
218

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

1. J.-P. Glafkidès (ORCHID: 0000-0001-5273-9948) and H. Akdag are with PARAGRAPHE EA 349 - PARIS VIII University, France.

Emails: jp@glafonline.com and herman.akdag@univ-paris8.fr

2. G. I. Sher (ORCHID: 0000-0002-2086-4370) is with DataValoris - WY, USA. Email: gene@datavaloris.com

PHYLOGENETIC REPLAY LEARNING IN DEEP NEURAL

NETWORKS

Jean-Patrice Glafkides1, Gene I. Sher2 and Herman Akdag1

(Received: 31-Jan.-2022, Revised: 18-Apr.-2022, Accepted: 22-Apr.-2022)

ABSTRACT

Though substantial advancements have been made in training deep neural networks, one problem remains, the

vanishing gradient. The very strength of deep neural networks, their depth, is also unfortunately their problem,

due to the difficulty of thoroughly training the deeper layers due to the vanishing gradient. This paper proposes

"Phylogenetic Replay Learning", a learning methodology that substantially alleviates the vanishing-gradient

problem. Unlike the residual learning methods, it does not restrict the structure of the model. Instead, it leverages

elements from neuroevolution, transfer learning and layer-by-layer training. We demonstrate that this new

approach is able to produce a better performing model and by calculating Shannon entropy of weights, we show

that the deeper layers are trained much more thoroughly and contain statistically significantly more information

than when a model is trained in a traditional brute force manner.

KEYWORDS

Neural networks, Neuroevolution, Phylogenetic replay learning, Deep learning, Vanishing gradient.

1. INTRODUCTION

Nature evolved the nervous system through eons of trial and error, from the first apparition of the

neuronal cell to the complex brains we possess today. The field of machine learning has made

tremendous progress during the past decade, predominantly owing to the improvement of CPU

performance, data accessibility, optimization of deep neural network (DNN) algorithms, but also just as

significantly due to the improvements in hardware and the use of GPUs. Artificial neural networks are

called deep when they have more than 3 layers of neurons (though some categorize DNNs as those

having more than 9 layers) and are capable of being tuned to reach a specific goal through the use of an

optimization algorithm, mimicking the role of synaptic plasticity in biological learning. This approach

has led to the emergence of highly efficient algorithms that are capable of learning and solving complex

problems [1]. Two of the main limitations of such algorithms are: 1. Their topologies are built

empirically and 2. Due to the depth of deep neural networks, they are affected by the vanishing-gradient

problem. Though this paper primarily concentrates on solving the 2nd problem (the vanishing-gradient

problem), we demonstrate its use by applying it to a model that was evolved through neuroevolution.

We do this because:

1. In the last few years, substantial advancements have been made in automated model search and

construction. These automated model construction and model search methods are commonly called

neuroevolutionary methods, due to the use of evolutionary algorithms to search for optimal model

architectures [2]. These methods have demonstrated a strong ability to produce state-of-the-art models

demonstrating excellent results in numerous domains [3]-[5] with very surprising results in some cases

[6]-[7]. Several works exploring the use of evolutionary computation in deep network optimization [8]-

[10] were produced.

2. Our new proposed method, Phylogenetic Replay Learning (PRL), can be perfectly combined with

both, traditional, but also neuroevolutionary methods to leverage the ability to construct deep and

complex networks from simple ones.

It must be noted that the objective of this paper is not to discuss or compare any specific model search

or neuroevolutionary method, like EANT1/2 [11], CoSYnE [12], DXNN or NEAT, efficiency over other

methods that have already been addressed [13]-[15], but to explore the use of backpropagation training

in pre-planned mutations, training layers one at a time as the deep neural network is constructed. With

all the accomplishments of deep learning, it remains difficult to build models that generalize or adapt

219
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

efficiently to complex-problem domains and data. One of the bigger difficulties being faced when

building complex and deep models that converge correctly is the vanishing-gradient problem [16]-[18]

which is yet to be solved [19]. It is this problem, the vanishing gradient, that the PRL approach is also

aimed at solving. With the increasing number of layers that are used, the vanishing-gradient problem

can cause the gradient to become too small for effective weight parameter updating. This is due to certain

activation functions, like the sigmoid function, which squashes a large input space into a small one

between 0 and 1. Thus, a large change in the input of the sigmoid function will cause a small change in

the output and with it the derivative also shrinks. This problem is exacerbated with deeper layering; the

gradient decreases exponentially as we propagate down to the initial layers. A small gradient means that

the weights and biases of the initial (deeper) layers will not be trained effectively. Since these initial

layers are often crucial to recognizing the core elements of the input data, this can lead to overall inability

of the whole network to learn effectively. This effect can be partially mitigated by using other activation

functions, such as relu for example. Other ways of combating this problem are specific architectures,

like the residual neural network [20] which attempts to decrease the effect of this problem by connecting

deeper layers directly to the output. However, it is not enough and too restrictive. This calls for the

development of new methods specifically designed to enhance learning capabilities and counter the

vanishing-gradient effect. A method is needed that will not restrict us to the use of specific neural

topologies or activation functions.

The objective of this paper is to compare the performance of training a DNN all at once, versus training

it one mutation at a time as a pre-planned model is being constructed (PRL training) and demonstrate

that the latter produces a better outcome, with each layer of such model storing statistically greater

amount of information. The Phylogenetic Replay Learning (PRL) requires a trace of model's

complexification, from a simple shallow version to the final complex DNN. When this trace is available,

it performs re-training of the layers as it adds layer on-top of layer within the trace. This iterative re-

training approach ensures that every layer was at some point the output layer (or close to it) and thus

was affected by the gradient descent learning algorithm to a greater extent, while the deeper layers were

"re-tuned" to work effectively in the deeper model. When this approach is combined with

neuroevolution, the system first evolves the final model from a simple initial seed model while also

building its trace of mutations (which new layers are added on top of which or which layer is changed

or get linked to others) and then it re-traces those evolutionary steps (the phylogeny), while re-training

the model at every evolutionary step, as shown in the Figure 1. In the following sections, we will discuss

in detail the PRL method. First, we will cover the background of the pertinent domains, neuroevolution

and the vanishing-gradient problem. We will then provide definitions of the terms used in this paper. In

the methods section, we provide a detailed PRL algorithm. In the results section, we will present the

experiments performed and their results. Finally, we will conclude with the analysis and discussion of

the results achieved.

2. BACKGROUND

2.1 The Vanishing-gradient Effect (VGE)

The most common neural network (NN) optimization algorithm is based on the use of stochastic gradient

descent. This involves first calculating the prediction error made by the model and then using the error

to estimate a gradient used to update each weight layer by layer, cascading backwards in the network.

This error gradient is propagated backward through the network from the output layer to the input layer,

updating the weights to minimize the difference between the actual NN output and the expected output.

It is useful to train NNs with many layers. The addition of deeper layers increases its capacity, making

it capable of learning more complex mapping functions between input and output when a large training

dataset is provided. A problem with training networks with many layers (e.g. deep neural networks) is

that the gradient diminishes dramatically as it is propagated backward through the network. The error

may be so small by the time it reaches layers close to the input of the model that it may have very little

effect. Thus, this problem is referred to as the “vanishing-gradient” problem.

2.2 Neuroevolution

Neuroevolution is a machine-learning technique that applies an evolutionary algorithm to construct

artificial NNs, taking inspiration from the biological evolutionary process.

220
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

2.3 Definitions

Champion: is an NN model (topology and weights) representing the best model that neuroevolution is

able to produce to solve a problem.

Direct Deep Learning (DDL): is what we call the standard/default training of a model using

backpropagation (Adam, QProp, …etc.) to differentiate it from the PRL method. It is a method that is

applied to the DNN without the use of neuroevolution or PRL. In our experiments, the training algorithm

used in the framework was set to Adam. The DDL is also known as end-end training

Hall of Fame (HOF): or HOF for short, is a list our neuroevolutionary system holds of the best

performing agents/models. In our tests, HOF was set to size 10,

Initial Model: is the seed model used as the starting point of model search in neuroevolution.

Mutations: at each step of the evolutionary process, we apply mutation(s) to the topology of the parent

in order to create an offspring. A topological mutation can add a layer to the model, mutate existing

layer's parameters, remove a layer, clone an existing layer, add or change a link between two layers or

swap one layer for another type of layer.

Phylogenetic Replay Learning (PRL): is a method of training a model for a specific problem using

pre-recorded mutation path of a seed model topology (system implemented and presented in this paper),

but doing so one mutation step at a time, following that model's phylogenetic path. In other words, we

re-train the model after every applied mutation step once we know what the best model is and what

mutation steps were taken to achieve it from the seed model, usually following the path of model

complexification from the initial neuroevolution phases. This method is the topic of this paper.

Selection Process: is the mechanism by which the algorithm selects the best entities according to their

score (fitness function) and stores them in the “Hall of Fame” (HOF) list.

2.4 Other Methods to Reduce Vanishing-gradient Effect (VGE)

Several other approaches can be used to reduce the VGE, but none are perfect. Using PRL does not

preclude one from leveraging other methods as well.

 Activation functions, such as relu for example [21].

 Normalized initialization layers [22]-[23] and intermediate normalization layers [24], which enable

networks with tens of layers to start learning/converging with stochastic gradient descent (SGD)

with backpropagation [25].

 Specific architectures like the residual neural networks which attempt to decrease the effect of this

problem by using pass-through links [20].

 Regularizing deep neural networks by noise injects noise during the training procedure, adding or

multiplying noise within the hidden units of the NNs [26].

 Deep cascade learning method proposes a solution to alleviate the VGE [27] by training deep

networks in a cascade-like or bottom-up layer-by-layer manner. It reduces the VGE, but was not

shown to be better than DDL.

2.5 Metrics

The metrics we use for model comparison is the test accuracy. Early stopping was applied on the score

we want to follow and not used for training. Accuracy is used as the metric. To better understand the

difference in the informational density of the models, we calculated their weights’ Shannon entropy [28]

Equation 1, Equation 2 after training.

𝑃𝑖 =
𝑖

∑ (𝑖)𝑛
𝑖=1

 (1)

H entropy:

𝐻 = −∑ 𝑃𝑖ln⁡(𝑃𝑖)
𝑛
𝑖=1 (2)

2.6 Dataset

PRL was tested on the 4 "original" datasets from Keras site: MNIST, Fashion MNIST, CIFAR 10 and

Tiny Imagenet. CIFAR10 was converted into grayscale with images reshaped to 28*28 pixels, to not

only match the same shape as those within MNIST, but also to make it much more complex to learn.

221
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

Tiny Imagenet 200 dataset has been chosen to test the system on a more modern, bigger and more

difficult to learn dataset. This paper's aim is to compare the PRL method to the standard approach. Thus,

the goal of this work is to show that on average, this training approach produces better performing

models, with more densely packed information, than the direct approach, by alleviating the VGE. Thus,

we believe that for these preliminary results, it is appropriate to use these datasets.

2.7 Tools

We selected tools like Keras that provides the training framework and Raise solution from DataValoris

that provides the evolutionary part of the experiments on top of Keras. They have accelerated our work

as their engine already provides the unrestricted topological search-based deep-learning neuroevolution.

The PRL (recording and replay training) was developed by us for the purpose of this work and

presentation of experiments and their results in this paper. The method could be as easily used with other

neuroevolutionary systems, like NEAT, EANT1/2, DXNN or GNARL, as long as we record the

phylogenetic path of mutations that can then be used to replay the mutations and train the model one

step at a time. Finally, all of our experiments were performed on a server with an Nvidia Tesla v100

GPU card. Part of this work was granted access to the HPC/AI resources of IDRIS under the allocation

2021- AD011012674 made by GENCI.

2.8 Seed Model

Table 1 shows the simple model used as the seed model. It includes 7850 parameters and 1 hidden layer

in a sequential architecture.

Table 1. Initial model test 1.

Layer Number Type Output Params

1 InputLayer N, 28, 28, 1 0

2 Flatten N, 784 0

3 Dense N, 10 7850

2.9 Selection Rules

During the building of the phylogenetic path, the neuroevolutionary process uses selection based on the

score generated by the learning algorithm. The score used as a fitness is the test accuracy of the model.

We have set the system such that the learning rate is decreased when the score does not improve for 3

consecutive evaluations. Every generation 10 NNs are trained, then their scores are compared to the

NNs in HOF. If a score of an offspring/mutant model within the current generation is higher than that

of a model within the HOF that has the same topology, the mutant model replaces the model within the

HOF. If the mutant model has the highest score and has a topology not present within the HOF, the

model with the lowest fitness within the HOF is removed and the new model is added in its spot.

3. METHODS

PRL is a method to train models using genetically planned mutations over time. It alleviates the

vanishing gradient effect through its complete training. The system allows the classical gradient descent

method to train each layer, even the very deep ones, more than the traditional learning approach. It does

this by retraining each of those layers as the model is being evolved and new layers are added. Each new

layer added has the chance of being trained as if it were the first or second layer in the backprop cascade.

Frameworks used in this study were the official TensorFlow and plaidML. Datasets have not been

augmented during tests. The algorithms were developed in Python. To use the PRL algorithm the

experiments have been cut into two phases

3.1 Phase 1: Generating the Champion's Mutation Path through Neuroevolution

PRL requires the existence of the phylogenetic path of the model we need to train. The first phase is

meant to build the Champion model while recording its phylogenetic path (mutations that were applied

sequentially to generate it). Neuroevolution is used to accomplish (Figure 1) this.

Neuroevolution generates a phylogenetic path (Figure 2) of the best performing model

topology aka "champion". In this figure, the champion has 3 ancestors. The figure also shows which

222
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

topological mutations were applied to get from one model to the next. The neural architecture used is

built by the evolutionary process (could be CNN, Dense layers, Resnet like structure…etc.).

 Figure 1. Selection mechanism sample. Figure 2. Phylogenetic path of champion.

3.2 Phase 2: Model Generation with the PRL

Now that we have a phylogenetic path that leads to the champion model, we can replay the path from

the seed model to champion model (Figure 3).

Figure 3. The phylogenetic learning path from initial model to the final one.

When replaying the phylogenetic path, we have to: 1. Generate the seed model with a new set of random

synaptic weights and 2. Generate random weights when adding new layers during mutations. This then

creates the final model with the same topology as the champion model, but with its own set of

parameters. This is a way to statistically include in testing the impact of the initial random weights.

This study was composed of the following steps:

 Phylogenetic path recording: First, an initial simple seed model is trained on a dataset. Using

the neuroevolutionary approach, over multiple generations a more complex and better

performing NN architecture is evolved and the evolutionary steps leading from the seed NN to

the final architecture are recorded in its mutation trace list. The final architecture is what we call

the champion model.

 PRL training evaluation: Having the trace from the initial seed model to the champion, the seed

model is re-trained using the PRL method X# of times. Using the PRL method, after the

application of each mutation in the mutation trace, the system is retrained. This is done for every

mutation step, from seed to champion, without resetting the weights between each

mutation/training step (in some sense, similarly to transfer learning). This provided the average

performance (average of X # of times) of the same champion topology, but trained using the

PRL method.

 Champion model DDL retraining: The champion model was re-initialized with random weights

and trained on the dataset X# of times using the standard learning approach. This was done to

calculate the average performance of the model trained in the standard manner (to which we

refer in this paper as "directly applied deep learning" or DDL), with different initial synaptic

weights. The early stop patience and epoch number were set to 9 and 60 to avoid a bias where

the DDL might not have enough time to train very deep networks.

 Reproducibility testing: In order to confirm the results and test the reproducibility of the method,

we did the experiment more than once and on different frameworks. Another champion was

223
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

created and PRL again applied using a new seed model, another framework as well as applying

it to the more complex Tiny ImageNet dataset.

 Transferability testing: We were also interested in whether the generated model was

generalizable to other problems from the same domain and the difference between DDL and

PRL-based methods when it comes to transferability. To evaluate the transferability of the

Model using the PRL process, we also tested the same champion on other datasets, by retraining

it using DDL and PRL methods.

 Data-storage efficiency testing: We calculated the efficiency of information storage in complex

models trained through PRL and compared the results to those trained with DDL.

4. RESULTS OF EXPERIMENT 1

In this section, we will first generate a champion and then store its phylogenetic path. Then, we will

replay the recorded mutation path with the resulting statistics and compare them to the DDL results.

4.1 Phase 1: Champion 1 Generation

The experiment was setup as follows:

 When using the neuroevolutionary method, a seed population of 20 random minimalistic models

is generated.

 20 agents are generated during every cycle (by way of mutation) from the best agents within the

HOF (with a HOF max size of 10), where the probability of using any one agent as the parent

of the mutant offspring being proportional to its relative fitness (accuracy) as compared to other

HOF agents.

 This experiment used the MNIST dataset.

 The evolutionary engine applied 1-2 (randomly chosen) mutations to create a mutant offspring

model from the parent.

The deep-learning parameters used were as follows: 20 epochs with early stopping based on a patience

of 3, where patience is based on the test loss metric.

Point of attention: In this work, we refer to the "number of parents since origin" as the agents’ generation

number. In classic genetic algorithms, the generation is what in this study we call "cycles", therefore an

agent of generation 3 and cycle 8 means that it appeared on the 8th iteration and has 3 ancestors (it could

have appeared at minimum between cycles 3 to 8).

From the list of champions generated using the neuroevolutionary method during phase 1, we chose the

best one, as shown in Table 2.

Table 2. Champion 1 results’ information (MNIST).

Score Cycle Generation Parameters Nodes Layers

0.9944 96 19 409158 25 13

The chosen champion has 409158 parameters spread between 25 nodes that are 13 layers deep. It has

been generated on the 96th cycle and is generation 19 (it has 19 ancestors). Its score 99.44% is close to

state-of-the-art on non-augmented MNIST dataset. The mutations recorded at each step that lead to the

final champion topology are displayed in Table 3. At every evolutionary step, 1-2 mutation(s) were

applied. The number of mutations applied at each step is limited to a maximum of 2 in order to generate

a complex model with small changes between each step, which allows PRL to work on smaller parts

during each mutation.

Table 3 presents a base of comparison; it shows PRL scores of the champion NN at each step of its

evolutionary path. Those scores have been used as the selection criteria for HOF entrance of the

offsprings during the evolutionary process. This first result shows that the model has increased in size.

This is a classic behavior of an evolutionary algorithm if no size restrictions are used during model

generation and mutation. We also see that the Shannon entropy decreases from generation to generation,

from 8.98 to 8.90 (excluded initial model of 12.51).

We can interpret this reduction as the increase in organization and amount of useful information stored

224
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

by the model's weights. We move from an almost random set of weights to a set of weights that store

useful information, a more organized distribution.

Table 3. Phylogenetic path and scores of the chosen champion.

STEP SIZE SCORE SHANNON STEP SIZE SHANNON SCORE

0 7850 8.79 12.5151 10 264970 8.92824 99.3
1 94906 97.51 8.98112 11 269130 8.92447 99.27

2 27082 98.43 8.97188 12 300874 8.92426 99.28
3 58538 98.96 8.98559 13 300874 8.91894 99.33

4 90346 99.03 8.98102 14 304970 8.91918 99.34
5 90282 99.03 8.96616 15 304970 8.91798 99.34

6 183818 99.23 8.95914 16 304970 8.91156 99.35

7 183818 99.19 8.9567 17 304970 8.90396 99.36
8 258570 99.24 8.94914 18 405486 8.90111 99.41

9 264330 99.29 8.9393 19 409158 8.90037 99.44

4.2 Phase 2: DDL versus PRL Statistics

During phase 2, we gather the result metrics of the two different learning approaches to evaluate the

impact of using PRL as compared to DDL.

4.2.1 DDL of Champion 1

To evaluate the learning capacity of the model, we conducted 50 runs using the standard learning method

applied directly to the final champion model. The initial weights in each experiment were randomly

generated. This number of runs allows us to calculate a statistically relevant standard deviation. In

theory, the DDL of the champion model could have the same performance as the original champion (and

potentially higher), but the probability that these 409158 random parameters reach an optimum is very

low. The more complex and deeper the model, the greater the effect PRL method is expected to produce

by countering the vanishing-gradient effect (VGE). To perform these experiments and to maximize the

probability of reaching a good local minimum, 60 epochs per run were used, with patience set to 6.

During our experiments, a maximum of 53 epochs were used before early stoppage occurred. An average

of 45 epochs out of 60 were used before early stoppage was triggered. During phase 1 of the PRL

method, the champion achieved an accuracy of 99.44%. Its Shannon entropy is 8.90037. The best

score/accuracy achieved using DDL of the champion model was 99.05%, with a statistically significant

difference (Table 4). We suspect that the VGE is the root cause of this result. Furthermore, we can also

see that Shannon entropy of the best performing model trained using the standard approach (9.1227) is

also higher than the entropy of the champion model produced during phase 1 of the PRL method.

Table 4. Applying DDL to the champion model (MNIST).

We see that the application of DDL to the model is also less efficient than that produced through phase

1 of the PRL method.

4.2.2 Phylogenetic Replay Learning

From initial model, the mutations are applied based on the phylogenetic path of the champion model.

The weights are randomly generated for the new mutated layers as well as seed model. We reran the

PRL experiment 50 times to gather data on which to base our averages. Weights were not reset between

mutations (which can be considered as transfer learning). Table 5 shows the results of the 50 PRL

experiments.

The best score reached was 99.40% with an average of 99.26%. This score is very close to that of the

original champion model, which reached 99.44%. Thus, there is substantial consistency. Table 6 shows

statistical information of the DDL and PRL experiments.

 SCORE SHANNON

 BEST 99.05 9.1227

 MEAN 98.93 9.1615

 Standard Deviation 0.067 0.0168

225
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

Table 5. PRL of the champion model (MNIST).

Step Mean

Score

Std.

Deviation

Best

Score

Shannon Step Mean

Score

Std.

Deviation

Best

Score

Shannon

0 92.14 0.0771 92.33 12.5163 10 99.16 0.0647 99.32 8.8497

1 97.68 0.2711 98.11 8.9256 11 99.17 0.0700 99.35 8.8454

2 98.35 0.0925 98.58 8.9015 12 99.18 0.0563 99.31 8.8437

3 98.88 0.0841 99.02 8.9079 13 99.19 0.0641 99.34 8.8415

4 99.01 0.0676 99.16 8.8960 14 99.19 0.0626 99.34 8.8396

5 99.05 0.0634 99.13 8.8802 15 99.19 0.0618 99.31 8.8373

6 99.12 0.0553 99.23 8.8749 16 99.24 0.0606 99.36 8.8262

7 99.11 0.0541 99.22 8.8702 17 99.24 0.0521 99.37 8.8208

8 99.14 0.0515 99.27 8.8628 18 99.24 0.0542 99.35 8.8185

9 99.14 0.0660 99.26 8.8547 19 99.26 0.0628 99.40 8.8147

Table 6. Statistics of experiments.

 DDL PRL

Mean Score 98.93% 99.26% POOLED VARIANCE 4.2E-07

VARIANCE 4.5E-07 3.9E-07 T STAT -25.13668

OBSERVATIONS 50 50

 The scores are lower than those produced by the champion itself (which followed the optimal path).

This is probably due to the randomly generated weights during each step. But, we can also see that

the standard deviation of the experiments is low, thus there is performance consistency in the results

produced by PRL.

 The score produced by PRL is better than that produced by DDL. With an average maximum of

99.26% compared to 98.93% of DDL, the difference is statistically significant (p < 0.001 - Table 6)

and the distribution is well separated (Figure 4). Similarly, comparing both maximums of 99.40%

(PRL) to 99.05% (DDL), we see a statistically significant difference. Giving DDL more time to

train (60 epochs) does not improve its performance (early stop almost always occurs before the

epoch number).

 The standard deviation of PRL is lower (better) than that of DDL (Table 6). We believe that this

confirms that PRL is a more robust approach and more resilient to random weight initialization.

 During the PRL, the Shannon value consistently decreased at every step (Table 5) of the process.

This can be seen as an increasing organization/informational density of the model while the model's

complexity increases at each step.

 The Shannon entropy of the PRL-based model is lower (better) than that of the DDL-based model;

8.81 versus 9.16.

The last two results reinforce the hypothesis that PRL alleviates the VGE. Though more tests must be

conducted to further analyze the approach, this preliminary work shows a promising path. Table 7 shows

that when using DDL, the Shannon entropy of the last layers in the model is lower than that of those in

the PRL-trained model (bold values for lowest entropy in Table 7). Calculated entropy for each layer of

champion 1 are displayed for comparison.

Table 7. Comparison of Shannon entropy between layers.

LAYER # TYPE DDL PRL Ref. Champion

2 CONV2D 9.162 8.815

3 SEPCNV2D 8.372 8.234 8.235

4 CONV2D 15.159 15.138 15.142

5 DENSE 14.776 14.727 14.715

6 DENSE 11.683 11.687 11.691

7 CONV2D 14.155 14.081 14.054

8 CONV2D 14.186 14.077 14.068

9 DENSE 12.104 12.101 12.095

10 DENSE 11.684 11.688 11.689

226
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

11 DENSE 17.405 17.512 17.517

12 DENSE 11.689 11.711 11.713

13 DENSE 12.466 12.588 12.582

This hints that the standard training (DDL) is primarily affecting the last layers within the model due to

the VGE. The DDL model stores its information in those layers more densely, while in PRL, the weight

adjustment and information storage are more evenly distributed. The total Shannon entropy is lower in

PRL than in DDL.

Table 8. DDL vs. PRL comparison at every evolutionary/complexification step.

STEP DDL Max. score PRL Mean score STEP DDL Max. score PRL Mean score

0 92.140 92.144 10 98.760 99.161

1 98.160 97.679 11 98.870 99.173

2 98.130 98.347 12 98.870 99.179

3 98.470 98.879 13 98.760 99.193

4 98.430 99.007 14 98.860 99.186

5 98.420 99.048 15 98.750 99.192

6 98.560 99.115 16 98.860 99.239

7 98.780 99.105 17 98.860 99.239

8 98.770 99.135 18 98.820 99.243

9 98.940 99.138 19 98.790 99.258

Table 8 shows that if at each step we train the same model (resetting its weights first) using DDL, it

both achieves lower final accuracy (performs worse) and based on its Shannon entropy score, stores

less information. The performance differences between DDL and PRL trained models increases as

they become more complex and grow deeper. The Figure 4. DDL and PRL score distribution on

Figure 5. Visual graph of experiment 1 shows a visual graph of the results.

3 experimental results are displayed:

 Evolution score and Shannon retrieved during phase 1 of champion 1 creation.

 Mean DDL score and Shannon at each evolutionary step of champion 1 history.

 Mean PRL score and Shannon of the champion model growth by mutation step.

Figure 4. DDL and PRL score distribution on Figure 5. Visual graph of experiment 1

 the MNIST dataset. results (MNIST).

Plain lines represent the score, dotted lines represent Shannon entropy and for comparison, the PRL best

score is shown as a dashed line. We see that the Shannon score at each step when using DDL of the

current step topology is higher (worse) than that of the PRL-based model. Generalization tests (later in

this paper) shows that this behavior is reproducible. Further tests must be conducted to conclude whether

this behavior applies to any other complex models if we were to build a phylogenetic path and apply the

PRL method. Alternatively, perhaps an artificial PRL approach could be used, where any deep model is

re-built up one layer at a time and retrained at every step using either an artificially created output layer

(of the correct output layer length) until the last layer [29] or by re-attaching the last layer to each

consecutive layer and then re-training the model. These artificial approaches of building a path are

limited to simple and mostly sequential topologies. Such limitations are not present when it comes to

neuroevolution based path building.

227
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

5. DISCUSSION

5.1 Reproducibility

This sub-section attempts to answer the following questions: 1/Are these results reproducible with

another complex model? 2/ What is the condition of reproducibility? If that condition is the model's

complexity, how is such complexity defined?

5.1.1 Reproducibility of PRL Results

To answer the questions, we redo the whole experiment again. For the purpose of reproducibility, we

now use another framework, PlaidML and another seed model to generate a new champion. For control,

we used the same dataset, the same DDL rules and the same PRL method. The initial model test 2 (Table

9) used in this experiment is narrower, but deeper, as compared to the one in the previous experiment.

Table 9. Initial model test 2.

Layer # Type Output Params

1 InputLayer N, 28, 28, 1 0

2 Conv2D N, 27, 27, 6 30

3 MaxPooling2D N, 9, 9, 6 0

4 Flatten N, 486 0

5 Dense N, 10 4870

Table 10 shows the metrics of champion 2 generated from the initial model test 2 (Table 9) during

neuroevolution phase 1 of the method.

Table 10. Champion 2 results (MNIST).

Score Cycle Generation Parameters Nodes Layers

0.9943 144 28 226 592 39 14

Champion 2 topology generated is smaller, but with a more complex structure, than champion 1

generated in the first experiment. Champion 2 has been generated with 28 evolutionary steps.

Furthermore, champion 2 is much harder to train than "initial model 2". Champion 2 epoch time is 15

times that of "initial model 2". Applying DDL to champion 2 gives the following results (MNIST):

DDL average score: 98.90% +/- 0.001 (n=16)

DDL maximum score: 99.08%.

In comparison to the baseline result of the generated champion 2 using neuroevolution, the score we get

using DDL with champion 2 topology is lower 99.08% at max. versus 99.43% (Table 10). In Table 11,

we see that PRL is still more efficient than the DDL approach. The original score of the champion is on

average better, which is consistent with our earlier experiments.

Table 11. Results of PRL, DDL applied to champion model 2 (MNIST).

STEP STD.

DEV.

PRL Av.

SCORE

DDL Av.

SCORE

CHAMP. 2

 SCORE

STEP STD.

DEV.

PRL Av

SCORE

DDL Av.

SCORE

CHAMP. 2

 SCORE

0 0.72% 94.31% 96.37% 94.60%

1 0.59% 95.81% 96.09% 95.96% 15 0.05% 99.11% 98.71% 99.14%

2 0.48% 96.48% 97.38% 95.35% 16 0.07% 99.11% 98.96% 99.18%

3 0.26% 97.78% 97.33% 97.72% 17 0.05% 99.15% 98.96% 99.09%

4 0.12% 98.28% 98.46% 98.35% 18 0.06% 99.19% 98.84% 99.15%

5 0.13% 98.54% 98.47% 98.34% 19 0.05% 99.17% 98.98% 99.20%

6 0.09% 98.73% 98.59% 98.71% 20 0.06% 99.18% 98.93% 99.24%

7 0.11% 98.50% 98.75% 98.40% 21 0.06% 99.18% 98.97% 99.31%

8 0.11% 98.56% 98.63% 98.60% 22 0.04% 99.14% 98.91% 99.31%

9 0.20% 98.51% 98.69% 98.73% 23 0.06% 99.14% 98.90% 99.24%

10 0.11% 98.73% 98.80% 98.84% 24 0.07% 99.14% 99.02% 99.32%

11 0.22% 98.67% 98.87% 98.84% 25 0.07% 99.18% 98.86% 99.33%

228
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

12 0.11% 98.91% 98.71% 98.99% 26 0.08% 99.13% 98.97% 99.37%

13 0.11% 98.98% 98.86% 99.04% 27 0.06% 99.18% 98.92% 99.35%

14 0.06% 99.01% 98.92% 99.07% 28 0.06% 99.19% 98.90% 99.43%

The important result of that experiment is that the initial steps with simpler topology where the VGE is

not important had higher scores when using DDL than when using PRL. From step 12 onward, the

accuracy/performance achieved by PRL is higher, even though the model was more complex.

5.1.2 Complexity of Model Criteria

When referring to model complexity, we assume that the model has a lot of branches, is deep and is

non-sequential. We believe that the more complex (in terms of topology) a model is, the more beneficial

it would be to train it using PRL. Thus, in order to further explore these assumptions, we conducted

another experiment where we changed the neuroevolutionary phase 1 selection rules.

In this third experiment, we added a rule to the selection process to put more weight on selecting those

models which trained the quickest (model training speed was weighted into the final fitness score). With

this approach, a model with the same accuracy as another, but with a shorter learning speed (aka epoch

time), is selected to enter the HOF. This selection pressure resulted in our system generating champions

that are quick to train and less complex, therefore less sensible to vanishing-gradient effect.

Champion 3 generated (MNIST):

Score: 99.40% Shannon: 8.4799

DDL average results for champion 3 model: | PRL average results for champion 3 model:

Score: 99.37% Shannon: 8.4150 | Score: 99.33% Shannon: 8.3535

In this experiment, Shannon value is still lower when using PRL as compared to DDL. But, the

difference in the results of this experiment are less drastic.

The PRL complexity definition is therefore not only the topological complexity (total parameters, total

nodes and node links), but is also linked to the learning efficiency (amount of time it takes to learn) of

the model. The more difficult it is for the model to learn a dataset, the more complex its structure needs

to be and the more effect PRL method will have on its training.

5.1.3 Experiment with a Larger Dataset (TinyImageNet)

In this fourth experiment, we used the TinyImageNet dataset with 200 classes and relatively small

number of training samples (more difficult to learn) and for reproducibility, no data augmentation. 50

tests were run using DDL and PRL.

Champion 4 generated (TinyImageNet):

19,771,676 parameters, 65 nodes, 30 layers, 44 generations

Score: 42.87% Shannon: 9.3795

DDL average results for champion 3 model: | PRL average results for champion 3 model:

Score : 38.37% Shannon : 9.3833 | Score : 41.79% Shannon : 9.3611

PRL training again produces a better result than DDL.

It should be noted that no data augmentation or extra pre-processing was applied to the dataset. Data

augmentation is a common approach with this dataset due to the few samples it contains for each class.

Given that our goal is to compare "apples to apples" and find the relative performance of one method

compared to another, we applied both PRL and DDL to the original pure TinyImageNet dataset.

5.2 Transferability

In this sub-section, we try to answer the following two questions: 1. Can we use PRL to retrain the

model from previous experiments on new datasets from the same problem domain? and 2. Can PRL

allow a model to generalize from one dataset to another in the same problem domain better than DDL?

In order to answer these questions, we applied PRL to seed and phylogenetic path of champion 1 again,

but trained it on a different dataset. The purpose of this experiment is to evaluate whether a model with

its recorded evolutionary path from one dataset can be applied on another, but related, dataset.

229
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

5.2.1 Experiment 5: FASHION MNIST Dataset Champion 1

The two learning methods are re-applied to the FASHION MNIST dataset. This dataset has the same

input and output shape as the standard MNIST. In this dataset, the classification is done on various

fashion objects (dresses, shoes, …ext.) rather than digits. This dataset is found to be more complex than

the standard MNIST.

DDL mean score for champion 1 - FashionM | PRL mean score for champion 1 - FashionM

Score: 90.44% Shannon: 9.0238 | Score: 91.98% Shannon: 8.4813

This experiment shows that we can re-apply PRL to an existing model and re-train it on a related, but

different, dataset. PRL provides a better result than DDL. For comparison, the SOTA convolutional NN

applied to the FASHION MNIST is 91.4% without data augmentation [30]. Our 91.98% is a competitive

result that outperforms the SOTA, even though the model trained by PRL was not evolved for that

specific dataset. This is an interesting result. One potential implication of this result is that PRL might

allow us to more easily re-train existing model architectures on new, but related, problem domains for

which they were not originally designed and still achieve very high performance.

Table 12. Shannon layer comparison for FASHION MNIST.

LAYER TYPE DDL PRL

2 CONV2D 9.0238 8.4813
3 SEPCNV2D 8.307 8.0439

4 CONV2D 15.1492 15.1338
5 DENSE 14.7804 14.7331

6 DENSE 11.6941 11.6841

7 CONV2D 14.1506 13.9888
8 CONV2D 14.1568 13.9923

9 DENSE 12.1115 12.1017
10 DENSE 11.6922 11.6905

11 DENSE 17.3703 17.4783

12 DENSE 11.6984 11.71
13 DENSE 12.3777 12.5757

Table 12 shows again that PRL is better able to alleviate the VGE. The first layers have better Shannon

entropy values when a model is trained through PRL and the last layers have better entropy values when

DDL is used to train the model.

5.2.2 Experiment 6: CIFAR10 Gray

In this experiment, we train the model on the CIFAR10 dataset converted into grayscale (C10G). For

this experiment, we also scaled it to the 28*28*1 resolution, then gray-scaled it, so that we can use the

same model again and test its transferability. This downgraded dataset is much more difficult to train

than the MNIST.

DDL mean results for champion 1 - C10G: | PRL mean results for champion 1 - C10G

Score: 54.40 Shannon: 9.1690 | Score: 65.01 Shannon: 8.9345

These results again show the PRL's ability to generalize and retrain an existing model on a new, but

related, dataset (with the same shape). In our experiments, PRL is consistently producing better results

than DDL, both in terms of accuracy and information density (Shannon entropy values).

5.3 Learning Time

While neuroevolution algorithms are known to need more time to achieve good results (though still

significantly less when compared to the time needed by experts to design similar problem specific

topologies manually), the PRL adds an alternative to the DDL methods.

Overall, the PRL process requires more steps (19 steps*20 epochs at most in experiment 1), but the

Epochs' durations are shorter during the early steps (3 to 15 times less). DDL required at most 60 epochs.

Further experiments should be conducted to optimize learning time. We believe that methods like layer-

freezing and optimizing the number of epochs will help in this. We conducted preliminary PRL tests

230

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

with 4 epochs for half the steps followed by an increase in number of epochs until the last step, where

the results were still superior as compared to DDL, while decreasing the needed time.

DDL learning time: 60 epoch*x (x = champion epoch duration in seconds) = 60.0x

PRL in 1st experiment: (20 epoch*19 step)*(x/3) = 126.6x

PRL in 1st experiment with step epoch number optimized:

(4 epoch*10 step+12 epoch*9 step)*(x/3) = 49.3x

PRL takes more time than DDL, but with a simple optimization, the runtime could be reduced below

the DDL time.

6. CONCLUSION

Based on our experiments and results, PRL has consistently outperformed DDL, primarily by alleviating

the VGE problem. We believe that this is the way in which it functions due to the Shannon entropy

values calculated for each layer. These values are lower in deeper layers in the models trained by PRL

than those trained by DDL. Furthermore, PRL is more resilient to random-weight initialization as

compared to DDL. We re-ran the PRL experiment on the same seed model and with the same

phylogenetic path, but with each seed model having randomly generated initial synaptic weights. We

found that the performances of the evolved champion models were all very similar and more consistent

than when randomly initializing a full model and training it with DDL. Our experiments on

transferability also show that the method is effective in retraining models on related datasets. This

potentially opens the door to further research into the method's use in transfer learning, where a model

with its phylogenetic path can be effectively retrained on another dataset or an updated version of the

same dataset. We believe that further research is needed into this domain. The combination of

neuroevolution, where model/architecture evolution is synergized with training, will yield better

performing systems, as compared to systems where the model is trained all at once (DDL). We think

that this method might be particularly effective in training very deep and very complex models, where

DDL might struggle. Our future work will concentrate on further expanding and exploring this method.

REFERENCES

[1] D. Silver, David et al., "Mastering the Game of Go with Deep Neural Networks and Tree Search," Nature,

vol. 529, pp. 484-489, DOI: 10.1038/nature16961, 2016.

[2] P. Vikhar, "Evolutionary Algorithms: A Critical Review and Its Future Prospects," Proc. of the IEEE Int.

Conf. on Global Trends in Signal Process., Inf. Comp. and Comm. pp. 261-265, Jalgaon, India, 2016.

[3] F. Gomez, J. Schmidhuber and R. Miikkulainen, "Accelerated Neural Evolution through Cooperatively

Coevolved Synapses," Journal of Machine Learning Research, vol. 9, pp. 937-965, 2008.

[4] R. De Nardi, J. Togelius, O. Holland and S. Lucas, "Evolution of Neural Networks for Helicopter Control:

Why Modularity Matters," Proc. of the IEEE Int. Conf. on Evolutionary Computation, pp. 1799-1806,

DOI: 10.1109/CEC.2006.1688525, Vancouver, Canada, 2006.

[5] V. Heidrich-Meisner, C. Igel, B. Hoeffding and Bernstein, "Races for Selecting Policies in Evolutionary

Direct Policy Search," Proc. of the 26th Annual Int. Conf. on Machine Learning (ICML '09), vol. 51, DOI:

10.1145/1553374.1553426, 2009.

[6] J. Lehman et al., "The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the

Evolutionary Computation and Artificial Life Research Communities," Massachusetts Institute of

Technology, Artificial Life, vol. 26, no. 2, pp. 274–306, 2020.

[7] F. Such et al., "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training

Deep Neural Networks for Reinforcement Learning," arXiv, DOI: 10.48550/arXiv.1712.06567, 2017.

[8] X. Zhang, J. Clune and K. Stanley, "On the Relationship between the OpenAI Evolution Strategy and

Stochastic Gradient Descent," arXiv: 1712.06564, DOI: 10.48550/arXiv.1712.06564, 2017.

[9] J. Lehman, J. Chen, J. Clune and K. Stanley, "ES Is More Than Just a Traditional Finite-difference

Approximator," Proc. of the Genetic and Evolutionary Computation Conference (GECCO '18), pp. 450-

457, DOI: 10.1145/3205455.3205474, 2018.

[10] E. Conti, Edoardo et al., "Improving Exploration in Evolution Strategies for Deep Reinforcement

Learning via a Population of Novelty-seeking Agents," Proc. of the 32nd Int. Conf. on Neural Information

Processing Systems (NIPS'18), pp. 5032–5043, 2017.

[11] J. Metzen, M. Edgington, Y. Kassahun and F. Kirchner, "Performance Evaluation of EANT in the

Robocup Keepaway Benchmark," Proc. of the 6th Int. Conf. on Machine Learning and Applications

(ICMLA 2007), pp. 342-347, DOI: 10.1109/ICMLA.2007.23, 2008.

[12] F. Gomez, J. Schmidhuber and R. Miikkulainen, "Accelerated Neural Evolution through Cooperatively

231
"Phylogenetic Replay Learning in Deep Neural Networks", J-P. Glafkides, G. Sher and H.Akdag.

Coevolved Synapses," JMLR, vol. 9, pp. 937-965, DOI: 10.1145/1390681.1390712, 2008.

[13] K. Stanley and R. Miikkulainen, "Evolving Neural Networks through Augmenting Topologies,"

Evolutionary Computation, vol. 10, pp. 99-127, DOI: 10.1162/106365602320169811, 2002.

[14] E. Real, A. Aggarwal, Y. Huang and Q. Le, "Regularized Evolution for Image Classifier Architecture

Search," Proc. of AAAI Conf. on Artificial Intellig., vol. 33, DOI: 10.1609/aaai.v33i01.33014780, 2018.

[15] A. Gaier and D. Ha, "Weight Agnostic Neural Networks," arXiv: 1906.04358, DOI:

10.13140/RG.2.2.16025.88169, 2019.

[16] S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen, Diploma Thesis, Josef Hochreiter

Institut fur Informatik, Technische Universitat Munchen, Germany, 1991.

[17] F. Informatik, Y. Bengio, P. Frasconi and J. Schmidhuber Jfirgen, "Gradient Flow in Recurrent Nets: the

Difficulty of Learning Long-Term Dependencies," Chapter of Book: A Field Guide to Dynamical

Recurrent Neural Networks, pp. 237 – 243, DOI: 10.1109/9780470544037.ch14, IEEE Press, 2003.

[18] Y. Bengio, P. Simard and P. Frasconi, "Learning Long-term Dependencies with Gradient Descent Is

Difficult," IEEE Transactions on Neural Networks, vol. 5, pp. 157-166, DOI: 10.1109/72.279181, 1994.

[19] R. Pascanu, T. Mikolov and Y. Bengio, "On the Difficulty of Training Recurrent Neural Networks," Proc.

of the 30th Int. Conf. on Machine Learning, JMLR: W&CP, vol. 28, Atlanta, Georgia, USA, 2013.

[20] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," Proc. of the IEEE

Conf. on Comp. Vision and Pattern Recog. (CVPR), pp. 770-778, DOI: 10.1109 CVPR.2016.90, 2016.

[21] X. Glorot, A. Bordes and Y. Bengio, "Deep Sparse Rectifier Neural Networks," Proc. of the 14th Int.

Conf. on Artificial Intelligence and Statistics, vol. 15, pp. 315-323, Fort Lauderdale, FL, USA, 2011.

[22] Y. Lecun, L. Bottou, G. Orr and K.-R. Müller, "Efficient BackProp," Chapter in Book: Neural Networks:

Tricks of the Trade, vol. 7700, pp. 9-48, DOI: 10.1007\/3-540-49430-8_2, 1998.

[23] X. Glorot and Y. Bengio, "Understanding the Difficulty of Training Deep Feedforward Neural

Networks," Journal of Machine Learning Research, vol. 9, pp. 249-256, 2010.

[24] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift," arXiv: 1502.03167, DOI: 10.48550/arXiv.1502.03167, 2015.

[25] Y. Lecun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation,

vol. 1, pp. 541-551, DOI: 10.1162 neco.1989.1.4.541, 1989.

[26] H. Noh, T. You, J. Mun and B. Han, "Regularizing Deep Neural Networks by Noise: Its Interpretation

and Optimization," Proc. of the 31st Conf. on Neural Inf. Process. Sys. (NIPS), Long Beach, USA, 2017.

[27] S. Enrique, J. Hare and M. Niranjan, "Deep Cascade Learning," IEEE Transactions on Neural Networks

and Learning Systems, vol. 29, no. 11, pp. 5475 – 5485, DOI: 10.1109/TNNLS.2018.2805098, 2018.

[28] C. Shannon and W. Weaver, The Mathematical Theory of Communication, Note 78, p. 44, 1963.

[29] J. Schmidhuber, "Learning Complex, Extended Sequences Using the Principle of History Compression,"

Neural Computation, vol. 4, pp. 234-242, DOI: 10.1162/neco.1992.4.2.234, 1992.

[30] O. Granmo et al., "The Convolutional Tsetlin Machine," arXiv: 1905.09688v5, DOI: 10.48550/arXiv.190

5.09688, 2019.

 ملخص البحث:

طي اممممم ط ر ممممما طور ممممم ا ط رغمممممّطور المممممارطورطرأمممممتطورمممممبكطتمممممتيط، مممممنطهمممممءرالطور،مممممرط طور مممممرأ ط ا

ط قلمممممم طورقممممممايطفممممممةطور،ممممممرط طور ممممممرأ طور أقمممممم ط ه،ممممممطةط ،ممممممط ط هممممممةطط- هممممممةط، ق مممممم طط–فممممممطةا

قطر لارق طولأ، ق.ط طهض ؤلطور أْة؛ط ذركطر اب طور اءرالطور َّ

رطور مممممما،ة" ط هممممممةطهق ممممممتاطهممممممبقطورارلمممممم طتتاقمممممم ط"ه ممممممّطو ،مممممم يط ور ط مممممملطتممممممالطور المممممماا

طتمممماهتكط، ممممنط ،ممممط طهضمممم ؤلطور أْممممة.ط ، ممممنطور طمممم ط مممم طتممممت ط تتاقمممم طه ممممّطه ل امممملطب،ممممطةة

كط طورلتاقمممم طور ق تيمممم ط طهجقأابممممءطبب أمممم طور ا مممماذ .ط بممممء ط مممم طذرممممك طف ممممةطهقمممماا طبمممم رراولة طفممممطةا ورمممم ّ

رطور ممممممرة ط ه ممممممّطور اقممممممة ط ور اممممممءرالطتر رممممممأ طفممممممةطهممممممبقططقمممممم طترقمممممم .، صممممممتط مممممم طور المممممماج

طيفضممممممممة.ط طورلتاقمممممممم طور ق تيمممممممم طوروءاممممممممءيطلمممممممم ريط، ممممممممنط مممممممم ط مممممممماذ ةطذكطي و ة ورارلمممممممم طيةا

ط اّطهممممممءرار ط، ممممممنط مممممماة طورلرقمممممم طولأ، ممممممقطامممممم ب مممممم وط ت بأمممممم ط،مممممم اةطرمممممما عوة ط رممممممأ طيةا

ط ي ممممم أ ط ق ر ممممم طب ر ممممم طور مممممةط يكثمممممتطه مممممأا طب أممممموطه ممممماكط، مممممنط ا ممممم طيكثمممممتطبء رممممم ة

طاّطفأ طهءرالطور ا اذ طب رلات طور اق أءا .ا

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

ط

http://creativecommons.org/licenses/by/4.0/

