326
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

INTEGRATING UML 2.0 ACTIVITY DIAGRAMS AND PI-
CALCULUS FOR MODELING AND VERIFICATION OF
SOFTWARE SYSTEMS USING TGG

Raida Elmansourit, Said Meghzilit, Allaoua Chaoui!, Aissam Belghiat? and Omar
Hedjazi!

(Received: 18-Apr.-2020, Revised: 18-Jun.-2020 and 26-Jul.-2020, Accepted: 24-Aug.-2020)

ABSTRACT

This paper deals with modeling and verification of software systems by combining UML diagrams and Pi-
calculus. UML 2.0 Activity diagrams are used for modeling the behavior of software systems, while Pi-calculus
is used for semantic and verification purposes. More precisely, UML is a semi-formal language and so it needs
formal semantics for its constructs and lacks tools for verifying properties. To this end, we propose an approach
and a tool called AD2PICALC for transforming UML 2.0 Activity diagrams to Pi-calculus processes using
Eclipse Xpand and TGG tools. The obtained Pi-calculus processes are then used as input for Pi-calculus tools,
like MWB, to verify some properties as deadlocks, safety, determinism, termination and livelock. We illustrate
our contribution through an example from the literature and verify the property of deadlock using MWB tool.
The main contribution of this paper lies in the automation of the transformation approach using TGG tools.

KEYWORDS

Model-driven engineering, TGG, Xpand, UML activity diagrams, Pi-calculus, Model transformation, Graph
transformation, Software systems.

1. INTRODUCTION

A critical system is a system the "failure” of which is a threat to human life, to the environment of the
system or to the existence of the organization that manages it. Examples of critical systems include -
among others- communication systems, embedded control systems, command and control systems and
transport systems. The cost of a failure in a critical system could exceed the cost of the system itself.
Nowadays, most of critical systems are computer-based. Therefore, to develop powerful and
sophisticated software, the modeling and verification of such systems seem to be the best solution for
such task. Specifically, modeling facilitates the understanding of their complex behavior and also
simulates these systems, while verification ensures their accuracy. The combination of UML diagrams
and formal methods is a very suitable approach for the development of software systems [1]-[2].
Unified Modeling Language (UML) [3] is a well-known standard notation used to model object
oriented software systems. It provides methods that are structured, semi-formal and graphical for
specification, but not suitable for verification and validation of software systems. UML has different
kinds of structural and behavioral diagrams. Each diagram is dedicated to a description of different
aspects of a complex (software) system. UML Activity diagrams are used to model easily the dynamic
behavior of workflow systems. One of their main purposes is to model software processes and
business processes and represent control flows between activities. On the other hand, formal methods
are used in software engineering to reason about mathematical models by proving or verifying
properties (e.g. deadlock) of models. They are used to ensure that these systems are developed without
error; i.e., these systems are free of deadlock, safe, deterministic, terminating and free of livelock.
However, the analysis and design work with formal methods is very expensive and requires
mathematical skills. To bridge the gap between formal methods and semi-formal ones [4], several
researchers proposed approaches allowing the integration of formal models supporting formal
verification in semi-formal models.

1. R. Elmansouri, S. Meghzili, A. Chaoui and O. Hedjazi are with MISC Laboratory, Department of Computer Science and Its
Applications, Faculty of NTIC, University Constantine 2 - Abdelhamid Mehri, Constantine, Algeria. Emails:
raida.elmansouri@univ-constantine2.dz, meghzili.said.1989@gmail.com, allaoua.chaoui@univ-
constantine2.dz and hedjazi@mjustice.dz

2. A. Belghiat is with University of Jijel, Algeria. Email: belghiatissam@gmail.com

327

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

In the present work, our main contribution consists of an integrated approach and a tool (called
AD2PICALC) combining UML 2.0 activity diagrams and Pi-calculus [5]-[6] for the development of
software systems. This approach is based on modeling, meta-modeling and model transformation,
which are the fundamental concepts of Model Driven Engineering (MDE) [7]. Indeed, MDE is an
active research area in both academia and industry. It aims to decrease the complexity of software
development. It allows portability, interoperability and reuse. In this paper, we propose another way
and a tool for transforming UML 2.0 Activity diagrams to Pi-calculus. This approach is based on
Xpand [8] and TGG tool [9] which permits a bidirectional approach. As a semi-formal notation, UML
2.0 Activity diagrams need formal semantics. So, to implement a formal analysis of a UML activity
diagram specification, we propose to translate it to Pi-calculus process. Therefore, the obtained
process model can be automatically verified (whether it satisfies or not certain properties, such as
deadlock) using Pi-calculus analytical tools, such as MWB [10]. Pi-calculus is a simple mathematical
process model based on CCS, which stands for Calculus Communicating System, a language proposed
by Milner in 1980 [11]. It belongs to the family of process algebras. Since UML activity diagrams are
graphs, the proposed approach is based on graph grammars. TGG is used to implement the graph
grammar.

The rest of the paper is organized as follows. In Section 2, we discuss some related works. In Section
3, we recall some basic concepts about UML 2.0 activity diagrams, Pi-calculus and graph grammars.
In Section 4, we propose our approach and tool that combine UML 2.0 activity diagrams and Pi-
calculus process algebra for the development of software systems. In Section 5, we apply our approach
on an illustrative example from the literature. Section 6 concludes the paper and gives some
perspectives of this research work.

2. RELATED WORK

Many works tackled the problem of formalizing UML Activity diagram through translating it to
formal standards supported by analysis facilities. In [12], the authors proposed activity diagram
patterns for modeling business processes and a semantics for the activity diagrams, formalized by
colored Petri nets. In [13], the authors defined semantics for activity diagram of UML by means of
regular expression and its equivalent transition system. Moreover, they proposed a formal verification
and traceability method for any activity model with the help of Arden's lemma. In [14], the authors
transformed automatically UML 2.0 activity diagram to Petri nets. This transformation helps software
designers analyze and verify properties using INA analyzer tool. In [15], the authors presented a
transformation from Activity Diagram into its semantically equivalent Colored Petri Nets using
Weighted Directed Graph. This transformation consists of two steps. In the first step, the UML
Activity Diagram is transformed into a Weighted Directed Graph and in the second step, the Weighted
Directed Graph is transformed into semantically equivalent Colored Petri Nets. In [16], the authors
proposed a framework that provides formal definitions for UML Activity diagrams by transforming
them to a formal representation called point graph (PG). The approach is illustrated with a case study
at King’s College Hospital to improve patient flows of an accident and emergency department. In [17],
the authors developed a specific tool, called MAV-UML-AD, allowing the specification and the
verification of workflow models using UML activity diagrams and Event-B. The developed tool
transforms an activity diagram model into an equivalent Event-B specification according to a
mathematical semantics. They illustrated the use of the developed tool MAV-UML-AD using an
example of specification and verification. In [18], the authors presented an approach that transforms
the UML sequence diagrams, behavioural state machines and activity diagrams into a single Transition
System to support model checking using NuSMV tool [19]. In [20] and [21], the authors presented an
approach based on SCALA, an environment of executing Isabelle/HOL specifications that allows to
transform UML State machine diagrams to Colored Petri Nets models. The authors also proved the
correctness of certain structural properties of this transformation.

Several approaches proposed semantics for UML diagrams using process algebras, like Pi-calculus. In
[22], the authors have proposed an automatic translation of UML specifications made up of sequence
and state diagrams into Pi-calculus processes. The central point of their proposed translation was the
coherence of the two types of diagrams. In [23], the authors proposed an approach for mapping only
UML state machine diagrams into Pi-calculus using TGG tool. In [24], the authors presented an

328
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

approach for capturing and verifying dynamic program behaviors using UML communication
diagrams and Pi-calculus. In [25], the authors proposed an approach based on ATOMS tool [26] for
mapping UML 2.0 Activity diagrams to Pi-calculus. Other works used Petri nets and their extensions,
like Colored Petri nets to formalize UML diagrams. In [27], the authors presented w-calculus
semantics as a formal basis for UML activity diagrams. They showed manually and formally the
consistency between the concepts of activity diagrams and m-calculus expressions. In our present
paper, we propose an automatic mapping using TGGs tools [9] based on ideas presented in [27]. The
main differences between our approach and the previously cited approaches of transforming UML
diagrams to n-calculus are summarized in the following table.

Used UML Diagrams Manual | Automatic | Used Transformation Tool
[22] Activity, sequence and | X
state charts
[23] State chart X TGG
[24] Communication X
[25] Activity X ATOM?®
[27] Activity X
Our Approach | Activity X TGG

The use of TGG graph transformation tool instead of ATOM? is due to its ability to perform complex
transformation and offer the capabilities needed to realize our ideas. Moreover, we have applied our
approach and the developed tool on a complex illustrative example.

3. BACKGROUND

In the following sub-sections, we briefly recall some basic concepts about UML 2.0 Activity
diagrams, Pi-calculus and graph grammars.

3.1 UML Activity Diagrams

Activity diagram is an important UML diagram to describe dynamic aspects of a system. Activity
diagram is the object-oriented equivalent of flow charts and Data Flow Diagrams (DFDs) from
structured software development. It is used to represent the flow from one activity to another activity.
The activity describes a particular operation of the system. So, the control flow is drawn from one
operation to another. This flow can be sequential, branched or concurrent. Activity diagrams allow
dealing with all types of flow control by means of different elements, like initial, flow final, activity
final, decision, merge, fork and join nodes. For more details, the reader is referred to [3].

3.2 Pi-calculus

The Pi-calculus [5] is an extension of CCS [11]. It is a process algebra where processes interact by
sending communication links to each other. It can be considered as a mathematical model of processes
the interconnections of which change when they communicate [6]. The transfer of a communication
link between two processes is the basic computational operation. Then, the link is used for further
interaction with other processes. Pi-calculus offers primitives for describing and analyzing global
distributed infrastructure, focusing on process migration between peer process interaction via dynamic
channel-private channel communication. Example applications include languages supporting
distributed programming with process mobility: polyphonic C#, BPML description and analysis of
authentication protocols: spi calculus typed processes to ensure fine-grained resource access control.
For more details, see the excellent introduction to the Pi-calculus by Joachim Parrow [6].

3.3 Graph Grammars and TGG
In the following part, we recall some concepts about graph grammars and TGG.

3.3.1 Graph Grammars

Before presenting the idea of TGGs, we begin with graph grammars [28]. A graph grammar evolves
from Chomsky grammar on strings to graphs. It consists of a set of graph-rewriting rules. Each one

329

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

has a graph at its Left Hand Side (LHS) and another graph at its Right Hand Side (RHS), as shown in
Figure 1.

Figure 1. LHS and RHS of a rule.

The semantics of a graph grammar rule is similar to classical grammars in formal languages. A graph
grammar rule can be applied to some graph called host graph. If the LHS of the rule matches a part of
the host graph, this part is replaced by the RHS of the rule.

3.3.2 Triple Graph Grammars (TGGS)

Triple Graph Grammars (TGGs) have been proposed by Andy Schirr in 1994 for model
transformation using graph grammars [28]. They allow the user to define a transformation (in both
directions) in a declarative way. More precisely, Triple Graph Grammars (TGGs) are used for defining
the correspondence between two different types of models via sets of corresponding graphs [29]. Each
element of this set is a triple consisting of two independent graphs that are linked via a third graph,
called the correspondence graph. Because of this triple structure, such a graph is also called a triple
graph. These different graphs in a triple graph are typed over different type graphs. TGG rules are
non-deleting graph production rules that describe how, based on a start graph or axiom, triple graphs
can be created. Triple graphs that can be created by a TGG are called valid triple graphs. Transferred
to the modeling world, TGGs define sets of corresponding models, also called triple models, where the
independent models, called domain models, are instances of different meta-models. The domain
models are linked via a correspondence model, which is an instance of a correspondence meta-model.

The advantages of TGGs reside in the fact that the definition can be made operational, so that one
model can be transformed into the other in either direction; even more, TGGs can be used to
synchronize and maintain the correspondence of the two models, even if both of them are changed
independently of each other; i.e., TGGs work in an incremental way.

3.3.3 Description of a TGG Rule

It is important to notice that the models to be transformed by TGGs will be represented as object
diagrams; and a class diagram represents the set of models to be considered (meta-model). So, a TGG
rule consists of nodes and arcs that represent objects and links in the domain models. LHS and RHS of
a rule contain nodes and arcs. The old nodes and arcs are also called context nodes (nodes products)
and edges of context (arcs products). The context nodes are shown as white boxes with a black border;
nodes products are shown as green boxes with a border-dark green and labeled “+ +”. The arcs of
context are shown as black arrows; arcs products are shown as arrows with dark green labeled *’+ +”.
Further constraints on attribute values and states of implementation can be formulated in a TGG rule.
In a transformation, it has many strings as values of any price in the target model to be chained to
different information in the source model. In a TGG rule, OCL expressions can be used in the
constraints of attribute values and states of implementation. They are shown as rounded rectangles in
yellow TGG rule [30].

4. OUR APPROACH

In this section, we present an approach of mapping UML 2.0 Activity diagrams to Pi-calculus
expressions. The objective of this transformation is to formally verify the desired properties of models
using the analytical techniques and verification tools of Pi-calculus.

The main idea of our approach is depicted in Figure 2. It consists of three steps: (1) transforming an
activity diagram into its equivalent Pi-calculus model using TGG, (2) generating the Pi-calculus code
from the Pi-calculus model using eclipse Xpand code generator, (3) verifying the desired properties of
the target model using the MWB Tools. In the following, we present first the meta-models, next the

330
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

transformation of activity diagrams to Pi-calculus processes using TGG tool and finally the translation
of Pi-calculus models in abstract syntax to Pi-calculus code with Xpand tool.

Meta model Meta model
Meta model :
S e Correspondence Pi-Calculus
Activity Diagram
- Ecore Ecore
Ecore
o é Ve
Conf:nrms to Coriforms to L O\
: .)
- 2nd code
: i eneration
maaw ... Towpestes 00 Magga | EETES .| Cols
Activity Diagram Pi-Calculus -
= TGG tool Xpand tool Pi-Calculus
(M2M) (M27) p

Figure 2. The architecture of our approach.

4.1 Meta-models

We follow the approach of triple graph grammars (TGGs), where the abstract syntax of both activity
diagrams and Pi-calculus expressions is represented by UML object diagrams. A third meta-model is
used to capture the relation between corresponding elements of activity diagrams and Pi-calculus
expressions. In the following, we give the three meta-models in detail.

4.1.1 UML Activity Diagram Meta-model

We propose in Figure 3 a modified version of the meta-model of UML activity diagram (as a UML
class diagram) presented in [3]. The motivation behind the modification is to adapt it to our purpose,
sine the meta-model of [3] is bigger. In this meta-model, the class ModelElement is abstract, since a
concrete element is Activity, or ActivityPartition, or ActivityEdge, or ActivityNode. Activity is
composed from three classes ActivityPartition, ActivityEdge and ActivityNode. ActivityNode can be
InitialNode, FinalNode, DecisionNode, MergeNode, ActionNode, ObjectNode, JoinNode or
ForkNode. Activity Partition is composed from Activity Edge and Activity Node; Activity Edge can be
ControlFlow or ObjectFlow.

We have added to the ControlFlow class the following attributes:

- visitorIN (integer) to mark the input edges of JoinNode and MergeNode.
- FinIN (boolean) to mark the last input edge of JoinNode and MergeNode.
- visitorOUT (integer) to mark the output edges of ForkNode and DecisionNode.
-FinOUT (boolean) to mark the last output edge of ForkNode and DecisionNode.

An example of how a simple activity diagram is represented according to this meta-model is shown in
Figure 4. On the left side, we find the graphical representation of an activity diagram as a concrete
syntax. On the right side, we find the same pattern in its abstract syntax represented as a UML object
diagram needed by TGG.

4.1.2 Pi-calculus Meta-model

Figure 5 shows the meta-model of the Pi-calculus processes. In this meta-model, there is a class for the
root element ProcessComposition. This class is composed of a set of ProcessAssignments with at least
one process. The left side of the assignment statement is the defined process (processldentifier) and
the right side refers to a ProcessExpression (process). The ProcessExpression can be an expression of
Pi-calculus: Prefix, internalchannel, BinaryOperation, Restriction or Empty. A Prefix is composed of
two parts; the left side one is an Event and the right side one is a ProcessExpression. An Event is: a
Silent_Event, an Output_Event, an Input_Event, a Condidion or a Concurrency. An Output_Event is

331

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

composed of a Name. An Input_Event consists of a Name. A BinaryOperator (Choice, Concurrency
or Condition) consists of a ProcessExpression. A Process consists of a Name or more.

'—D‘ = name ; EString (<
[

H Advity

ActivityToActivitypartition

H ActivityNode

=

) Adtvitypartition ActivitypartitionToActivityNode 0.1
- %

ActivityToAcgivityEdge

ActivitypaftitionToActivityEdge
ource
0. g
H AdivityEdge d InitialNode || El FinalNode ||l DecisionNodd | El ForkNode | | H ObjectNode| | E JoinNode | | E MergeNode | | H AdionNode
DecisionNodgToDecisionInput
0.1
|l Dedisioninput
H Controleflow | [,
| B Objectlow ‘ : _
S FiniN : EBoolean . B AdiityfinalNodd [FlowFinalNodd g pin & ActivityParameterNode
=
S visitorN : Elnt 1
= guard | EString
& yisitorOUT : Elt ObjectFlowToObjectNode
© FinOUT : EBoolean
H OutputParameterNode B InputParameterNode

Figure 3. Adapted UML activity diagram meta-model from [3].

InitialProcess : Activity s Activi
name = “InitialProcess™

: InitialNode
name = “IN”

}r‘.source
: ControlFlow
X name = "X"
\L -target

cActionNode
name = "M"

y A:smm:g_

- ControlFlow
@ F name = "y”
\l,:target

- ActivityFinalNode

name = “F”

Figure 4. A simple activity diagram and its corresponding object diagram (in abstract syntax).

332

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

4.1.3 The Correspondence Meta-model

In defining the relationship between activity diagrams and Pi-calculus processes, we establish the
relationship by additional nodes that refer to elements of both diagrams. These nodes are called nodes
of correspondence. The exact meaning will be clearer when we define the matching rules in Section
4.2. Figure 6 shows the correspondence meta-model. We notice that these classes have other
associations to classes of the two meta-models (Pi-calculus and activity diagrams), which are not
shown in this diagram.

4.2 The Transformation of Activity Diagrams to Pi-calculus by a TGG Graph
Grammar

In this part, we propose twenty (20) rules for transforming UML Activity diagrams to Pi-calculus
processes. We recall that the source and target models are expressed as UML object diagrams. The
transformation scheme is based on [27], where activity diagram nodes are transformed to Pi-calculus
processes, whereas activity diagram transitions are transformed to input or output channels (names).

In the following, we give the idea of some transformation rules and their representation in TGG.

H Matching Expression H condition
0.1
Echoe &l BinaryOperator
&l Concurrency D] H ProcessComposition
Righthands{de
H Process 1
Lefthandside = Name : EString | “initial
0.1 ProcessAssignments
Rat 16
3 0.1 \V/ Priocessldentifier
RestrictionProcess g z 4
H Restriction =4/ H ProcessExpression 1.
0.1 H ProcessAssignment]
> 1 Process
TargetPrpcess
H Internalchannel
H Prefix E Empty
47 Event
0.1
B Event
H silent_Event =] Output_Event E] Input_Event
]
; o_object
o_subjec Lobject
0.1 L subject|
Name 0 0.1 AL 0.1 S
) EHAmE D.” Name
= Name : EString [5°7 left
name 0.* £
0.1
right

Figure 5. The Pi-calculus meta-model.

333

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

H Activity2ProcessComposition H root H Aedge2Name

N

H ActivityNode2ProcessAssign H ActivityMode2Concurency] H ActivityNode2Choice

Figure 6. The correspondence model.

421 The Axiom

The axiom is the simplest relationship that transforms a simple activity diagram to Pi-calculus (Figure
7). On the right side of Figure 7, the process InitialProcess is still left open, as indicated by points
then, that part will be supplemented by other rules later.

++ Activity: InitialProcess <:::> InitialProcess (...)=(V ...) .ceee.

Figure 7. The idea of transforming an activity diagram into an initial process in Pi-calculus.

The axiom shown in Figure 8 is the starting point of all transformations. An Activity corresponds to a
ProcessComposition, which contains a ProcessAssignement. On the left side of ProcessAssignement,
there is a Processldentifier (Process) which takes the name of the Activity by OCL expression. On the
right side, there is a Process (Restriction). Every pair of object diagrams for Activity diagrams and Pi-
calculus that can be constructed by applying the graph grammar rules, starting from this axiom at any
matching position, represents a legal relation between the two kinds of models. This is the semantics
of a set of TGG-rules. From this axiom, we will now discuss the new construction occurring in the
activity diagram and show how the corresponding states are created in the Pi-calculus.

R (Domain)
(Domain) Domain

{(Domain) Corespondance Plcalculus
Activity
+4
i < £ g :ProcessCompositiar] i
AC:Activi Activity o o ++ ~|PC:ProcessComposition
Y AC2PC:Activity2ProcessComposition
‘PA +Hy ProcessAssignments

g
++

PA:ProcessAssignment

++

— :ProcessIdentifief ‘N;oces:
> ++N\\
Name N
++ -
AC.name [~ N
“NPH:Process RES:Restriction

++

Figure 8. The axiom in TGG.

4.22 TGG Rule Transforming an Initial Node (InitialNode)

The idea of transforming an initial node is shown in Figure 9. At the left side, there is an initial node
IN1 connected to a control flow (indicated by green color and label-quests by + +). At the right side is

334
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

the corresponding Pi-calculus code.

IN1 (InStart, X) = InStart.x. IN; (InStart, x)
<———> InitialProcess(InStart,...)= (v x)INz (InStart, X) |

Figure 9. The idea of transforming the initial node into Pi-calculus in concrete syntax.
This idea of transforming an initial node is expressed by the TGG rule in Figure 10.

4.2.3 TGG Rule Transforming an Action Node (ActionNode)

The idea of transforming an action node is shown in Figure 11. We assume that the control flow x

exists and now an action A and a control flow y are added to the diagram (shown in green and marked
with ++). Now, at the right side, a ProcessAssignment is composed of two parts: a right side Process-

1 :ProcessComposition

|
= |PC:ProcessComposition
:PA
PP

“Activity AC2PC:Activity2ProcessComposition

sAssignment
\1
PH:Process PAProcessAssignment
A —J :ProcessIdengif‘er L g
:ProcessToName
W , :Pfocess
ActivityTpActivityNod Name ’» s e
i IVITY| IvityNode Pr, cefce
S S 'lnStart" NENare :ProcessAssi funent WxXname
++ + ‘processAs |gn + \ RES:Restriction
e 7 . \
IN:InitialNode| , |IN2PA:ActivityNode2ProcessAssign| PA2:ProcessAssignment| % 2

Name hame
i\ Name ++
+4 ‘InStart'| Procet fiar
IN.name loc dentifier VN:Name

*dprocess
sourge N’k (In

Start, X) = x. IN1 (InStart, x)
N1Name roces Tollame i
++ IN

P:Process

PR1:Prefix

Toprocdss: Ex:ne si
‘AttivityToActivityEdgle

++ :I}Sldbjé -
N3:Name |

gors
m Input_Event pr2:Prefix

2 oAedge

2 Lefthapgside
+ Name
Nar t Name \ 4
WX:ControleFlow InSta'T e

[WX.name] , [IN.name +if

A 5 p:Process

++ ,:-»—-‘ onl Ouiput_Event,|

i i0_subje

N4:Name Name
Name IN.name iProcessTeMame
'Iggtalt' iProgéssToName
5 ' X L ++
N5:NanpedcessToNam Nll Name N10 Name
/4
** PrdcessToName NameJ Name
N6:Name WX.name InStart
Name
WX.name
(Domain) (Domain) (Domain)
Activity Corespondance

Plcalculus

Figure 10. TGG rule transforming an initial node.

Identifier A (x, y) and a left side ProcessExpression containing a Prefix process. For the InitialProcess

we add a local port y, an operator of concurrency (|) and the process A (x, y). The corresponding TGG
rule is shown in Figure 12.

t)%. (u\mxle(tart, X) |
»8 /T %on%@oncl&l&ncy tart, X) [

335

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

++

++

+4

A

‘ActivityTpActivityNode

/

<

Ax v)=x.T. V. AX V)
InitialProcess(... Flvv) | A EY)-----

Figure 11. The action node between two control flows.

ACActivi I
Activity AC2PC:Activity2ProcessComposition

:ProcessCompos@pn

~|PC:ProcessComposition

‘ProcgsfAssignments

Processssignments

PAProcessAssignment

++ Actiabyplode i iprocessAssign +
ACT:ActionNode C1:ActivityNode2ProcessAssign pal:ProcessAssignment
Target iProci#tidentifier
Name 5 +PRrocess :Hrocess
ourge ACT.name |27 P:Process
- I ++
Toll i -
- PR1:Prefix] [RESRestriction
++ Name
N1:Name ||\wn i «__’m
i .name
- & Tarl roces N13:Name WN.name
—L & .. ToAedge +4 WxXname —— JfEvent TargetProcess
WX:ControleFlow [ZF C2:Aedge2Name = = 4 +
in:Input_Event
ToAedge | 3 ToprocessExpresgio
WX2N4:Aedge2Name | L Y |Con:Concurrenc
Name —>> ++ =
WX.name N2:Name pr2:Prefix
cven g 5
= TargktProcess 'ng':‘ handside
t:Silent_Event *
+H o i - ‘ToprocessExpression ++
. X
WN:ControleFlow| Toedge CS.AedgezNamew = + CON:Concurrency
++ > + s 5
X - :Event pr3:Pref|x ‘
out:Output_Event :Tiry/throcess Laffpandside
ipsubject i 1
++ 3+
e NaiNarBidessTotam P2:Process | |P3:Process
N4:Name
Name
+ Name
Name. \ Name ‘ProcessTolfame [ACT.name | + AT name
WN.name 'WX.name i sl ProcgssToName
N9:Name
++ ++
N10:Name N11:Name
Name : A
Name Name
WN.name
WX.name 'WN.name
(Domain) (Domain) (Domain)
Activity Corespondance Plcalculus

Figure 12. TGG rule transforming an Action node.

4.24 TGG Rule Transforming a Final Node (ActivityFinalNode)

The idea of transforming a final node is shown in Figure 13. We assume that the controle flow y exists
and now a final node FNA is added to the diagram (again shown by green color and marked with ++).

336

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

A new ProcessAssignment is generated which consists of two parts: the Processldentifier AFN (y) at
the right side and the prefix process y.AFN (y) at the left side. In the process InitialProcess, we add a
local port y as well as the Process AFN (y). The corresponding TGG rule is shown in Figure 14

<———> AFN () EV.ARN ()

y
InitialProcess(...)=(v..y..) | AFN (y)
AFN
Figure 13. The idea of transforming a final node.
: 4 i ‘ProcessComposition
ACActivity [$— AC2PC:Activity2ProcessComposition PC:ProcessComposition
Activity
:ProcessAssignmenp‘
‘ActivityTActivityNode T ‘processAssign ++
~_|C1:ActivityNode2ProcessAssign v ~|pat:ProcessAssignment
o =
‘ActivityNode I e \(o
F :ActivityFinalNode Name '““*““’*"““y/ -
N\ WX.name| + iz
Targdt $ P:Process Prefix
N1:Name ame +
o i M ARy ‘TargetProcdss
'L___JL_____CZ.Aed N ToEvent _ grvent +4
WX:ControleFlow| Toacdge ‘AedgezName o > +
In:Input_Event
ToAedge !I_SLID_IEC{¢ H
Name -t
WXname "IN3Name P2:Process
+
:Proéollame
‘ToprocessExpression 4
WX2N4:Aedge2Name Con:Concurrency | fnsivame | ———
Name - Name
F.name \ :Rigbswandside il Frare
Name
Name ++ il WX.name
WX.name | [N7:iName & P3:Process
‘ProcessToName
(Domain) fw”a”.“d (Domain)
orespondance
Activity B Plcalculus

Figure 14. TGG rule for a final node.

Note: For lack of space, the reader is referred to our internal report [32] to see the rules of
transforming the fusion node, the fork node, the join node and the decision node

4.3 Generating the Pi-calculus Code from the Pi-calculus Model

In order to check the correction of the target Pi-calculus models, we translate the Pi-calculus models in
abstract syntax (conforming to meta-model) to Pi-calculus code (concrete syntax). This transformation
is of model to text (M2T) type and is carried out using the Xpand tool of the EMF framework [31].

337

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,

S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

First, we use the Ecore meta-model of the source Pi-calculus shown in Figure 5. Second, we define the
Xpand template shown in Figure 15. This template maps a Pi-calculus model in abstract syntax to Pi-

calculas code.

| Tempateagt {1 = Tempatexpt 11 = Templatesgt {1
LoIMPRT calculuse % adump(N.Nase)» i ;
2 CDIRRT apand2 » 9 «ffs:pf) TG k. el e
3aEXTENSION tesplate: :GeneratorExtensionss 4 edusp(","tH.Nase)» .T«EXPAII) e . th1§.Eventn
4 EFINE sain FOR ProcessCoapositions [} ofNDIF » ﬂpm i L
SoENPND javaClass FOREACH this.Processhssigneentss 42 +ENDFOREACH: :-:«HIIJEFMB
¢ ENOEFINES Yedump(")")s :
. SO o oﬁEFZﬁ p;vzn; FOR Concurrency»
3 EFINE javaClass FOR Processissignaents 45 «BWOIF » " il { :
étdw('sguter')» vé:p('sauterg)m»ndclete()- 47 ENDDEFINED cEXPMI) POty . sl
10oEPMD procldent FOR this.ProcessTdentifiers 4 ot '
ILEPMD procExp FOR this.Processy 43 DEFINE procExp FOR Restrictions - procExp B Distpmimbite
11 OGNS 54 domp("(") odump("y")o j:m;mn)' P
B 51 GROREACH this.nase AS N » . =
.owm procIdent FOR Process » edusp(” “#N.Nase)» s pE!e?t ol
S odup(this.Jaset”(")o save(this.Nases”) SENDFOREACHD i, -
oLET this.ProcessTolase.first() AS WOX» 54 edusp(")")o ij'dwgthls;{fﬂ'm)n
WFOREACH this.ProcessTolase A5 N » SSOEPND procEp FOR this. RestrictionProcess " “:.’(-.)”tu*
GOF WONamecontains () o 55 (EMDEFINES s ncon g
19 odusp(N.Nase)n wsave(N.Niase)» 57 i o
% SEs 53 QEFINE procéxy FOR BinarOperators A
1 odump(”,"Hi.Nase)r wsave(","tH.Nase)» oEXPAD procEp R this. Lefthandsiden
0 I £ 960D prochp i ths Righthodsides - OEF LR pevent KR Inpa Events
B oOHREC L EMOEFINs 87 N ek
4 ()l e ol P
o L £ QEFDE procip FR Concrrencys HE L WAL e T
END0EFIVEs B o' ""’m’,’_
uwni procExp FOR Eaptyr ESOEXPAND procBxp PR this, Lefthandsides f «ﬂméflll:
i ¥y (| &
;,}«emmf» «EXPA!:;"p ;(Jrﬁ:p FOR this.Righthandsides 106 oﬁEFIHi svert R Oipet Ever
51 EFINE procEsp FOR Processs £ EMOEFINES gy ¥
2l this ProcessTotase. isfapty 78 QEFINE procExp FOR Choices by
33 wdump(get())o T sd"("p " edusp("¢"+this.o_object.Naset">")»
HafLSE » T6E0MD prockrp FR this.Lefthandsides :leJIF» :
5 o this et " T dap("+)s Ll
oLET this.ProcessTollase.first() A5 WOOC» 74BXPAND prockxp FOR this.Righthandsides ,‘f;:;g;m‘ FRR Silent Erents
SRREACH this FrocesTokaee. 5 N » (") W:i‘ff"_), i
eIF WOOCNase.contains(N.Nase) » 76 «ENDOEFINEY 115 (EAOEFINEs

wdima /N Namsn

Figure 15. The Xpand template defined to translate a Pi-calculus model to Pi-calculus code.

5. ILLUSTRATIVE EXAMPLE: TRANSFORMING AN ACTIVITY DIAGRAM TO A PI-
CALCULUS EXPRESSION

We first deal with the transformation of the example. Then, we show the verification of Deadlock
property using MWB Tool.

5.1 The Transformation Process

We have applied our approach on the example of Figure 16 representing an example of UML 2.0
Activity diagram borrowed from [33] with some modifications. We have first expressed this example

(" comeelalerr)

338

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

in its abstract syntax (tree), as shown in Figure 17. Then, we have executed our graph grammar on
this example using the TGG interpreter, as depicted in Figure 18.

. Instial

51

"
) final2

c2

{ calldriver

weelalert]
cancelal)

C1 5

mergsl M1 decisionl M3

[nohelp] [else]

[askhelp]

gl
pV4

M4

DM2 DM

decision

N

[else] [rzal]

Fd4

14

Jain
El

-
it ed

-._cnt:t eservice r.wnp[:unj
E2

C!‘) finall

Figure 16. The activity diagram in concrete
syntax.

. — -
= Transformation ﬁnisf_leii E@g
— -

Transfermation finished. All source objects have been transformed.
Processing time: 1420 miliseconds.

»

> Applied TGGE rules:

4 Rule bindings in their order of application:
. Activity2PIcalculus_axiom
InitialeMode

. ACTIONsimpl

decisionMNodel

decisionMNodel

decisionMNode2 _
. ACTIONsimpl

MergeMNoded

MergeMNode2

10, decisionModed

11. decisionMode2

12, MergeModed

13, MergeMode2

14, ForkModel -

—

m

W0E =l O Ln 4= L Ra

Cancel]

/= < ={; as-f,e';sdesmpTinuj

4 Activity WWWomi 52

4 Q platform:/resource/men-univer.info.ActivityDiagram/modele/Activity WWW.xmi ;
4 4 Activity InitialProcess
4 Initial Node Initial
<4 Action Node calldriver
< Decision Node decisionl
4 Action Node assessdescription
<4 Merge Node mergel
<4 Merge Node merge2
< Decision Node decision2
4 Fork Node fork
4 Action Node getA
4 Action Node getB
4 Action Node getC
4 Action Node getD
< Join Node join
4 Action Node creatservicedescription
4 Activity Final Node finall
4 Activity Final Node final2
<4 Action Node creatalert
<4 Controle Flow E2
<4 Controle Flow E1
<4 Controle Flow J4
<4 Controle Flow)3
\] 4 Controle Flow J2
-

4 Controle Flow J1

<4 Controle Flow F4
<4 Controle Flow F3
<4 Controle Flow F2
<4 Controle Flow F1
<4 Controle Flow D3
4 Controle Flow DM2

Figure 17. The activity diagram example in
its abstract syntax (tree).

) Helper.java (@ ADiagram.ecore (@ Activity WWWoxmi 2

4[5 platform:/resource/men-univer.info. ActivityDiagram/modele/Activity WWW. calculus -
4 4 Process Composition
4 4 Process Assignment
> 4 Process InitialProcess
» 4 Restriction
4 4 Process Assignment
5 4 Process Initial
5 4 Prefix
b 4 Process Assignment
4 4 Process Assignment
> 4 Process decisionl
5 4 Prefix
4 4 Process Assignment
» 4 Process assessdescription
5 4 Prefix
4 4 Process Assignment
» 4 Process mergel
4 % Choice
a4 4 Prefix
b 4 Prefix
4 4 Input Event
<4 Name M2
a4 4 Prefix
b 4 Prefix
b 4 InputEvent
4 4 Process Assignment
> 4 Process decision2
5 4 Prefix
4 4 Process Assignment
» 4 Process mergel |:|
» 4 Choice

Figure 18. Transforming the example
using TGG interpreter.

Figure 19. The corresponding Pi-calculus of the activity
diagram example in abstract syntax.

339

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

As a result, we have obtained the Pi-calculus model (abstract syntax tree) shown in Figure 19.

Then, we have used Xpand tool to transform the Pi-calculus model (abstract syntax as a tree) to its
textual form and obtained the final Pi-calculus code shown in Figure 20.

Notation: The generated symbols of Pi-calculus are as follows:
RESTRICTION: represented by the alphabet 'v'

OUT_EVENT: represented by the channel name + BAR example: x = x_bar
SILENT_EVENT: represented by 'Tau'

InitialProcess(InStart,nohelp,askhelp,else,else,real)=

(v S1S2M1M2M3 M4 DM1 DM2 D3 C1 F1 F2 F3 F4 J4)3 J2 J1 C2 E1 E2)(Initial(InStart,S1)
|(calldriver(S1,S2)|(((decision1(M1,S2,nohelp,askhelp,M2,M3,else)
|(assessdescription(M3,M4)|0))|(mergel(M2,DM1,M4)|((decision2(DM2,DM1,else,D3,
real)|((((fork(F1,D3,F2,F3,F4)|(getD(F4,J4)|0))|(getC(F3,J3)(0)) |(getB(F2,J2)|0))|(getA(F1,J1)
|(join(E1,J1,J2,J3,J4)|(creatservicedescription(E1,E2)[final1(E2))))))|(merge2(DM2,C1,M1)
|(creatalert(C1,C2)[final2(C2))))))|0)))

Initial(InStart,S1)= InStart.S1_BAR.Initial(InStart,S1)

calldriver(S2,51)= S1.Tau.S2_BAR:.calldriver(S1,S2)

decision1(M1,S2,nohelp,M2,askhelp,else,M3)= S2.(v X)Cn_BAR<X>.X(Y).(

[Y=nohelp]M1_BAR. decision1(M1,S2,nohelp,M2,askhelp,else,M3)+([Y=askhelp]M2_BAR. decision1(M1,S2,nohelp,M2,askhelp,else,M3)+
[Y=else]M3_BAR. decision1(M1,S2,nohelp,M2,askhelp,else,M3)))

assessdescription(M4,M3)= M3.Tau.M4_BAR .assessdescription(M3,M4)

mergel(M2,DM1,M4) = (M2.DM1_BAR. mergel(M2,DM1,M4)+M4.DM1_BAR. mergel(M2,DM1,M4))

decision2(DM2,DM1 else,real,D3)= DM1.(v X)Cn_BAR<X>.X(Y).([Y=else]DM2_BAR. decision2(DM2,DM1,else,real, D3)+
[Y=real]D3_BAR. decision2(DM2,DM1 else,real,D3))

merge2(DM2,C1,M1)= (DM2.C1_BAR. merge2(DM2,C1,M1)+M1.C1_BAR. merge2(DM2,C1,M1))

fork(F1,D3,F2,F3,F4)= D3.(v traversed)(F1_BAR.traversed_BAR.O|(F2_BAR.traversed_BAR.O|
(F3_BAR:.traversed_BAR.0|F4_BAR.traversed_BAR.0))).fork(F1,D3,F2,F3,F4)

getD(J4,F4)= F4.Tau.J4_BAR.getD(F4,J4)

getC(J3,F3)= F3.Tau.J3_BAR.getC(F3,J3)

getB(J2,F2)= F2.Tau.J2_BAR.getB(F2,J2)

getA(J1,F1)= F1.Tau.J1_BAR.getA(F1,J1)

creatalert(C2,C1)= C1.Tau.C2_BAR:.creatalert(C1,C2)

final2(C2)= C2.final2(C2)

join(J1,E1,J2,J3,J4)=

(v received)(J1.received_BAR.0|(J2.received_BAR.O| (J3.received_BAR.0|J4.received_BAR.0))).E1_BAR.join(J1,E1,J2,J3,J4)

creatservicedescription(E2,E1)=E1.Tau.E2_BAR.creatservicedescription(E1,E2)

finall(E2)= E2.final1(E2)

Figure 20. The final Pi-calculus expression.

5.2 Verification of Deadlock Property

In order to verify the deadlock property, we have first installed the Microsoft windows version of
MWB Tool Version 4.137 under Standard ML of New Jersey (SML/NJ) Version 110.57 [34]. We
will verify in the following the deadlock property on two examples: the illustrative example and
another example with a deadlock.

5.2.1 The lllustrative Example: with No Deadlock

The following subset has been taken as an input file process3.txt to MWB tool. We have adapted the
pi-calculus expression of Figure 20 to the syntax of MWB, as shown in Figure 21.

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

340

agent Initialp(i,n,a,e,e10,r,c3,c4)= ("s1,52,m1,m2,m3,m4,dm1,dm2,d3,c1,f1,f2,3,f4,j4,j3,j2,j1,c2,e1,e2)(Initial(i,s1) \
|(Calldriver(s1,s2)|(((Decision1(m1,s2,n,a,m2,m3,e,c3) |(Assessdescription(m3,m4)|0))|(Mergel(m2,dm1,m4)| \
((Decision2(dm2,dm1,e10,r,d3,c4) | (((Fork(f1,d3,f2,f3)|(Getd(f4,j4)|0)|(Getc(f3,j3)|0))|(Getb(f2,j2)|0))| \
(Geta(f1,j1)|(Join(el,j1,j2,j3,j4)|(Creatservicedescription(el,e2)| \
Final1(e2))))))|(Merge2(dm2,c1,m1)|(Creatalert(cl,c2)|Final2(c2))))))|0)))

agent Initial(i,s1)= i.'s1.Initial(i,s1)

agent Calldriver(s1,s2)= s1.'s2.Calldriver(s1,s2)

agent Decision1(m1,s2,n,a,m2,m3,e,c3)= s2.("x)'c3<x>.x(y).([y=n]'m1.Decision1(m1,s2,n,a,m2,m3,e,c3)+ \
([y=a]'m2.Decision1(m1,s2,n,a,m2,m3,e,c3)+ [y=e]'m3.Decision1(m1,s2,n,a,m2,m3,e,c3))) \

agent Assessdescription(m3,m4)= m3.'m4.Assessdescription(m3,m4)

agent Mergel(m2,dml1,m4)= (m2.'"dm1l.Mergel(m2,dm1,m4)+m4. ‘dm1l.Mergel(m2,dm1,m4))

agent Decision2(dm2,dm1,e10,r,d3,c4)= dm1.("x)'c4<x>.x(y).([y=e10]'dm2.Decision2(dm2,dm1,e10,r,d3,c4)+
[y=r]'d3.Decision2(dm2,dm1,e10,r,d3,c4))

agent Merge2(dm2,c1,m1)=(dm2.'c1.Merge2(dm2,c1,m1)+ml.'cl.Merge2(dm2,c1,m1))

agent Fork(f1,d3,f2,f3,f4)=

d3.(“traversed)('fl.'traversed.0|'f2.'traversed.0|'f3.'traversed.0|'f4.'traversed.O|traversed.traversed.traversed.traversed.Fork(f1,d3,f2,f3,f4))

agent Getd(f4,j4)= f4.'j4.Getd(f4,j4)

agent Getc(f3,j3)= f3.'3.Getc(3,j3)

agent Getb(f2,j2)= 2.'j2.Getb(f2,j2)

agent Geta(f1,j1)= f1.'j1.Geta(f1,j1)

agent Creatalert(c1,c2)= cl1.'c2.Creatalert(c1,c2)
agent Final2(c2)= c2.Final2(c2)

agent Join(el,j1,j2,j3,j4)=

("received)(j1."received.0]j2."received.0|j3.'received.0|j4.'received.O|received.received.received.received.'el.Join(el,j1,j2,j3,j4))

agent Creatservicedescription(el,e2)=el.'e2.Creatservicedescription(el,e2)

agent Finall(e2)= e2.Finall(e2)

Figure 21. The final Pi-calculus expression respecting the syntax of MWB.

This code is written in the file test14.txt.

We have applied the command input "test14.txt" on MWB followed by the command deadlock Name

of the agent as follows:

F:\sml nj 110.57\mwb99-sources>sml @SMLIoad=mwb $*

The Mobility Workbench
(MWB'99, version 4.137, built Fri Jul 24 18:10:22 2020)

MWB>input "test14.txt"
MWB>deadlocks Geta
No deadlocks found.
MWB>deadlocks Geth
No deadlocks found.
MWB>deadlocks Getc
No deadlocks found.
MWB>deadlocks Fork
No deadlocks found.
MWB>deadlocks Join
No deadlocks found.
MWB>deadlocks Finall
No deadlocks found.
MWB>deadlocks Final2
No deadlocks found.

In conclusion, all the agents do not contain deadlock.
In the following, we show an example containing a deadlock.

341

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

5.2.2 Example of UML-AD with the Presence of Deadlock
The UML Activity diagram shown in Figure 22 is used to illustrate the presence of a deadlock.

Agent Initialp(i,t1,f,c)=("s0,s1,52,s3,54,55,56,57)(Initial(i,s0)|A0(s0,s1)|

Decision1(s1,52,54,t1,f,c)\
Al(s2,53)|A2(s4,55)|Join(s3,55,56)|A3(s6,57)|Final(s7))
51
[True] A [False] agent Initial(i,s0)= i.'s0.Initial(i,s0)
A 4 agent A0(s0,s1)= s0.'s1.A0(s0,s1)
DecisionMode agent Decision1(s1,s2,s4,t1,f,.c)=
Al A2 s2.("x)'c<x>.x(y).([y=f]'s1.Decision1(s1,s2,s4,t1,f,c)+ \
[y=t1]'s4.Decision1(s1,s2,s4,t1,f,c))
3 o5 agent A1(s2,s3)=s2.'s3.A1(s2,s3)

agent A2(s4,s5)= s4.'s5.A2(s4,s5)
[| agent Join(s3,s5,56)=

s6 ("received)(s3.'received.0|s5. received.O|received.received.'s6.Join(s3,s5,56))
agent A3(s6,s7)=s6.'s7.A3(s6,57)
agent Final(s7)= s7.Final(s7)
S? - - -
® Figure 23. The Pi-calculus code equivalent to the UML-AD of
Figure 22.

Figure 22. Example of AD with deadlock presence.

First, we have transformed this UML-AD to its equivalent Pi-Calculus code, as shown in Figure 23.
Then, we have executed the command input '"‘deadlockl.txt" under MWB, followed by the
command deadlocks Initialp, as follows:

F:\sml nj 110.57\mwb99-sources>sml @SMLIoad=mwb $*

The Mobility Workbench
(MWB'99, version 4.137, built Fri Jul 24 18:10:22 2020)

MWB>input "deadlockl.txt"
MWB>deadlocks Initialp

Deadlock found in ("~v,~v6,~v7,~v8,~v9,~v10,~v11,~v12)("~v.Initial<i,~v> | '~v6.A0<~v,~Vv6> |
~V7.("x)'c<x>.x(y).([y=f]'~v6.Decision1<~v6,~v7,~v9,tl,f,c> + [y=t1]'~v9.Decision1<~v6,~v7,~v9,t1,f,c>) | ~v7.'~v8.Al<~v7,~v8> |
~v9.'~v10.A2<~v9,~v10> | (“received)(~v8.received.0 | ~v10.'received.0 | received.received.'~v11.Join<~v8,~v10,~v11>) |

~v11.'~v12.A3<~v11,~v12> | ~v12.Final<~v12>)
reachable by 3 commitments
MwWB>

The response is that there is a deadlock. The interpretation of this deadlock is that the corresponding
activity diagram has a design error. The result of the decision node is true or false. So, the join node
will never be executed.

6. CONCLUSION

This paper is a contribution in the area of model-driven engineering; it is essentially based on the
combined use of meta-modeling and model transformation. We have proposed an integrated approach,
supported by a tool called AD2PICALC, which combines UML 2.0 Activity diagrams and Pi-calculus
process algebra for the development of software systems. More precisely, we have proposed an
automated approach for transforming UML 2.0 Activity diagrams to Pi-calculus processes using
Eclipse Xpand and TGG tools. First, we have proposed three meta-models; one for activity diagrams,
the second for Pi-calculus and another one for correspondence. Second, we have presented the first
transformation (TGG rule graph grammar) from UML activity diagram to Pi-calculus models using
TGG tool. Finally, we have defined the second transformation that generates the Pi-calculus code from
the Pi-calculus models (abstract syntax) using Xpand tool. We have illustrated our approach through
an example from the literature. In a future work, we plan to apply our approach on several real case
studies and use the Pi-calculus tools, such as MWB, to verify other properties of the modeled system,
such as safety, non-determinism, termination and liveness. We plan also to transform other UML
diagrams, like overview interaction diagrams. Finally, we plan to deal with the verification of the
transformation itself based on the work published in [26].

342
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

ACKNOWLEDGEMENTS

This work is supported by MISC laboratory, Faculty of NTIC, University Constantine 2-Abdelhamid
Mehri, Constantine, Algeria and DGRSDT, Ministry of Higher Education and Scientific Research,
Algeria.

REFERENCES

[1] M. Singh, A. K. Sharma and R. Saxena, "An UML+ Z Framework for Validating and Verifying the
Static Aspect of Safety Critical System," Procedia-Computer Science, vol. 85, pp. 352-361, 2016.

[2] R. M. Borges and A. C. Mota, "Integrating UML and Formal Methods," Electronic Notes in
Theoretical Computer Science, vol. 184, pp. 97-112, 2007.

[3] OMG UML, [Online], Available: http://www.omg.org/spec/UML/2.2/Superstructure.

[4] F. R. Golra, F. Dagnat, J. Souquiéres, I. Sayar and S. Guerin, "Bridging
the Gap Between Informal Requirements and Formal Specifications Using Model Federation," Proc. of
the 16" International Conference on Software Engineering and Formal Methods (SEFM 2018), pp. 54-
69, Toulouse, France, Jun. 2018,

[5] R. Milner, Communicating and Mobile Systems: The Pi Calculus, Cambridge University Press, 1999.

[6] J. Parrow, "An Introduction to the Pi-calculus,” Chapter to Appear in Handbook of Process Algebra,
Ed. Bergstra, Ponse and Smolka, Elsevier, [Online], Available: http://courses.cs.vt.edu/cs5204/fall09-

kafura/Papers/PlCalculus/Pi-calculus-Introduction.pdf.

[7] A. R. Da Silva, "Model-driven Engineering: A Survey Supported by the Unified Conceptual Model,"
Computer Languages, Systems & Structures, vol. 43, pp. 139-155, 2015.

[8] S. Efftinge, P. Friese, A. Hase, D. Hubner, C. Kadura, B. Kolb et al., "Xpand Documentation,"
Technical Report, Copyright 2004-2010, [Online], Available: https://git.eclipse.org/c/m2t/org.eclipse.
xpand.git/plain/doc/org.eclipse.xpand.doc/manual/xpand_reference.pdf, 2004.

[9] TGG Home Page, [Online], Available: www.informatik.uni-marburg.de/~swtagtive-contest/.
[10] B. Victor and F. Moller, "The Mobility Workbench—A Tool for the z-calculus,” Proc. of the

International Conference on Computer Aided Verification, pp. 428-440, Springer, Berlin, Heidelberg,
1994,

[11] R. Milner, "A Calculus of Communicating Systems," Lecture Notes in Computer Science, vol. 92,
1980.

[12] E. André, C. Choppy and G. Reggio, "Activity Diagram Patterns for Modeling Business Processes,"
Software Engineering Research, Management and Applications, Part of Studies in Computational
Intelligence, vol. 496, pp. 197-213, Springer, Heidelberg, 2014.

[13] B. Hazela, D. Arora and V. Saxena, "Formalizing Semantics for UML Activity Diagram through
Regular Expression Translation,"” Research Journal of Applied Sciences, Engineering and
Technology, vol. 11, no. 2, pp 169-175, 2015.

[14] Y. Rahmoune, A. Chaoui and E. Kerkouche, "A Framework for Modeling and Analysis of UML
Activity Diagram Using Graph Transformation," Procedia-Computer Science, vol. 56, pp. 612-617,
2015.

[15] M. Jamal and N. A. Zafar, "Transformation of Activity Diagrams into Colored Petri Nets Using
Weighted Directed Graph,” Proc. of the IEEE International Conference on Frontiers of Information
Technology (FIT), pp. 181-186, Islamabad, Pakistan, December 2016.

[16] I. Chishti, A. Basukoski, T. Chaussalet and N. Beeknoo, "Transformation of UML Activity Diagram for
Enhanced Reasoning," Proceedings of the Future Technologies Conference, pp. 466-482, Springer,
Cham, 2018.

[17] A. Achouri, Y. B. Hlaoui and L. J. B. Ayed, "Institution-based UML Activity Diagram Transformation
with Semantic Preservation," International Journal of Computational Science and Engineering, vol. 18,
no. 3, pp. 240-251, 2019.

[18] L. B. R. dos Santos, V. A. de Santiago Junior and N. L. Vijaykumar, "Transformation of UML
Behavioral Diagrams to Support Software Model Checking," Proc. of Formal Engineering Approaches

http://www.omg.org/spec/UML/2.2/Superstructure
http://www.informatik.uni-marburg.de/~swtagtive-contest/

343

" Integrating UML 2.0 Activity Diagrams and Pi-calculus for Modeling and Verification of Software Systems Using TGG", R. Elmansouri,
S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

to Software Components and Architectures (FESCA), wvol. 147, pp. 133-142,
doi:10.4204/EPTCS.147.10, 2014.

NuSMV Home Page, "NuSMV: A New Symbolic Model Checker,"” [Online], Available:
http://nusmv.fbk.eu/.

S. Meghzili, A. Chaoui, M. Strecker and E. Kerkouche, "On the Verification of UML State Machine
Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL," Proc. of IEEE International
Conference on Information Reuse and Integration (IRI), pp. 419-426, San Diego, CA, USA, 2017.

S. Meghzili, A. Chaoui, M. Strecker and E. Kerkouche, "Verification of Model Transformations Using
Isabelle/HOL and Scala,”" Information Systems Frontiers, vol. 21, no. 1, pp. 45-65, 2019.

K. Pokozy-Korenblat and C. Priami, "Toward Extracting n-calculus from UML Sequence and State
Diagrams," Electronic Notes in Theoretical Computer Science, vol. 101, pp. 51-72, 2004.

A. Belghiat and A. Chaoui, "A TGG Approach for Bidirectional Automatic Mapping between UML
and Pi-calculus," Proceedings of the International Conference on Intelligent Information Processing,
Security and Advanced Communication, Article no.70, pp. 1-3, [Online], Available:
https://doi.org/10.1145/2816839.2816857, ACM, 2015.

A. Belghiat, A. Chaoui and M. Beldjehem, "Capturing and Verifying Dynamic Program Behaviour
Using UML Communication Diagrams and Pi-calculus," Proc. of IEEE International Conference on
Information Reuse and Integration, pp. 318-325, San Francisco, CA, USA, 2015.

A. Belghiat and A. Chaoui, "A Graph Transformation of Activity Diagrams into =m-calculus for
Verification Purpose,” Proceedings of the 3 Edition of the International Conference on Advanced
Aspects of Software Engineering (ICAASE18), pp. 107-114, Constantine, Algeria, Dec. 2018.

MSDL, "AToM3 Quick Links," [Online], Available: http://atom3.cs.mcgill.ca/.

V. S. Lam, "On zn-calculus Semantics As a Formal Basis for UML Activity Diagrams,” International
Journal of Software Engineering and Knowledge Engineering, vol. 18, no. 4, pp. 541-567, 2008.

A. Schiirr, "Specification of Graph Translators with Triple Graph Grammars," Proc. of the International
Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol.
903, pp. 151-163, Springer, Berlin, Heidelberg, 1994.

A. Konigs, "Model Transformation with Triple Graph Grammars," Proc. of Model Transformations in

Practice Satellite Workshop of MODELS, A., no. 166, pp. 1-16, [Online], Available:
https://pdfs.semanticscholar.org/f608/40351e4f18c6513465956361b99a0eabb148.pdf, 2005.

J. Greenyer and J. Rieke, "Applying Advanced TGG Concepts for a Complex Transformation of
Sequence Diagram Specifications to Timed Game Automata,” Proc. of the International Symposium on
Applications of Graph Transformations with Industrial Relevance, pp. 222-237, Springer, Berlin,
Heidelberg, 2011.

F. Budinsky, D. Steinberg, E. Ellersick, T. J. Grose and E. Merks, Eclipse Modeling Framework: A
Developer's Guide, Addison-Wesley Professional, 2004.

R. Elmansouri, S. Meghzili, A. Chaoui, A. Belghiat and O. Hedjazi, "Transformation Rules of UML
Activity Diagrams to Pi-calculus Using TGG," Internal Report, MFGL Team, MISC Laboratory,
University Constantine 2-Abdelhamid Mehri, Algeria, [Online], Awvailable: https://misc-
lab.org/en/teams/show/MFGL.

D. Bisztray, K. Ehrig and R. Heckel, "Case Study: UML to CSP Transformation," Applications of
Graph Transformation with Industrial Relevance, [Online], Available: https://www.informatik.uni-
marburg.de/~swt/agtive-contest/UML-to-CSP.pdf, 2007.

SMLNJ, "Standard ML of New Jersey," [Online], Available: http://smlinj.org.

http://atom3.cs.mcgill.ca/

344
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

€l padla

T b (e Lgia —iaill g il yall A el A_adai Al 485l o2 a LS
Gl il el hbhde aadi iy (Pl) d—elSill g Jalaill (il 5 (UML) cllakais
il i 2230y (s el Al @l LA A (UML 2.0)
(UML) l—8 ol JS &y 3—aaill g LIy Y2y (3 ai il 2 (PI) J—alSill
LU A YA 3daiy Lad agieal Bl ol iad el g mgiedar 34 3l a
leailiad e saaill Aa U Ol oY) Leaitsi LS (Ll il

lLbhis J sl (AD2PICALC) (ool s gl o)i el Wl b
Eclipse) &l gal aladt Ll Sy Jmls e (UML 2.0) L sl
g\ LN Q\jjy di\ RS :\ .\.‘\m\ Ql .:‘A!‘\ e\.\“\ o) Y“ :‘\ c < 9 .(TGG) 9 (Xpand
B o ‘LSH‘ A alh ey ol g eel &Y A aiall g Al g ce_ﬁ\ a8l
Lald e aanl) I Adl syl A 8all il Y e Jlie DA e liaal e
a1 day LY daal I <55 (MWB) z\aj PR WP T '&}ﬂ!

(TGG) A5 Anlall g I e] 8 &l gal aladiuly o il 45y Hla 4]

This article is an open access article distributed under the terms and conditions of the Creative
ey Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

