددددلالتثددددددد ت دددددددلن تالإضددددددداءةتزالتالرععدددددددة ي رتنت دددددددريت بلرددددددداتال  بررددددددد تعلدددددددي 

تنتعامرلتالعلقتنغرلمايت

دددددد  دددددد اتالبل لسددددددات لددددددمت ددددددعِ ت دددددد ت جبع ددددددالتالررادددددددال ت زتتنلددددددةتتب  تجلمدددددداتالا ليلدددددداتالبات 

تع ر  تثعالر هاتث تتبرر تالعلعكي
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