
345
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

E. Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray are with the Department of Computer Engineering and Information Technology,

University of Qom, Alghadir Ave., Qom, Iran. Emails: edarbanian@gmail.com, d.rahbari@stu.qom.ac.ir,

ghanizadehroghayeh1@gmail.com and m.nickray@qom.ac.ir

IMPROVING RESPONSE TIME OF TASK

OFFLOADING BY RANDOM FOREST, EXTRA-TREES

AND ADABOOST CLASSIFIERS IN MOBILE FOG

COMPUTING

Elham Darbanian, Dadmehr Rahbari, Roghayeh Ghanizadeh and Mohsen

Nickray

(Received: 27-May-2020, Revised: 7-Aug.-2020, Accepted: 26-Aug.-2020)

ABSTRACT

The application of computing resources through mobile devices (MDs) is called Mobile Computing; between

cloud datacentres and devices, it is known as (Mobile) Fog Computing (MFC). We ran Cloudsim simulator to

offload tasks in suitable Fog Devices (FDs), cloud or mobile. We stored the outputs of the simulator as a dataset

with features and a target class. A target class is a device in which tasks are offloaded and features of tasks are

authentication, confidentiality, integrity, availability, capacity, speed and cost. Decision Tree (DT), Random

Forest (RF), Extra-trees and AdaBoost classifiers were classified based on attribute values and the plot of trees

was drawn. According to the plot of these classifiers, we extracted each sequential condition from root to leaves

and inserted it into the simulator. What these classifiers do is to improve the conditions that should be inserted

in the corresponding section of the simulator. We improved the response time of offloading by Random Forest,

Extra-trees and AdaBoost over Decision Tree.

KEYWORDS

Fog computing, Decision tree classifier, Random forest classifier, Extra-trees classifier, AdaBoost classifier,

Offloading, Machine learning.

1. INTRODUCTION

The application of computing resources through mobile devices (MDs) is called Mobile Computing.

The Mobile Computing environment includes four properties of mobility; diversity of network access

types, frequent network disconnection, poor reliability and poor security [1]. Between cloud

datacentres and Internet of Things (IoT) devices is (Mobile) Fog Computing nods. MFC acts as an

intermediate layer between IoT devices/sensors and cloud datacentres. So, it is closer to the IoT

devices to handle real-time services and latency-sensitive services and provide better Quality of

Service (QoS). Routers, switches, set top boxes, proxy servers, Base Stations (BS), …etc. are in the

Fog Computing environment. They can support application execution [2].

Mobile Edge Computing provides services and computing capabilities at the edge of the mobile

network and can optimize existing mobile infrastructure services. MEC servers are deployed at

multiple locations at the edge of the mobile network to implement the MEC environment [3]. Mobile

Cloud Computing extends the computing capabilities to constrained resource mobile devices and

benefits from a combination of different technologies (e.g. service-oriented computing, virtualization

and grid computing). Mobile devices, communication technology and cloud servers are three main

portions of it. Storage, processing, computing and security mechanism for mobile devices are provided

by a cloud server through communication technologies [4]. In Table 1, the differences between the

three methods including Mobile Cloud Computing, (Mobile) Edge Computing and (Mobile) Fog

Computing were presented [5].

Decision Tree can be defined as a non-parametric supervised learning method. It is trained on labeled

data to classify it and an acyclic directed graph is built using top-down recursive partitioning of the

dataset [6]. In this paper, the dataset has some features and labels that specify the target class. Decision

Tree predicts the value of a target inferred from the data features. Iterative Dichotomiser 3 (ID3),

mailto:edarbanian@gmail.com

346

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

C4.5, C5.0 and Classification and Regression Trees (CARTs) are various Decision Tree algorithms.

We use the Decision Tree classifier code in scikit-learn website which uses an optimized version of

the CART algorithm [7].

Table 1. The difference between the three methods Mobile Cloud Computing, (Mobile) Edge

Computing and (Mobile) Fog Computing.

R
ic

h
 i

n
 c

o
m

p
u

ti
n

g
 a

n
d

/o
r

st
o

ra
g

e
re

so
u

rc
es

R
ic

h
 i

n
 e

n
er

g
y

 a
n
d

/o
r

p
o
w

er

re
so

u
rc

es

C
o

m
p

u
ta

ti
o

n
 i

s
m

ai
n

ly
 a

t
th

e

n
et

w
o

rk
 e

d
g

e

D
at

a
st

o
ra

g
e

is
 m

ai
n

ly
 a

t
th

e

n
et

w
o

rk
 e

d
g

e

In
te

ra
ct

io
n
 w

it
h

 r
em

o
te

in
fr

as
tr

u
ct

u
re

 (
cl

o
u

d
)

C
o

n
te

x
t

(l
o

ca
ti

o
n

,
ac

ti
v

it
y

,

…
et

c.
)

aw
ar

en
es

s

S
u

p
p

o
rt

in
g
 r

ea
l-

ti
m

e
co

n
tr

o
l

an
d

 i
n

te
ra

ct
iv

e
se

rv
ic

es

S
u

p
p

o
rt

 t
h

ro
u
g

h
p

u
t

ap
p

li
ca

ti
o

n
s

A
u

g
m

en
ti

n
g

 c
lo

u
d

 d
at

a

ce
n

tr
e

se
rv

ic
es

A
u

g
m

en
ti

n
g
 m

o
b

il
e

d
ev

ic
e

p
er

fo
rm

an
ce

Mobile

Cloud

Computing

yes yes no yes yes no yes no no yes

(Mobile)

Edge

Computing

yes no yes yes no yes yes no yes yes

(Mobile)

Fog

Computing

yes yes yes yes no yes yes no yes yes

Random Forest fits 100 Decision Tree classifiers by default on the dataset’s different sub-samples and

improves the predictive accuracy using averaging [8]. We used the Random Forest classifier code in

the scikit-learn website. It is applied to the dataset and trees are constructed while the resultant

individuals are combined to predict the class label. The word random is for two reasons: first, random

sampling for drawing samples and second, selecting attributes or features for generating Decision

Trees randomly. AdaBoost and Bootstrapping techniques are used in Random Forest to construct

multiple classifiers [9].

An Extra-trees classifier fits some randomized Decision Trees on various sub-samples of the dataset,

improves the predictive accuracy and controls over-fitting implementing a meta-estimator and

averaging, respectively. It is similar to the Random Forest [10].

Another classifier is AdaBoost. It is a meta-estimator that begins by fitting a classifier on the original

dataset. Then, additional copies of the classifier are fitted on the same dataset. However, the weights

of wrong classified instances are adjusted such that subsequent classifiers focus more on difficult cases

[11]. Boosting methods train predictors consecutively and try to improve their predecessors. AdaBoost

is similar to Random Forest at a high level, because it collects the predictions made by each Decision

Tree within the forest. Some differences between them are in AdaBoost; the Decision Trees have a

depth of 1 and the final prediction made by the model is impacted by the predictions made by each

Decision Tree [12]. All these classifiers are popular tools in machine learning.

Key contributions of our paper are:

1- Each FD has its features and parameters based on its internal structure on which the best FD is

chosen for the module placement. The parameters that were used in this paper are authentication,

confidentiality, integrity, availability, capacity, speed and cost. In this paper, we had four FDs that

were called FD1, FD2, FD3 and FD4. The Cloudsim simulator that we used assigns values between

0 and 1 to features at random. Depending on values, tasks are offloaded in suitable FDs and

otherwise in cloud or mobile. We stored the outputs of the simulator as a dataset.

2- Decision Tree, Random Forest, Extra-trees and AdaBoost classifiers classify based on feature

values and draw the plot of a tree. According to the plot of these classifiers, we extracted each

347

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

sequential condition from root to leaves and inserted them into the simulator in the corresponding

section. This reduced the number of conditions that should be inserted in the corresponding section

of the simulator and response time of offloading.

3- Since Random Forest, Extra-trees and AdaBoost classifiers consider 100 different trees by

default from which we choose the best one with the highest accuracy, they had a better response

time compared to that of Decision Tree.

4- In practice, some of these parameters are not used. What these classifiers do is to improve the

conditions that should be inserted in the corresponding section of the simulator. These methods are

suitable for tasks that require a shorter response time. In fact, in the operational environment, the

values of features and target class (a device in which tasks are offloaded, such as mobile, FD or

cloud) can be stored as data in a dataset. Then, by using these classifiers and dataset, we can insert

the conditions effectively into the simulator for the next tasks and achieve less response time.

The rest of the paper is organized as follows. Related works are presented in Section 2. In Section 3,

the system model is described. The proposed approach is provided in Section 4. In Section 5, the

evaluation results of the simulation are described. At last, Section 6 presents the conclusions.

2. RELATED WORK

Task offloading has been noticed a lot in recent years. Related papers were categorized as follows:

Authors in [13] expressed Android Unikernel, a short run time designed for mobile computing

offloading under MFC and MEC scenarios. It also has been argued that advanced unikernel is used as

a runtime in MEC or MFC to support mobile quality. To this, the concept of Rich-Unikernel was

considered which aims to support various applications in one unikernel while avoiding their time-

consuming recompilation. In [14], a computation offloading problem was provided in a fog computing

system, which uses fog computing to answer computation requests by validating requests through the

fog node or central cloud increasing the performance of applications, such as power consumption and

delay. Also, the game theory approach was used to minimize the running cost. Specifically, a

Generalized Nash Equilibrium Problem (GNEP) was formulated and addressed with various

constraints by using the exponential penalty function method and semi-smooth Newton method.

Another way to minimize energy consumption, delays and costs was provided in [15]. Researchers

investigated the problem of power consumption, performance delays and costs in a mobile fog

computing system. Here, queue theory was used to derive analytical results on power consumption,

delay in performance and cost by assuming three different queuing models in MD, fog node and

central cloud. Based on this analysis, the multi-part optimization problem has been formulated with a

common goal of minimizing energy consumption, delay in execution and cost by optimizing the

probability of optimal offloading and power transfer for each mobile device. Also, using an Interior

point method-based algorithm, a multi-segment problem with various limitations has been developed.

Authors in [16] proposed container transfer algorithms and architectures to support moving tasks with

different needs. Also, the container migration problem of mobile application tasks in large-scale FC

was modeled. Then, container transfer algorithms to support moving tasks are proposed. This has

significantly reduced latency, power consumption and transmission costs. In [17], the researchers

investigated a problem of cost-based fairness in a min-max computation system by optimizing

offloading and resource allocation decisions, which minimized the delay cost weighting and energy

consumption in the system. To address the Np-hard problem, the computation offloading and resource

allocation algorithm (CORA) was proposed, which has low complexity and the offloading decisions

are taken at random.

In [18], the performance of SIMDOM (A framework for SIMD instruction translation and offloading

in heterogeneous mobile architectures) framework was discussed from various dimensions, such as

FMEC and MCC offloading, application partition and increasing input sizes. The SIMDOM

framework was evaluated in terms of parameters, such as energy, time and performance of MFLOPS.

Comparison with state-of-the-art Qemu-based compiled code-offloading framework was performed,

where it was found that the SIMDOM framework provides better results. Paper [19] evaluates

information about IoT programs in unstable channel conditions and suggests a new way to model the

348

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

quality of unstable channels. An optimal programming model and a way to reduce the complexity of

the algorithm were proposed, which improved the quality of the algorithm. Besides, an offloading data

scheduling algorithm (DEED) was proposed aiming at reducing energy consumption.

In [20], a near-end network solution of computation offloading on the edge/fog of the mobile was

presented. Mobility, heterogeneity and geographical distribution of mobile devices are challenges of

computing offloading at the edge/fog. For consideration of the computational resource demand, an

independent q-learning management framework was presented. The proposed method significantly

improved computational offload discharge performance by minimizing computational delay. In [21],

the various types of offloading techniques that have recently been introduced in fog-driven literature

or edge computing in the cloud-IoT environment are discussed. Some criteria determine when

offloading was performed. Finally, the research challenges related to offloading are highlighted in the

fog calculations.

In [22], deep reinforcement learning was proposed to solve the problem of offloading large-scale

multi-service nodes of MEC and multiple dependencies in mobile tasks. Then, the offloading strategy

by each algorithm was simulated on the edge computing iFogSim simulator platform. At last, the

advantages and disadvantages of each algorithm are evaluated by comparing different factors,

including power consumption, cost, load balancing, delay and network usage. Paper [23] has modeled

the expected time and energy cost for different options for offloading a task on the edge, cloud or the

device itself. Authors in [24] raised the issue of offloading optimization and then used the

metaheuristic method to find the best policy. Also, Simulated Annealing-based Offloading Algorithm

(SAOA) has also been proposed to provide a node access estimation policy based on a variety of

health care information. Sensitive requirements should be met related to the different roles in IoT for

architectural and algorithm design. A blockchain-based Edge ABC architecture and a Task Offloading

and Resource Allocation (TO-RA) algorithm have been proposed to meet the requirements [25].

In [26], an efficient resource allocation and computation offloading model for a multiuser MEC

system was proposed. Also, Advanced Encryption Standard (AES) method has been introduced to

protect sensitive information from cyber-attacks and an optimization problem has been developed for

mobile users to minimize energy consumption and delay latency. In [27], effective and efficient

services in the fog computing environment called for a decentralized management plan of mobile edge

server with p2p activation. In [28], a task-offloading and resource-scheduling algorithm was proposed

to solve the problems of minimizing energy consumption and processing time of task offloading in the

MEC system.

Internet of connected vehicles (IoV) has been introduced as a technology to provide tracking

information to drivers and transportation control systems [29]. In this paper, to reduce execution time

and energy consumption while satisfying the privacy of computational tasks, an edge computing

method called edge computing-enabled computation offloading (ECO) was presented [29]. In [30], a

new offloading strategy based on the firefly technique was presented. The firefly method was designed

to address the offloading strategy in the Fog-Cloud environment, which selects a suitable

computational device for each application.

In [31], a smart energy management method was proposed to increase the lifetime of the network in a

fog computing network. A clustering mechanism was introduced for a computation degradation

scenario. In [32], the problem of task mapping and scheduling (TMS) in wireless sensor networks was

investigated. Its main goals were to improve runtime, power consumption and network lifetime. The

MODIFIED RANDOM BIT CLIMBING (λ -MRBC) method was used to obtain the optimal solution

faster. In [33], the negotiation between publisher and fog node was formed as an optimization issue. In

[34], to provide effective services for performing tasks sensitive to latency and computation, a positive

decision-making algorithm and resource allocation based on deep learning have been developed to

minimize time and energy consumption in fog. In [35], fog calculations were introduced in a three-tier

architecture to minimize energy consumption. To minimize energy consumption, an energy

consumption oriented offloading algorithm for fog computing has been suggested.

Paper [36] presented and analyzed a vector instruction offloading framework (SIMDOM) in

heterogeneous compute architectures. In [37], a mathematical model is presented to facilitate the

calculation of computational time and energy.

349

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

We compare the mentioned offloading and scheduling methods by objectives, network architecture,

environment, advantages and disadvantages in Table 2.

Table 2. Comparison of offloading and scheduling methods mentioned.

Algorithm Objectives Network and

Environment

(N and E)

Advantages Disadvantages

Unikernel [13]

Time,

memory and

energy

N: MFC

E: Android- x86

Compared to when

running Android VM or

Android container, it has

the advantages of being

small, fast and secure.

- Multi-process

applications are not

allowed.

- Those codes need to fork

new processes and cannot

run in Android Unikernel.

MOIPM [15]

Energy, delay

and cost

N: MFC

E: Simulation

Low algorithm

complexity.

Not suitable for delay-

sensitive applications.

GNEP [14]

Execution cost

N: MFC

E: Simulation

The proposed algorithm

improves performance and

accuracy.

Not suitable for delay-

sensitive applications.

DQLCM [16]

Computational

delay and power

consumption

N: MFC

E: Real

Among the many deep

learning reinforcement

algorithms, it has the

advantage of fast decision-

making.

May lead to a long delay in

processing the work.

CORA [17]

Energy, delay

and cost

N: MFC/

MCC

E: MATLAB

Unlike previous work, they

emphasize influential

decision-making [39], [40]

or resource allocation [41],

with consideration of cloud

and fog in common.

Has not considered the

queue length and delay of

user equipment request.

SIMD [18]

Energy,

MFLOPS and

execution time

N: MFC/ MEC/

MCC

E: Real

Ability to reload from a

server and execute SIMD

instructions while saving

energy and reducing

runtime.

The simdom

framework does not

provide energy efficiency

for metrics that have less

computation.

OFFLOADING

[21]

Reducing

energy

consumption

N: MFC/

MEC

E: Real

Offers complete

classification of offloading

schemes.

Failure to explain how to

do the review.

DEED [19]

Reducing

energy

consumption

N: MFC/ MEC/

MCC

E: Simulation

Providing innovative work

for optimal energy

consumption.

Too much interpretation

IDRQN [22]

latency and

network load

N: MEC

E: Simulation

Better performance in

power consumption, load

balance, latency and

average runtime.

Locking in scalability and

limited to relatively few

problems.

Deep Q-learning

[20]

Minimizing

delay

N: MFC/

MEC

E: MATLAB

Ability of parallel

execution.

Lack of expression of the

future work.

Modeling time and

energy cost [23]

Time and

energy cost

N: MEC/

MCC

E: Simulation

Dynamic offloading

decision-making

Edge devices should be

adjacent to IoT devices

and their resources are

limited.

SAOA [24] Minimizing

delay

N: MFC

E: MATLAB

Quick response to a user

request.

Privacy may not be

protected.

TO-RA [25] Reduction of

delay

N: MEC

E: Simulation

Compared to other

algorithms, more stable

and higher user

- Limitation on computing

resources and storage of

smart devices.

350

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

scarification. - Impossibility to perform

computational tasks with

high complexity for a long

time.

Multi-users

Computation

Offloading

Decision [26]

Minimizing

time and energy

consumption

N: MEC

E: MATLAB

Low delay Increasing the number of

Mus causes severe

interference.

Decentralized

mobile edge server

management plan

[27]

Minimizing

runtime and

reducing energy

consumption

N: MEC

E: simulation

The proposed method is

effective and practical.

The search space of this

method is very large and

time-consuming.

Distributed

[28]

Minimizing

energy

consumption

and processing

time

N: MEC

E: simulation

First work on dynamic task

offloading and resource

scheduling.

Lack of expression of

future work

ECO [29]

Optimizing time

and reducing

energy

consumption

N: MEC

E: simulation

Preservation privacy The smaller the scale of

the vehicle, the longer the

transmission time.

Firefly [30] Minimizing

computation

time and energy

consumption

N: MFC/

MCC

E: simulation

- Automatic split

- Easily finding the best

solution

It is difficult to efficiently

allocate IoT applications

between the fog node and

the cloud datacenter.

Prediction-based

Energy Harvesting

Scheme and

Clustering

[31]

Increasing

network lifetime

N: MFC

E: MATLAB

Saving energy and

reducing latency

Management complexity

λ -MRBC [32] Improvement of

execution time,

energy

consumption

and network

lifetime

N: Wireless

E: simulation

The network lifetime is

prolonged through using

the proposed algorithm.

Lack of expression of

future work

Design of an

incentive

mechanism

[33]

Reducing

energy

consumption

and delay

N: MFC

E: simulation

Increasing transfer speed There may be an

asymmetry between

publisher and fog node.

DLJODRA

[34]

Reducing

energy

consumption

and delay

N: MFC

E: Tensorflow

and

MATLAB

Increasing network

efficiency

Deep learning-based

computation offloading

scheme does not consider

the optimization allocation

of network resources.

Energy

consumption-

oriented offloading

algorithm

[35]

Minimizing

energy

consumption

N: MFC/

MCC

E: MATLAB

Better performance It would have been better

if it had introduced a

multi-user model.

A framework for

translating pre-

compiled vector

instructions

[36]

Saving energy

and time

N: MEC/

MCC

E: Real

Leading to increased

translation training

efficiency.

Lack of expression of

future work

Mathematical

model for

calculating the

time and energy

Reducing

computational

time and energy

N: MCC

E: simulation

Boosting performance

and

energy efficiency

It would have been better

if authors also talked about

the energy consumption

coefficients of the

351

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

consumption of

application models

[37]

prominent parameters for

smartphones.

3. SYSTEM MODEL

The system architecture is shown in Figure 1 [41]. There are mobile devices at the lowest level. For

transferring data to routers, access points or base stations are used and routers send data to the closest

FDs for task processing. When the sum of memory power and CPU power consumption is less than

Wi-Fi’s power consumption, tasks run in mobile; otherwise, they are offloaded in FDs according to

their properties. If tasks do not execute in FDs, send them finally to the highest level in the cloud.

Figure 1. System architecture.

When computing is performed by mobile or portable devices (e.g. laptops, tablets or mobile phones),

it is called mobile computing or nomadic computing. It is not suitable for many recent computational

challenges, because of the requirements of connected consumer devices. Therefore, fog computing and

cloud computing are used for more advanced calculations, because they have more resource-rich

hardware [42].

3.1 Calculating Power

We used three resources for power consumption as CPU, RAM and Wi-Fi in our model, which are

explained as follows [41].

3.1.1 Power Consumption of CPU

Frequency and performance are the factors on which power consumption of CPU depends. The power

consumption of CPU is:

PCPU = fbase + (1)

where fbase and fi are frequency-dependent coefficients, Ui is the utilization of the ith CPU and n is the

number of CPUs.

3.1.2 Power Consumption of RAM

The power consumption of RAM depends on the type of modules and is calculated as:

PRAM = Ps1 * U + Ps2 (2)

where Ps1 and Ps2 are coefficients of power. U is the aggregated CPU utilization that is:

352

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

U = (3)

Uj is the utilization of jth CPU and n is the total number of CPUs.

3.1.3 Power Consumption of Wi-Fi

Another source of energy consumption in MDs is the power consumption of Wi-Fi. Idle, initial, send,

receive and tail are states of the Wi-Fi model, with the total Wi-Fi power consumption for the MDs

being the sum of their power consumption as shown in Equation 4. Coefficients are based on quad-

core Galaxy S3. TState is the state’s time, where TSend and TIdle are calculated in runtime. Finally, N is

the number of packets sent or received per second which considered more than 20.

PWi-Fi = PInit + PSend + PReceive + PTail + PIdle (4)

where

PInit = (0.8613 * N + 98.612) * TInit

PSend = (0.4049 * N + 686.93) * TSend

PReceive = 0.0211 * N + 15.628

PTail = 195 * TTail

PIdle = 20 * TIdle

4. THE PROPOSED APPROACH

Each FD has its features and parameters based on its internal structure on which the best FD is chosen

for the module placement. The parameters that were used in this paper are: authentication,

confidentiality, integrity, availability, capacity, speed and cost. In this paper, we had four FDs that

were called FD1, FD2, FD3 and FD4. For example, if the authentication, confidentiality, integrity,

availability, capacity, speed and cost of the task that has arrived for processing are > 0.7, > 0.5, < 0.3,

< 0.8, < 0.7, < 0.8 and < 0.9, respectively, then the task is performed on FD1. Checking these

conditions for allocating the appropriate device can be carried out by Decision Tree or other trees. The

features and values of each of the FDs are shown in Table 3.

Table 3. The features of FDs.

 Authentication Confidentiality Integrity Availability Capacity Speed Cost

FD1 > 0.7 > 0.5 < 0.3 < 0.8 < 0.7 < 0.8 < 0.9

FD2 <= 1 < 0.4 > 0.1 < 0.7 < 0.6 < 0.7 < 0.8

FD3 > 0.8 > 0.5 < 0.6 > 0.7 > 0.8 < 0.8 > 0.7

FD4 < 0.9 < 0.7 < 0.8 > 0.9 > 0.7 < 0.8 > 0.6

Cloud Other values

Table 4. Part of the dataset.

No. Authentication Confidentiality Integrity Availability Capacity Speed Cost Target

Classes

1 0.1 0.16 0.32 0.94 1 0.51 0.69 FD4

2 0.91 0.61 0.04 0.18 0.26 0.17 0.53 FD1

3 0.86 0.18 0.64 0.55 0.05 0.66 0.28 Cloud

4 0.61 0.33 0.28 0.24 0.4 0.13 0.13 FD2

5 0.79 0.45 0.26 0.39 0.17 0.68 0.51 Mobile

6 0.86 0.81 0.12 0.88 0.94 0.59 0.94 FD3

… … … … … … … … …

Our base article is [41]. The simulator assigns values between 0 and 1 to features at random. Tasks are

offloaded in suitable FDs and otherwise in cloud or mobile, so that when the sum of memory power

consumption and CPU power consumption is less than Wi-Fi’s power consumption, tasks run in

mobile; otherwise, according to Table 3, they are offloaded in an FD or cloud.

353

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

We stored the outputs of the simulator as a dataset with 457 samples with 7 features and 1 target class,

part of which is shown in Table 4.

In general, with more data, classifiers are better trained to classify. The target class is the device in

which the task is offloaded. Hence, we had sex targets, FD1, FD2, FD3, FD4, cloud and mobile.

Decision Tree, Random Forest, Extra-trees and AdaBoost classifiers classify based on feature values

and draw the plot of the tree. In the plot of the tree, each node is divided into two branches and leaves

are the target classes.

For example, in this code that runs by Decision Tree, availability is in the root. If its value in the

sample is greater than 0.875, it goes to the left branch; otherwise, it goes to the right branch and so on.

In Random Forest, Extra-trees and AdaBoost classifiers, 100 different trees are considered by default

and we choose the best one with the highest accuracy. According to the plot of them, we extracted

each sequential conditions from root to leaves and insert them into the simulator in the corresponding

section. This reduced the number of conditions and response time.

In practice, some of these parameters are not used. For example, the authentication parameter in FD2

is not required for classification. What these classifiers do is to improve the conditions in practice.

These methods can be used for tasks that require a shorter response time. In fact, in the operational

environment, the values of 7 features and 1 target class can be stored as data in a dataset. Then, by

using these classifiers, we can insert the conditions effectively into the simulator for the next tasks and

achieve less response time.

In Algorithm I, the steps are performed. In lines 1 to 3 FDs are created with time complexity O(k), so

that k is the number of FDs and VMs created with time complexity O(t), where t is the number of

VMs in line 4. Then, n tasks are taken from MDs with O(n) in line 5. The broker is created with O(1)

and VMs and tasks are submitted to it in lines 6 and 7 with O(n+t). So time complexity until this stage

is equal to O(k+n+t).

Algorithm I

Input: VMs, Tasks, FDs, cloud

Output: VMs and tasks in the broker

1: for each i ϵ FDs do

2: Create micro DCs in FDi

3: end for

4: Create VMs

5: Get tasks from MDs

6: Create broker

7: Submit VMs and tasks to the broker

In Algorithm II, input includes dataset according to Table 4. By executing Decision Tree, Random

Forest, Extra-trees and AdaBoost classifiers, its plot is obtained.

Algorithm II

Input: dataset

Output: Plot of Trees

1: Running Decision Tree classifier by Python code to draw its plot

2: Running Random Forest, Extra-trees and AdaBoost classifiers and choosing the best one with the

heights accuracy by Python code to draw its plot

In Algorithm III, tasks are offloaded in one of six modes that include mobile, FD1 to FD4 and cloud.

Placement is prepared by calling Algorithm I in line 1. Then, in line 2, new conditions are inserted in

the corresponding section of the simulator by running Algorithm II. In lines 3 to 10, tasks are

offloaded in one of the six modes with O(n), where n is the number of tasks. In Equations 1 to 4 it is

shown, how to calculate memory power, CPU power and Wi-Fi’s power consumption. When the sum

of memory power consumption and CPU power consumption is less than Wi-Fi’s power consumption,

tasks run in mobile; otherwise, they are offloaded in an FDs or cloud.

354

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

Algorithm III

Input: VMs, Tasks, FDs, cloud

Output: The places of Tasks

1: Preparing placement by calling Algorithm I

2: Insert new conditions by running Algorithm II to the simulator in the corresponding section

3: for each n ϵ Tasks do

4: Calculate PCWi-Fi, PCCPU and PCRAM

5: if PCCPU + PCRAM < PCWi-Fi then

6: Execute task in MD

7: else

8: Place task in suitable FDj (j from 1 to 4) or cloud

9: end if

10: end for

5. EVALUATION

In this part, we compare three methods: mobile, Decision Tree, Random Forest, Extra-trees and

AdaBoost classifiers. We used Cloudsim simulator. In the local mobile processing method, the tasks

are executed in MD and don’t offload to FDs and cloud. These classifiers were executed and the plot

of trees is drawn by Python code in the sci-kit learn website [7]. Then, new if statements are added to

the relevant section in the simulator. Response time, power consumption of CPU, power consumption

of RAM and performance were compared in these three methods. In the simulator, each of them has

been run 30 times individually and the average values were presented.

5.1 Configurations of the Simulator

DC and micro DC configurations are shown in Table 5.

We executed the simulation in different states of number of VMs and tasks, as shown in Table 6. In

our simulation, the main classes are Cloudlet, Datacenter, DatacenterBroker and VM. Task offloading

is carried out in the DatacenterBroker class. New conditions resulting from the implementation of the

Decision Tree, Random Forest, Extra-trees and AdaBoost classifiers were inserted into Cloudlet class.

Table 5. DC and Micro DC configurations.

Name

DC Micro DC

CPU Octa-core Quad-core

Memory size 8192 2048 GB

Memory cost 0.015 0.005

Storage size 1 TB 100 GB

Storage cost 0.05 0.01

Bandwidth rate 100 MB/S 10 MB/S

Bandwidth cost 0.1 0.01

Table 6. Different states of the number of VMs and tasks in Cloudsim simulator.

No. VMs Tasks No. VMs Tasks

1 10 10 6 50 100

2 10 20 7 100 100

3 20 20 8 100 200

4 40 50 9 200 200

5 50 50 10 500 500

5.2 Offloading Frequency

Figure 2 shows the offloading frequency that is the frequency of offloading tasks to FDs or cloud.

When the sum of memory power consumption and CPU power consumption is more than Wi-Fi’s

355

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

power consumption, tasks are offloaded in FDs and cloud. According to Table 1 and the simulator

assign values of seven features between 0 and 1 at random, most tasks are offloaded in cloud, FD2,

FD1, FD4 and FD3, respectively.

Figure 2. Comparison of offloading frequency to cloud and FDs by decision tree, random forest, extra-

trees and AdaBoost and mobile methods.

5.3 Response Time

In Figure 3, the response time is shown. Response time of mobile is less than in Decision Tree,

Random Forest, Extra-trees and AdaBoost classifiers, because there is no offloading. As can be seen in

the Figure, the response time of Random Forest, Extra-trees and AdaBoost methods is better than that

of Decision Tree, because they consider 100 different trees by default, where we choose the best one

with the highest accuracy. The average response time in Random Forest, Extra-trees and AdaBoost

methods is 649.361, 646.61 and 643.452ms, respectively, while in the Decision Tree method, it is

696.363ms.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200

1 2 3 4 5 6 7 8 9 10

R
es

p
o

n
se

 T
im

e,
 m

s

Configuration of VMs and Tasks

AdaBoost

Extra-trees

RF

DT

Mobile

Figure 3. Comparison of response time of decision tree, random forest, extra-trees and AdaBoost and

mobile methods.

5.4 The Power Consumption of CPU and RAM

Total power consumption of CPU and RAM is presented in Figures 4 and 5. On average, they are

almost the same in Decision Tree, Random Forest, Extra-trees and AdaBoost methods. In the mobile

356

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

method, it is higher than in the other methods. The average of power consumption of CPU in Decision

Tree, Random Forest, Extra-trees and AdaBoost methods is 1874.174, 1875.074, 1877.667 and

1878.147W, respectively, while in the mobile method, it is 1898.796W. The average of the power

consumption of RAM in Decision Tree, Random Forest, Extra-trees and AdaBoost methods is 112.45,

112.503, 113.034 and 113.038W, respectively, while in the mobile method, it is 113.842W.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

To
ta

l p
o

w
e

r
co

n
su

m
p

ti
o

n
 o

f
C

P
U

,
W

Configuration of VMs and Tasks

AdaBoost

Extra-trees

RF

DT

Mobile

Figure 4. Total power consumption of CPU in decision tree, random forest, extra-trees and AdaBoost

and mobile methods.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

To
ta

l p
o

w
er

 c
o

n
su

m
p

ti
o

n
 o

f
R

A
M

,
W

Configuration of VMs and Tasks

AdaBoost

Extra-trees

RF

DT

Mobile

Figure 5. Total power consumption of RAM in decision tree, random forest, extra-trees and AdaBoost

and mobile methods.

5.5 Performance

In Figure 6, performance is presented. Its calculation is as follows:

performance = 1 – (PReceive + PIdle) / PCPU (5)

where PIdle and PReceive are the power consumption of Wi-Fi in the idle and receive states and PCPU is the

power consumption of CPU in MD (see Eq. 4) [42]. As a result, in Figure 5, the performance of

Decision Tree, Random Forest, Extra-trees and AdaBoost is better than in the mobile method.

5.6 Comparison of Algorithms

Our simulation results show that the response time of the mobile method is less than in Decision Tree,

357

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

Figure 6. Performance comparison of decision tree, random forest, extra-trees and AdaBoost and

mobile methods.

Random Forest, Extra-trees and AdaBoost classifiers, because there is no offloading and the response

time of Random Forest, Extra-trees and AdaBoost methods is better than that of the Decision Tree

method. AdaBoost is a meta-estimator that begins by fitting a classifier on the original dataset. Then,

additional copies of the classifier are fitted on the same dataset. However, the weights of wrong

classified instances are adjusted such that subsequent classifiers focus more on difficult cases [11].

Boosting methods train predictors consecutively and try to improve its predecessor, because they

collect the predictions made by each Decision Tree within the forest. Some differences between them

are in AdaBoost; the Decision Trees have a depth of 1 and the final prediction made by the model is

impacted by the predictions made by each Decision Tree [12]. So, the tree of AdaBoost performs

better in terms of the conditions that should be inserted in the corresponding section of the simulator

compared to Decision Tree. Response time improved by 7.6 percent in this case. An Extra-trees

classifier fits some randomized Decision Trees on various sub-samples of the dataset, improves the

predictive accuracy and controls over-fitting implementing a meta-estimator and averaging,

respectively [10]. Thus, the tree of Extra-trees performs better in terms of the conditions that should be

inserted in the corresponding section of the simulator compared to Decision Tree. In this case,

response time improved by 7.14 percent. Random Forest fits 100 Decision Tree classifiers by default

on the dataset’s different sub-samples and improves the predictive accuracy using averaging [8]. So,

the tree of Random Forest performs better in terms of the conditions that should be inserted in the

corresponding section of the simulator compared to Decision Tree. Response time improved by 6.75

percent in this case.

Total power consumption of CPU and RAM is almost the same in these methods and in the mobile

method, it is higher than in the other methods. Also, the performance of them is better than that of the

mobile method, because there is no offloading on the mobile. Thus, our offloading methods of using

Random Forest, Extra-trees and AdaBoost classifiers have a better response time than Decision Tree

on MFC.

6. CONCLUSIONS

The application of computing resources through mobile devices (MDs) is called Mobile Computing.

Between cloud datacentres and devices is (Mobile) Fog Computing (MFC). Tasks are offloaded in

suitable FDs and otherwise in cloud or mobile. We used Decision Tree, Random Forest, Extra-trees

and AdaBoost classifiers for task offloading on MFC, where Random Forest, Extra-trees and

AdaBoost classifiers had a better response time than previous methods. Our simulation results showed

that the response time of the mobile method is less than these classifiers, because there is no

offloading and the response time of Random Forest, Extra-trees and AdaBoost methods was better

than in the Decision Tree method. Thus, our offloading methods of using Random Forest, Extra-trees

358

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

and AdaBoost classifiers had a better response time than that of Decision Tree on MFC. Total power

consumption of CPU and RAM was almost the same in these methods and in the mobile method, it

was higher than in the other methods. Also, the performance of Decision Tree, Random Forest, Extra-

trees and AdaBoost was better than in the mobile method.

For future work, we will try to implement an algorithm that gives better results in the simulator. Also,

machine learning methods can be a great way to task offloading.

REFERENCES

[1] T. H. Noor, S. Zeadally, A. Alfazi and Q. Z. Sheng, "Mobile Cloud Computing: Challenges and Future

Research Directions," Journal of Network and Computer Applications, vol. 115, pp. 70-85, 2018.

[2] R. Mahmud, R. Kotagiri and R. Buyya, "Fog Computing: A Taxonomy, Survey and Future Directions,"

Internet of Everything, pp. 103-130, Springer, Singapore, 2018.

[3] R. Roman, J. Lopez and M. Mambo, "Mobile Edge Computing, Fog et al.: A Survey and Analysis of

Security Threats and Challenges," Future Generation Computer Systems, vol. 78, pp. 680-698, 2018.

[4] F. Gu, J. Niu, Z. Qi and M. Atiquzzaman, "Partitioning and Offloading in Smart Mobile Devices for

Mobile Cloud Computing: State-of-the-art and Future Directions," Journal of Network and Computer

Applications, vol. 119, pp. 83-96, 2018.

[5] C. Li, Y. Xue, J. Wang, W. Zhang and T. Li, "Edge-oriented Computing Paradigms: A Survey on

Architecture Design and System Management," ACM Computing Surveys (CSUR), vol. 51, no. 2, pp.

1-34, 2018.

[6] S. Fletcher and Md. Z. Islam, "Decision Tree Classification with Differential Privacy: A Survey," ACM

Computing Surveys (CSUR), vol. 52, no. 4, pp. 1-33, 2019.

[7] Scikit-learn, "Decision Trees (DTs)," [Online], Available: https://scikit-learn.org/stable/modules/tree.

html#tree-algorithms.

[8] Scikit-learn, "Random Forest Classifier," [Online], Available: https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html?highlight=random%20forest#sklearn.ensemb

le.RandomForestClassifier.

[9] A. B. Shaik and S. Srinivasan, "A Brief Survey on Random Forest Ensembles in Classification Model,"

Proc. of the International Conference on Innovative Computing and Communications, pp. 253-260,

Springer, Singapore, 2019.

[10] Scikit-learn, "Extra Trees Classifier," [Online], Available: https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.ExtraTreesClassifier.html

[11] Scikit-learn, "AdaBoost Classifier," [Online], Available: https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.AdaBoostClassifier.html

[12] Towards Data Science, "AdaBoost Classifier Example in Python," [Online], Available:

https://towardsdatascience.com/machine-learning-part-17-boosting-algorithms-adaboost-in-python-

d00faac6c464

[13] S. Wu, C. Mei, H. Jin and D. Wang, "Android Unikernel: Gearing Mobile Code Offloading Towards

Edge Computing," Future Generation Computer Systems, vol. 86, pp. 694-703, 2018.

[14] L. Liu, Z. Chang and X. Guo, "Socially Aware Dynamic Computation Offloading Scheme for Fog

Computing System with Energy Harvesting Devices," IEEE Internet of Things Journal, vol. 5, no. 3, pp.

1869-1879, 2018.

[15] L. Liu, Z. Chang, X. Guo, S. Mao and T. Ristaniemi, "Multi-objective Optimization for Computation

Offloading in Fog Computing," IEEE Internet of Things Journal, vol. 5, no. 1, pp. 283-294, 2017.

[16] Z. Tang, X. Zhou, F. Zhang, W. Jia and W. Zhao, "Migration Modeling and Learning Algorithms for

Containers in Fog Computing," IEEE Trans. on Services Computing, vol. 12, no. 5, pp. 712-725, 2018.

[17] J. Du, L. Zhao, J. Feng and X. Chu, "Computation Offloading and Resource Allocation in Mixed

Fog/Cloud Computing Systems with Min-max Fairness Guarantee," IEEE Transactions on

Communications, vol. 66, no. 4, pp. 1594-1608, 2018.

[18] J. Shuja, A. Gani, K. Ko, K. So, S. Mustafa, S. A. Madani and M. K. Khan, "SIMDOM: A Framework

359

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020.

for SIMD Instruction Translation and Offloading in Heterogeneous Mobile Architectures," Transactions

on Emerging Telecommunication Technologies, vol. 29, no. 4, p. e3174, 2018.

[19] H. Yan, X. Zhang, H. Chen, Y. Zhou, W. Bao and L. T. Yang, "DEED: Dynamic Energy-efficient Data

Offloading for IoT Applications under Unstable Channel Conditions," Future Generation Computer

Systems, vol. 96, pp. 425-437, 2019.

[20] Md. G. R. Alam, M. M. Hassan, Md. ZIa Uddin, A. Almogren and G. Fortino, "Autonomic

Computation Offloading in Mobile Edge for IoT Applications," Future Generation Computer Systems,

vol. 90, pp. 149-157, 2019.

[21] M. Aazam, S. Zeadally and K. A. Harras, "Offloading in Fog Computing for IoT: Review, Enabling

Technologies and Research Opportunities," Future Generation Computer Systems, vol. 87, pp. 278-289,

2018.

[22] H. Lu, C. Gu, F. Luo, W. Ding and X. Liu, "Optimization of Lightweight Task Offloading Strategy for

Mobile Edge Computing Based on Deep Reinforcement Learning," Future Generation Computer

Systems, vol. 102, pp. 847-861, 2020.

[23] A. Jaddoa, G. Sakellari, E. Panaousis, G. Loukas and P. G. Sarigiannidis, "Dynamic Decision Support

for Resource Offloading in Heterogeneous Internet of Things Environments," Simulation Modeling

Practice and Theory, vol. 101, p.102019, [Online], Available: https://doi.org/10.1016/j.simpat.2019.

102019, 2020.

[24] C. Zhang, H.-H. Cho and C.-Y. Chen, "Emergency-level-based Healthcare Information Offloading over

Fog Network," Peer-to-Peer Networking and Applications, vol. 13, no. 1, pp. 16-26, 2020.

[25] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang and L. Rui, "EdgeABC: An Architecture for Task Offloading

and Resource Allocation in the Internet of Things," Future Generation Computer Systems, vol. 107, pp.

498-508, 2020.

[26] I. A. Elgendy, W. Zhang, Y.-C. Tian and K. Li, "Resource Allocation and Computation Offloading with

Data Security for Mobile Edge Computing," Future Generation Computer Systems, vol. 100, pp. 531-

541, 2019.

[27] W. Tang, X. Zhao, W. Rafique, L. Qi, W. Dou and Q. Ni, "An Offloading Method Using Decentralized

P2P-enabled Mobile Edge Servers in Edge Computing," Journal of Systems Architecture, vol. 94, pp. 1-

13, 2019.

[28] Q. Wang, S. Guo, J. Liu and Y. Yang, "Energy-efficient Computation Offloading and Resource

Allocation for Delay-sensitive Mobile Edge Computing," Sustainable Computing: Informatics and

Systems, vol. 21, pp. 154-164, 2019.

[29] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer and S. Wan, "An Edge Computing-enabled

Computation Offloading Method with Privacy Preservation for Internet of Connected Vehicles," Future

Generation Computer Systems, vol. 96, pp. 89-100, 2019.

[30] M. Adhikari and H. Gianey, "Energy Efficient Offloading Strategy in Fog/Cloud Environment for IoT

Applications," Internet of Things, vol. 6, p. 100053, 2019.

[31] A. Bozorgchenani, S. Disabato, D. Tarchi and M. Roveri, "An Energy Harvesting Solution for

Computation Offloading in Fog Computing Networks," Computer Communications, vol. 160, pp. 577-

587, 2020.

[32] Y. E. M. Hamouda, "Modified Random Bit Climbing (Λ-MRBC) for Task Mapping and Scheduling in

Wireless Sensor Networks," Jordanian Journal of Computers and Information Technology (JJCIT), vol.

5, no. 01, pp. 17-33, 2019.

[33] M. Zeng, Y. Li, K. Zhang, M. Waqas and D. Jin, "Incentive Mechanism Design for Computation

Offloading in Heterogeneous Fog Computing: A Contract-based Approach," Proc. of IEEE

International Conference on Communications (ICC), pp. 1-6, Kansas City, MO, USA, 2018.

[34] X. Zhu, S. Chen and G. Yang, "Energy and Delay Co-aware Computation Offloading with Deep

Learning in Fog Computing Networks," Proc. of the 38th IEEE International Performance Computing

and Communications Conference (IPCCC), pp. 1-6, London, UK, 2019.

[35] X. Zhao, L. Zhao and K. Liang, "An Energy Consumption Oriented Offloading Algorithm for Fog

Computing," Proc. of the International Conference on Heterogeneous Networking for Quality,

Reliability, Security and Robustness, pp. 293-301, Springer, Cham, 2016.

[36] J. Shuja, S. Mustafa, R. W. Ahmad, S. A. Madani, A. Gani and M. K. Khan, "Analysis of Vector Code

360

"Improving Response Time of Task Offloading by Random Forest, Extra-trees and AdaBoost Classifiers in Mobile Fog Computing", E.

Darbanian, D. Rahbari, R. Ghanizadeh and M. Nickray.

Offloading Framework in Heterogeneous Cloud and Edge Architectures," IEEE Access, vol. 5, pp.

24542-24554, 2017.

[37] M. Othman, A. N. Khan, J. Shuja and S. Mustafa, "Computation Offloading Cost Estimation in Mobile

Cloud Application Models," Wireless Personal Communications, vol. 97, no. 3, pp. 4897-4920, 2017.

[38] J. Shuja, A. Gani, M. Habib ur Rehman, E. Ahmed, S. A. Madani, M. K. Khan and K. Ko, "Towards

Native Code Offloading Based MCC Frameworks for Multimedia Applications: A Survey," Journal of

Network and Computer Applications, vol. 75, pp. 335-354, 2016.

[39] X. Chen, "Decentralized Computation Offloading Game for Mobile Cloud Computing," IEEE

Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 974-983, 2014.

[40] S. Sardellitti, G. Scutari and S. Barbarossa, "Joint Optimization of Radio and Computational Resources

for Multicell Mobile-edge Computing," IEEE Transactions on Signal and Information Processing over

Networks, vol. 1, no. 2, pp. 89-103, 2015.

[41] D. Rahbari and M. Nickray, "Task Offloading in Mobile Fog Computing by Classification and

Regression Tree," Peer-to-Peer Networking and Applications, vol. 13, pp. 104-122, 2019.

[42] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong and J. P. Jue, "All

One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete

Survey," Journal of Systems Architecture, vol. 98, pp. 289-330, 2019.

 ملخص البحث:

لالنقّمٌلقققققق بالققققققال ّمل الأققققققب لالنقّمّلقققققق ّققققققي إنّ تطبيققققققر الققققققمن لال الأققققققب اقققققق قققققق لا قققققق

االاكقققققق لالبيمسققققققمو لالهّقققققق مّي لا قققققق باهققققققّا ةلققققققم لال الأققققققب لالّ ققققققبمّي لالنقّمّلقققققق لققققققق ّنققققققم

ّتشقققققليح لالّ قققققمكغ ال لتمابقققققز لالّ قققققما يقققققغ ة ققققق ّالأقققققب ّ قققققبمّي انملأقققققب ة يقققققغ لالهّققققق مّ ة

اجّاعقققققق ّيمسققققققمو ةلاو يققققققغ ة قققققق سقمّلقققققق ّنققققققم ّتكقققققق ب اكا ققققققمو لالّ ققققققمكغ يققققققغ قققققق ح

لِأقققققّمو اّيققققق ا ّمد قققققمي لالقققققا ن ققققق فققققق ل لا يقققققا فقققققغ قققققم بقققققت ييققققق تمابقققققز لالّ قققققما

ققققققل ا قققققق ا الال ّققققققم لا لالتقّقققققالاياا لالهِّ ققققققاب ا لاله ةاققققققم لِأققققققّمو لالّ ققققققما ي ققققققغس لا ةققققققمل ا لالهِّ

 لالت لم

م ل اقم ست قققققAdaBoost; Extra-trees; RF; DTتققققق لالأقققققتك لاا عققققق ن اققققق لالّلقققققنممو ا

ى للالأققققاامو ققققّموا لالققققا مسققققم لأقققق اكططققققمو لالشققققجا ل ققققح ان ققققم يقققققم ّنققققملى علققققا ققققي لالهِّ

لالتقققققغ تققققق لال لقققققا علي قققققم اققققق تلقققققم لالّلقققققنمموا تققققق لالأقققققتك لالا ققققق لالتتقققققمّلغ ل قققققحّ ان قققققم

 إن مل قققققم لالقققققا لالّ قققققمكغ لالجققققق با ّملقققققاكا ةن اقققققم تققققققاا ّققققق اققققق "لالجقققققا " ّتقققققا "لا لا "

ا ط لالتققققققغ بتلققققققي إن مل ققققققم لالققققققا لالجقققققق ل لالّنققققققم ا اقققققق فققققققان لالّلققققققنممو فققققققا ت هققققققي لالشقققققق

 RF ققققققمنو لالنتققققققم ز لالققققققا ت هققققققي اقققققق لاتلأققققققتجمّ للتمابققققققز ّملأققققققتك لاا الققققققنممو لالّ ققققققمكغ

 Extra-trees AdaBoost علققققققققا س ققققققققا بمققققققققا لالت هققققققققي لالّت قققققققققر ّملأققققققققتك لاا الققققققققن

DT

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

