
68

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

PERFORMANCE EVALUATION OF META-
HEURISTICS IN ENERGY AWARE REAL-TIME

SCHEDULING PROBLEMS

Ashraf Suyyagh1, Jason G. Tong2 and Zeljko Zilic3

Department of Electrical and Computer Engineering,

McGill University, Montreal, Canada
ashraf.suyyagh@mail.mcgill.ca1, jason.tong@mail.mcgill.ca2,

zeljko.zilic@mcgill.ca3

(Received: 15-Dec.-2015, Revised: 03-Feb.-2016, Accepted: 10-Feb.-2016)

ABSTRACT

Energy efficient real-time systems have been a prime concern in the past few years. Techniques at all

levels of system design are being developed to reduce energy consumption. At the physical level, new

fabrication technologies attempt to minimize overall chipset power. At the system design level,

technologies such as Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Management

(DPM) allow for changing the processor frequency on-the-fly or go into sleep modes to minimize

operational power. At the operating system level, energy-efficient scheduling utilizes DVFS and DPM at

the task level to achieve further energy savings. Most energy-efficient scheduling research efforts focused

on reducing processor power. Recently, system-wide solutions have been investigated. In this work, we

extend on the previous work by adapting two evolutionary algorithms for system-wide energy

minimization. We analyse the performance of our algorithms under variable initial conditions. We further

show that our meta-heuristics statistically provide energy minimizations that are closer to the optimum

85% of the time compared to about 30% of those achieved by simulated annealing over 500 unique test

sets. Our results further demonstrate that in over 95% of the cases, meta-heuristics provide more

minimizations than the CS-DVS static method.

KEYWORDS

Real-time systems, Embedded systems, Energy-aware scheduling, Meta-heuristics, DVFS, DPM.

1. INTRODUCTION

Embedded systems are evolving into cyber-physical systems; highly interconnected, tightly-

coupled systems with the physical world. The consolidation of the physical world into the

interconnected virtual world requires the use of many devices. Cyber-physical systems heavily

rely on sensors, communication devices and even the cloud. Such devices claim significant

portion of the system power profile and their share can no longer be excluded in energy

minimization. As a result, system-wide power reduction becomes a significant challenge.

Traditionally, research efforts have focused on processor power optimizations. The processor

dynamic power consumption highly depends on operational voltage and frequency as given by

Equation 1:

𝑃 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝑒𝑓𝑓 . 𝑉𝑑𝑑
2 . 𝑓 (1)

where 𝐶𝑒𝑓𝑓 is the effective switching capacitance, 𝑉𝑑𝑑 is the supply voltage and 𝑓 is the

operational frequency [21]. With the advancement of fabrication technologies and the shrinking

69

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

of transistors’ size into the nanometer scale, effects of sub-threshold leakage current become

more prominent. Transistor miniaturization allows for the reduction of the supply voltage.

However, sub-threshold leakage current 𝐼𝑠𝑢𝑏 is inversely proportional to 𝑉𝑑𝑑. This becomes

more evident in Equation 2:

𝐼𝑠𝑢𝑏 = 𝐾1𝑒
−𝑉𝑡ℎ
𝑛𝑉𝜃 (1 - 𝑒

−𝑉𝑑𝑑
𝑉𝜃) (2)

where 𝐾1 and n are experimentally derived, 𝑉𝜃 is the thermal voltage which is 25mV at room

temperature and increases linearly with temperature. Increasing 𝑉𝑡ℎ to reduce 𝐼𝑠𝑢𝑏 is not a viable

option, as any increase in 𝑉𝑡ℎ will reduce the maximum processor frequency and therefore affect

the performance. The relationship between threshold voltage 𝑉𝑡ℎ and frequency 𝑓 is given by

Equation 3:

𝑓 ∝
(𝑉𝑑𝑑− 𝑉𝑡ℎ)𝛼

𝑉𝑑𝑑
 (3)

where 𝛼 is a technology parameter. To reduce processor dynamic power, Dynamic Voltage and

Frequency Scaling (DVFS) was introduced [1]-[2]. DVFS allows for the run-time change of

operating voltages/frequencies. Modern operating systems can access and operate processor

DVFS hardware. On the other hand, to reduce leakage current, Dynamic Power Management

(DPM) techniques are employed to turn off the processor [3] or inactive devices [4]-[5] when

idle.

Previous research has targeted system-level optimizations. It was shown that when system

devices are involved, the interplay between processor DVFS/DPM and device DPM techniques

is complex [6]-[8]. DVFS techniques could lower processor energy but increase device energy.

Many devices are expected to remain in the active state for the entire duration the task is

running on the processor [9]. Devices are allowed to switch into their low power states if they

are no longer used by successive scheduled tasks and only if it is energy efficient to do so. As

task execution times are scaled using DVFS techniques, the time the associated devices are

expected to be powered on is scaled as well, and more energy is consumed [9]-[10]. Moreover,

even though employing DVFS reduces dynamic power, the reduction of Vdd increases leakage

current, and the prolonged execution of the task due to frequency scale down increases the

overall leakage power consumption. Therefore, an optimal frequency scaling assignment needs

to balance and minimize the overall system energy; that is of the processor and the devices

combined. This problem is known to be an NP-Hard problem [11]. As such, design time

algorithms developed specialized heuristics [11]-[12] or were based on mathematical

optimizations such as integer linear programming [9].

This work extends on previous research by adapting different meta-heuristics to minimize

system-wide energy and evaluating their performance. Meta-heuristics have been used in

scheduling problems related to energy minimization, load balancing [13], [22] or makespan

minimization. The genetic algorithm (GA) is one the earliest meta-heuristic evolutionary

algorithms employed for task scheduling and partitioning and for test set generation [14]-[16].

Differential Evolution (DE) is one of the newer evolutionary algorithms which differs in that it

is not biologically inspired, but rather relies on stochastic approaches [17]. Simulated annealing

(SA) is another meta-heuristic which approximates a global optimum of an NP-hard problem.

Simulated annealing was employed in [10] to minimize power consumption of a periodic hard-

real time system. We summarize our contributions in this work as follows:

 We propose and adapt two meta-heuristic evolutionary algorithms to find the DVFS

configurations which minimize system energy. We analyse and compare the

performance proposed algorithms against each other and against previous work.

 We investigate the optimal parameters for these algorithms and attempt to establish

confidence in the ability of such algorithms in producing near-optimal energy savings.

70

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

The organization of the paper is as follows: Section 2 introduces the system’s task and energy

models. Section 3 describes the proposed algorithms as well as the reference algorithms. The

simulation methodology is presented in Section 4 and our analysis and results are summarized

in Section 5.

2. SYSTEM MODELS

In this section, the power and task models used in this paper are presented. The notations used

to describe task and power parameters are listed in Table 1.

Table 1. List of notations used in the paper.

𝜏𝑖 Task 𝑖, 𝑖 = 1, 2, … N

𝐷𝑖 Deadline of Task 𝑖
𝐶𝑖 Worst Case Execution Time (WCET) of 𝑖 under maximum system frequency F1

𝑇𝑖 Period of task 𝜏𝑖

𝐹𝑖 Normalized discrete CPU frequency levels, 𝐹𝑖 ∈ 𝐹1 , 𝐹2 … 𝐹𝑄 and 𝐹1 > 𝐹2 > .. > 𝐹𝑄

𝑑𝑘 Device k, k = 1, 2, …K

𝑠 The deep sleep mode where the least power is consumed

𝑡𝑠𝑤
()

Total switching time overhead when the processor or device 𝑑𝑘 is switched down

from active state to the low power state 𝑡𝑠𝑑
()

 and up from the low power state to the

active state 𝑡𝑠𝑢
()

𝐸𝑠𝑤
()

Total energy dissipated when the processor (CPU) or device 𝑑𝑘 is switched down

from active state to the low power state 𝐸𝑠𝑑
()

 and back up from the low power state to

the active state 𝐸𝑠𝑢
()

, respectively

𝑃𝑠
()

Device 𝑑𝑘 or processor (CPU) power consumed while the device is in the low power

state 𝑠

𝑃𝑎
𝑑𝑘 Device 𝑑𝑘 power consumed in the active state

𝑃𝐹𝑖

𝐶𝑃𝑈 Processor power consumed in the active state while running at frequency level 𝐹𝑖

𝑡𝐵𝐸𝑇
()

 Break even time of device 𝑑𝑘 or the processor

2.1 Task Model

The system is a hard real-time system based on a set of N independent, periodic and fully pre-

emptible tasks with implicit deadline model (deadline equals the period). Tasks are assumed

schedulable under EDF policy when executed with no frequency or voltage scaling techniques

employed. Each task 𝜏𝑖 is represented by the tuple (𝐶𝑖, 𝐷𝑖, 𝑇𝑖) denoting task worst case

execution time, deadline and period, respectively. Each task 𝜏𝑖 is assigned a number of devices

𝑑𝑘 and a frequency scaling factor 𝐹𝑖. Similar to previous work [10], [23], we assume an inter-

task device scheduling model. That is, devices are available, active and running throughout the

associated task run time. Devices can be switched into an inactive state only at the end of the

associated task run-time. Switching the device to low power state takes place if the device is no

longer needed for a subsequent task and if it is energy-efficient to go to low-power state. The

hyper-period (HP) is the least common multiple of all task periods and represents the period in

which the task scheduling pattern repeats. Utilization is measured by ∑
𝐶𝑖

𝑇𝑖

𝑁
1 and must be less

than or equal to one for a feasible EDF schedule. In accordance with previous research [9]-[10],

[7], the relationship between task execution time and frequency scaling is assumed to be linear

and the execution time for task 𝜏𝑖 after scaling is measured by 𝐶𝑖/𝐹𝑖 . Slack time (processor /

device idle time) is only utilized for the possibility of switching the processor / device to low-

power mode.

71

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

2.2 System Power Model

We consider a processor and devices which have one active state and one low power (deep

sleep) state 𝑠. The deep sleep state 𝑠 is the state where most of the processor/device components

are turned off. This model is used to keep the design space exploration for the algorithms

proposed in this paper manageable. Yet, the system could be readily extended to support

multiple low power states 𝑠𝑖. In the active state, the processor is capable of executing tasks at

one of Q-discrete frequencies. 𝐹𝑖 is the normalized frequency corresponding to frequency fi;

where fi > fi+1 > … > fQ. The frequencies are normalized to the highest system frequency f1.

Switching from the processor active state to the lower power states 𝑠 entails switching time and

energy overheads, defined as 𝑡𝑠𝑤
𝐶𝑃𝑈 and 𝐸𝑠𝑤

𝐶𝑃𝑈 , respectively. The switching overheads include

both the switching overheads from active to low power state and vice versa. The power

consumed while the processor is in the active state depends on the currently selected frequency

and is denoted 𝑃𝐹𝑖

𝐶𝑃𝑈. Power consumed while the processor is in deep sleep state 𝑠 is denoted as

𝑃𝑠
𝐶𝑃𝑈.

Similar to the processor model, the device power consumed in active and low power states are

denoted as 𝑃𝑎
𝑑𝑘 and 𝑃𝑠

𝑑𝑘 , respectively. And device time and energy switching overheads

between the active and low power state are represented by 𝑡𝑠𝑤
𝑑𝑘 and𝐸𝑠𝑤

𝑑𝑘, respectively.

Processors' and devices' transition from their active states to a lower power state occurs only

when the transition is power-efficient. Switching states is considered power-efficient if the total

switching power between active, low-power to active states is less than the power consumed if

the processor/device is kept idle in the active state. The decision to switch to a lower power

processor or device state is based on the break-even time 𝑡𝐵𝐸𝑇 . 𝑡𝐵𝐸𝑇 represents the minimum

idle time threshold required to switch to a lower power state to satisfy the power-efficiency

condition. Equation 4 computes the break-even time for the processor [18].

𝑡𝐵𝐸𝑇 (𝐶𝑃𝑈) = 𝑚𝑎 𝑥 (𝑡𝑠𝑤
𝐶𝑃𝑈 ,

𝐸𝑠𝑤
𝐶𝑃𝑈− 𝑃𝑠

𝐶𝑃𝑈 × 𝑡𝑠𝑤
𝐶𝑃𝑈

𝑃𝐹𝑖
𝐶𝑃𝑈− 𝑃𝑠

𝐶𝑃𝑈) (4)

Similarly, Equation 5 computes the break-even time for any device dk.

𝑡𝐵𝐸𝑇 (𝑑𝑘) = 𝑚𝑎𝑥 (𝑡𝑠𝑤
𝑑𝑘 ,

𝐸𝑠𝑤
𝑑𝑘− 𝑃𝑠

𝑑𝑘 × 𝑡𝑠𝑤
𝑑𝑘

𝑃𝑎
𝑑𝑘− 𝑃𝑠

𝑑𝑘
) (5)

3. ENERGY AWARE SCHEDULING ALGORITHMS

In this section, we propose and adapt two meta-heuristics for system wide energy minimization.

One is based on a discrete implementation of genetic algorithm for frequency scale assignment.

The other is based on the newer differential evolution algorithm. In section 5, we compare these

algorithms against each other and against the simulated annealing meta-heuristic based on the

recent work of [10]. We also compare the results to the famed heuristic algorithm CS-DVS [7]

which is one of the most powerful and regularly cited algorithms. We summarize the simulated

annealing algorithm and present the CS-DVS for completeness at the end of this section.

3.1 Definitions

Before introducing the proposed energy aware scheduling algorithms, a few definitions need to

be presented, as they are frequently encountered in the subsequent sections.

Definition 1: A power configuration is defined as a permutation of DVFS frequency

assignments of dimension N (mapped to each task 𝜏𝑖), a power cost variable and a set of status

flags. Flags convey information on the feasibility of the configuration or control decision paths

within the algorithm.

72

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Definition 2: The quality of a configuration (and algorithm) is defined as how well it is able to

minimize system energy to near optimal values (within 1% of optimal).

Definition 3: A feasible power configuration is one which satisfies EDF scheduling feasibility

condition when DVFS is employed; that is ∑
𝐶𝑖

𝑇𝑖 × 𝐹𝑖

𝑁
1 ≤ 1.

3.2 Genetic Algorithm Frequency Scaling (GAFS)

The genetic algorithm is an optimization algorithm based on the principles of genetics. The

genetic algorithm mimics the process of natural selection and the survival of the fittest. The

algorithm starts with a population of random solutions of a certain size that is allowed to evolve

through time towards global optimum. Each member of this population is called a chromosome.

Each chromosome consists of a set of variables which are called genes.

The genetic algorithm passes through multiple iterations. In each iteration, the cost of each

chromosome is evaluated by applying the chromosome genes (variables) into the objective

function. The objective function represents the problem which we aim to minimize or

maximize. The chromosomes are then sorted in terms of their cost. Half of the chromosomes

which have costs closer to the optimum are maintained, while the other half is discarded. This

set of preserved chromosomes is called parents. Parents are used to generate the other missing

half of the population which is termed offspring or children. Parent chromosomes are paired

amongst each other. Genes are exchanged between paired chromosomes in an operation called

crossover. There exist many techniques and strategies for pairing parents and gene crossover

[20]. The current population of parent and child chromosomes is subjected to a mutation

operation. A certain percentage of genes across all chromosomes is randomly selected and

altered. This is to mimic genetic mutations which occur in nature. This new population is now

processed in the very same manner in the next iteration. The algorithm iterates until it converges

to a solution.

In our work, a discrete non-binary version of the genetic algorithm is implemented to find a

power configuration that minimizes system power. The power configuration used in GAFS is

comprised of a chromosome c of N genes and a set of configuration flags, where N is the system

tasks count. Each gene represents a possible task frequency assignment Fi for task

𝜏𝑖 and is initialized by the index i of the frequency scale level Fi assigned to the task. This is due

to the fact that we are using a discrete and integer genetic algorithm. The flags specify whether

the configuration is feasible, a parent chromosome or in mutated state. Mutated chromosomes

are the ones with one or more genes randomly changed through the mutation operation.

Crossover and mutation operations are detailed below. The genetic algorithm for frequency

assignment (GAFS) is listed in Algorithm 1.

Initially, a set of power configurations of size NP are initialized with random frequency scaling

factors such that each configuration is feasible. All configurations are set to be parents and in an

unmodified state. Each initial configuration is run for one hyper-period and the system power

cost is computed and assigned to the configuration. The lowest power NP/2 chromosomes are

selected as parents and sorted from lowest to highest power. A top-bottom pairing approach is

used to pair parents from the parent pool. A one point crossover operation is performed, where

genes are exchanged between the paired chromosomes. No minimum less than 25% and no

maximum more than 40% of chromosome genes take part in the crossover process. After the

exchange, a mutation operator is applied on the whole population except for the elite

chromosome, which is the one that yielded the overall minimum system energy. The elite

chromosome carries from one generation to another and is only replaced if another chromosome

yields lower system power. The number of mutations applied is calculated according to

Equation 6.

73

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

Mutations = µ × (NP - 1) × N; (6)

where NP and µ are the population size and the mutation factor, respectively.

Finally, each new chromosome configuration is checked for feasibility. If it fails, then its cost is

set to ∞. Parent chromosomes which have undergone mutation are marked as such.

Only feasible child and modified parent configurations are run in subsequent hyper-periods.

This eliminates redundant computation for the elite and unmodified parents. The whole process

repeats for each generation of power configurations until the maximum hyper-periods specified

are reached or the algorithm converges. Ideally, if each generated chromosome is feasible, then

the lower bound of the number of generations produced is ⌈
𝐻𝑃

𝑁𝑃
⌉, where HP is the number of test

hyper-periods. The upper bound case will be when the algorithm is only able to produce one

feasible configuration per generation. The upper bound will be equal to 1 + HP - NP. If the

74

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

algorithm returns no feasible chromosomes to be run, then it stops and the elite chromosome is

used as a solution.

3.3 Differential Evolution Frequency Scaling (DEFS)

Differential evolution is an optimization algorithm which belongs to the same group of

evolutionary algorithms as that of the genetic algorithm. Differential evolution is founded on

stochastic principles to find a solution. The algorithm maintains a set of solutions called

candidate vectors which evolve through iterative operations. Each vector is comprised of a set

of variables which are applied to the objective function to calculate the cost of a solution.

The differential evolution algorithm passes through multiple iterations. In each iteration, for

each vector in the population (called base or parent vector), a new vector is created. Each new

vector is generated from the addition of a scaled difference of two different candidates to

another third candidate. The set of new candidates are called donor vectors. A new vector called

the trial vector is generated from each base vector and its corresponding donor vector based on a

certain probability. The cost of the trial vector is measured. It replaces its corresponding base

vector only if it is closer to the optimum. Otherwise, it is discarded.

In our adaptation of the differential evolution algorithm which is listed in Algorithm 2, a

configuration in DEFS is comprised of an N-dimensional vector v, a feasibility flag and a cost

variable. N is the number of system tasks. In a population of a size of NP configurations, each

configuration is initialised with random and feasible frequency scales (i.e., the index i of the

frequency scale level Fi assigned to the task) and run in subsequent hyper-periods. System

power consumption of initial configurations is recorded for each configuration in each hyper-

period.

To produce the next set of candidate configurations, for each base vector in the population, three

different vectors are randomly chosen. A donor vector tv is computed from these three vectors

on an element-by-element basis using a mutation formula as shown in Equation 7:

𝑡𝑣𝑖
= 𝑟𝑜𝑢𝑛𝑑 (𝑡𝑣1

+ 𝜑. (𝑡𝑣2
− 𝑡𝑣3

)); (7)

where i ≠ i1 ≠ i2 ≠ i3 and Φ is the vector difference scaling factor (mutation factor) and should

not be confused with frequency scaling factors. Rounding to integer is one form of discretising

the continuous version of DE algorithm. A boundary check follows to constrain the frequency

scales to fall within the supported processor frequency levels according to Equation 8:

𝑡𝑣𝑖
= min(𝑓𝑚𝑎𝑥, max (𝑓𝑚𝑖𝑛, 𝑡𝑣𝑖

)); (8)

where fmin and fmax are the lowest and highest frequency scales supported by the processor,

respectively. Finally, the donor vector 𝑡𝑣𝑖
 is crossed over on an element-by-element basis with

its parent (base) vi, the ith vector of the population using Equation 9:

𝑢𝑖[𝑗] = {
𝑡𝑣𝑖

[𝑗] 𝑖𝑓 𝑟𝑗 > 𝐶𝑅

𝑣𝑖[𝑗] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

where j is the jth element of vectors vi, 𝑡𝑣𝑖
 and j ∈ [1, N]. rj is a randomly generated number for

each element j, where rj ∈ [0; 1]. CR is the crossover probability used as a control element for

the differential evolution algorithm, CR ∈ [0, 1].

75

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

Each of the trial vectors undergoes a schedulability check and its feasibility flag is set

accordingly. If it is unfeasible, then its cost is set to ∞ ensuring that it will never replace its

parent (base vector). Only feasible configurations are allowed to execute in the next hyper-

period. Once the trial vector power is measured, a replacement check is conducted according to

Equation 10:

𝑣𝑖 = {
𝑢𝑖 𝑖𝑓 𝑃𝑜𝑤𝑒𝑟(𝑢𝑖) < 𝑃𝑜𝑤𝑒𝑟(𝑣𝑖)
𝑣𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10)

where 𝑃𝑜𝑤𝑒𝑟(𝑢𝑖) is the trial configuration power within the hyper-period and 𝑃𝑜𝑤𝑒𝑟(𝑣𝑖) is the

power of its parent (base) configuration. Candidate configurations will be generated until the

number of iterations hits the specified maximum or the algorithm converges.

3.4 Critical Speed – Dynamic Voltage Scaling (CS-DVS)

Each running task consumes both processor dynamic and leakage power, as well as power that

is related to all associated system devices. Increasing the voltage/frequency scale of the

processor leads for the task to have a shorter execution period on the expense of consuming

higher dynamic power. Since the task execution time has been reduced, the leakage power and

all associated devices' power is also reduced. This is due to the fact that associated devices are

kept in an ON/wait state for a shorter time. The converse is equally true when the

voltage/frequency scales are reduced.

As such, using the lowest frequency/voltage scales does not necessarily lead to minimum

system power due to increased leakage power effects and prolonged device execution/wait time.

Critical speed is defined as the speed which minimizes the overall dynamic, leakage and device

power. Due to the different set of associated devices that a task uses, each task may have a

different critical speed which minimises its power consumption. To find the critical speed of a

76

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

task 𝜏𝑖, the power consumed by task 𝜏𝑖 is measured at each frequency scale 𝐹𝑖 . The frequency

scale 𝐹𝑖 which results in the minimum task power is thus selected as the one corresponding to its

critical speed.

Setting all system tasks to run at their critical speeds does not ensure feasibility, as the critical

speed scales might cause system tasks to miss their deadlines. To maintain a schedulable

system, it is necessary to select and run certain tasks at higher speeds than the critical speed.

Algorithm 3 shows the description of the CS-DVS algorithm which was presented in [7]. The

algorithm runs in two stages. Initially, it computes the critical speed of each system task. Then,

to maintain feasibility, it determines which tasks and by which factor their frequency/voltage

scales need be increased while maintaining minimum power consumption. As long as the

system is not in a feasible state, all tasks which are not already assigned the maximum system

speed are candidates to have their frequency scales increased to the next scale. The power

difference between having a task run at its current scale and the next scale is computed. The task

with the minimum power consumption penalty is chosen and its scale is adjusted to the next

one. The process repeats until a feasible schedule is achieved.

3.5 Simulated Annealing (SA)

Simulated annealing is a meta-heuristic that approximates a global optimum of an NP-hard

problem. The algorithm starts with a solution and explores neighbouring solutions that move

towards a global optimum. A neighbouring configuration is defined as that which differs from

the current configuration by one value in the set of solutions (in our case one frequency scale).

A neighbouring solution that is closer to the global optimum always replaces the current

solution. To avoid falling into a local minimum, a worse solution could be accepted based on a

certain acceptance probability. The rationale behind this is that even though a worse solution is

accepted, the neighbouring solutions of the worse solution could potentially move us toward the

global optimum. In our work, we follow the adaptation of simulated annealing meta-heuristic

for system energy minimization as presented in [10] with minor modifications.

Similar to our proposed algorithms, SA starts with a feasible configuration J which is a vector

of size N tasks. The frequency scales assigned to the initial vector are set to those resulting from

applying the CS-DVS algorithm. The initial configuration is executed in one hyper-period and

its power consumption cost is recorded. One frequency scale in the current configuration J is

randomly changed to another supported scale to generate a neighbouring configuration J*. J* is

checked for feasibility. If feasible, the cost of this neighbour configuration J* is measured and

recorded in a subsequent hyper-period; otherwise, another neighbour J* is generated from J

until a feasible neighbour is found. If the newly found neighbour configuration minimizes the

77

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

system energy more than the current configuration, the optimized configuration replaces the

current configuration J. However, if the neighbour configuration results in more system power

consumption, it still can replace the current configuration J. For this case, a random probability

ρ ∈ [0, 1] is generated and acceptance probability α is computed according to Equation 11:

α = 𝑒
𝑃𝑜𝑤𝑒𝑟(𝐽)−𝑃𝑜𝑤𝑒𝑟(𝐽∗)

𝑃𝑜𝑤𝑒𝑟(𝐽)∗𝐾 (11)

where K is the annealing factor to be decided through experimentation. If α > ρ, then the worst

solution replaces the current solution. The algorithm stops when the number of test hyper-

periods is reached. The SA algorithm is listed in Algorithm 4.

4. SIMULATION

To analyse the performance of the proposed algorithms for frequency scaling and system wide

power reduction, we devised a set of experiments. We developed an event-driven simulator

using SystemC 2.3.0 and TLM. Processor and device power models are consistent with previous

work [10], [18]. They are based on the Intel XScale processor power profile and the device set

shown in Tables 2 and 3, respectively.

Table 2. Intel XScale processor power model.

Frequency Steps (MHz) 1000 800 600 400 150

𝑃𝐹𝑖

𝐶𝑃𝑈 (Watt) 1.6 0.9 0.4 0.17 0.08

Voltage (V) 1.55 1.45 1.35 1.25 1.15

𝐸𝑠𝑤
𝐶𝑃𝑈 = 0.5 mJ 𝑡𝑠𝑤

𝐶𝑃𝑈 = 85ms

For each task set of size N, where N ∈ [1 - 9], a total of 500 random and unique task sets are

generated. The upper limit for task set size is limited by the exhaustive search time for an

optimal solution. Each task 𝜏𝑖 is randomly assigned a unique device set, where the number of

different devices per task ∈ [0 - 2]. Each device is randomly chosen from the device set shown

78

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

in Table 3. The periods of the tasks are randomly and uniformly chosen from the range of [0.5 -

100] ms. We assume that the periods of tasks in real-time systems are harmonic [10], so that

they can help in reducing the simulation time. The algorithm in [19] is employed for this

purpose. Tasks WCETs are randomly selected to be between 2% and 40% of the original

unmodified task period. Simulations are run ten times per test case for a total of 5000

simulations for each task set size.

Table 3. Devices power model.

Device
𝑃𝑎

𝑑𝑘

(W)

𝑃𝑠
𝑑𝑘

(W)

𝑃𝑠𝑢
𝑑𝑘

(W)

𝑃𝑠𝑑
𝑑𝑘

(W)

𝑡𝑠𝑢
𝑑𝑘

(W)

𝑡𝑠𝑑
𝑑𝑘

(W)

Realtek Ethernet Chip 0.187 0.085 0.125 0.125 0.01 0.01

IBM Microdrive 1.3 0.1 0.5 0.5 0.12 0.12

SST Flash SST39LF020 0.125 0.001 0.05 0.05 0.001 0.001

SimpleTech Flash Card 0.225 0.02 0.1 0.1 0.002 0.002

MaxStream Wireless Module 0.75 0.005 0.1 0.1 0.04 0.04

𝑃𝑠𝑢
𝑑𝑘 = 𝐸𝑠𝑢

𝑑𝑘 × 𝑡𝑠𝑢
𝑑𝑘 𝑃𝑠𝑑

𝑑𝑘 = 𝐸𝑠𝑑
𝑑𝑘 × 𝑡𝑠𝑑

𝑑𝑘

The next step is to find the best tuning parameters to initialize the meta-heuristics algorithms;

namely, population size, mutation factors and crossover probabilities. Population size for both

GAFS and DEFS is set to 8, 16 and 24 with an additional 32 test case for GAFS. GAFS

mutation rates are set to 0.1 and 0.2. Larger mutation rates could in theory make it harder to

converge as the algorithm will keep jumping between search points. Lower values could

possibly lead to premature convergence and produce non-optimal results [20]. In DEFS, we

chose crossover probabilities CR of 0.3, 0.5 and 0.7. We also chose the same range of mutation

factors (scaling factors). We chose these values as uniform probability samples in the range [0-

1]. All simulations are investigated over hyper-period sizes of [50, 100, 200 and 400]. We use

two additional hyper-periods 1000 and 2500 with task sizes of 7 and 9. We assume the

scheduling overhead to be low and therefore neglected.

An exhaustive search with all possible task DVFS permutations is carried out to obtain the

optimal value with minimum system power. The optimal configuration serves as a reference for

testing the quality of the configuration found by the algorithms under investigation. The

performance of the algorithm is measured by how often the near optimal results are produced in

every single case. This gives confidence in the ability of the algorithm performance to minimize

system power. Finally, we simulate the CS-DVS [7] algorithm and the SA algorithm from [10]

for comparison purposes.

5. RESULTS AND DISCUSSION

In this section, we report the sensitivity results of the proposed algorithms as well as the

simulated annealing algorithm to the different tuning parameters. We also compare the proposed

algorithms to previous work in terms of how close they are to optimal energy savings, and how

much they yield better results than the well-established CS-DVS algorithm. The base energy

savings from DVFS assignments are shown for the static CS-DVS and optimal search in Figure

1. These results serve as a baseline for comparing the quality of the proposed and previous

algorithms.

79

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

Figure 1. Average CS-DVS and optimal DVFS power savings over 500 unique sets. Tx denotes

a task set with x tasks.

5.1 Sensitivity Analysis

In this sub-section, we present the performance of the proposed algorithms when their initial

parameters are changed. Mainly, we vary the parameter under investigation, while the values of

the other parameters remain fixed. Our experiments include varying the number of hyper-period

iterations for which the algorithm is simulated. This is to analyse the convergence of the

algorithms and their possible early termination effects (i.e., GAFS no longer has a pool of

feasible chromosomes). We also vary mutation rates and crossover probabilities and report our

findings. The results in Table 4 through Table 11 are shown for the cases where one variable is

studied, while the others are fixed at the values which gave the best overall results.

The effects of running the algorithms over more hyper-periods (generations) is shown in Table 4

and Table 5 for a sample of the tasks for both GAFS and DEFS algorithms. Since the

assignment space for N = 3 is small, an exhaustive search will always guarantee an optimal

result in fewer HPs than running either GAFS or DEFS (53 compared to 400). The base five

corresponds to the number of frequency levels supported by our model processor as shown in

Table 2. However, for larger task sets, meta-heuristics deliver near-optimal energy savings in

much less time (within 2500 HPs compared to 59 HPs for N = 9). The majority of the results for

GAFS are near-optimal. Our observations show that setting the HP test limit to around 3% of

the search space 5N yields good results. The more hyper-periods the algorithm runs through, the

better the overall results. This allows for more time for the algorithm to converge towards a near

optimal solution as it is testing more chromosomes as potential solutions.

Table 4. GAFS near-optimal power savings sensitivity to hyper-period.

Tasks Hyper-period

 50 100 200 400 1000 2500

T3 43.3% 67.1% 92.8% 97.5% - -

T5 22.9% 36.2% 67.7% 84.6% - -

T7 13.2% 17.7% 32.8% 57.5% 70.1% 78%

T9 13.9% 17% 27% 46.9% 68.6% 85.3%

 GAFS population size = 32

Table 5. DEFS near-optimal power savings sensitivity to hyper-period.

Tasks Hyper-period

 50 100 200 400 1000 2500

T3 35.8% 42.2% 69.4% 93.6% - -

T5 19.5% 22.6% 33.4% 67.1% - -

T7 12.2% 13.1% 17.1% 36% 70.9% 82.8%

T9 12.5% 13.1% 16.5% 28.8% 62.4% 86.5%

 DEFS population size = 24, CR = 0.3 and 𝜑 = 0.5

80

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

The next step is conducting analysis on varying the initial population size. That is, we change

the number of initial feasible chromosomes for the GAFS algorithm, as well as the initial

candidate vector pool for DEFS. In Table 6, we observe that larger population sizes in GAFS

yield better results with wider margins for larger task sets. Larger population sizes make it

possible to have more pairings and crossover possibilities that in turn allow for better

exploration of the search space. A population size of eight only has two pairs of parents to

generate an offspring compared to 16 pairs in a population of 32. The difference between a

population size of 24 and 32 is insignificant in most of the cases.

Table 6. GAFS near-optimal power savings sensitivity to population size, µ = 0.1.

In GAFS, we limited our study of mutation rates to rates of µ = 0.1 and µ = 0.2. This is to keep

by the suggestion in [20] of using low mutation rates to ensure algorithm convergence. Table 7

shows power savings sensitivity to GAFS mutation rates and task set size when the population

size is fixed at 32. As seen from the table, we observe that lower µ= 0.1 gives overall better

results and only in few cases µ = 0.2 results in marginal gains. Given the population size and the

chromosome size of our problem, lower mutation rates were expected to give better results.

Higher mutation rates would entail exploring further away from our current best results. As µ

increases, the closer the genetic algorithm gets to a random search. GAFS outperforms CS-DVS

in most cases, especially with larger task set sizes.

Table 7. GAFS near-optimal power savings sensitivity to mutation factors, population size = 32.

Table 8 shows the results of varying the population size for the DEFS algorithm when CR = 0.3

and the mutation rate (scaling factor) 𝜑 = 0.5. The reported results are best when each of the

values of CR is tuned over the set [0.3, 0.5, 0.7]. We see that a population size of 16 provides

better results for smaller task sets; whereas a population size of 24 gives better results for larger

task sets. Similar to GAFS, large population sizes allow for richer selection of candidate

vectors, as well as for more variance in the crossover and mutation operations. Since larger task

sizes entail larger dimensions, larger initial population is expected to achieve convergence

compared to smaller task sizes.

Population size 8 16 24 32

Task No. HP Percentage of near-optimal power saving configurations

T3
400

95.9% 96.9% 96.9% 97.5%

T5 78.3% 82.1% 84.6% 84.6%

T7
2500

67.7% 75.3% 78.0% 78.0%

T9 77.1% 82.4% 84.6% 85.3%

Task No. HP Percentage of configurations better than CS-DVS

T3
400

94.9% 95.0% 95.0% 95.0%

T5 94.8% 96.7% 97.6% 98.0%

T7
2500

95.8% 97.5% 98.2% 98.0%

T9 97.4% 98.3% 98.4% 98.7%

Percentage of near-optimal

power saving configurations

Percentage of operations

better than CS-DVS

Task No. HP µ = 0.1 µ = 0.2 µ = 0.1 µ = 0.2

T3
400

97.5% 96.7% 95.0% 94.9%

T5 84.6% 78.6% 98.0% 95.7%

T7
2500

78.0% 81.8% 98.0% 99.0%

T9 85.3% 73.2% 98.7% 97.3%

81

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

Table 8. DEFS near-optimal power savings sensitivity to population size, CR = 0.3 and 𝜑 =0.5.

The sensitivity analysis findings of DEFS crossover probability (CR) and mutation (scaling)

factor 𝜑 parameters is summarized in Table 9. For larger task sizes of 7 and 9, we find that

crossover probability and mutation factor carry no statistical differences in yielding better

results across different combinations of CR and 𝜑. However, for smaller task sizes, a CR of 0.3

and 𝜑 = 0.5 provide better results by a wide margin (i.e., up to 14% better results than those at

CR = 0.7 and 𝜑 = 0.7 for a system with five tasks).

Table 9. DEFS sensitivity to crossover probability (CR) and mutation factor 𝜑 at best results of

fixed population size and hyper-period.

Population size 16 24

Hyper-period 400 2500

CR 𝜑 T3 T5 T7 T8

0.3

0.3 94.4% 76.1% 77.1% 81.8%

0.5 95.8% 80.4% 82.8% 86.5%

0.7 95.3% 78.2% 83.3% 85.6%

0.5

0.3 92.9% 75.2% 80.7% 84.9%

0.5 94.3% 78.2% 84% 87%

0.7 93.7% 76.3% 83.7% 87.0%

0.7

0.3 87.9% 68.0% 80.1% 83.8%

0.5 89.7% 69.2% 82.5% 84.8%

0.7 87.6% 66.4% 82.6% 83.9%

Table 10. Simulated Annealing (SA) near-optimal power savings sensitivity to hyper-period.

Tasks Hyper-period

 50 100 200 400 1000 2500

T3 36.8% 43.5% 51.5% 58.8% - -

T5 21.5% 23.3% 26.5% 32.3% - -

T7 13.9% 14.7% 15.6% 17.3% 19.6% 31.5%

T9 20.6% 23.0% 25.3% 27.9% 17.3% 25.6%

Table 11. Simulated Annealing (SA) percentage of configurations better than CS-DVS.

Tasks Hyper-period

 50 100 200 400 1000 2500

T3 63.3% 70.4% 74.9% 75.7% - -

T5 54.7% 60.8% 65.9% 72.8% - -

T7 48.1% 54.4% 59.8% 66.5% 70.3% 78.6%

T9 40.5% 44.9% 48.1% 52.0% 63.4% 72.6%

Percentage of near-optimal

power saving configurations

Percentage of configurations

better than CS-DVS

Task No. HP Population Size

 8 16 24 8 16 24

T3
400

90.8% 95.8% 93.6% 91.0% 94.6% 94.2%

T5 71.2% 80.4% 67.1% 90.5% 96.7% 94.6%

T7
2500

34.3% 77.9% 82.8% 86.8% 97.4% 98.8%

T9 40.6% 81.4% 86.5% 88.1% 98% 98.6%

82

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

The reference values for the simulated annealing (SA) algorithm implementation are

summarized in Table 10 and Table 11. One major observation is that the results of the SA

algorithm do not provide substantial gains as the number of hyper-periods is increased when it

comes to near-optimal results. This is more obvious at the larger task set size of T9. In fact,

lower number of hyper-periods could provide better results. This is due to the algorithm design

as implemented by [10], where even though the algorithm can escape a local minimum, there is

no guarantee that it will converge to a better solution and the best-yet found values are not

preserved.

5.2 Algorithm Comparison and Discussion

Figure 2 provides a performance summary of the proposed and reference algorithms. We

observe that the proposed algorithms outperform the SA algorithm in terms of their ability to

consistently provide near-optimal power savings. As the task set size increases, the quality

performance of SA decreases, while the proposed algorithms consistently maintain their quality

performance. Figure 3 shows that the SA algorithm fails 25% of the time to yield quality

configurations better than CS-DVS. In effect, this could lead to high system-wide energy

consumption. Both GAFS and DEFS are superior to SA, as they almost always deliver better

power configurations than CS-DVS.

GAFS slightly outperforms DEFS for smaller task sets and the converse is true for larger task

sets. The weakness point of GAFS is that a new generation of test quality configurations can

only be generated when the current population has been fully examined. DEFS does not suffer

from this issue, as candidate test configurations are generated randomly from a list of the so-far

best found quality configurations which are readily available. The SA algorithm suffers from the

possibility of replacing an elite solution by a non-optimal one. This is due to the inherent design

of the algorithm, where it stochastically accepts worse solutions as means to escape a local

minimum.

Finally, even though GAFS maintains an elite solution through the generations (which only gets

updated if better solution is found), GAFS suffers from the possibility of producing a whole

generation of non-feasible solutions aside from the elite. DEFS, on the other hand, does not

suffer from these issues as it maintains a population of best found feasible solutions at any time.

Figure 2. Percentage of near-optimal results of the three meta-heuristics over 500 unique sets.

83

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

Figure 3. Percentage of the three meta-heuristics that are better than the CS-DVS heuristic over

500 unique sets.

Furthermore, since each configuration is randomly produced from this set based on mutation

probabilities, even if a pass generates a set of unfeasible power configurations, new feasible

power configurations can still be produced in subsequent hyper-periods.

6. CONCLUSIONS

System wide energy minimization is of paramount importance in modern embedded system

design. We specifically adapted the use of genetic (GAFS) and evolutionary (DEFS) algorithms

with the goal of reducing the overall energy consumption. We have investigated the

performance of our developed meta-heuristic algorithms that assign frequency scaling (DVFS)

to tasks in a hard-real-time system. We measure energy consumption at the system level; that is

that of the processor and the devices. We have conducted a sensitivity analysis over a wide

range of initial values of the proposed algorithms. We have found that setting the algorithm

search space to 12% of the available search space for small task sizes (i.e., T5) yields a majority

of near-optimal results. A much smaller search space of < 3% of the total exploration space

works well for larger task sizes of 7 and 9. For the genetic algorithm, an initial chromosome set

of 32 performs better than all other initial set sizes of 8, 16 or 24. There are marginal result

differences in changing the mutation factor µ from 0.1 to 0.2. In DEFS, the size of the initial

vector set affects smaller task sets differently than larger task ones. An initial size of 24 vectors

provides a majority of near-optimal results for task set size of 7 and 9. The same results are

obtained for smaller task sets of 3 and 5 with a smaller initial vector set size of 16. Finally, a

crossover probability of 0.3 and mutation (scaling) factor 𝜑 = 0.5 provide the best overall

results regardless of the task set size.

The proposed algorithms outperformed the simulating annealing (SA) algorithm by an

approximate factor of 2.75 to 1 for finding a near-optimal configuration when the system task

set is comprised of 5 to 9 tasks. Furthermore, based on 500 unique sets of tasks, our proposed

algorithms deliver near-optimal results in over 95% of the cases compared to the CS-DVS

algorithm. Simulated annealing is better than CS-DVS by an average of 75% of the time. The

proposed techniques we put forth have allowed for additional energy optimizations, which is

favourable for the quest in the design of low power embedded systems.

REFERENCES

[1] P. Pillai and K. G. Shin, "Real-time Dynamic Voltage Scaling for Low-power Embedded

Operating Systems," in Proc. of the 18th ACM Symp. on Operating Systems Principles (SOSP

’01), New York, NY, USA , pp. 89-102, 2001.

[2] S. Saewong and R. Rajkumar, "Practical Voltage-scaling for Fixed-priority RT-Systems," in the

9th IEEE Proc. on Real-Time and Embedded Technology and Applications, pp. 106–114, 2003.

[3] L. Benini et al. "A Survey of Design Techniques for System-level Dynamic Power

Management," Proc. in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

8, no. 3: pp. 299–316, 2000.

[4] H. Cheng and S. Goddard, "Online Energy-aware I/O Device Scheduling for Hard Real-time

84

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Systems," in Proc. of Design, Automation and Test in Europe (DATE ’06), volume 1, pp. 1055-

1060, Munich, 6-10 March 2006.

[5] V. Swaminathan and K. Chakrabarty, "Pruning-based Energy-optimal Device Scheduling for

Hard Real-time Systems," in Proc. of the 10th International Symp. on Hardware/Software Co-

design (CODES 2002), pp. 175–180, 2002.

[6] V. Devadas and H. Aydin, "On the Interplay of Voltage/frequency Scaling and Device Power

Management for Frame-based Real-time Embedded Applications," Proc. of the IEEE

Transaction on Comput., vol. 61, no. 1, pp. 31–44, 2012.

[7] R. Jejurikar and R. Gupta, "Dynamic Voltage Scaling for System Wide Energy Minimization in

Real-time Embedded Systems," Proc. of the 2004 International Symp. on Low Power

Electronics and Design (ISLPED ’04), pp. 78–81, 2004.

[8] W. Wang et al. "System-wide Energy Optimization with DVS and DCR," Proc. of Dynamic

Reconfiguration in Real-Time Systems, no. 4, pp. 129–163, Springer, New York, 2013.

[9] F. Kong et al. "Minimizing Multi-resource Energy for Real-time Systems with Discrete

Operation Modes," in Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS

’10), Washington, DC, USA, pp. 113–122, 2010

[10] D. He and W. Mueller, "Online Energy-efficient Hard Real-time Scheduling for Component

Oriented Systems," Proc.of the IEEE 15th International Symp. on Object/Component/Service-

Oriented Real-Time Distributed Computing (ISORC), pp. 56–63, 2012.

[11] V. Devadas and H. Aydin, "DFR-EDF: A Unified Energy Management Framework for Real-

time Systems," Proc. of the 16th IEEE Real-Time and Embedded Technology and Applications

Symp. (RTAS), pp. 121– 130, 2010.

[12] L. Niu, "System-level Energy-efficient Scheduling for Hard Real-time Embedded Systems," in

Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–4, 2011.

[13] B. A. Mahafzah and B. A. Jaradat, "The Hybrid Dynamic Parallel Scheduling Algorithm for

Load Balancing on Chained-cubic Tree Interconnection Networks," in Journal of

Supercomputing, vol. 52, no. 3, pp.224– 252, 2010.

[14] J. Zhao and H. Qiu, "Genetic Algorithm and Ant Colony Algorithm Based Energy-efficient Task

Scheduling," in International Conference on Inform. Science and Technology (ICIST), pp. 946–

950, 2013.

[15] S. G. Ahmad et al. "PEGA: A Performance Effective Genetic Algorithm for Task Scheduling in

Heterogeneous Systems," in IEEE 14th Intl. Conference on High Performance Computing and

Commun. IEEE 9th Intl. Conference on Embedded Software and Systems (HPCC-ICESS), pp.

1082–1087, 2012.

[16] M. A Alshraideh et al. "Using Genetic Algorithm as Test Data Generator for Stored pl/sql

Program Units," in Journal of Software Eng. and Applicat, vol. 6, no. 2, p. 65, 2013.

[17] D. Simon, Evolutionary Optimization Algorithms, Wiley, 2013.

[18] G. Chen et al. "Effective Online Power Management with Adaptive Interplay of DVS and DPM

for Embedded Real-time System," in Euromicro Conference on Digital System Design (DSD),

pp. 881–889, 2013.

[19] J. Xu, "A Method for Adjusting the Periods of Periodic Processes to Reduce the Least Common

Multiple of the Period Lengths in Real-time Embedded Systems," in IEEE/ASME Intl.

Conference on Mechatronics and Embedded Syst. and Applicat. (MESA), pp. 288–294, 2010.

[20] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, Wiley InterScience Electronic

Collection, Wiley, 2004.

[21] R. Jejurikar and R. Gupta, "Optimized Slowdown in Real-time Task Systems," Proc. in IEEE

Computer Trans., vol. 55, no. 12, pp. 1588–1598, 2006.

85

"Performance Evaluation of Meta-heuristics in Energy Aware Real-time Scheduling Problems", Ashraf Suyyagh, Jason G. Tong and

Zeljko Zilic.

[22] B. A. Mahafzah and B. A. Jaradat, "The Load Balancing Problem in OTIS-Hypercube

Interconnection Networks," in Journal of Supercomputing, vol. 46, no. 3, pp. 276-297, 2008.

[23] V. Devadas and H. Aydin, "On the Interplay of Voltage/Frequency Scaling and Device Power

Management for Frame-Based Real-Time Embedded Applications," Proc. in IEEE Transactions

on Computers, vol. 61, no. 1, pp. 31–44, 2012.

 :ملخص البحث

نظ ااااااا لحااااااافعّ لح م ماااااااا لحكثيمحااااااا عاااااااّ ااااااا لح م ااااااا ااااااا ل اااااااا تصااااااامية ااااااا

 ا لحساااااالقل لحمل لاااااا لح متاااااا ي مااااااة تااااااا ت ااااااق تمل اااااام يلاااااا اااااا عساااااا ق م تصاااااا

 ااااااام ثلااااااا لح سااااااا قو لح ااااااام ي ت ااااااام تمل للأنظ ااااااا حل مل اااااااط عاااااااّ ل ااااااا لح م ااااااا ي

 ااااام ي لإلح صااااال لح مل اااااط عاااااّ لح م ااااا لح اااااا تسااااا ل م ع قيااااا لح م ااااام يلااااا ااااا ل

 اااااا يلاااااا عساااااا قو تصاااااا ا لحلظاااااامي تساااااا ي تمل اااااام ع ااااااط لح ااااااة لحااااااة لمع ا حلكقح

 ب غ اااااااااا تاااااااااا لح ثاااااااااامح (DPM) ل ة لحة لمع اااااااااا حل م اااااااااا (للإDVFS) لح اااااااااا

 نااااا ل تحااااا يلااااا ن اااااق اااااق ي لطن مااااام تحااااا ن ااااامي لحلياااااقي ح مل اااااط لحماااااة ة لح اااااغ

لح ة حاااااا لحكثمحاااااا عااااااّ اااااا تساااااا ك ة ط لاااااا عساااااا قو نظ اااااا لح ااااااغي ااااااةي ع ااااااّي

 لح م ااااا عاااااّ ااااا لحا اااااقر لحة ل ااااام لح اااااا ااااا اااااا ااااا ل لح ااااام عاااااّ لح اااااة

 ااااااميي قو لح عااااااّ للإ ل ة لحة لمع اااااا حل م اااااا يلاااااا عساااااا لحااااااة لمع ا حلكقح اااااا لح اااااا

تتااااام اااااا لح م ااااا ي اااااة ت اااااف عثظاااااا اااااق لحا ااااا اااااا ع ااااام ل اااااق ح م ااااا

ء ل مصااااام لح ة حااااا لحكثيمحااااا عاااااّ ااااا لح م ااااا يلااااا تمل اااااط اااااة ة لح ثااااامح ي اااااة م تاااااا

 اااااا لاااااق يلااااا عسااااا قو لحلظااااامي ب ك قعااااا لحقل ااااا ي اااااا ااااا لحق ااااا لحا ااااا ن ق ااااا

حااااا تلظااااامي اااااط ح مل اااااط يم ااااا لحت اااااقن ّ ي ااااام ااااامبم ياااااا ت ااااا اااااقل ع ّ

تاااااام ناااااا ااااااةي ع ااااااّ ن ليااااااط لء قل ع متلاااااام ت اااااا اااااا لب ةل اااااا ع غ اااااا ةي ت

 اااا ى تحااااا ااااا لح م ااااا اااااق ل تحاااا حاااااأ نااااا يّ تمل متلااااام عاااام لء لح ق ي ااااا تث ااااا

ي لح ااااا30% عاااااّ لحق ااااا عمم نااااا بلساااااا 85لحقتااااا لح ااااامحا ح ااااام نساااااا ا تاااااا % تم اااااام

ّ ع قيااااااا اااااااةة عااااااا 500بمح م ااااااامة ح ااااااام ف اااااااة يلااااااا ت م م ااااااام بم ااااااا ةلي لح مق ااااااا

 لحك قصم ي

مل اااام عااااام % عاااااّ لح اااامط ت ث اااااا لح 95 اااا حأ ت ااااا ّ ن م لااااام نياااا اااااا عاااام ف اااااة يلاااا

 ساااااا مت اااااا ااااااا لح م اااااا لح ساااااا ل عمم ناااااا بمح ماااااا لح ااااااق ل لء لح ق ي اااااا

(CS-DVS) ي

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

