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ABSTRACT 

Though substantial advancements have been made in training deep neural networks, one problem remains, the 

vanishing gradient. The very strength of deep neural networks, their depth, is also unfortunately their problem, 

due to the difficulty of thoroughly training the deeper layers due to the vanishing gradient. This paper proposes 

"Phylogenetic Replay Learning", a learning methodology that substantially alleviates the vanishing-gradient 

problem. Unlike the residual learning methods, it does not restrict the structure of the model. Instead, it leverages 

elements from neuroevolution, transfer learning and layer-by-layer training. We demonstrate that this new 

approach is able to produce a better performing model and by calculating Shannon entropy of weights, we show 

that the deeper layers are trained much more thoroughly and contain statistically significantly more information 

than when a model is trained in a traditional brute force manner. 
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1. INTRODUCTION

Nature evolved the nervous system through eons of trial and error, from the first apparition of the 

neuronal cell to the complex brains we possess today. The field of machine learning has made 

tremendous progress during the past decade, predominantly owing to the improvement of CPU 

performance, data accessibility, optimization of deep neural network (DNN) algorithms, but also just as 

significantly due to the improvements in hardware and the use of GPUs. Artificial neural networks are 

called deep when they have more than 3 layers of neurons (though some categorize DNNs as those 

having more than 9 layers) and are capable of being tuned to reach a specific goal through the use of an 

optimization algorithm, mimicking the role of synaptic plasticity in biological learning. This approach 

has led to the emergence of highly efficient algorithms that are capable of learning and solving complex 

problems [1]. Two of the main limitations of such algorithms are: 1. Their topologies are built 

empirically and 2. Due to the depth of deep neural networks, they are affected by the vanishing-gradient 

problem. Though this paper primarily concentrates on solving the 2nd problem (the vanishing-gradient 

problem), we demonstrate its use by applying it to a model that was evolved through neuroevolution. 

We do this because: 

1. In the last few years, substantial advancements have been made in automated model search and

construction. These automated model construction and model search methods are commonly called 

neuroevolutionary methods, due to the use of evolutionary algorithms to search for optimal model 

architectures [2]. These methods have demonstrated a strong ability to produce state-of-the-art models 

demonstrating excellent results in numerous domains [3]-[5] with very surprising results in some cases 

[6]-[7]. Several works exploring the use of evolutionary computation in deep network optimization [8]-

[10] were produced. 

2. Our new proposed method, Phylogenetic Replay Learning (PRL), can be perfectly combined with

both, traditional, but also neuroevolutionary methods to leverage the ability to construct deep and 

complex networks from simple ones. 

It must be noted that the objective of this paper is not to discuss or compare any specific model search 

or neuroevolutionary method, like EANT1/2 [11], CoSYnE [12], DXNN or NEAT, efficiency over other 

methods that have already been addressed [13]-[15], but to explore the use of backpropagation training 

in pre-planned mutations, training layers one at a time as the deep neural network is constructed. With 

all the accomplishments of deep learning, it remains difficult to build models that generalize or adapt 
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efficiently to complex-problem domains and data. One of the bigger difficulties being faced when 

building complex and deep models that converge correctly is the vanishing-gradient problem [16]-[18] 

which is yet to be solved [19]. It is this problem, the vanishing gradient, that the PRL approach is also 

aimed at solving. With the increasing number of layers that are used, the vanishing-gradient problem 

can cause the gradient to become too small for effective weight parameter updating. This is due to certain 

activation functions, like the sigmoid function, which squashes a large input space into a small one 

between 0 and 1. Thus, a large change in the input of the sigmoid function will cause a small change in 

the output and with it the derivative also shrinks. This problem is exacerbated with deeper layering; the 

gradient decreases exponentially as we propagate down to the initial layers. A small gradient means that 

the weights and biases of the initial (deeper) layers will not be trained effectively. Since these initial 

layers are often crucial to recognizing the core elements of the input data, this can lead to overall inability 

of the whole network to learn effectively. This effect can be partially mitigated by using other activation 

functions, such as relu for example. Other ways of combating this problem are specific architectures, 

like the residual neural network [20] which attempts to decrease the effect of this problem by connecting 

deeper layers directly to the output. However, it is not enough and too restrictive. This calls for the 

development of new methods specifically designed to enhance learning capabilities and counter the 

vanishing-gradient effect. A method is needed that will not restrict us to the use of specific neural 

topologies or activation functions. 

The objective of this paper is to compare the performance of training a DNN all at once, versus training 

it one mutation at a time as a pre-planned model is being constructed (PRL training) and demonstrate 

that the latter produces a better outcome, with each layer of such model storing statistically greater 

amount of information. The Phylogenetic Replay Learning (PRL) requires a trace of model's 

complexification, from a simple shallow version to the final complex DNN. When this trace is available, 

it performs re-training of the layers as it adds layer on-top of layer within the trace. This iterative re-

training approach ensures that every layer was at some point the output layer (or close to it) and thus 

was affected by the gradient descent learning algorithm to a greater extent, while the deeper layers were 

"re-tuned" to work effectively in the deeper model. When this approach is combined with 

neuroevolution, the system first evolves the final model from a simple initial seed model while also 

building its trace of mutations (which new layers are added on top of which or which layer is changed 

or get linked to others) and then it re-traces those evolutionary steps (the phylogeny), while re-training 

the model at every evolutionary step, as shown in the Figure 1. In the following sections, we will discuss 

in detail the PRL method. First, we will cover the background of the pertinent domains, neuroevolution 

and the vanishing-gradient problem. We will then provide definitions of the terms used in this paper. In 

the methods section, we provide a detailed PRL algorithm. In the results section, we will present the 

experiments performed and their results. Finally, we will conclude with the analysis and discussion of 

the results achieved. 

2. BACKGROUND 

2.1 The Vanishing-gradient Effect (VGE) 

The most common neural network (NN) optimization algorithm is based on the use of stochastic gradient 

descent. This involves first calculating the prediction error made by the model and then using the error 

to estimate a gradient used to update each weight layer by layer, cascading backwards in the network. 

This error gradient is propagated backward through the network from the output layer to the input layer, 

updating the weights to minimize the difference between the actual NN output and the expected output. 

It is useful to train NNs with many layers. The addition of deeper layers increases its capacity, making 

it capable of learning more complex mapping functions between input and output when a large training 

dataset is provided. A problem with training networks with many layers (e.g. deep neural networks) is 

that the gradient diminishes dramatically as it is propagated backward through the network. The error 

may be so small by the time it reaches layers close to the input of the model that it may have very little 

effect. Thus, this problem is referred to as the “vanishing-gradient” problem. 

2.2 Neuroevolution 

Neuroevolution is a machine-learning technique that applies an evolutionary algorithm to construct 

artificial NNs, taking inspiration from the biological evolutionary process. 
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2.3 Definitions 

Champion: is an NN model (topology and weights) representing the best model that neuroevolution is 

able to produce to solve a problem. 

Direct Deep Learning (DDL): is what we call the standard/default training of a model using 

backpropagation (Adam, QProp, …etc.) to differentiate it from the PRL method. It is a method that is 

applied to the DNN without the use of neuroevolution or PRL. In our experiments, the training algorithm 

used in the framework was set to Adam. The DDL is also known as end-end training 

Hall of Fame (HOF): or HOF for short, is a list our neuroevolutionary system holds of the best 

performing agents/models. In our tests, HOF was set to size 10,  

Initial Model: is the seed model used as the starting point of model search in neuroevolution. 

Mutations: at each step of the evolutionary process, we apply mutation(s) to the topology of the parent 

in order to create an offspring. A topological mutation can add a layer to the model, mutate existing 

layer's parameters, remove a layer, clone an existing layer, add or change a link between two layers or 

swap one layer for another type of layer. 

Phylogenetic Replay Learning (PRL): is a method of training a model for a specific problem using 

pre-recorded mutation path of a seed model topology (system implemented and presented in this paper), 

but doing so one mutation step at a time, following that model's phylogenetic path. In other words, we 

re-train the model after every applied mutation step once we know what the best model is and what 

mutation steps were taken to achieve it from the seed model, usually following the path of model 

complexification from the initial neuroevolution phases. This method is the topic of this paper. 

Selection Process: is the mechanism by which the algorithm selects the best entities according to their 

score (fitness function) and stores them in the “Hall of Fame” (HOF) list.  

2.4 Other Methods to Reduce Vanishing-gradient Effect (VGE) 

Several other approaches can be used to reduce the VGE, but none are perfect. Using PRL does not 

preclude one from leveraging other methods as well. 

 Activation functions, such as relu for example [21].  

 Normalized initialization layers [22]-[23] and intermediate normalization layers [24], which enable 

networks with tens of layers to start learning/converging with stochastic gradient descent (SGD) 

with backpropagation [25]. 

 Specific architectures like the residual neural networks which attempt to decrease the effect of this 

problem by using pass-through links [20].  

 Regularizing deep neural networks by noise injects noise during the training procedure, adding or 

multiplying noise within the hidden units of the NNs [26]. 

 Deep cascade learning method proposes a solution to alleviate the VGE [27] by training deep 

networks in a cascade-like or bottom-up layer-by-layer manner. It reduces the VGE, but was not 

shown to be better than DDL. 

2.5 Metrics 

The metrics we use for model comparison is the test accuracy. Early stopping was applied on the score 

we want to follow and not used for training. Accuracy is used as the metric. To better understand the 

difference in the informational density of the models, we calculated their weights’ Shannon entropy [28] 

Equation 1, Equation 2 after training. 

𝑃𝑖 =
𝑖

∑ (𝑖)𝑛
𝑖=1

                                                                         (1) 

H entropy: 

𝐻 = −∑ 𝑃𝑖ln⁡(𝑃𝑖)
𝑛
𝑖=1                                                                 (2) 

2.6 Dataset 

PRL was tested on the 4 "original" datasets from Keras site: MNIST, Fashion MNIST, CIFAR 10 and 

Tiny Imagenet. CIFAR10 was converted into grayscale with images reshaped to 28*28 pixels, to not 

only match the same shape as those within MNIST, but also to make it much more complex to learn. 
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Tiny Imagenet 200 dataset has been chosen to test the system on a more modern, bigger and more 

difficult to learn dataset. This paper's aim is to compare the PRL method to the standard approach. Thus, 

the goal of this work is to show that on average, this training approach produces better performing 

models, with more densely packed information, than the direct approach, by alleviating the VGE. Thus, 

we believe that for these preliminary results, it is appropriate to use these datasets. 

2.7 Tools 

We selected tools like Keras that provides the training framework and Raise solution from DataValoris 

that provides the evolutionary part of the experiments on top of Keras. They have accelerated our work 

as their engine already provides the unrestricted topological search-based deep-learning neuroevolution. 

The PRL (recording and replay training) was developed by us for the purpose of this work and 

presentation of experiments and their results in this paper. The method could be as easily used with other 

neuroevolutionary systems, like NEAT, EANT1/2, DXNN or GNARL, as long as we record the 

phylogenetic path of mutations that can then be used to replay the mutations and train the model one 

step at a time. Finally, all of our experiments were performed on a server with an Nvidia Tesla v100 

GPU card. Part of this work was granted access to the HPC/AI resources of IDRIS under the allocation 

2021- AD011012674 made by GENCI. 

2.8 Seed Model 

Table 1 shows the simple model used as the seed model. It includes 7850 parameters and 1 hidden layer 

in a sequential architecture. 

Table 1. Initial model test 1. 

Layer Number Type Output Params 

1 InputLayer N, 28, 28, 1 0 

2 Flatten N, 784 0 

3 Dense N, 10 7850 

2.9 Selection Rules 

During the building of the phylogenetic path, the neuroevolutionary process uses selection based on the 

score generated by the learning algorithm. The score used as a fitness is the test accuracy of the model. 

We have set the system such that the learning rate is decreased when the score does not improve for 3 

consecutive evaluations. Every generation 10 NNs are trained, then their scores are compared to the 

NNs in HOF. If a score of an offspring/mutant model within the current generation is higher than that 

of a model within the HOF that has the same topology, the mutant model replaces the model within the 

HOF. If the mutant model has the highest score and has a topology not present within the HOF, the 

model with the lowest fitness within the HOF is removed and the new model is added in its spot. 

3. METHODS 

PRL is a method to train models using genetically planned mutations over time. It alleviates the 

vanishing gradient effect through its complete training. The system allows the classical gradient descent 

method to train each layer, even the very deep ones, more than the traditional learning approach. It does 

this by retraining each of those layers as the model is being evolved and new layers are added. Each new 

layer added has the chance of being trained as if it were the first or second layer in the backprop cascade. 

Frameworks used in this study were the official TensorFlow and plaidML. Datasets have not been 

augmented during tests. The algorithms were developed in Python. To use the PRL algorithm the 

experiments have been cut into two phases 

3.1 Phase 1: Generating the Champion's Mutation Path through Neuroevolution 

PRL requires the existence of the phylogenetic path of the model we need to train. The first phase is 

meant to build the Champion model while recording its phylogenetic path (mutations that were applied 

sequentially to generate it). Neuroevolution is used to accomplish (             Figure 1) this.  

Neuroevolution generates a phylogenetic path (                     Figure 2) of the best performing model 

topology aka "champion". In this figure, the champion has 3 ancestors. The figure also shows which 
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topological mutations were applied to get from one model to the next. The neural architecture used is 

built by the evolutionary process (could be CNN, Dense layers, Resnet like structure…etc.).  

 
             Figure 1. Selection mechanism sample.                      Figure 2. Phylogenetic path of champion. 

3.2 Phase 2: Model Generation with the PRL 

Now that we have a phylogenetic path that leads to the champion model, we can replay the path from 

the seed model to champion model (Figure 3). 

 
Figure 3. The phylogenetic learning path from initial model to the final one. 

When replaying the phylogenetic path, we have to: 1. Generate the seed model with a new set of random 

synaptic weights and 2. Generate random weights when adding new layers during mutations. This then 

creates the final model with the same topology as the champion model, but with its own set of 

parameters. This is a way to statistically include in testing the impact of the initial random weights. 

This study was composed of the following steps: 

 Phylogenetic path recording: First, an initial simple seed model is trained on a dataset. Using 

the neuroevolutionary approach, over multiple generations a more complex and better 

performing NN architecture is evolved and the evolutionary steps leading from the seed NN to 

the final architecture are recorded in its mutation trace list. The final architecture is what we call 

the champion model. 

 PRL training evaluation: Having the trace from the initial seed model to the champion, the seed 

model is re-trained using the PRL method X# of times. Using the PRL method, after the 

application of each mutation in the mutation trace, the system is retrained. This is done for every 

mutation step, from seed to champion, without resetting the weights between each 

mutation/training step (in some sense, similarly to transfer learning). This provided the average 

performance (average of X # of times) of the same champion topology, but trained using the 

PRL method. 

 Champion model DDL retraining: The champion model was re-initialized with random weights 

and trained on the dataset X# of times using the standard learning approach. This was done to 

calculate the average performance of the model trained in the standard manner (to which we 

refer in this paper as "directly applied deep learning" or DDL), with different initial synaptic 

weights. The early stop patience and epoch number were set to 9 and 60 to avoid a bias where 

the DDL might not have enough time to train very deep networks. 

 Reproducibility testing: In order to confirm the results and test the reproducibility of the method, 

we did the experiment more than once and on different frameworks. Another champion was 
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created and PRL again applied using a new seed model, another framework as well as applying 

it to the more complex Tiny ImageNet dataset. 

 Transferability testing: We were also interested in whether the generated model was 

generalizable to other problems from the same domain and the difference between DDL and 

PRL-based methods when it comes to transferability. To evaluate the transferability of the 

Model using the PRL process, we also tested the same champion on other datasets, by retraining 

it using DDL and PRL methods.  

 Data-storage efficiency testing: We calculated the efficiency of information storage in complex 

models trained through PRL and compared the results to those trained with DDL. 

4. RESULTS OF EXPERIMENT 1 

In this section, we will first generate a champion and then store its phylogenetic path. Then, we will 

replay the recorded mutation path with the resulting statistics and compare them to the DDL results. 

4.1 Phase 1: Champion 1 Generation 

The experiment was setup as follows: 

 When using the neuroevolutionary method, a seed population of 20 random minimalistic models 

is generated. 

 20 agents are generated during every cycle (by way of mutation) from the best agents within the 

HOF (with a HOF max size of 10), where the probability of using any one agent as the parent 

of the mutant offspring being proportional to its relative fitness (accuracy) as compared to other 

HOF agents. 

 This experiment used the MNIST dataset. 

 The evolutionary engine applied 1-2 (randomly chosen) mutations to create a mutant offspring 

model from the parent.  

The deep-learning parameters used were as follows: 20 epochs with early stopping based on a patience 

of 3, where patience is based on the test loss metric.  

Point of attention: In this work, we refer to the "number of parents since origin" as the agents’ generation 

number. In classic genetic algorithms, the generation is what in this study we call "cycles", therefore an 

agent of generation 3 and cycle 8 means that it appeared on the 8th iteration and has 3 ancestors (it could 

have appeared at minimum between cycles 3 to 8). 

From the list of champions generated using the neuroevolutionary method during phase 1, we chose the 

best one, as shown in Table 2. 

Table 2. Champion 1 results’ information (MNIST). 

Score Cycle Generation Parameters Nodes Layers 

0.9944 96 19 409158 25 13 

The chosen champion has 409158 parameters spread between 25 nodes that are 13 layers deep. It has 

been generated on the 96th cycle and is generation 19 (it has 19 ancestors). Its score 99.44% is close to 

state-of-the-art on non-augmented MNIST dataset. The mutations recorded at each step that lead to the 

final champion topology are displayed in Table 3. At every evolutionary step, 1-2 mutation(s) were 

applied. The number of mutations applied at each step is limited to a maximum of 2 in order to generate 

a complex model with small changes between each step, which allows PRL to work on smaller parts 

during each mutation. 

Table 3 presents a base of comparison; it shows PRL scores of the champion NN at each step of its 

evolutionary path. Those scores have been used as the selection criteria for HOF entrance of the 

offsprings during the evolutionary process. This first result shows that the model has increased in size. 

This is a classic behavior of an evolutionary algorithm if no size restrictions are used during model 

generation and mutation. We also see that the Shannon entropy decreases from generation to generation, 

from 8.98 to 8.90 (excluded initial model of 12.51).  

We can interpret this reduction as the increase in organization and amount of useful information stored 
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by the model's weights. We move from an almost random set of weights to a set of weights that store 

useful information, a more organized distribution. 

Table 3. Phylogenetic path and scores of the chosen champion. 

STEP SIZE SCORE SHANNON STEP SIZE SHANNON SCORE  

0 7850 8.79 12.5151 10 264970 8.92824 99.3  
1 94906 97.51 8.98112 11 269130 8.92447 99.27  

2 27082 98.43 8.97188 12 300874 8.92426 99.28  
3 58538 98.96 8.98559 13 300874 8.91894 99.33  

4 90346 99.03 8.98102 14 304970 8.91918 99.34  
5 90282 99.03 8.96616 15 304970 8.91798 99.34  

6 183818 99.23 8.95914 16 304970 8.91156 99.35  

7 183818 99.19 8.9567 17 304970 8.90396 99.36  
8 258570 99.24 8.94914 18 405486 8.90111 99.41  

9 264330 99.29 8.9393 19 409158 8.90037 99.44  

4.2 Phase 2: DDL versus PRL Statistics 

During phase 2, we gather the result metrics of the two different learning approaches to evaluate the 

impact of using PRL as compared to DDL. 

4.2.1 DDL of Champion 1 

To evaluate the learning capacity of the model, we conducted 50 runs using the standard learning method 

applied directly to the final champion model. The initial weights in each experiment were randomly 

generated. This number of runs allows us to calculate a statistically relevant standard deviation. In 

theory, the DDL of the champion model could have the same performance as the original champion (and 

potentially higher), but the probability that these 409158 random parameters reach an optimum is very 

low. The more complex and deeper the model, the greater the effect PRL method is expected to produce 

by countering the vanishing-gradient effect (VGE). To perform these experiments and to maximize the 

probability of reaching a good local minimum, 60 epochs per run were used, with patience set to 6. 

During our experiments, a maximum of 53 epochs were used before early stoppage occurred. An average 

of 45 epochs out of 60 were used before early stoppage was triggered. During phase 1 of the PRL 

method, the champion achieved an accuracy of 99.44%. Its Shannon entropy is 8.90037. The best 

score/accuracy achieved using DDL of the champion model was 99.05%, with a statistically significant 

difference (Table 4). We suspect that the VGE is the root cause of this result. Furthermore, we can also 

see that Shannon entropy of the best performing model trained using the standard approach (9.1227) is 

also higher than the entropy of the champion model produced during phase 1 of the PRL method. 

Table 4. Applying DDL to the champion model (MNIST). 

We see that the application of DDL to the model is also less efficient than that produced through phase 

1 of the PRL method. 

4.2.2 Phylogenetic Replay Learning 

From initial model, the mutations are applied based on the phylogenetic path of the champion model. 

The weights are randomly generated for the new mutated layers as well as seed model. We reran the 

PRL experiment 50 times to gather data on which to base our averages. Weights were not reset between 

mutations (which can be considered as transfer learning). Table 5 shows the results of the 50 PRL 

experiments. 

The best score reached was 99.40% with an average of 99.26%. This score is very close to that of the 

original champion model, which reached 99.44%. Thus, there is substantial consistency. Table 6 shows 

statistical information of the DDL and PRL experiments. 

  SCORE SHANNON  

 BEST 99.05 9.1227  

 MEAN 98.93 9.1615  

 Standard Deviation 0.067 0.0168  
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Table 5. PRL of the champion model (MNIST). 

Step Mean 

Score 

Std. 

Deviation 

Best 

Score 

Shannon Step Mean 

Score 

Std. 

Deviation 

Best 

Score 

Shannon 

0 92.14 0.0771 92.33 12.5163 10 99.16 0.0647 99.32 8.8497 

1 97.68 0.2711 98.11 8.9256 11 99.17 0.0700 99.35 8.8454 

2 98.35 0.0925 98.58 8.9015 12 99.18 0.0563 99.31 8.8437 

3 98.88 0.0841 99.02 8.9079 13 99.19 0.0641 99.34 8.8415 

4 99.01 0.0676 99.16 8.8960 14 99.19 0.0626 99.34 8.8396 

5 99.05 0.0634 99.13 8.8802 15 99.19 0.0618 99.31 8.8373 

6 99.12 0.0553 99.23 8.8749 16 99.24 0.0606 99.36 8.8262 

7 99.11 0.0541 99.22 8.8702 17 99.24 0.0521 99.37 8.8208 

8 99.14 0.0515 99.27 8.8628 18 99.24 0.0542 99.35 8.8185 

9 99.14 0.0660 99.26 8.8547 19 99.26 0.0628 99.40 8.8147 

Table 6. Statistics of experiments. 

 DDL PRL    

Mean Score 98.93% 99.26%  POOLED VARIANCE 4.2E-07 

VARIANCE 4.5E-07 3.9E-07  T STAT -25.13668 

OBSERVATIONS 50 50    
      

 The scores are lower than those produced by the champion itself (which followed the optimal path). 

This is probably due to the randomly generated weights during each step. But, we can also see that 

the standard deviation of the experiments is low, thus there is performance consistency in the results 

produced by PRL. 

 The score produced by PRL is better than that produced by DDL. With an average maximum of 

99.26% compared to 98.93% of DDL, the difference is statistically significant (p < 0.001 - Table 6) 

and the distribution is well separated (Figure 4). Similarly, comparing both maximums of 99.40% 

(PRL) to 99.05% (DDL), we see a statistically significant difference. Giving DDL more time to 

train (60 epochs) does not improve its performance (early stop almost always occurs before the 

epoch number). 

 The standard deviation of PRL is lower (better) than that of DDL (Table 6). We believe that this 

confirms that PRL is a more robust approach and more resilient to random weight initialization. 

 During the PRL, the Shannon value consistently decreased at every step (Table 5) of the process. 

This can be seen as an increasing organization/informational density of the model while the model's 

complexity increases at each step. 

 The Shannon entropy of the PRL-based model is lower (better) than that of the DDL-based model; 

8.81 versus 9.16. 

The last two results reinforce the hypothesis that PRL alleviates the VGE. Though more tests must be 

conducted to further analyze the approach, this preliminary work shows a promising path. Table 7 shows 

that when using DDL, the Shannon entropy of the last layers in the model is lower than that of those in 

the PRL-trained model (bold values for lowest entropy in Table 7). Calculated entropy for each layer of 

champion 1 are displayed for comparison. 

Table 7. Comparison of Shannon entropy between layers. 

LAYER #  TYPE DDL PRL Ref. Champion 

2 CONV2D 9.162 8.815  

3 SEPCNV2D 8.372 8.234 8.235 

4 CONV2D 15.159 15.138 15.142 

5 DENSE 14.776 14.727 14.715 

6 DENSE 11.683 11.687 11.691 

7 CONV2D 14.155 14.081 14.054 

8 CONV2D 14.186 14.077 14.068 

9 DENSE 12.104 12.101 12.095 

10 DENSE 11.684 11.688 11.689 
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11 DENSE 17.405 17.512 17.517 

12 DENSE 11.689 11.711 11.713 

13 DENSE 12.466 12.588 12.582 

This hints that the standard training (DDL) is primarily affecting the last layers within the model due to 

the VGE. The DDL model stores its information in those layers more densely, while in PRL, the weight 

adjustment and information storage are more evenly distributed. The total Shannon entropy is lower in 

PRL than in DDL. 

Table 8. DDL vs. PRL comparison at every evolutionary/complexification step. 

STEP DDL Max. score PRL Mean score STEP DDL Max. score PRL Mean score 

0 92.140 92.144 10 98.760 99.161 

1 98.160 97.679 11 98.870 99.173 

2 98.130 98.347 12 98.870 99.179 

3 98.470 98.879 13 98.760 99.193 

4 98.430 99.007 14 98.860 99.186 

5 98.420 99.048 15 98.750 99.192 

6 98.560 99.115 16 98.860 99.239 

7 98.780 99.105 17 98.860 99.239 

8 98.770 99.135 18 98.820 99.243 

9 98.940 99.138 19 98.790 99.258 

Table 8 shows that if at each step we train the same model (resetting its weights first) using DDL, it 

both achieves lower final accuracy (performs worse) and based on its Shannon entropy score, stores 

less information. The performance differences between DDL and PRL trained models increases as 

they become more complex and grow deeper. The Figure 4. DDL and PRL score distribution on                   

Figure 5. Visual graph of experiment 1 shows a visual graph of the results.  

3 experimental results are displayed:  

 Evolution score and Shannon retrieved during phase 1 of champion 1 creation.  

 Mean DDL score and Shannon at each evolutionary step of champion 1 history.  

 Mean PRL score and Shannon of the champion model growth by mutation step.  

Figure 4. DDL and PRL score distribution on                   Figure 5. Visual graph of experiment 1 

                   the MNIST dataset.                                                          results (MNIST). 

Plain lines represent the score, dotted lines represent Shannon entropy and for comparison, the PRL best 

score is shown as a dashed line. We see that the Shannon score at each step when using DDL of the 

current step topology is higher (worse) than that of the PRL-based model. Generalization tests (later in 

this paper) shows that this behavior is reproducible. Further tests must be conducted to conclude whether 

this behavior applies to any other complex models if we were to build a phylogenetic path and apply the 

PRL method. Alternatively, perhaps an artificial PRL approach could be used, where any deep model is 

re-built up one layer at a time and retrained at every step using either an artificially created output layer 

(of the correct output layer length) until the last layer [29] or by re-attaching the last layer to each 

consecutive layer and then re-training the model. These artificial approaches of building a path are 

limited to simple and mostly sequential topologies. Such limitations are not present when it comes to 

neuroevolution based path building. 
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5. DISCUSSION 

5.1 Reproducibility 

This sub-section attempts to answer the following questions: 1/Are these results reproducible with 

another complex model? 2/ What is the condition of reproducibility? If that condition is the model's 

complexity, how is such complexity defined? 

5.1.1 Reproducibility of PRL Results 

To answer the questions, we redo the whole experiment again. For the purpose of reproducibility, we 

now use another framework, PlaidML and another seed model to generate a new champion. For control, 

we used the same dataset, the same DDL rules and the same PRL method. The initial model test 2 (Table 

9) used in this experiment is narrower, but deeper, as compared to the one in the previous experiment. 

Table 9. Initial model test 2. 

Layer # Type Output Params 

1 InputLayer N, 28, 28, 1 0 

2 Conv2D N, 27, 27, 6 30 

3 MaxPooling2D N, 9, 9, 6 0 

4 Flatten N, 486 0 

5 Dense N, 10 4870 

Table 10 shows the metrics of champion 2 generated from the initial model test 2 (Table 9) during 

neuroevolution phase 1 of the method. 

Table 10. Champion 2 results (MNIST). 

Score Cycle Generation Parameters Nodes Layers 

0.9943 144 28 226 592 39 14 

Champion 2 topology generated is smaller, but with a more complex structure, than champion 1 

generated in the first experiment. Champion 2 has been generated with 28 evolutionary steps. 

Furthermore, champion 2 is much harder to train than "initial model 2". Champion 2 epoch time is 15 

times that of "initial model 2". Applying DDL to champion 2 gives the following results (MNIST): 

DDL average score:   98.90% +/- 0.001 (n=16)  

DDL maximum score: 99.08%. 

In comparison to the baseline result of the generated champion 2 using neuroevolution, the score we get 

using DDL with champion 2 topology is lower 99.08% at max. versus 99.43% (Table 10). In Table 11, 

we see that PRL is still more efficient than the DDL approach. The original score of the champion is on 

average better, which is consistent with our earlier experiments. 

Table 11. Results of PRL, DDL applied to champion model 2 (MNIST). 

STEP STD.  

DEV. 

PRL Av.  

SCORE 

DDL Av. 

SCORE 

CHAMP. 2 

 SCORE 

STEP STD.  

DEV. 

PRL Av  

SCORE 

DDL Av. 

SCORE 

CHAMP. 2 

 SCORE 

0 0.72% 94.31% 96.37% 94.60%      

1 0.59% 95.81% 96.09% 95.96% 15 0.05% 99.11% 98.71% 99.14% 

2 0.48% 96.48% 97.38% 95.35% 16 0.07% 99.11% 98.96% 99.18% 

3 0.26% 97.78% 97.33% 97.72% 17 0.05% 99.15% 98.96% 99.09% 

4 0.12% 98.28% 98.46% 98.35% 18 0.06% 99.19% 98.84% 99.15% 

5 0.13% 98.54% 98.47% 98.34% 19 0.05% 99.17% 98.98% 99.20% 

6 0.09% 98.73% 98.59% 98.71% 20 0.06% 99.18% 98.93% 99.24% 

7 0.11% 98.50% 98.75% 98.40% 21 0.06% 99.18% 98.97% 99.31% 

8 0.11% 98.56% 98.63% 98.60% 22 0.04% 99.14% 98.91% 99.31% 

9 0.20% 98.51% 98.69% 98.73% 23 0.06% 99.14% 98.90% 99.24% 

10 0.11% 98.73% 98.80% 98.84% 24 0.07% 99.14% 99.02% 99.32% 

11 0.22% 98.67% 98.87% 98.84% 25 0.07% 99.18% 98.86% 99.33% 
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12 0.11% 98.91% 98.71% 98.99% 26 0.08% 99.13% 98.97% 99.37% 

13 0.11% 98.98% 98.86% 99.04% 27 0.06% 99.18% 98.92% 99.35% 

14 0.06% 99.01% 98.92% 99.07% 28 0.06% 99.19% 98.90% 99.43% 

The important result of that experiment is that the initial steps with simpler topology where the VGE is 

not important had higher scores when using DDL than when using PRL. From step 12 onward, the 

accuracy/performance achieved by PRL is higher, even though the model was more complex. 

5.1.2 Complexity of Model Criteria 

When referring to model complexity, we assume that the model has a lot of branches, is deep and is 

non-sequential. We believe that the more complex (in terms of topology) a model is, the more beneficial 

it would be to train it using PRL. Thus, in order to further explore these assumptions, we conducted 

another experiment where we changed the neuroevolutionary phase 1 selection rules.  

In this third experiment, we added a rule to the selection process to put more weight on selecting those 

models which trained the quickest (model training speed was weighted into the final fitness score). With 

this approach, a model with the same accuracy as another, but with a shorter learning speed (aka epoch 

time), is selected to enter the HOF. This selection pressure resulted in our system generating champions 

that are quick to train and less complex, therefore less sensible to vanishing-gradient effect. 

Champion 3 generated (MNIST):  

Score: 99.40%  Shannon: 8.4799 

DDL average results for champion 3 model: | PRL average results for champion 3 model:  

Score: 99.37%  Shannon: 8.4150 | Score: 99.33%  Shannon: 8.3535 

In this experiment, Shannon value is still lower when using PRL as compared to DDL. But, the 

difference in the results of this experiment are less drastic.  

The PRL complexity definition is therefore not only the topological complexity (total parameters, total 

nodes and node links), but is also linked to the learning efficiency (amount of time it takes to learn) of 

the model. The more difficult it is for the model to learn a dataset, the more complex its structure needs 

to be and the more effect PRL method will have on its training. 

5.1.3 Experiment with a Larger Dataset (TinyImageNet) 

In this fourth experiment, we used the TinyImageNet dataset with 200 classes and relatively small 

number of training samples (more difficult to learn) and for reproducibility, no data augmentation. 50 

tests were run using DDL and PRL. 

Champion 4 generated (TinyImageNet):  

19,771,676 parameters, 65 nodes, 30 layers, 44 generations  

Score: 42.87%  Shannon: 9.3795 

DDL average results for champion 3 model: | PRL average results for champion 3 model:  

Score : 38.37%  Shannon : 9.3833 | Score : 41.79% Shannon : 9.3611 

PRL training again produces a better result than DDL.  

It should be noted that no data augmentation or extra pre-processing was applied to the dataset. Data 

augmentation is a common approach with this dataset due to the few samples it contains for each class. 

Given that our goal is to compare "apples to apples" and find the relative performance of one method 

compared to another, we applied both PRL and DDL to the original pure TinyImageNet dataset. 

5.2 Transferability 

In this sub-section, we try to answer the following two questions: 1. Can we use PRL to retrain the 

model from previous experiments on new datasets from the same problem domain? and 2. Can PRL 

allow a model to generalize from one dataset to another in the same problem domain better than DDL? 

In order to answer these questions, we applied PRL to seed and phylogenetic path of champion 1 again, 

but trained it on a different dataset. The purpose of this experiment is to evaluate whether a model with 

its recorded evolutionary path from one dataset can be applied on another, but related, dataset. 
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5.2.1 Experiment 5: FASHION MNIST Dataset Champion 1 

The two learning methods are re-applied to the FASHION MNIST dataset. This dataset has the same 

input and output shape as the standard MNIST. In this dataset, the classification is done on various 

fashion objects (dresses, shoes, …ext.) rather than digits. This dataset is found to be more complex than 

the standard MNIST.  

DDL mean score for champion 1 - FashionM | PRL mean score for champion 1 - FashionM  

Score: 90.44%  Shannon: 9.0238 | Score: 91.98%  Shannon: 8.4813 

This experiment shows that we can re-apply PRL to an existing model and re-train it on a related, but 

different, dataset. PRL provides a better result than DDL. For comparison, the SOTA convolutional NN 

applied to the FASHION MNIST is 91.4% without data augmentation [30]. Our 91.98% is a competitive 

result that outperforms the SOTA, even though the model trained by PRL was not evolved for that 

specific dataset. This is an interesting result. One potential implication of this result is that PRL might 

allow us to more easily re-train existing model architectures on new, but related, problem domains for 

which they were not originally designed and still achieve very high performance. 

Table 12. Shannon layer comparison for FASHION MNIST. 

LAYER TYPE DDL PRL 

2 CONV2D 9.0238 8.4813 
3 SEPCNV2D 8.307 8.0439 

4 CONV2D 15.1492 15.1338 
5 DENSE 14.7804 14.7331 

6 DENSE 11.6941 11.6841 

7 CONV2D 14.1506 13.9888 
8 CONV2D 14.1568 13.9923 

9 DENSE 12.1115 12.1017 
10 DENSE 11.6922 11.6905 

11 DENSE 17.3703 17.4783 

12 DENSE 11.6984 11.71 
13 DENSE 12.3777 12.5757 

Table 12 shows again that PRL is better able to alleviate the VGE. The first layers have better Shannon 

entropy values when a model is trained through PRL and the last layers have better entropy values when 

DDL is used to train the model. 

5.2.2 Experiment 6: CIFAR10 Gray 

In this experiment, we train the model on the CIFAR10 dataset converted into grayscale (C10G). For 

this experiment, we also scaled it to the 28*28*1 resolution, then gray-scaled it, so that we can use the 

same model again and test its transferability. This downgraded dataset is much more difficult to train 

than the MNIST. 

DDL mean results for champion 1 - C10G: | PRL mean results for champion 1 - C10G  

Score: 54.40  Shannon: 9.1690 | Score: 65.01  Shannon: 8.9345 

These results again show the PRL's ability to generalize and retrain an existing model on a new, but 

related, dataset (with the same shape). In our experiments, PRL is consistently producing better results 

than DDL, both in terms of accuracy and information density (Shannon entropy values). 

5.3 Learning Time 

While neuroevolution algorithms are known to need more time to achieve good results (though still 

significantly less when compared to the time needed by experts to design similar problem specific 

topologies manually), the PRL adds an alternative to the DDL methods. 

Overall, the PRL process requires more steps (19 steps*20 epochs at most in experiment 1), but the 

Epochs' durations are shorter during the early steps (3 to 15 times less). DDL required at most 60 epochs.  

Further experiments should be conducted to optimize learning time. We believe that methods like layer-

freezing and optimizing the number of epochs will help in this. We conducted preliminary PRL tests 
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with 4 epochs for half the steps followed by an increase in number of epochs until the last step, where 

the results were still superior as compared to DDL, while decreasing the needed time. 

DDL learning time: 60 epoch*x (x = champion epoch duration in seconds) =   60.0x 

PRL in 1st experiment: (20 epoch*19 step)*(x/3) = 126.6x 

PRL in 1st experiment with step epoch number optimized: 

(4 epoch*10 step+12 epoch*9 step)*(x/3) =   49.3x 

PRL takes more time than DDL, but with a simple optimization, the runtime could be reduced below 

the DDL time. 

6. CONCLUSION

Based on our experiments and results, PRL has consistently outperformed DDL, primarily by alleviating 

the VGE problem. We believe that this is the way in which it functions due to the Shannon entropy 

values calculated for each layer. These values are lower in deeper layers in the models trained by PRL 

than those trained by DDL. Furthermore, PRL is more resilient to random-weight initialization as 

compared to DDL. We re-ran the PRL experiment on the same seed model and with the same 

phylogenetic path, but with each seed model having randomly generated initial synaptic weights. We 

found that the performances of the evolved champion models were all very similar and more consistent 

than when randomly initializing a full model and training it with DDL. Our experiments on 

transferability also show that the method is effective in retraining models on related datasets. This 

potentially opens the door to further research into the method's use in transfer learning, where a model 

with its phylogenetic path can be effectively retrained on another dataset or an updated version of the 

same dataset. We believe that further research is needed into this domain. The combination of 

neuroevolution, where model/architecture evolution is synergized with training, will yield better 

performing systems, as compared to systems where the model is trained all at once (DDL). We think 

that this method might be particularly effective in training very deep and very complex models, where 

DDL might struggle. Our future work will concentrate on further expanding and exploring this method. 
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 ملخص البحث:

طي اممممم ط ر ممممما طور ممممم ا ط رغمممممّطور المممممارطورطرأمممممتطورمممممبكطتمممممتيط، مممممنطهمممممءرالطور،مممممرط  طور  مممممرأ  ط  ا

ط قلمممممم طورقممممممايطفممممممةطور،ممممممرط  طور  ممممممرأ طور  أقمممممم ط ه،ممممممطةط ،ممممممط   ط هممممممةطط- هممممممةط، ق مممممم طط–فممممممطةا

قطر لارق  طولأ، ق.ط طهض ؤلطور أْة؛ط ذركطر  اب طور اءرالطور   َّ

رطور مممممما،ة" ط هممممممةطهق ممممممتاطهممممممبقطورارلمممممم طتتاقمممممم ط"ه   ممممممّطو ،مممممم  يط ور ط  مممممملطتممممممالطور المممممماا

طتمممماهتكط، ممممنط ،ممممط  طهضمممم ؤلطور أْممممة.ط ، ممممنطور طمممم ط مممم طتممممت ط تتاقمممم طه   ممممّطه ل امممملطب،ممممطةة

كط طورلتاقمممم طور ق تيمممم ط طهجقأابممممءطبب أمممم طور ا مممماذ .ط بممممء  ط مممم طذرممممك طف ممممةطهقمممماا طبمممم رراولة طفممممطةا ورمممم   ّ 

رطور  ممممممرة ط ه   ممممممّطور اقممممممة ط ور اممممممءرالطتر   رممممممأ طفممممممةطهممممممبقططقمممممم  طترقمممممم  .،  صممممممتط مممممم طور المممممماج

طيفضممممممممة.ط طورلتاقمممممممم طور ق تيمممممممم طوروءاممممممممءيطلمممممممم  ريط، ممممممممنط   مممممممم  ط  مممممممماذ ةطذكطي و ة ورارلمممممممم طيةا

ط اّطهممممممءرار  ط، ممممممنط  مممممماة طورلرقمممممم  طولأ، ممممممقطامممممم   ب  مممممم وط   ت بأمممممم ط،مممممم  اةطرمممممما عوة ط رممممممأ طيةا

ط ي ممممم  أ ط ق ر ممممم  طب ر ممممم   طور مممممةط يكثمممممتطه  مممممأا طب أممممموطه  ممممماكط، مممممنط   ا ممممم  طيكثمممممتطبء رممممم ة

طاّطفأ  طهءرالطور ا اذ طب رلات طور اق أءا .ا 
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