
206

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

M. Sohani and S. C. Jain are with the Department of Computer Science and Engineering, Rajasthan Technical University, Kota-324010,

India. Emails: sohanimayank@gmail.com and scjain1@gmail.com

FAULT TOLERANCE USING SELF-HEALING SLA AND

LOAD BALANCED DYNAMIC RESOURCE

PROVISIONING IN CLOUD COMPUTING

Mayank Sohani and S. C. Jain

(Received: 13-May-2021, Revised: 22-May-2021, Accepted: 24-May-2021)

ABSTRACT

Over the internet, application efficiency management has recently emerged as an essential service cloud

computing. The Cloud Service Provider (CSP) gives various cloud services based on pay per use, which requires

efficient monitoring and measuring of services delivered for management of Quality of Service (QoS) through the

Internet of Things (IoT) and therefore needs to fulfil the Service Level Agreements (SLAs). However, avoiding SLA

violations and ensuring a user’s dynamic demands as per QoS fulfilment are challenging in cloud computing while

delivering dedicated cloud services. Cloud environment intricacy, heterogeneity and dynamism are expanding

quickly, making cloud frameworks unmanageable and unreliable. Cloud systems need self-management of services

to overcome these issues. Therefore, there is a need to develop a resource-provisioning scheme that automatically

fulfils cloud user’s QoS requirements, thus helping the CSP accomplish the SLAs and avoid SLA violations. This

paper presents a prediction-based resource management technique called Predictive Cloud Computing Systems

(PCCSs). Focus is on the self-healing-based prediction that handles unexpected failures and self-configuration-

based prediction of resources for applications. The Predictive Cloud Computing System (PCCS) performance is

evaluated in the cloud simulator. The simulation results revealed that Predictive Cloud Computing Systems

(PCCSs) achieve better results than existing techniques, in terms of execution time, cost-effectiveness, resource

conflict and SLA breach while delivering reliable services.

KEYWORDS

Quality of service, Cloud-service provider, Service-level agreement, Service-level objective, Predictive cloud

computing system.

1. INTRODUCTION

Cloud computing focuses on QoS parameters, such as throughput, response time, availability, capability,

service cost and reliability, among others. The QoS parameters play a vital role in the ranking of service

providers. QoS parameters are continuously monitored and controlled by service providers to avoid SLA

breaches. According to the study and analysis, it is reported that the Virtual Machine (VM) requires

different durations of boot time before it is ready to operate [1] [2] [3]. The VM needs 5 to 15 minutes

to get started; therefore, during this time, system resources would not be available and the requests could

not be served due to lack of resources. This leads to an infringement of SLA and due to this, penalties

on cloud providers are imposed. Our objective is to design a solution for provisioning and predicting

the need for a VM in advance. Making it available only on time could maintain the level of availability

and prevent violations of the SLA [4]. This research will discuss cloud computing advantages, such as

up-front costs, lower infrastructure maintenance and ease of resource scaling for the users. Cloud

computing has various benefits and many issues of energy consumption, resource utilization, VM

migration and service-level agreement (SLA) violations [5]-[6]. In this paper, we are using a threshold-

based Virtual Machine Consolidation (VMC) strategy. Many issues of the resources need to be

addressed. Therefore, VM consolidation (VMC) is the best way to solve them.

In cloud computing, unpredictable situations are handled by an intelligent autonomic system that keeps

the system stable based on human guidance and easily adapted to new environmental conditions, such

as hardware, software failures, …etc. This system can quickly handle the heterogeneity, availability,

reliability and dynamism problems. The system works through monitoring, analyzing, planning and

execution phases in a controlled way in order to achieve the application execution goal within the

deadline by fulfilling the user’s defined QoS parameters with minimum complexity. Virtual machine

207

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

optimum utilization is highly desirable to maintain the required SLA and it is achieved by virtual

machine dynamic consolidation. The live VM migration is used for VM reallocation as per current

resource workload demands of users and reduces energy consumption [7] [8] [9] [10] [11]. However,

virtual machine migration tends to increase application execution latency and infrastructure energy

overheads. Many factors are considered in migration cost, such as the number of virtual machines

considered for migration, network bandwidth viewed for migration, memory content update rate of the

virtual machine, source and destination servers’ workload at the time of migration [12]-[13]. During

migration cost investigation quantitatively, the power consumption and time of migration linearly

increase as network bandwidth and size of VM increase, respectively, whereas migration time decreases

if the increase in bandwidth and increases if the VM memory size increases [14]-[15].

Various research literature focuses only on the current resource requirements of the destination host.

The future utilization has not been discussed more at the time of the VM allocation stage. That will

generate needless VM migrations that would result in more energy consumption and increase SLA

violations in the data center [16]. This paper proposes a new prediction-based method for different

resource utilizations; i.e., CPU, memory and network. The work focused on the memory utilization of

these resources on the hosts at the time of VM placement. Our proposed method is a prediction model

based on feedforward neural networks with backpropagation for linear regression-based prediction

models. Our detection technique is responsible for current and future resource utilization on the hosts

before placing VMs.

As per QoS requirements, a predictive cloud computing system provides self-management of resources

that fulfils the following properties of self-management:

 This paper presents a detailed analysis of selected resource provisioning techniques that work

for QoS requirements, VM migration strategies, load balancing techniques and SLA violation

monitoring schemes.

 It proposes and implements an algorithm for predicting the workload in cloud computing

systems.

 The proposed algorithm improves self-healing in a predictive cloud computing system as a

capability of the system to identify, analyze and recover from unfortunate faults automatically.

 It proposes and implements self-configuration in a predictive cloud-computing system, which

is an indicator of the capability of the system to adapt to the changes in the cloud environment.

 It proposes and implements a new VM migration and load balancing scheme for the cloud-

computing system.

In our earlier work, QoS-based Predictive Priority-based Dynamic Resource Provisioning Scheme [17]

is proposed. The Predictive Priority-based Dynamic Resource Provisioning Scheme is a novel approach

for predicting priority-based scheduling schemes. This explores a new approach that is an efficient

emergency priority-aware algorithm. In this scheme, we consider the emergency cloud request and

priority is given to load that emergency cloud requests for execution. This will ensure the load request

availability and longevity of more sophisticated requests in heterogeneous cloud computing

environments without SLA violation monitoring [18]. To realize this, QoS-aware autonomic resource

management of cloud services needs to be considered as a crucial aspect that reflects the cloud

management complexities. To design a resource management approach which can work as a QoS-based

autonomic approach, Predictive Priority-based Dynamic Resource Provisioning Scheme has been

further extended by proposing Predictive Cloud Computing System (PCCS). In this research work, a

resource management approach which can work as a QoS-based autonomic approach has been proposed

which offers fault tolerance using self-healing SLA and load balanced dynamic resource provisioning

in cloud computing, to handle sudden failures and provide cloud resource maximum utilization by self-

optimization.

The motivation of this paper is to design an intelligent cloud-based and QoS-aware autonomic resource

management approach called Fault Tolerance Using Self-healing and Load Balanced Dynamic Resource

Provisioning in Cloud Computing. This offers handling of sudden failures of resources through self-

healing, resource self-configuration for applications and maximum resource utilization through self-

optimization features. The proposed scheme works to minimize SLA violation rate, execution cost,

execution time and resource contention and maximize energy efficiency and resource utilization. The

PCCS performance is tested with a CloudSim simulation environment using PlanetLab workload traces.

208

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

PCCS increases service availability and reliability and improves satisfaction of cloud users. The rest of

the paper is organized as follows: Section 2 describes the related work, while the proposed model is

presented in Section 3. Section 4 presents the simulation setup, results and discussion. Section 5 presents

conclusions and future scope.

2. RELATED WORK

Many studies have investigated the SLA management systems in cloud computing, but SLA

enforcement is covered only by a few of them. Without considering enough cloud requirements, other

environments, such as grid computing and service-oriented architecture, applied the SLA models into

cloud computing as per most related works. In the self-healing system, the central part consists of system

monitoring and reacting procedures [19]. The Federated Cloud Trust Management Framework

(FCTMF) model resolves trust issues. It evaluates trust on the basis of SLA parameters and by customer

and CSP feedback [20]. SH-SLA models enforce the SLA monitoring and reacting procedures based on

SLA violations in cloud computing. Each SLA is connected with its related SLAs in different layers of

the SH-SLA model of cloud computing, so that all corresponding SLAs can notify their status to each

SLA. So, cloud service providers can prevent SLA violations before sensing by the end-users without

addressing cost and energy consumption QoS parameters [21]. RADAR technique performs autonomic-

management properties for self-healing and self-configuration handled during unexpected failures of

service and resource configurations, respectively, with minimum human intervention and gives better

results for QoS parameters along with managing hardware, software or network faults, but the study

unable to address the self-protecting property [22]. Existing approaches consider a host overloaded

detection based on threshold-based host CPU utilization and consider available bandwidth equal to base

bandwidth, thus leading to performance degradation. The overloaded host VM migration or reallocation

towards another under loaded host machine is not addressed in this study [23]. Previous proposed work

assumptions are not based on energy consumption and violations of SLA considering network traffic.

Energy consumption can be minimized by existing methods considering the size and current utilization

of VM, but network traffic can also affect SLA violations [24].

In the cloud environment, this will provide capable monitoring that would be able to share resources in

Clouds. In [25], the authors offer the solution cloud federalism, where the different cloud vendors the

cloud services in an integrated manner. The Cloud Burst is the best example of cloud federalism. In

[26], the authors’ discussion is about resource management's performance with the help of live

migration. This feature is added in the cloud system that has to provide excellent services into the cloud

environment of active fault tolerance by flawless Virtual Machine movement. The consumer is not being

aware of any change in a virtualized environment from wavering hardware to unwavering hardware. In

these models, virtual technologies have provided resource consolidation with minimum energy

consumption and are unable to address the issue of self-management [27]-[28]. Resource over-

provisioning can be solved by VM placement as per the VM resource requirements independently based

on their requests. Placing more VMs on the same PM by sharing hardware resources exceeds its physical

capacity [29]. Unfortunately, over-commitment affects the application performance with QoS violations

and SLA penalties by congesting limited PM resources [30]. In UP-VMC, resource requirements for

current and future utilization consolidate the VMs with the minimum quantity of active PMs. It uses

regression-based prediction for future and current resource utilization, enhancing the QoS and

minimizing the number of VM migrations, but application scalability and network resource utilization

factors are not addressed in this study [31].

In cloud computing, the overall response time of the system is reduced by load balancing and this policy

of workload distribution fulfills the QoS requirements along with efficient cloud resource utilization.

Several techniques were proposed; however, VM migration and fault tolerance issues are not still fully

addressed [32]. An ideal framework PRMF can identify current workload and future workload

prediction for provisioning/deprovisioning cloud resources as per the demand of application users. This

framework identifies given workload patterns with key evaluation metrics using statistical techniques.

It applies best-fit algorithms from algorithms using predictive methods to provision/de-provision VM

instances, but is unable to address issues, such as cost, makespan time and energy consumption [33].

Resource provisioning techniques are working based on predetermined considerations, are reactive and

are provided with leading CSPs. Under-or over-provisioning of resources is done in reactive approaches

that have time-lag in resource demand and provisioning. The study proposed a predictive technique for

209

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

cloud resource management to overcome these limitations [34]. In cloud computing, search optimization

methods are introduced by many studies, but there is still some scope to get enhanced search for optimal

solutions. To achieve this solution, many functions need to be involved; i.e., execution time, power

consumption, performance, QoS and SLA violation rate [35]. However, in some earlier works, the

maximum three objective functions are taken into consideration to get the optimal solution in cloud

computing. The ESCORT framework addresses these issues to optimize execution cost, energy

consumption and SLA violation rate [36].

A secure resource provisioning model with SLA integration is proposed to achieve many benefits for

cloud users’ and cloud service providers’ points of view. This secure provisioning model is used by

cloud service providers for the security parameters’ fulfilment purpose without considering other major

QoS parameters, such as execution time, cost, throughput, energy consumption [37], …etc. In cloud

computing applications, workload changes as per time and to fulfil such workload resource

requirements, cloud service providers dynamically allocate the resources. Dynamic resource

provisioning aims to improve resource utilization and reduce resource usage costs for cloud users [38].

To achieve profit-aware resource provisioning, the cloud service provider must provide less renting cost

with proper resource utilization to meet the QoS requirements. The dynamic resource provisioning

technique works as an effective technique for utilization of resources without considering energy

consumption and SLA violations. The goal is to minimize the resource rental cost and maximize

resource utilization for profit earning [39]. The CHOPPER framework works based on self-protection,

self-healing, self-optimization and self-configuration using three phases of self-management; i.e.,

Monitor, Analyze and Plan & Execute to address different QoS parameters, but it is unable to calculate

the workload resource demand in advance [40]. The increase of cloud users with peak time demands

makes the risk of resource faults during interactions with the cloud infrastructures match the execution

deadline. That can lead to resource contentions and damage the reputation of cloud service providers

due to non-consideration of cost and energy consumption in the study [41]. The authors propose an

MASA framework that works based on a healing agent and a consistency manager agent to handle the

runtime issues of resource provisioning and SLA violations, but it is unable to manage adaptive fault

tolerance scheme for cloud security solution [42].

3. PROPOSED MODEL

SLA is the most important part between the cloud service provider and the customer. SLA is a mutual

agreement between the cloud service provider and the customer. This Service Level Agreement (SLA)

is the official negotiation document at the service level and shall contain performance parameters along

with the minimum level of service quality. Our proposed SLA is including an automated cloud healing

process based on the above description and prediction. In the proposed method, each service has its

function of automatic healing and reaction. This SLA-based prediction will work on the threshold value

and related SLAs on the cloud user service. This threshold value helps prevent breaches of the SLA and

the specific QoS threshold. If the QoS value is higher than the threshold value, the state of violation

prevention shall be shown as active and autonomous healing gets activated.

The proposed prediction-based model optimizes cloud computing energy-efficient resources

automatically and considers essential aspects, such as configuration, prediction-based recovery,

optimization and protection and automatic QoS-aware resource management. Our most essential

contributions offer prediction-based intuitive design of cloud applications and resources by installing

missed or old H_Components. Prediction-based automatic healing is provided by handling sudden

failures, automatic protection against security attacks and automatic optimization as the resources are

being used optimally.

3.1 System Architecture

The system behavior and its entire structure are represented ultimately with the help of system

architecture only. That can define the system's architectural overview of the whole system. The main

aim of the proposed Predictive Cloud Computing System is to predict the future workload and ensure

resource provisioning in advance with the best suitable pair of resources to fulfil QoS requirements and

avoid any SLA violations occurring due to resource provisioning. The proposed model ensures resource

provisioning with less power consumption under low execution cost with the best reliable resource pairs

210

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

for allocation. Figure 1 represents the predictive cloud computing system’s architecture concept map.

Figure 1. Predictive cloud computing system’s architecture concept map.

The workload traces of PlanetLab are taken as an input dataset. The load analyzer performs analysis on

workload data based on time series and converts it from unstructured data into structured data as per

real-time workload traces received. The workload predictor predicts the future workload and based on

this prediction, cloud providers perform arrangement and provisioning of the resources as per QoS

requirements. The load analyzer takes care of the current resource utilization of all resource cloud nodes

available in the system.

The future workload is predicted based on current workload traces of Planet Lab and prepared structured

data based on time series. This predicted workload is used to maintain the SLA commitment towards

the cloud user service quality and availability. After predicting the future resource requirements, we can

ensure the availability of optimal VM resources and provision them under effective load balancing

techniques. The workflow diagram for a Predictive Cloud Computing System is represented in Figure

2. In PCCS, the user submits the request for services based on service types and their properties and

negotiation occurs between the user and the CSP. SLA is signed between users and CSP as per QoS

requirements and SLA terms. Now, CSP arranges the specific type of resources and sub-resources as

per user QoS requirements and provisions these resources for the services used by cloud users. Suppose

that required resources are not available in the resource pool. In that case, either renegotiation occurs

based on available resources in the resource pool or CSP finds new resources. If resources are available,

then the resource configuration is performed using a workflow template. The monitoring unit monitors

the entire execution process for user-submitted workload and the workload analyzer prepares a historical

workload database. The proposed PCCS applies a predictive cloud computing model on a historical

workload database and prepares predicted resources in advance to provide them shortly without

violation of the SLA. This PCCS prediction scheme ensures that required resources are ready to be used

in advance to save the extra time of provisioning users’ workload requests. Application workload is

executed using PCCS-provisioned resources. If any demand of current workload is remaining for

execution and the same notified by the monitoring unit, then the same is repeated to execute the

application workload. This entire process follows four phases; i.e., monitoring, analysis, planning and

execution concerning time t and updating estimates and actual resource consumption and workload

status. Resource configuration upgradation or reconfiguration is performed based on monitoring and

analyzing phase inputs for QoS, fault tolerance and SLA fulfilment. VM migration and load balancing

211

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

are automatically performed based on VM threshold values as per input given by monitoring, analysis,

planning and execution phases to the VM load balancer. The entire process gets stoped after the

execution of the user-submitted application workload.

Figure 2. Predictive cloud computing system’s workflow.

3.2 Workload Analyzer and Predictor

The workload analyzer plays an essential role in the framework to analyze the task load that can only

be done after the establishment of cloud infrastructure. The analyzer arranges the unstructured data into

structured data based on time series. As unstructured data is no more helpful to get the desired future

workload forecasting, the information that can help future workload forecasting is sequential structured

data.

Workload predictor is used to take this sequential structured data provided by the workload analyzer as

an input to forecast the future workload. Here, backpropagation-based prediction methodology is used,

where several input nodes are used to calculate the output using the process of training the workload

dataset by the supervised learning methodology. When the task load data formatting is done, it can be

used as structured data for quick forecasting purposes, which gives an accurate-manner prediction. This

process provides the advantages of automatic learning and reduces the time to fit the analyzer data for

every prediction purpose.

3.2.1 Host Server Selector and Manager

All the host machine details are listed and managed by the server. As per the workload request, the best

possible resources are ranked based on their configuration and performance metrics. These cloud

resources are then provisioned based on their performance ranks. The best VM is provisioned for new

user workload requests from the load balancer.

 3.2.2 Forecasting of Predicted Workload

Workload prediction is made on the historical workload data history using the backpropagation

algorithm. This algorithm works internally and is used to predict the workload of the near future as a

tool.

212

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

3.2.3 Host State Management

As per the predefined SLA requirements, the host state management performs the cloud resource

management as per the resultant prediction without compromising the SLA violations. The host

resources are continuously monitored by the host-state manager for their health parameters; i.e., time to

start, time to stop, total uptime and total downtime for every physical server.

3.2.4 Resource Requirement Forecasting Based on Prediction

In this scheme for forecasting, we are using the backpropagation algorithm, where for the forecast, the

future demand of resources is based on the past downtime history. The resource forecasting is carried

out using the following equation:

RE(t) = α ∗ RE(t − 1) + (1 − α) ∗ RO(t) 0 ≤ α ≤ 1, (1)

Here, RE(t) expresses the estimated resource and RO(t) represents the observed resource load during the

time t. α is portrayed as a constant that emulates the trade-off between constancy and communion. The

proposed model used it to forecast CPU utilization load, predicting the future load calculated in every

minute and forecasting immediately.

If the observed load RO(t) prediction is in sequential order; i.e., 30, 40, 50 and 60, then prediction for

the next term would be more accurate as 70 and then, the algorithm works correctly. Intermediate load

values are not forecast by the algorithm. To decrease and increase both order negative value depiction

purposes, the formula below for -10 is used in place of the above formula.

RE(t) = −|α| ∗ RE(t − 1) + (1 + |α|) ∗ RO(t) (2)

The Depiction for decreasing and increasing order creates confusion to select the exact value between

these two. To predict more accurate future workload, the formula is modified as shown below:

RE(t) = m ∗ RA(t − 1) (3)

where m is the multiplier and its value is calculated as:

m =
RA(t − 1)

RA(t − 2)
 (4)

Here, the resource-estimated load is calculated using actual resource load concerning time and a

multiplier value; i.e., m. This forecasting of workload based on prediction is very near to the relative

value of required resources by the cloud users in the near future. However, this prediction model needs

resources to predict the forecasting of required resources. To overcome the resource provisioning

wastage issues, this model gives perfect VM allocation requirements using backpropagation learning.

The above-defined model provides self-healing for sudden failures, self-protection against security

attacks and self-optimization as the resources are being used optimally.

(i) Our proposed model will have no human intervention requirements and will enhance the users’

satisfaction level. In this prediction-based model, SLA would efficiently control cloud users’ QoS needs

and improve the load balancing of the provisioned cloud resource utilization (CPU and memory). Our

proposed model optimizes execution cost, time and energy efficiency.

(ii) This model proposed the phases based on prediction-based properties and prediction is based on the

regression model. In the execution time of loads, prediction-based performance (QoS value)

continuously analyzes the plans and action to handle that message and executes the procedure to

maintain efficiency.

(iii) We have classified the load into different categories based on deadline emergency. That will help

investigate the impact of various workloads on different QoS parameters. The execution of workloads

would enhance the availability of cloud-based services and secure energy-efficiency reliability.

3.3 Metrics Based on QoS

The QoS parameters; i.e., waiting time, execution time, energy consumption and execution cost are

calculated for user-submitted workload as per the cloud environment consideration.

𝑊𝐸𝑇𝑖 = ∑ (
𝑊𝐹𝑇𝑖 − 𝑊𝐸𝑆𝑇𝑖

𝑛
)

𝑛

𝑖=1

 (5)

213

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

where 𝑊𝐸𝑇𝑖= workload execution time, 𝑊𝐹𝑇𝑖= workload finish time, 𝑊𝐸𝑆𝑇𝑖= workload execution

start time and 𝑛= number of workload.

𝑊𝑊𝑇𝑖 = ∑ (
𝑊𝐸𝑆𝑇𝑖 − 𝑊𝑆𝑇𝑖

𝑛
)

𝑛

𝑖=1

 (6)

where 𝑊𝑊𝑇𝑖= workload waiting time, 𝑊𝐸𝑆𝑇𝑖= workload execution start time, 𝑊𝑆𝑇𝑖= workload

submission time and n= number of workload.

𝑊𝐶𝑇𝑖 = 𝑊𝐸𝑇𝑖 + 𝑊𝑊𝑇𝑖 (7)

where 𝑊𝐶𝑇𝑖= workload completion time.

𝐸𝐶 = 𝐸𝐶𝑑𝑐 + 𝐸𝐶𝑚 + 𝐸𝐶𝑠𝑒 + 𝐸𝐶𝑒 (8)

where 𝐸𝐶= energy consumption, 𝐸𝐶𝑑𝑐= energy consumption of data center, 𝐸𝐶𝑚= storage-device

energy consumption, 𝐸𝐶𝑠𝑒= switching-equipment energy consumption and 𝐸𝐶𝑒= extra energy

consumption.

𝐴𝐶 = 𝑅𝐶 + 𝑃𝐶 (9)

𝑅𝐶 = 𝑊𝐸𝑇𝑖 × 𝑃𝑟𝑖𝑐𝑒 (10)

𝑃𝐶 = ∑(𝑃𝐶𝑖)

𝑐

𝑖=1

 (11)

where 𝐴𝐶= average cost, 𝑅𝐶= resource cost, 𝑃𝐶=penalty cost and 𝑐 ∈ 𝑃𝐶 = penalty cost set.

𝑅𝑈𝑖 = ∑ (
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 𝑆𝑝𝑒𝑛𝑡 𝑡𝑜 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑇𝑜𝑡𝑎𝑙 𝑈𝑝𝑡𝑖𝑚𝑒
) (12)

𝑛

𝑖=1

where 𝑅𝑈= resource utilization.

𝐹𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑢𝑙𝑡𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑢𝑙𝑡𝑠
 (13)

where 𝐹𝐷𝑅= fault detection rate.

3.4 Fault Tolerance Using Self-healing SLA and Load Balancing

In this paper, we are working on a prediction-based self-healing that is a part of proactive fault tolerance

(FT) in high-performance computing that prevents computing node failures from affecting running

parallel applications, so that nodes would be in the failure process [43]. In this research, our main

objective is to work on a prediction-based fault tolerance scheme in cloud computing. Our cloud model

approach will work based on the above-described cloud computing and prediction base technique and

improve the quality of services.

SLA is an essential document of mutual agreement between the cloud service provider and the customer.

In this SLA (Service Level Agreement), the official negotiation document at the service level, the QoS

and its service costs shall be agreed upon and shall contain performance parameters and a minimum

level of service quality. Our SLA is a proposed SLA, including an automated cloud healing process

based on the above description and prediction. In the proposed method, each service has its function of

automatic healing and reaction. This SLA-based prediction will work on the threshold value and related

SLAs on the cloud service for users. This threshold value helps prevent breaches of the SLA and the

specific QoS threshold. The QoS threshold value is compared to the SLO value recorded in the SLA

contents. If the QoS value is higher than the threshold value, the state of violation prevention shall be

shown as active and autonomous healing. In this paper, prediction-based self-optimization of cloud

computing energy-efficient resources, proposing QoS-aware autonomic resource management,

considers other essential aspects, such as self-configuration, prediction-based self-healing, self-

optimization and self-protection as proposed in algorithms 1, 2 and 3.

The significant contributions of this paper offer prediction-based self-configuration. Algorithm 1

describes the makespan as per MIPS of VM using machHigh and machLow. The task finish time is

calculated and is considered as makespan time. This calculated makespan time is then added to predicted

task execution time of a VM. If [P_comTimejj< makespan & P_comTimej< makespan] both are true

214

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

for makespan time, then swap respective parameters; i.e., makespan, task and machine, get executed.

After complete execution, makespan time is returned as a value. Our proposed model works for cloud

applications and resources on a prediction base that would be installed if the component or cloud

application is missing.

Algorithm 1: Prediction of Workload

1. For all Mi ∈ machHigh do

2. For all Mj ∈ machLow do

3. For Tk ∈ Mi do

4. P_comTimejj ←computeFinishTime (Mj)

5. P_comTimejj ← P_comTimejj + PredictiveExecutionTime of Tk on Mj

6. P_comTimej ← makespan_PredictiveExecutionTime of Tk on Mi

7. If P_comTimejj< makespan then

8. If P_comTimej< makespan then

9. Makespan ← P_comTimejj

10. task ← Tk

11. Machine ← Mj

12. End if

13. End if

14. End for

15. End for

16. End for
17. return makespan

In this prediction-based SLA, we aim to predict based healing; therefore, our scheme is a prediction-

based algorithm. SLA is a document that is a mutual agreement between client and provider. Our

proposed SLA relies on prediction based on load balancing of resources between client and cloud

provider. In this framework for load balancing, we create a priority queue of loads and, based on the

prediction priority queue, add the load into the priority queue according to a criterion. This criterion is

based on threshold values. This load priority queue manages the resources according to predicted

execution time and energy consumption and maintains the priority queue; therefore, deadlock is solved

according to prediction-based priority queue. In this scheme, we propose prediction-based self-healing

as we have all prediction-based priority queues for loads and the resources are allocated according to

priority. As that proposed scheme provides the resources based on prediction-based requirements, our

proposed system provides the prediction-based resources such as hardware, CPU and memory that our

prediction-based SLA can quickly add.

Prediction-based self-optimization, self-healing and auto-configuration are monitored by the monitoring

unit and resource performance management is executed using self-management properties as per

Algorithm 2. All processing nodes’ performance is monitored through QoS agent. The load priority

queue considered for workload set (Wpq= {Wp1, Wp2…., Wpm}) is submitted to the load priority

queue. The workloads are executed as per QoS and resource availability needs. After provisioning, QoS

parameters (execution time, cost and energy consumption) were calculated for every workload using

QoS metric equations 5 to 13. Alert is generated if any condition fails [([PET ≤ Dt && PC ≤ BE] = =

‘TRUE’) or ([PEC≤PTH] = = ‘TRUE’)]. Further, in self-healing, the system checks the status of all the

components and if any faults are found, it will replace the required components. This entire process

maintains log information for current device status and updates resource utilization information. If usage

of resources is more than the threshold value [(CurrentStatus [‘CPU’ || ‘MEMORY’] > Value of

THRESHOLD)], then alert is generated. All the software versions’ status is checked for hardware

components in the system. If [(Component version status = OLD || Not-VALID)] is true for OLD or

Not-VALID, then generate alters and install the new replacing the old version. The

[H_Component_Name and H_Compoenent_Id] is updated based on log information.

Our resources represent nodes that have a state as activate and deactivate. Within this prediction-based

SLA, healing uses a hybrid tool in a diagnostic approach. This hybrid tool is used for diagonal purposes

and combines analytical methods that cooperate with a common goal. We apply VMC (VM

consolidation) based on current and future VM migration in this proposed model. We are using a

prediction regression-based model. Algorithm 3 performs the load balancing and VM migration

operation. Workload is assigned to a VM as per VM allocation policy and CPU utilization is calculated

215

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

Algorithm 2

1. # Phase One: Prediction based Self-Optimization

2. Begin

3. Load Priority Queue: Wpq= {Wp1,Wp2,……………..,Wpm}

4. Add Loads into Priority Queue: Wpa= {Wp1,Wp2,……………..,Wpo } where po ≤ pm

5. Allocate resources to task loads based on Quality of Services parameters

6. Loop until all Predict base queue loads (Wpa), where Predict average cost (PC) , Predict energy

consumption (PEC) and Predict execution time (PET) for execution

7. If ([PET ≤ Dt && PC ≤ BE] = = ‘TRUE’) then

8. If ([PEC≤PTH] = = ‘TRUE’) then

9. Schedule execution according to prediction-based priority queue resources

10. Else

11. Alert Message

12. End if

13. Else

14. Alert Message

15. End if

16. End loop

17. # Phase Two: Perdition based Self-Healing

18. Begin

19. Set of Prediction based Priority Queue Nodes: PNodeset = {PNode1,PNode2, …………..,PNoden}, where

PNodec represents current node of queue.

20. If (Predictive Priority Queue == Empty) then

21. Scan drives and check replica of original driver

22. Add node into node set from the current node number

23. Else

24. Generate alert for Priority queue node is already exist

25. End if

26. Repeat loop until all hardware priority queue node (Status of Node)

27. Get detail of current status [EVENTTYPE, TIMESTAMP, EVENTID]

28. If (EVENTTYPE = = ‘EMERGENCY’ OR ‘ERROR’) then

29. Database is updated by using log information [NodeName and address of MAC]

30. End if

31. End loop

32. Loop until repeat Software Monitoring [Resource utilization (MEMORY and CPU)]

33. If (CurrentStatus [‘CPU’ || ‘MEMORY’] > Value of THRESHOLD) then

34. Generate alert message

35. Update Resource utilization (Memory and CPU) information

36. End if

37. End loop

38. # Prediction Based Auto Configuration for Self-Healing Process

39. Begin

40. Prediction base Priority Queue of H_Components: = {Hc1, Hc2,………,Hcp}

41. Priority Queue of Active H_Components:= { Hc1, Hc2,………,Hcq }, where q ≤ p

42. While true do

43. Repeat loop for all software S_Components

44. Repeat loop to get all Priority Queue of Active H_Components version status

45. If (Component version status = OLD || Not-VALID) then

46. INSTALL the new version for replacing the old version using the process of uninstall

47. End if

48. End if

49. End loop

50. Repeat loop all hardware H_Components then Track Log Register

51. Repeat loop to get all detail of Priority Queue of Active H_Components status [EVENTTYPE,

TIMESTAMP, EVENTID]

52. If (EVENTTYPE == ‘EMERGENCY’ || ‘ERROR’) then

53. Database is updated by using log information [H_Component_Name and H_Compoenent_Id]

54. End if

55. End loop

56. End loop

216

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

and monitored. If host CPU utilization < 0.21, then CPU is added to the underutilized host list. If host

CPU utilization > 0.79, then the CPU is added to the over-utilized host list; otherwise, the host resides

in a safe host list. Now, check which VM is maximally utilized and then upgrade VM configuration if

possible; otherwise, migrate VM towards a safe host. Consolidate underutilized host VMs and either

shut down the VM or add them to the migration list. Prepare safe host list, increasing order of CPU

utilization and performing VM migration.

Algorithm 3: VM Migration and Load Balancing

1. Based on the VM allocation policy schedule the load on the VM.

2. Repeat loop for every host to calculate the CPU utilization

3. Repeat until

3.1 Get the first host in the list

3.2 if host CPU utilization < 0.21, then host add into underutilized host list

3.3 if host CPU utilization > 0.79, then host add into over utilized host list

3.4 otherwise host add into safe host list close the condition of the loop

4. Repeat until over utilized host list get the VM with maximum utilization

4.1 get the available MIPS from the host of maximum utilized VM

4.2 if MIPS is available, then add available MIPS to over utilized VM

 4.3 otherwise, migrate the VM to a safe host based on a safer policy

5. Repeat until for each underutilized host

5.1 Consolidate every VM on the underutilized host and move those

5.2 VMs to migration list close the condition of the loop

6. Organize the safe host in increasing order based on CPU utilization and migrate all the VMs based

policy

4. SIMULATION SETUP, RESULTS AND DISCUSSION

Our proposed Predictive Cloud Computing System is modeled and simulated using CloudSim. This

research is carried out using the CloudSim toolkit [44]. The system modeling and behavior of cloud

system components; i.e., VMs, Datacentre and RP rules are fully supported by the CloudSim toolkit [7].

The standard resource scheduling methods’ implementation can be done with little effort and method

extension is possible. The inter-networked and distinct clouds are contained in the cloud environment

simulation using the toolkit.

Furthermore, the toolkit supports VM provisioning under an inter-networked cloud environment to

implement resource scheduling techniques through custom interfaces. Toolkit benefits provide the

performance with time effectiveness, flexibility and applicability for test results. The heterogeneous

workload of clouds is considered for experimental results. Each available resource contains one or more

processing elements with different Million Instructions Per Second (MIPS). In this outcome, we assume

that every workload admitted to the Predictive Cloud Computing System (PCCS) contains a workload

of fluctuating sizes of inputs and execution times. These workloads are considered in the form of

Cloudlets [44].

The resource configurations for testbed are: 2.4 GHz, Intel Core 2 Duo, 160 GB HDD, 1 GB RAM, with

Windows operating system, 2.9 GHz, Intel Core i5-2310, 160 GB HDD, 1 GB RAM, with Linux

operating system, 2.0 GHz, Intel Core i7-8550, 256 GB HDD, 4 GB RAM, with Linux operating system.

This paper simulates our results with four SLA self-healing MASA, SH-SLA, CHOPPER and RADAR

with our new proposed works. According to our simulation results, the proposed prediction-based PCCS

SLA is the best. Table 4 gives details of workload types along with missing deadline compensation

provided. We have shown the different testbed results in the Table 1, Table 2 and Table 3 given below.

In this simulation, two different cloud infrastructures through different processor configurations (4-core

processor and 8-core processor) have been considered to measure the variation of different QoS

parameters; i.e., energy efficiency, execution cost, resource utilization, throughput, SLA violation rate,

resource contention, waiting time, fault detection rate, reliability, availability, intrusion detection rate

and turnaround time. The different QoS parameters Improvement Rate (IR) percentage and simulation

statistics summary are described in the tables. The CloudSim simulation environment has been

217

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

considered with 3000 same-type workload traces of PlanetLab for performance testing. The PCCS is

validated for different QoS parameters through autonomic resource management existing techniques,

such as CHOPPER [21], SH-SLA [8], RADAR [9] and MASA [22]. The PCCS performance is more

stable and efficient in resource management for changing cloud workloads using the coefficient of

variation with a small value. The simulation results are presented in Table 1, Table 2 and Table 3 for all

the different cloud infrastructures.

Table 1. Simulation results and improvement rate (IR) of PCCS and CHOPPER.

QoS Parameters 4-Core Processor 8-Core Processor

PCCS CHOPPER IR (%) PCCS CHOPPER IR (%)

Energy consumption (kWh) 88.91 117.61 24.4 124.46 162.13 23.23

Execution cost (C$) 94.2 128.71 26.81 162.7 219.56 25.90

Resource utilization (%) 79.11 71.01 10.24 83.66 77.761 7.05

Energy efficiency (%) 89.81 82.85 7.75 81.45 73.89 9.28

Throughput (workload/sec) 549.8 559.19 1.68 669.43 619.55 7.45

SLA violation rate (%) 28.15 36.56 23.00 41.46 47.91 13.46

No. of missed deadlines 28.11 34 17.32 44 49 10.20

Resource contention (sec) 3416.56 4180.48 18.27 4830.78 5461.45 11.55

Waiting time (sec) 299.32 306.69 2.40 268.69 266.15 0.95

Fault detection rate (%) 67.48 64.78 4.00 74.98 71.12 5.15

Reliability (%) 7.91 6.23 21.24 8.42 8.18 2.85

Availability (%) 86.39 82.71 4.26 89.77 89.22 0.61

Intrusion detection rate (%) 27.98 26.48 5.36 48.78 44.69 8.38

Turnaround time (sec) 622.15 651.45 4.50 561.89 593.28 5.29

Table 2. Simulation results and improvement rate (IR) of PCCS and RADAR.

QoS Parameters 4-Core Processor

PCCS RADAR IR (%)

Energy consumption (kWh) 88.91 110.61 19.62

Execution cost (C$) 94.2 118.71 20.65

Resource utilization (%) 79.11 69.01 12.77

SLA violation rate (%) 28.15 35.56 20.84

Fault detection rate (%) 67.48 64.78 4.00

Turnaround time (sec) 622.15 651.45 4.50

Table 3. Simulation results and improvement rate (IR) of PCCS, MASA and SH-SLA.

QoS Parameters 4-Core Processor

PCCS MASA IR (%) SH-SLA IR (%)

Energy consumption (kWh) 88.91 121.61 26.89 122 27.12

Execution cost (C$) 94.2 125.71 25.07 129 26.98

Resource utilization (%) 79.11 66.01 16.56 63 20.36

SLA violation rate (%) 28.15 37.56 25.05 38 25.92

Fault detection rate (%) 67.48 61.78 8.45 60.78 9.93

Turnaround time (sec) 622.15 658.45 5.51 666.3 6.63

Table 4. Workload urgency details with their types.

Load type Emergency

deadline (P_Du)

Slack time

(seconds)

Delay time

(seconds)

Deviation

status

Minimum

penalty

Penalty

rate

Emergency

Deadline

P_Du < 0.25 10 0–50 5 % 200 s 5 %

51–100 10 % 400 s 6 %

101–150 15 % 600 s 7 %

Medium

Deadline

0.25≤P_Du ≤0.75 30 0–50 5 % 100 s 4 %

51–100 10 % 200 s 5 %

101–150 15 % 300 s 6 %

Deadline P_Du > 0.75 60 0–50 5 % 50 s 2 %

51–100 10 % 100 s 3 %

101–150 15 % 150 s 4 %

218

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

The results demonstrate that PCCS improves average resource utilization by 13.40%, average energy

efficiency by 8.52%, average fault detection rate by 6.31%, average intrusion detection rate by 6.87%,

average throughput by 6.39%, average reliability by 12.04%, average availability by 2.44% and

minimizes average SLA violation rate by 20.44%, average energy consumption by 24.25%, average

execution cost by 23.82%, average number of missed deadlines by 11.34%, average resource contention

by 10.36%, average waiting time by 2.59% and average turnaround time by 5.59% as likened to existing

resource management techniques. As per the simulation results, it is clearly shown that PCCS

outperforms existing techniques in terms of QoS parameters, as PCCS achieves every situation

automatically.

Figures 3, 4, 5 and 6 represent the proposed PCCS scheme results of different QoS parameter

comparison with the existing techniques of SH-SLA, MASA, RADAR and CHOPPER. The proposed

Predictive Cloud Computing System (PCCS) performs better in terms of energy consumption, execution

cost, resource utilization, fault detection rate, turnaround time and SLA violation rate for SLA-aware

autonomic resource management and gives better results for SLA violation rate along with different

QoS parameters.

Figure 3. SH-SLA and proposed PCCS

comparison on different QoS parameters.

Figure 4. MASA and proposed PCCS

comparison on different QoS parameters.

Figure 5. CHOPPER and proposed PCCS

comparison on different QoS parameters.

Figure 6. RADAR and proposed PCCS

comparison on different QoS parameters.

Figure 3 clearly shows that the proposed PCCS improves resource utilization by 20.36%, fault detection

rate by 9.93% and decrease energy consumption by 27.12%, execution cost by 26.98%, turnaround time

by 6.63%, an SLA violation rate by 25.92% in comparison to SH-SLA. In Figure 4, the proposed PCCS

technique comparative analysis simulated with MASA scheme and simulation results show that the

0
100
200
300
400
500
600
700

PCCS SH-SLA

0
100
200
300
400
500
600
700

PCCS MASA

0
100
200
300
400
500
600
700

PCCS CHOPPER

0
100
200
300
400
500
600
700

PCCS RADAR

219

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

proposed scheme gives better results for fault detection rate by 8.45%, resource utilization by 16.56%,

turnaround time by 5.51%, cost of execution by 25.07%, consumption of energy by 26.89% and rate of

SLA violation by 25.05%. Figure 5 represents the simulation results of CHOPPER with PCCS proposed

technique which justify that comparatively the proposed PCCS takes less energy consumption by

23.81%, execution cost by 26.35%, turnaround time by 4.89%, SLA violation rate by 18.23%, resource

utilization by 8.64% and the fault detection rate by 4.57%. Figure 6 clearly shows that the PCCS

improves resource utilization by 12.77% and fault detection rate by 4% and decreases energy

consumption by 19.62%, execution cost by 20.65%, turnaround time by 4.50% and SLA violation rate

by 20.84% in comparison to RADAR.

Our paper has discussed how the cloud provider provides better quality in a Cloud Environment during

the user request for resources and management. As the SLA between user and provider is the most

crucial document, the proposed prediction base management and PCCS have presented a predictive

approach to resource management using a VM migration policy. That will effectively address the

overloading problem and provide cloud resource prediction as per SLA for user QoS requirements,

where no human intervention will improve user satisfaction.

The proposed model works based on prediction; therefore, configuration, healing, protection and

optimization have been automatically done. Our simulation is done on CloudSim in terms of various

parameters, such as throughput, reliability, fault detection rate, turnaround time, waiting time and SLA

violation rate. According to the results, the proposed prediction-based approach is better than the

existing SLA frameworks. Our proposed framework leads to improve the scalability of cloud-based

services. Our proposed algorithm simulation reduces the cost and execution time; therefore, this will

lead to saving energy. The simulation is done based on the number of VM migrations and SLA

violations. Comparison of the results with those of the existing frameworks shows a reduction in VM

migrations in energy consumption in the data center to measure energy consumption in terms of idle

hosts.

5. CONCLUSION

In this paper, fault-tolerance using a self-healing SLA-based Predictive Cloud Computing System

(PCCS) has been proposed with self-management property for heterogeneous workload execution. The

main goal of our PCCS is to minimize the SLA violation rate and increase user satisfaction levels by

fulfilling their QoS requirements. We propose a new model that uses VMs as a resource allocation unit

that provisions threshold-based dynamic allocation of cloud computing resources that performs

prediction on the future need of resources by the PCCS scheme. This scheme will prepare resources

required as per the future need of the users’ applications. The proposed method predicts the future

demand of user applications based on historical databases of workload demands. The scheme makes

resources ready for provision after predicting the required resource demands and fulfils the actual needs

of the application without SLA violation. The proposed method can dynamically configure the necessary

resources based on the threshold-based load balancing technique and maximize available cloud resource

utilization with reduced user-usage cost. The PCCS improves average resource utilization, energy

efficiency, fault detection rate and throughput. It minimizes average energy consumption, execution

cost, missed deadlines, resource contention, waiting time and turnaround time. The simulation results

show that the proposed PCCS performs better than existing resource provisioning techniques in terms

of SLA violation rate.

Our work presented resource requirements prediction, but we have not included hard disk, traffic,

network utilization and bandwidth for the forecast. Therefore, future research could focus on having

more resources, such as hard disk and bandwidth, for the prediction model. The prospective study

consists of work on network utilization and network traffic to maintain scalability of the proposed model.

REFERENCES

[1] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam and N. Sharma, "Towards Autonomic Workload

Provisioning for Enterprise Grids and Clouds," Proc. of the 10th IEEE/ACM International Conference on

Grid Computing, pp. 50-57, Banff, AB, Canada, Oct. 2009.

[2] T. Lorido-Botran, J. Miguel-Alonso and J. A. Lozano, "A Review of Auto-scaling Techniques for Elastic

220

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

Applications in Cloud Environments," Journal of Grid Computing, vol. 12, no. 4, pp. 559-592, Oct. 2014.

[3] Md. Toukir Imam, S. F. Miskhat, R. M. Rahman and M. A. Amin, "Neural Network and Regression-

based Processor Load Prediction for Efficient Scaling of Grid and Cloud Resources," Proc. of the 14th

IEEE International Conference on Computer and Information Technology (ICCIT 2011), pp. 333-338,

Dhaka, Bangladesh, Dec. 2011.

[4] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A. Alelaiwi and F.-M. Li, "Minimizing

SLA Violation and Power Consumption in Cloud Data Centers Using Adaptive Energy-aware

Algorithms," Future Generation Computer Systems, vol. 86, pp. 836-850, 2018.

[5] J. Zhu, P. He, Z. Zheng and M. R. Lyu, "Online QoS Prediction for Runtime Service Adaptation via

Adaptive Matrix Factorization," IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 10,

pp. 2911-2924, Oct. 2017.

[6] Shalu and D. Singh, "Swarm Intelligence Based Virtual Machine Migration Techniques in Cloud

Computing," Proc. of the International Conference on Computation, Automation and Knowledge

Management (ICCAKM), pp. 120-124, Dubai, United Arab Emirates, 2020.

[7] A. M. R. AlSobeh, S. AlShattnawi, A. Jarrah and M. M. Hammad, "WEAVESIM: A Scalable and

Reusable Cloud Simulation Framework Leveraging Aspect-oriented Programming," Jordanian Journal of

Computers and Information Technology (JJCIT), vol. 06, no. 02, pp. 182-201, June 2020.

[8] R. Yadav, W. Zhang, K. Li et al., "Managing Overloaded Hosts for Energy-efficiency in Cloud Data

Centers," Cluster Computing, vol. 2021, DOI: 10.1007/s10586-020-03182-3, Feb. 2021.

[9] D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah and M. A. Alzain, "A Load Balancing Algorithm for the Data

Centres to Optimize Cloud Computing Applications," IEEE Access, vol. 9, pp. 41731-41744, 2021.

[10] S. K. Pande, S. K. Panda, S. Das, K. S. Sahoo, A. K. Luhach et al., "A Resource Management Algorithm

for Virtual Machine Migration in Vehicular Cloud Computing," Computers, Materials & Continua, vol.

67, no.2, pp. 2647–2663, 2021.

[11] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud and S. Musa, "A Comprehensive Study of Load

Balancing Approaches in the Cloud Computing Environment and a Novel Fault Tolerance Approach,"

IEEE Access, vol. 8, pp. 130500-130526, 2020.

[12] Z. Chen, K. Lin, B. Lin, X. Chen, X. Zheng and C. Rong, "Adaptive Resource Allocation and

Consolidation for Scientific Workflow Scheduling in Multi-cloud Environments," IEEE Access, vol. 8,

pp. 190173-190183, 2020.

[13] B. Gul et al., "CPU and RAM Energy-based SLA-aware Workload Consolidation Techniques for

Clouds," IEEE Access, vol. 8, pp. 62990-63003, 2020.

[14] R. Yadav, W. Zhang, K. Li et al., "An Adaptive Heuristic for Managing Energy Consumption and

Overloaded Hosts in a Cloud Data Center," Wireless Networks, vol. 26, pp. 1905–1919, April 2020.

[15] W. Dargie, "Estimation of the Cost of VM Migration," Proc. of the 23rd IEEE International Conference

on Computer Communication and Networks (ICCCN), pp. 1-8, Shanghai, China, 2014.

[16] S. Singh, I. Chana, M. Singh et al., "SOCCER: Self-optimization of Energy-efficient Cloud Resources,"

Cluster Computing, vol. 19, no. 4, pp. 1787–1800, Sep. 2016.

[17] M. Sohani and S. C. Jain, "A Predictive Priority-based Dynamic Resource Provisioning Scheme with

Load Balancing in Heterogeneous Cloud Computing," IEEE Access, vol. 9, pp. 62653-62664, April 2021.

[18] F. Yao, C. Pu and Z. Zhang, "Task Duplication-based Scheduling Algorithm for Budget-constrained

Workflows in Cloud Computing," IEEE Access, vol. 9, pp. 37262-37272, 2021.

[19] H. M. Khan, G. Chan and F. Chua, "An Adaptive Monitoring Framework for Ensuring Accountability

and Quality of Services in Cloud Computing," Proc. of the International Conference on Information

Networking (ICOIN), pp. 249-253, Kota Kinabalu, Malaysia, 2016.

[20] R. Latif, S. H. Afzaal and S. Latif, "A Novel Cloud Management Framework for Trust Establishment and

Evaluation in a Federated Cloud Environment," The Journal of Supercomputing, vol. 2021, DOI:

10.1007/s11227-021-03775-8, April 2021.

[21] A. Mosallanejad, R. Atan, M. Azmi Murad and R. Abdullah, "A Hierarchical Self-healing SLA for Cloud

Computing," International Journal of Digital Information and Wireless Communications (IJDIWC), vol.

4, no. 1, pp. 43-52, 2014.

[22] S. S. Gill, I. Chana, M. Singh and R. Buyya, "RADAR: Self-configuring and Self-healing in Resource

221

"Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing", M. Sohani and S. C.

Jain.

Management for Enhancing Quality of Cloud Services," Concurrency and Computation: Practice and

Experience, vol. 31, no. 1, DOI: 10.1002/cpe.4834, Aug. 2018.

[23] S. Banerjee, S. Roy and S. Khatua, "Efficient Resource Utilization Using Multi-step-ahead Workload

Prediction Technique in Cloud," The Journal of Supercomputing, vol. 2021, DOI: 10.1007/s11227-021-

03701-y, March 2021.

[24] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy and Y. Tian, "Adaptive Energy-aware

Algorithms for Minimizing Energy Consumption and SLA Violation in Cloud Computing," IEEE Access,

vol. 6, pp. 55923-55936, 2018.

[25] S. Sotiriadis, N. Bessis and R. Buyya, "Self-managed Virtual Machine Scheduling in Cloud Systems,"

Information Sciences, vol. 433-434, pp. 381–400, 2018.

[26] A. Paya and D. C. Marinescu, "Energy-aware Load Balancing and Application Scaling for the Cloud

Ecosystem," IEEE Transactions on Cloud Computing, vol. 5, no. 1, pp. 15-27, 2017.

[27] I. Odun-Ayo, B. Udemezue and A. Kilanko, "Cloud Service Level Agreements and Resource

Management", Advances in Science, Technology and Engineering Systems Journal, vol. 4, no. 2, pp. 228-

236, 2019.

[28] R. Yadav, W. Zhang, H. Chen and T. Guo, "MuMs: Energy-aware VM Selection Scheme for Cloud Data

Center," Proc. of the 28th IEEE International Workshop on Database and Expert Systems Applications

(DEXA), pp. 132-136, Lyon, France, 2017.

[29] M. Dabbagh, B. Hamdaoui, M. Guizani and A. Rayes, "Toward Energy-efficient Cloud Computing:

Prediction, Consolidation and Over-commitment," IEEE Network, vol. 29, no. 2, pp. 56-61, 2015.

[30] E. Torre, J. J. Durillo, V. de Maio, P. Agrawal, S. Benedict, N. Saurabh and R. Prodan, "A Dynamic

Evolutionary Multi-objective Virtual Machine Placement Heuristic for Cloud Data Centers," Information

and Software Technology, vol. 128, DOI: 10.1016/j.infsof.2020.106390, 2020.

[31] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T. Hieu and H. Tenhunen, "Energy-aware VM

Consolidation in Cloud Data Centers Using Utilization Prediction Model," IEEE Transactions on Cloud

Computing, vol. 7, no. 2, pp. 524-536, 2019.

[32] D. Abdulkareem Shafiq, N. Z. Jhanjhi and A. Abdullah, "Load Balancing Techniques in Cloud

Computing Environment: A Review," Journal of King Saud University - Computer and Information

Sciences, DOI: 10.1016/j.jksuci.2021.02.007, 2021.

[33] M. Balaji, Ch. Aswani Kumar and G. Subrahmanya V. R. K. Rao, "Predictive Cloud Resource

Management Framework for Enterprise Workloads," Journal of King Saud University - Computer and

Information Sciences, vol. 30, no. 3, pp. 404-415, 2018.

[34] F. Ebadifard and S. M. Babamir, "Autonomic Task Scheduling Algorithm for Dynamic Workloads

through a Load Balancing Technique for the Cloud-computing Environment," Cluster Computing, vol.

24, pp. 1075-1101, June 2021.

[35] N. Chaurasia, M. Kumar, R. Chaudhry et al., "Comprehensive Survey on Energy-aware Server

Consolidation Techniques in Cloud Computing," The Journal of Supercomputing, vol. 2021, DOI:

10.1007/s11227-021-03760-1, March 2021.

[36] B. K. Dewangan, A., M., V. Agarwal and A. Pasricha, "Energy-aware Autonomic Resource Scheduling

Framework for Cloud," International Journal of Mathematical, Engineering and Management Sciences,

vol. 4, no. 1, pp. 41-55, 2019.

[37] A. A. Hassan, B. M. Bai and T. J. Gandomani, "An Integrated Model for Secure-on-Demand Resource

Provisioning Based on Service Level Agreement (SLA) in Cloud Computing," Journal of Theoretical and

Applied Information Technology, vol. 65, no. 2, July 2014.

[38] M. Sohani and S. C. Jain, "State-of-the-art Survey on Cloud Computing Resource Scheduling

Approaches," Proc. of Ambient Communications and Computer Systems, Part of the Advances in

Intelligent Systems and Computing Book Series, vol. 696, pp. 629-639, March 2018.

[39] W. Lin, J. Z. Wang, C. Liang and D. Qi, "A Threshold-based Dynamic Resource Allocation Scheme for

Cloud Computing," Procedia Engineering, vol. 23, pp. 695-703, 2011.

[40] S. S. Gill, I. Chana, M. Singh et al., "CHOPPER: An Intelligent QoS-aware Autonomic Resource

Management Approach for Cloud Computing," Cluster Computing, vol. 21, pp. 1203–1241, 2018.

[41] H. Alhussian et al., "Investigating the Schedulability of Periodic Real-time Tasks in Virtualized Cloud

222

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 02, June 2021.

Environment," IEEE Access, vol. 7, pp. 29533-29542, 2019.

[42] M. Azaiez and W. Chainbi, "A Multi-agent System Architecture for Self-healing Cloud Infrastructure,"

Proceedings of the International Conference on Internet of Things and Cloud Computing (ICC’16), pp.

1-6, DOI: 10.1145/2896387.2896392, March 2016.

[43] S. Talwani and I. Chana, "Fault Tolerance Techniques for Scientific Applications in Cloud," Proc. of the

2nd International Conference on Telecommunication and Networks (TEL-NET), pp. 1-5, Noida, India,

2017.

[44] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, "CloudSim: A Toolkit for

Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning

Algorithms," Software – Practice and Experience, vol. 41, no. 1, pp. 23–50, August 2010.

 ملخص البحث:

رررررر ل س يً التطًيلات ررررررسًلي من خررررررلاًسبررررررحاًيةلةرررررر ً رررررر ً ررررررف لاًلي ةررررررنسًلي ًظهررررررثاً ررررررفاعل

ً اررررررسًاترررررركًيةررررررل ً.ًواخررررررف ًاترررررركًليلررررررنةسًلي ةن ررررررس رررررر ل سً ررررررف لا مً ررررررحواًليلف ررررررسًلي

أرررررفًوليخ رررررل ًيتلرررررف لاًلي خف رررررسً ررررر ًي ررررر؛ً ليرررررف يبً خل ررررر؛ًللأةررررر لفلمتًل رررررثًليرررررللًا رررررت حمًليث

رررررر ثوطًليرررررر لتاطًيرررررر ً التطً رررررر اطًليلف ررررررسً رررررر ً ررررررتحً ق ثقرررررر ًل رررررر لاًو رررررر ً رررررر ً خ رررررر ًليل

ً ب رررررىًليلف رررررس.ًو ررررربً ل فلق رررررسً ررررر بً رررررثفًللأ فلق رررررسًو ررررر ل ً خ ررررر ً متنرررررلاًيرررررنًّيررررر

ررررررر ل س.ًوا رررررررلظ ًلي خ رررررررفًوارررررررفمً يررررررر ًلي ةرررررررنسًلي يً لي ررررررر لف ًليفا ل رررررررسًالرررررررةت ً رررررررفال

ً رررررلًاب ررررر؛ًي ًلي برررررل ررررر ل سًا ررررر سًقسًوليفا ل رررررسً رررررثاس طرررررثًلي ررررر؛ًلي تخرررررسً لي ةرررررنسًلي

ًل ق ررررررررسًل رررررررر ل سً ررررررررلةًليرررررررركً التطً ل ررررررررسًاترررررررركًلفالتطًليفلاتررررررررسًو ررررررررثً قررررررررس.ًو ي

رررررسً ل رررررسًليررررركً مررررر اثً مرررررسًلأ ًيتلرررررف لاًيت ت ررررر ً لرررررل ًبًاتررررركً ترررررنًلي لرررررةتا.ًيرررررللًّيررررر

لي رررررررفل ثًليتي رررررررسًلي ررررررر ً ررررررر ً رررررررظقهلًي ً تن ررررررر ً متنرررررررلاًلي ررررررر لف ً ق رررررررسًلي ةرررررررنسً

رررررر ل سًي ررررررلًاررررررث نوً برررررر اطًليلف ررررررسًو رررررر حً ًاو ً ررررررثفًل فلق ررررررسً رررررر ىًليلف ررررررس.ً ررررررل لي

 ً ق رررررربً رررررر كًّلي ررررررلمًلي رررررر ق ًلي تقررررررسً خررررررفمً خ ررررررسيً خ ث ررررررسًفالتطًلي ررررررلاتًقل ررررررسًاترررررركًلي ً

ررررر ل س .ًويررررر ً ررررررللًلي رررررلمًّاررررر ًلي ثس رررررحًاترررررركًلي ق ررررر بًلي ررررر فًاتررررركًللأي ررررررلمًيت ةرررررنسًلي

بًلي ررررر فًاتررررركًلي ث ررررربًليرررررلل ً رررررليطًل مرررررلاً رررررثًلي ق رررررسًّواتررررركًلي ق رررررليرررررل ل ًليرررررللًا ً

ررررر ل .ًيت رررررلاتًلي تخرررررسً لي من خرررررلا.ًوقرررررفً رررررثىً خ ررررر ًلي رررررلمًلي خ رررررث ًيررررر ًلي رررررلس ًلي

ًلي رررررلمًلي خ رررررث ً فررررر ً ًقل رررررسً ررررر ًوسلرررررف ًق رررررل طًلي لسرررررلطًي فً ررررر ً رررررىًل الاًاتررررركً خ رررررلا

ضًلي ررررررلاتًّو ررررررثفًل فلق ررررررلاً ررررررىًي رررررر ًلي ف ررررررلًّوليبررررررفوىًلي تخررررررسً لي ةتفررررررسًّو ررررررلتً

ً قس.ًً ىًليلف ستًي ًلي ق ًليللًقف مًي هً ف لا

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

