
17

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Y. E. M. Hamouda is with Department of Computer, Al-Aqsa University, Gaza, Palestine. Email: ye.hamouda@alaqsa.edu.ps

MODIFIED RANDOM BIT CLIMBING (λ -MRBC) FOR

TASK MAPPING AND SCHEDULING IN WIRELESS

SENSOR NETWORKS

Yousef E. M. Hamouda

(Received: 8-Nov.-2018, Revised: 17-Dec.-2018, Accepted: 23-Dec.-2018)

ABSTRACT

This paper examines the problem of Task Mapping and Scheduling (TMS) in Wireless Sensor Networks (WSNs).

The application, which is supposed to be executed in WSNs, can be divided into interdependent tasks. The key

objectives of TMS in WSNs are the improvement of execution time, energy consumption and network lifetime. A

modified version of Random Bit Climbing (RBC) optimization method, also called λ-Modified Random Bit

Climbing (λ-mRBC), is developed to get better and faster optimal or near-optimal solution. In the proposed λ-

mRBC method, a new operator, called transposition operator, is added to improve the exploration of search

space and hence to escape from the local optima. The deepth of exploration is controlled by using a single

parameter (λ). Firstly, a number of sensor nodes is selected to cooperatively execute the application with the

purpose of improving the network lifetime. After that, the proposed λ-mRBC method is performed to get the

optimal or near-optimal task/sensor pair solution, so that the execution time and energy consumption are

minimized.

The simulation results show that λ-mRBC method enhances the TMS performance. Compared with the

traditional RBC method, the proposed λ-mRBC method converges to better fitness value, make-span and total

energy consumption by 19.1%, 19.6% and 22.3%, respectively. Furthermore, the network lifetime is prolonged

through using the proposed selection algorithm. The distribution of remaining energy among sensor nodes is

improved about three times, compared with the random selection scheme. Furthermore, compared with the

random selection, the number of neighbours for sensor nodes is improved by 20.1% using the proposed selection

algorithm.

KEYWORDS

Application DAG, Optimization methods, Random bit climbing, Task mapping and scheduling, Wireless sensor

networks.

1. INTRODUCTION

Sophisticated technologies and applications, such as smart homes, Internet of Things (IoT), smart grid,

precision agriculture and automated control have provoked the need of developing self-organized,

multi-hop and ad-hoc Wireless Sensor Networks (WSNs). WSNs are made up of hundreds or

thousands of tiny and cheap sensor nodes with limited resources. Sensor nodes cooperate with each

other to execute the applications. In addition, sensor nodes are scattered randomly or in a planned

manner to monitor and control the field of interest [1]. Sensor node consists of energy unit, processing

unit, sensing unit, wireless communication unit and storage unit [2]. In several applications, WSNs are

positioned in sites that are difficult to be physically accessed; i.e., forest. Therefore, network lifetime

is an essential requirement for WSNs to prolong the lifetime of the sensor nodes and the network

connectively [3, 4]. Lots of civil and military applications employ WSNs. Civil applications, for

example, include healthcare [5], precision irrigation [6], smart grid [7], home automation [8] and

surveillance [9], while military-based applications usually include intrusion detection and detection of

illegal crossings [10].

Given the fact that the sensor nodes have limited resources, improving the energy-efficiency and

application execution time of WSNs seems to be plausible to increase the network lifetime [11]. In

fact, energy is consumed from the battery during sensing, communicating and processing activities. In

18

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

addition, numerous applications in WSNs require massive in-network processing capability. For

instance, smart visual sensor networks usually go through several subsequent executional jobs,

including image processing, computer vision and image sensing [12]-[13]. Furthermore, application

should complete its execution at the right time, after which the execution of the application will not be

useful anymore. In most cases, sensor node is not fast enough to execute the complex application in a

reasonable amount of time.

Parallel computing refers to the methods that solve a problem within a reasonable amount of time (i.e.,

called make-span) by dividing it into smaller parts and solving the parts using multiple physical

processors [14]. As a result, a complicated application of WSNs is decomposed into smaller tasks.

Afterward, Task Mapping and Scheduling (TMS) techniques are developed in order to share the

execution of divided tasks among sensor nodes [15]. As shown in Figure 1, four phases are required to

perform a parallel system [35]: The first phase is called task decomposition. In this phase, the

application is divided into small tasks. These small tasks depend on each other by using dependencies.

The dependence analysis is performed in the second phase to order the tasks in line with the

dependencies. Task graphs, such as Direct Acyclic Graphs (DAGs), are employed to model the tasks

with dependencies. The third phase is called task mapping and scheduling. The main purpose of task

mapping is to allocate the tasks to the processors or computing nodes. Consequently, the task

scheduling aims to order the task execution according to the dependencies through determining the

start times of task execution. The fourth phase is called parallel programming and aims to develop the

application, based on the result of task mapping and scheduling. This paper considers the mechanism

of task mapping and scheduling, explained in the third phase.

Figure 1. Task mapping and scheduling concept.

However, unlike the traditional parallel computing systems, TMS in WSNs focuses not only on the

execution time of the application, but also on energy-efficient schemes that prolong the network

lifetime. Therefore, TMS is generally modelled as a multi-objective optimization problem, which has

been proved to be non-deterministic polynomial-time (NP)-hard [16].

Metaheuristics are used to get a satisfactory solution of optimization problem that fulfils the required

objective function. Metaheuristics are strategies that depend on a guide to examine the search space to

get the optimal (or near-optimal) solution, without the need of testing every solution in the search

space [17]. A metaheuristic has two main properties: diversification and intensification [18].

Diversification is the exploration of search space in order to escape from the local optimal.

Intensification refers to the process of exploitation of accumulated search space. Indeed,

Application’s

Specifications

2. Dependence

Analysis
T: Task

P: Processor

3. Task Mapping

and Scheduling

T1

T2

T3

T4

T5

T6

include <….>

void main()

{

……….

……….

……….

……….

……….

……….

}

4. Parallel

Programming

T1

T4

T2
T3

T5 T61. Tasks

Decomposition

T1

T4

T2
T3

T5 T6

P1

P2

P3

19

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

diversification needs a time to be performed, whereas intensification looks deeply and locally for high-

quality solutions. Therefore, dynamic balancing between exploration and exploitation is necessary for

a good metaheuristic [17]. In literature, metaheuristics are classified into single-solution

metaheuristics and population-based metaheuristics. According to the operation form of

metaheuristics, single-solution metaheuristics are of more intensification, while population-based

metaheuristics are of more diversification [18].

This paper introduces λ-Modified Random Bit Climbing (λ-mRBC) optimization method to attempt to

solve the problem of TMS in WSNs. The claim of this research is to improve the traditional RBC

optimization method. The main contributions of the proposed λ-mRBC optimization method are: (1) a

novel modification in RBC method is developed to improve the convergence speed and fitness value

of the final solution. (2) The researcher thinks that this research might be the first one to apply the

RBC method and its proposed modified version (λ-mRBC) in TMS problem. (3) Lifetime Awareness

Sensor Node Selection Algorithm (LA-SNSA) is incorporated to select the sensor nodes so that the

lifetime of the network is improved. (4) Heterogeneous sensor nodes with different processing, energy

level and energy consumption are used in the proposed algorithms.

The paper contains seven sections as follows: Section (2) explores work related to task allocation in

WSNs. In Section (3), the network framework for TMS is introduced. Then, Section (4) defines and

formalizes the research problems. After that, the proposed λ-mRBC and LA-SNSA schemes are

introduced in Section (5). Simulation results are shown and discussed in Section (6). Finally, the paper

is concluded in Section (7).

2. RELATED WORK

Task mapping and scheduling problems have been deeply discussed in WSNs. In [19]-[20], Genetic

Algorithm (GA) is used to provide well-performing task allocation. A Modified Binary Particle

Swarm Optimization (MBPSO) algorithm is presented in [21] to find the optimal task allocation

solution. In [22], logic gate-based evolutionary algorithm is used to solve the problem of task

allocation in WSNs. However, the population-based metaheuristics used in the above research require

high processing power, energy consumption and execution time. Furthermore, high complexity

optimization algorithms are not appropriate for limited resource WSNs.

Integer linear programming is used in [23] to optimally assign complex tasks to sensor nodes to

minimize total energy consumption. In [24], task allocation is introduced so that energy consumption

and network lifetime are improved. However, the execution time (i.e., make-span) has not been taken

into account [23]-[24], which leads the application to take long time to be executed.

In [25], a distributed task allocation is introduced. The task is made to move from a sensor node to

another. The suitable sensor node with enough capacity to execute the task is found. In [26],

Topology-Aware Task Allocation and Scheduling (TATAS) is introduced to map and schedule the

tasks to the sensor nodes. However, the task allocation presented in [25]-[26] assumes independent

tasks which are not practical for complex application, such as visual surveillance [27].

In [28], a real-time task mapping and scheduling (RT-MapS) algorithm is developed for collaborative

in-network processing in single-hop cluster WSN using Dynamic Voltage Scaling (DVS) feature. In

[27], Multi-hop Task Mapping and Scheduling (MTMS) solution is developed for TMS in multi-hop

cluster WSN. Nevertheless, MTMS and RT-MapS prevent task mapping to sensor nodes that execute

the immediate predecessors of the task. As a result, this leads to using more sensor nodes for TMS and

including all sensor nodes in the task mapping decision-making.

In [29], Biological Task Mapping and Scheduling (BTMS) approach is introduced, where the

application is executed by a group of sensor nodes so that the execution time and energy consumption

are improved. However, the network lifetime related to sensor neighbour count is not considered. In

[30], Light Allocation of Tasks (LAT) algorithm is presented to enhance energy efficiency, network

lifetime and application execution time. However, LAT algorithm includes all sensor nodes in

decision-making for TMS.

Task Level Parallelism (TLP) in WSN is introduced in [31] to parallelize the execution of smart health

care applications so that the processing time is reduced. Nevertheless, scheduling of the task execution

20

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

is not considered. An energy-efficient Complicated Task Solution scheme for real-time task

processing based on node Cooperation (CTSC) is tackled in [32] to allocate more tasks to sensor nodes

with a higher energy-level. However, CTSC maps all dependent tasks to the same sensor nodes which

could cause exhaustion for the energy level of sensor node.

In [33], Machine-to-Machine (M2M) architecture with sensor devices and limited resources is

considered. Tasks are allocated to the nodes of M2N so that the lifetime is maximized. However, the

task allocation algorithm proposed in [33] finds all possible task allocation possibilities which need

high processing and time. In addition, the execution time is not considered in [33]. In [34], complex

application is allocated for different clustered wireless sensors. Firstly, tasks are distributed to clusters

so that the energy consumption is minimized. Then, tasks allocated to each cluster are assigned to the

nodes within the cluster so that energy cost and load balancing are improved. In [35], the problem of

task allocation in IoT applications is considered, where the embedded devices of IoT are assumed to

have limited resources. The tasks are allocated so that the energy consumption is minimized. In [36],

tasks are allocated locally to the slave sensor nodes or globally to the master sensor node, so that the

network life time is maximized. However, the execution time is not considered in [34]-[36].

In this paper, λ-Modified Random Bit Climbing (λ-mRBC) optimization method is developed to solve

the problem of TMS in WSNs. The proposed method supports heterogeneous sensor nodes. Actually,

the proposed λ-mRBC method is different from the previous one through the use of a modified version

of RBC method with faster conversion speed and better final solution. Moreover, the proposed λ-

mRBC is a single-solution metaheuristic with single algorithm parameter. Therefore, it needs less

processing capabilities to be executed and in turn it is suitable for the sensor nodes with limited

resources. Finally, Lifetime Awareness Sensor Node Selection Algorithm (LA-SNSA) is developed to

select the sensor nodes to enhance network lifetime.

3. NETWORK FRAMEWORK

As shown in Figure 2, the sensor nodes are randomly distributed in the monitoring area. The sensor

nodes are connected with each other wirelessly. The sink node aims to pass on the data from the

monitoring area to the main controller via Internet, satellite or cellular networks. Sensor node knows

its location using Global Positioning System (GPS) [37]. Nonetheless, only few sensor nodes use GPS

to know their locations and other sensor nodes can calculate their locations using triangulation [38]. At

time step (𝑘), the neighbours of a target sensor node (𝑠𝑇𝑆𝑁) are a set 𝑁𝑠𝑇𝑆𝑁
(𝑘). The neighbours with

remaining energy level above a predefined threshold value (𝐸𝑡ℎ) can participate to execute an

application DAG (𝐴𝑑). These particular neighbours are saved in an 𝑆𝑠(𝑘, 𝐴𝑑) set of 𝑛𝑠(𝑘, 𝐴𝑑) sensor

nodes. After that, a set (𝑆𝑔(𝑘, 𝐴𝑑)) of 𝑛𝑔(𝑘, 𝐴𝑑) nodes is selected from 𝑆𝑠(𝑘, 𝐴𝑑) to execute the

application DAG (𝐴𝑑). The selection of 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes is performed to improve the network

lifetime. The application DAG (𝐴𝑑) is assumed to be decomposed into interdependent tasks. Then,

TMS is incorporated to cooperatively execute the application tasks using the selected sensor nodes, so

that the time and energy required to execute the application DAG are reduced.

Figure 2. Network framework.

Sink

(BS)

Internet/Satellite/

Cellular

User

Sensor Node

TSNTSN Neighbor

Selected Node

Main Controller
Monitoring Area

21

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

4. PROBLEM DEFINITION AND FORMALIZATION

4.1 Application Model

In this paper, the application is modelled using Direct Acyclic Graphs (DAG) [21]. So, the application

is divided into smaller tasks. DAG can also model the interdependencies among tasks [39]. Figure 3

shows as example of application DAG.

Figure 3. Application DAG.

The application DAG is modelled as 𝐴𝑑 = (𝑉, 𝐸). The set 𝑉 represents “𝑛” application tasks, where

𝑉 = {𝑣𝑖: 𝑖 = 1,2, . . 𝑛} . Similarly, the set E represents “𝑞” communication interdependencies, where

𝐸 = {𝑒𝑘: 𝑘 = 1,2, . . 𝑞}. The edge 𝑒𝑘 ∈ 𝐸 between the tasks 𝑣𝑖 and 𝑣𝑗 is denoted as 𝑒𝑖𝑗, where 𝑣𝑗 is

called the immediate successor of 𝑣𝑖 and 𝑣𝑗 is called the immediate predecessor of 𝑣𝑖. Accordingly,

the task is executed when it receives all of its immediate predecessor’s output. The entry-tasks or

source-task do not have immediate predecessors. In addition, a task without immediate successors is

called an exit-task or a sink-task. In WSNs, the entry-tasks are used for sensing or gathering the raw

data to detect physical phenomena. Therefore, task placement constraints can be defined as an only

one source task that can be assigned to the sensor node. In Figure 3, 𝑣1 and 𝑣2 are source-tasks, 𝑣9 is

the sink-task, 𝑣1 and 𝑣2 are the immediate predecessors of 𝑣4 and 𝑣9 is the immediate successor of 𝑣8.

The task 𝑣6 cannot be executed until it receives the communication interdependencies (e36, e46 and

e56) from its immediate predecessors (𝑣3 , 𝑣4 and 𝑣5).

Each task, 𝑣𝑖 ∈ 𝑉 is modelled as a tuple of the form: {𝑁𝑣𝑖
, 𝑡𝑣𝑖

, 𝐸𝑣𝑖
}, where 𝑁𝑣𝑖

 is the number of the

computational cycles of the task, 𝐸𝑣𝑖
 is computational energy consumption of the task and 𝑡𝑣𝑖

 is

computational time of the task. Each edge (𝑒𝑖𝑗) between the tasks vi and 𝑣𝑗 is modelled as a tuple of

the form: {𝑙𝑒𝑖𝑗
, 𝑡𝑒𝑖𝑗

, 𝐸𝑒𝑖𝑗
}. 𝑙𝑒𝑖𝑗

 is the data size generated from 𝑣𝑖 and is required to execute 𝑣𝑗. 𝐸𝑒𝑖𝑗
 and

𝑡𝑒𝑖𝑗
 are the communication energy consumption and communication time required to send 𝑒𝑖𝑗 from the

sensor node that executes the task 𝑣𝑖 to the sensor node that executes the task 𝑣𝑗.

4.2 The Wireless Sensor Network Model

The WSN is composed of a number of heterogeneous sensor nodes distributed randomly in the area of

interest. The sensor nodes have different specifications, such as processing speed, power consumption

and transmission distances. WSN is modelled as a graph 𝑊 = (𝑆, 𝐷), where 𝑆 = {𝑠𝑥: 𝑥 = 1,2, . . 𝑚} is

the set of heterogeneous sensor nodes and 𝐷 = {𝑑𝑘: 𝑘 = 1,2, . . 𝑝} is a set of communication links

among sensor nodes. The edge 𝑑𝑘 ∈ 𝐷 between the sensor nodes 𝑠𝑥 and 𝑠𝑦 is denoted as 𝑑𝑥𝑦 and is

the physical distance between sensor nodes 𝑠𝑥 and 𝑠𝑦.

Sensor node, 𝑠𝑥 is modelled as a tuple of several properties and states as follows: 𝑠𝑥 = {𝐼𝐷𝑠𝑥
, 𝑥𝑠𝑥

, 𝑦𝑠𝑥
,

𝐸𝑟(𝑘, 𝑠𝑥), 𝑓𝑠𝑥
 , 𝑒𝑠𝑥

, 𝑎𝑠𝑥
}, where 𝐼𝐷𝑠𝑥

 is the sensor node identification, 𝑥𝑠𝑥
, 𝑦𝑠𝑥

 are the xy coordination

of sensor node, 𝐸𝑟(𝑘, 𝑠𝑥) is the battery remaining energy of sensor node at time 𝑘, 𝑒𝑠𝑥
 is the average

power consumption for the processor of node (𝑠𝑥), 𝑎𝑠𝑥
 is the time at which the sensor node is available

to execute a task and 𝑓𝑠𝑥
 is the processing speed of sensor node. Sensor nodes 𝑠𝑥 and 𝑠𝑦 can directly

communicate if the distance between them, 𝑑𝑖𝑗 is less than or equal to the radio range, 𝑅𝑟. The

distance between sensor nodes (𝑠𝑥 and 𝑠𝑦) is calculated using Euclidean distance according to the

following equation:

9

7

5

6

3

21Source

Tasks

Normal

Tasks

Sink

Tasks

8

e56

e36

4

e46

22

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

𝑑𝑥𝑦 = √(𝑥𝑥 − 𝑥𝑦)2 + (𝑦𝑥 − 𝑦𝑦)2. (1)

Therefore, at time 𝑘, the sensor node, 𝑠𝑥 has a set of 𝑚𝑠𝑥
(𝑘) neighbours, 𝑁𝑠𝑥

(𝑘), where: 𝑁𝑠𝑥
(𝑘) =

{𝑠𝑙: ∀𝑘 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑑𝑥𝑙 ≤ 𝑅𝑟}.

4.3 Cost Functions

4.3.1 Execution Time

The CPU clock frequency is defined as the number of computational cycles that can be executed per

second. Therefore, the computational time (𝑡𝑣𝑖
) required to execute the task (𝑣𝑖) is computed using the

following formula:

𝑡𝑣𝑖
=

𝑁𝑣𝑖

𝑓𝑠𝑥

 (2)

where 𝑓𝑠𝑥
 is the CPU clock frequency of sensor node (𝑠𝑥) which executes the task (𝑣𝑖). The total

computational time (called serial execution time) required to computationally execute the application

tasks is the sum of computational times for all tasks and is calculated as follows:

𝑡𝑇
𝑝

= ∑ 𝑡𝑣𝑘

𝑛
𝑘=1 (3)

The communication time (𝑡𝑒𝑖𝑗
) required to send the 𝑒𝑖𝑗 from the sensor node that executes the task 𝑣𝑖

to the sensor node that executes the task 𝑣𝑗 is made up of transmission time, queue time and

propagation time. The queue time is the latency caused by media access to avoid interference and

collision. Therefore, the communication time (𝑡𝑒𝑖𝑗
) is computed as follows:

𝑡𝑒𝑖𝑗
= 𝑡𝑒𝑖𝑗

𝑡 + 𝑡𝑒𝑖𝑗

𝑝
+ 𝑡𝑒𝑖𝑗

𝑞
=

𝑙𝑒𝑖𝑗

𝑅𝑏
+

𝑑

𝑐
+ 𝑡𝑒𝑖𝑗

𝑞
 (4)

where 𝑡𝑒𝑖𝑗
𝑡 is the transmission time which is the data size (𝑙𝑒𝑖𝑗

) divided by the data rate or

communication bandwidth (𝑅𝑏), 𝑡𝑒𝑖𝑗

𝑝
 is the propagation time which is the distance between the sensor

nodes that exchange the edge (𝑑) divided by the speed of light (𝑐 = 3 × 108𝑚/𝑠) and 𝑡𝑒𝑖𝑗

𝑞
 is the queue

time. The total communication time required to exchange all the interdependences of the application

tasks is the sum of all communication times required to send all dependencies and is determined as

follows:

𝑡𝑇
𝑐 = ∑ 𝑡𝑒𝑖𝑗

𝑞
𝑘=1 (5)

The node/task pairs are modelled as 𝑃(𝑣, 𝑠), where 𝑃(𝑣, 𝑠) shows the “𝑛” mapped tasks of

application DAG (the set) with its corresponding “𝑛𝑔(𝑘, 𝐴𝑑)” assigning sensor nodes which are the set

𝑆𝑔(𝑘, 𝐴𝑑). Hence, the overall time required to execute the application tasks using node/task pair

(𝑃(𝑣, 𝑠)) is the sum of the serial execution time and total communication time and is calculated as:

𝑡𝑇[𝑃(𝑣, 𝑠)] = 𝑡𝑇
𝑝

+𝑡𝑇
𝑐 (6)

Each task (𝑣𝑖) mapped to sensor node (𝑠𝑥) is starting to be executed at a time called starting executing

time of the task (𝑡𝑠(𝑣𝑖 , 𝑠𝑥)). The task is executed when the sensor node is available after it receives all

the task dependencies. It is assumed that 𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)] is the time at which the last dependency

(i.e., predecessor) of task (𝑣𝑘) is received by the node (𝑠𝑥). Therefore, after receiving the last

dependency, the task (𝑣𝑘) can be executed if the CPU of sensor node (𝑠𝑥) is available. The time to

which the sensor node (𝑠𝑥) is available is referred as (𝑎𝑠𝑥
). Thus, 𝑡𝑠(𝑣𝑖, 𝑠𝑥) is the maximum of one of

the two: (𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)]) or (𝑎𝑠𝑥
). 𝑡𝑠(𝑣𝑖 , 𝑠𝑥) and is calculated as:

𝑡𝑠(𝑣𝑖 , 𝑠𝑥) = 𝑚𝑎𝑥 {𝑎𝑠𝑥
, 𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)] } (7)

When the sensor node (𝑠𝑥) starts to execute the tasks, it finishes after a time equal to the task

execution time. The time at which the task is completely executed is called the finishing execution

time of the task (𝑡𝑓(𝑣𝑖, 𝑠𝑥)), which is the time at which the task is started to be executed (𝑡𝑠(𝑣𝑖, 𝑠𝑥))

23

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

plus the task execution time (𝑡𝑣𝑖

) and is given by:

𝑡𝑓(𝑣𝑖, 𝑠𝑥) = 𝑡𝑠(𝑣𝑖 , 𝑠𝑥) + 𝑡𝑣𝑖
 (8)

The make-span of the application DAG is the time at which the application execution completely

finishes. Due to parallelism, the make-span will be less than (𝑡𝑇[𝑃(𝑣, 𝑠)]). The execution of

application is completed after finishing of execution of last task. Thus, the finishing execution time of

the last task will be the biggest finishing execution time. Hence, the biggest finishing execution time is

the make-span and is calculated as follows:

𝑚𝑠[𝐴𝑑 , 𝑃(𝑣, 𝑠)] = 𝑚𝑎𝑥∀𝑠𝑥∈𝑆𝑔(𝑘,𝐴𝑑){ 𝑡𝑓(𝑣𝑖, 𝑠𝑥) } (9)

4.3.2 Energy Consumption

The computational energy consumption (𝐸𝑣𝑖
) required to execute the task (𝑣𝑖) is computed using the

following formula:

𝐸𝑣𝑖
= 𝑒𝑠𝑥

. 𝑡𝑣𝑖
 (10)

where 𝑒𝑠𝑥
 is the average power consumption for the processor of node (𝑠𝑥). The energy consumption

(𝐸𝑒𝑖𝑗
) required to send the 𝑒𝑖𝑗 from the sensor node that executes the task 𝑣𝑖 to the sensor node that

executes the task 𝑣𝑗 is calculated as:

𝐸𝑒𝑖𝑗
= 𝐸𝑒𝑖𝑗

𝑇𝑋 + 𝐸𝑒𝑖𝑗
𝑅𝑋 (11)

where 𝐸𝑒𝑖𝑗
𝑇𝑋 is the transmitted energy consumption dissipated from the source node and 𝐸𝑒𝑖𝑗

𝑅𝑋 is the

received energy consumption dissipated from the destination node. 𝐸𝑒𝑖𝑗
 is equal to zero if the tasks 𝑣𝑖

and 𝑣𝑗 are mapped to the same sensor node. 𝐸𝑒𝑖𝑗
𝑇𝑋 and 𝐸𝑒𝑖𝑗

𝑅𝑋 are calculated as follows [40]-[41]:

𝐸𝑒𝑖𝑗
𝑇𝑋 = (𝑒𝑒𝑙𝑒𝑐 + 𝜀𝑎𝑚𝑝. 𝑑2). 𝑙𝑒𝑖𝑗

 (12)

𝐸𝑒𝑖𝑗
𝑅𝑋 = 𝑒𝑒𝑙𝑒𝑐 . 𝑙𝑒𝑖𝑗

 (13)

where 𝑒𝑒𝑙𝑒𝑐 is the electronic energy required to transmit a bit that depends on coding, modulation and

filtering and 𝜀𝑎𝑚𝑝 is related to the radio energy. The total processing energy consumption (called

serial energy consumption) required to computationally execute the application tasks is determined as

follows:

𝐸𝑇
𝑝

= ∑ 𝐸𝑣𝑘

𝑛
𝑘=1 (14)

The total communication energy consumption required to exchange the interdependences of the

application tasks is calculated as follows:

𝐸𝑇
𝑐 = ∑ 𝐸𝑒𝑖𝑗

𝑞
𝑘=1 (15)

The overall energy consumption required to execute the application tasks using node/task pair, 𝑃(𝑣, 𝑠)

is calculated as:

𝐸𝑇[𝑃(𝑣, 𝑠)] = 𝐸𝑇
𝑝

+𝐸𝑇
𝑐 (16)

4.4 Problem Definition

At time step 𝑘, a target sensor node (𝑠𝑇𝑆𝑁) triggers a request to collaboratively execute an application

DAG (𝐴𝑑). The number of neighbours of 𝑠𝑇𝑆𝑁 at time step 𝑘 is 𝑛𝑠(𝑘, 𝐴𝑑) and is contained in a set

𝑆𝑠(𝑘, 𝐴𝑑). 𝑆𝑠(𝑘, 𝐴𝑑) participates to execute the application. However, only 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes are

selected from 𝑆𝑠(𝑘, 𝐴𝑑) to execute the application DAG (𝐴𝑑). The set 𝑆𝑔(𝑘, 𝐴𝑑) includes the selected

𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes. The objective function is defined as the weighted sum of the total energy

consumption and the make-span. It is calculated as follows:

𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝑃(𝑣, 𝑠)] = 𝛼 ∗
𝑚𝑠[𝐴𝑑,𝑃(𝑣,𝑠)]

𝑡𝑇
𝑝

[𝐴𝑑,𝑃(𝑣,𝑠)]
+ (1 − 𝛼) ∗

𝐸𝑇[𝐴𝑑,𝑃(𝑣,𝑠)]

𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑,𝑃(𝑣,𝑠)]
 (17)

where 0 ≤ α ≤ 1 is a weighted controlled parameter, 𝑚𝑠[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the make-span to execute the

24

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)), 𝑡𝑇
𝑝

[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the serial execution

time of application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)), 𝐸𝑇[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the total

energy consumption to execute the application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)) and

𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the maximum energy consumption to execute the application DAG 𝐴𝑑 using

the mapped task/sensor (𝑃(𝑣, 𝑠)). The make-span in Equation (17) is normalized by dividing it by the

serial execution time (𝑡𝑇
𝑝

[𝐴𝑑 , 𝑃(𝑣, 𝑠)]) which is the maximum time required to execute the application.

Similarly, the total energy consumption in Equation (17) is normalized by dividing it by the maximum

total energy consumption (𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑 , 𝑃(𝑣, 𝑠)]). The main goal is to get the task/node pair (𝑃∗(𝑣, 𝑠))

which is used to execute the application. 𝑃∗(𝑣, 𝑠) is obtained so that the objective function defined in

Equation (17) is minimized according to the following objective function:

𝑃∗(𝑣, 𝑠) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑃(𝑣,𝑠) {𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝑃(𝑣, 𝑠)]} (18)

5. THE MODIFIED RANDOM BIT CLIMBING

5.1 Lifetime Awareness Sensor Node Selection Algorithm (LA-SNSA)

Awareness Sensor Node Selection Algorithm (LA-SNSA) aims to select a number of 𝑛𝑔(𝑘, 𝐴𝑑) sensor

nodes from the 𝑆𝑠(𝑘, 𝐴𝑑) set. The selected nodes are then kept in the 𝑆𝑔(𝑘, 𝐴𝑑) set. In addition, the

selected sensor nodes (𝑆𝑔(𝑘, 𝐴𝑑)) are used to execute the application DAG (𝐴𝑑). The LA-SNSA takes

into account the network lifetime. Since reducing the gaps which appear because of node death in the

network increases the network lifetime, the sensor nodes with higher number of neighbours are

preferred to be selected. Furthermore, LA-SNSA also takes into account the current remaining energy

of the sensor nodes. Thus, sensor nodes with higher remaining energy are favoured to be selected to

increase the network lifetime. Therefore, the objective function of the LA-SNSA is the weighted sum

of the ratio of energy of sensor node with respect to the sum of remaining energy for all nodes in

𝑆𝑠(𝑘, 𝐴𝑑) and the ratio of the number of neighbours of the sensor node with respect to the sum of the

number of neighbours for all nodes in 𝑆𝑠(𝑘, 𝐴𝑑). It is computed as follows:

𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥, 𝐴𝑑) = 𝛽 ∗
𝐸𝑟(𝑘,𝑠𝑥)

∑ 𝐸𝑟(𝑘,𝑠𝑙)∀𝑠𝑙∈𝑆𝑠(𝑘,𝐴𝑑)
+ (1 − 𝛽) ∗

𝑁𝑐(𝑘,𝑠𝑥)

∑ 𝑁𝑐(𝑘,𝑠𝑙)∀𝑠𝑙∈𝑆𝑠(𝑘,𝐴𝑑)
 (19)

As seen in the above formula, 𝛽 is a weighting parameter and varies in the interval [0, 1]; and

𝑁𝑐(𝑘, 𝑠𝑥) is the number of neighbours of sensor node 𝑠𝑥 at time 𝑘 . Algorithm 1 shows the LA-SNSA.

The weighting parameter (𝛽) is firstly selected. Then, the objective function for sensor nodes in

𝑆𝑔(𝑘, 𝐴𝑑) set is calculated based on Equation (19). After that, a number of 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes,

with the highest objective function, are selected and added to 𝑆𝑔(𝑘, 𝐴𝑑) set.

Algorithm 1: Lifetime Awareness Sensor Node

Selection Algorithm (LA-SNSA)

1: select 𝛽;

2: set ℓ = 0;

1: while ℓ ≤ 𝑛𝑔(𝑘, 𝐴𝑑) do:

3: for each sensor node 𝑠𝑥 ∈ 𝐒𝑠(𝑘, 𝐴𝑑) do:

4: calculate 𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥 , 𝐴𝑑) based on Equation (19);

5: end for;

6: find the sensor 𝑠𝑥
∗ with maximum

 𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥 , 𝐴𝑑);

7: add 𝑠𝑥
∗ to 𝐒𝑔(𝑘, 𝐴𝑑);

8: remove 𝑠𝑥
∗ from next search;

9: increment ℓ: ℓ = ℓ + 1;

10: end while;

5.2 Random Bit Climbing (RBC)

Random Bit Climbing (RBC) optimization [42]-[43] is a metaheuristic local search-based algorithm

that employs a trajectory-based approach to guide the search and obtain a (near) optimal solution.

25

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

RBC is a single-solution metaheuristic, which adopts the exploitation in its operation through

memorizing the best current solution. In RBC, single stochastic solution is used for each round.

Firstly, an initial single-parent (𝑝) is randomly generated and set as the current solution. After that, the

objective function of the initial parent is evaluated. Then, a random arrangement of the index positions

for the current solution is created and kept in the 𝜋 vector. Next, a child is produced by mutating a

single dimension of the current solution at a time. The child replaces the current solution if it fulfils

the objective function. The evaluation of children either continues for all possible children or is

terminated when the first better child is found. Then, a new random permutation is generated for the

current solution. The process continues until a predefined number of iterations have been exhausted.

However, the main limitation of RBC is the trap of local optimal solution because of its deficiency for

exploration ability.

5.3 λ-Modified Random Bit Climbing (λ-mRBC)

Algorithm 2 shows the proposed λ-Modified Random Bit Climbing (λ-mRBC). Because the

exploration is tied up to randomness [17], the λ-mRBC adopts a random parameter (λ) to use

exploration in RBC operation. The solution is represented as a vector of n elements. The vector index

represents the task number (from 1 to 𝑛). On the other hand, the vector value represents one of the

selected sensor node numbers. In Step (1), an initial parent solution (𝑃(𝑣, 𝑠)) is generated randomly.

This initial parent solution is then set as the current best solution and is stored in 𝐶𝑠(𝑣, 𝑠). The

evaluation is performed in Step (2) to calculate the fitness value of the current best solution. In Step

(3), the random permutation for the current best solution is achieved to produce the permutation vector

(𝜋). In Step (4), a new operator named random transposition operator (trans) is added into the RBC

method to escape from local optima and to increase the exploration of the search space. The random

transposition operator is performed on the current solution according to the following rule:

𝐶𝑠(𝑣, 𝑠) = {
𝑡𝑟𝑎𝑛𝑠 (𝐶𝑠(𝑣, 𝑠)) 𝑟 < 𝜆

𝐶𝑠(𝑣, 𝑠) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20)

where 𝑟 is a random number which uniformly distributes between [0, 1], λ an algorithm parameter

number which ranges between 0 and 1 and trans is the transposition operation that randomly

exchanges the places of the current best solution. The children are generated in Step (5) by cloning

𝐶𝑠(𝑣, 𝑠) and flipping the position 𝜋𝑙. After that, the child is evaluated in Step (6). In Step (7), the child

replaces the current best solution if it has a better fitness value. In Step (8), the children are generated

and evaluated. The algorithm flow continues to the next iteration in Step (9). The operations are

repeated until the maximum iterations are exhausted in Step (10). After termination, the current best

solution is returned as the suboptimal solution of the problem.

Algorithm 2: λ-Modified Random Bit Climbing (λ-mRBC)

Step (1) Compute the initial parent task/node pairs 𝑃(𝑣, 𝑠); set the current best

solution 𝐶𝑠(𝑣, 𝑠) = 𝑃(𝑣, 𝑠); and set 𝑖𝑡𝑒𝑟 = 1.

Step (2) Calculate the fitness value 𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝐶𝑠(𝑣, 𝑠)] of 𝐶𝑠(𝑣, 𝑠).

Step (3) Generate the random permutation 𝝅 = (𝜋1, 𝜋2 … 𝜋𝑚) of the position of

Cs(𝑣, 𝑠); and set 𝑙 = 1.

Step (4) if (r < λ): execute transposition operation of 𝐶𝑠(𝑣, 𝑠) positions.

Step (5) Generate the child (offspring) 𝑂𝑙(𝑣, 𝑠) by cloning 𝐶𝑠(𝑣, 𝑠) and flipping

the position 𝜋𝑙;

Step (6) Calculate the objective function 𝐹𝑜𝑏𝑗[𝐴𝑗 , 𝑂𝑙(𝑣, 𝑠)] of 𝑂𝑙(𝑣, 𝑠).

Step (7) If (𝑭𝒐𝒃𝒋[𝑨𝒅, 𝑶𝒍(𝒗, 𝒔)] < 𝑭𝒐𝒃𝒋[𝑨𝒅, 𝑪𝒔(𝒗, 𝒔)]): replace 𝐶𝑠(𝑣, 𝑠) =

𝑂𝑙(𝑣, 𝑠); and go to Step (9).

Step (8) If (𝒍 > 𝒎): Go to Step (9)

 else: Increment 𝑙: 𝑙 = 𝑙 + 1; and go to step (5);

Step (9) Increment 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1.

Step (10) If (𝒊𝒕𝒆𝒓 > 𝒎𝒂𝒙 𝒊𝒕𝒆𝒓): go to step (11)

 else: go to Step (3)

Step (11) Return 𝐶𝑠 as the suboptimal solution and finish.

26

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

5.4 The Complete TMS Approach

Figure 4 explains the proposed TMS approach. First of all, heterogeneous sensor nodes are created and

WSN is randomly distributed. Then, the algorithm parameters for λ-mRBC and LA-SNSA are set and

defined. When a target sensor node requests execution of an application, a DAG of the requested

application is created. LA-SNSA is performed based on Algorithm 1 to select the sensor nodes that

will cooperatively execute the application so that the network lifetime is improved. λ-mRBC is

achieved based on Algorithm 2 to optimally get the best task/node pairs with minimum execution time

and energy consumption. After that, λ-mRBC method is repeated until termination condition is met.

Finally, the final solution of task/node pair is obtained and simulation statistics are recorded.

Figure 4. The proposed TMS approach.

6. SIMULATION RESULTS

This section evaluates the proposed λ-mRBC method. C++ is used to build the simulation environment

using core i5 of 2.5 GHz processor and 4 GB memory.

6.1 Simulation Setting

6.1.1 The Parameters for Application DAG

Unless it is clearly stated, the application DAG consists of fifteen tasks (𝑛 = 15) as follows: four tasks

are used as entry tasks, ten tasks are used as normal tasks and one task is used as an exit task. The

immediate successors for each entry and normal tasks are selected to be uniformly distributed in the

range of [1, 3]. The computation load of each task (𝑁𝑣𝑖
) is initialized to be uniformly distributed in the

range of [300, 600] Kilo Clock Cycles (KCC). The communication load for edges among tasks (𝑒𝑖𝑗) is

initialized to be uniformly distributed in the range of [500, 800] bytes of data.

6.1.2 The Parameters for WSN

WSN is implemented using 224 heterogeneous sensor nodes which are deployed randomly in a

monitoring region of 200 m × 200 m. The transmission radio is set to 𝑅𝑟 = 100 m. The radio channel

with bandwidth (i.e., bit rate) of 250 Kbps is used in the simulation environment. The processing

speed for sensor nodes (𝑓𝑠𝑥
) stands for the total number of clock cycles which can be executed within

start

Schedule the target arrival

Create the application DAG

Perform the LA-SNSA

Perform the λ-mRBC algorithm

Simulation

terminated?

end

No

Deploy WSN, and set the λ-

mRBC and LA-SNSA

parameters

Print the simulation statistics

Yes

27

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

one second. It is set to be uniformly distributed in the range of [30, 100] Million Cycles per Second

(MCPS).The power consumption of the processors for sensor nodes (𝑒𝑠𝑥
) is set to be uniformly

distributed in the range of [4, 10] mJ. The initialized energy level (𝐸𝑟(0, 𝑠𝑖)) of each sensor is set to be

uniformly distributed in the range of [0, 1] J.

6.1.3 The Parameters for the λ-mRBC

The weighting parameters are set as follows: 𝛽=0.5 and 𝛼=0.5. The number of iterations for λ-mRBC

is assumed to be 100. Unless it is clearly stated, the number of selected nodes to execute the

application is 𝑛𝑔(𝑘, 𝐴𝑑) = 3 sensor nodes. The λ-mRBC algorithm parameter λ is set to 0.5.

6.2 Results and Analysis

6.2.1 Impact of Number of Iterations

The fitness value of the best solution is plotted in Figure 5 (a) for the RBC and λ-mRBC methods. It

becomes clear that the RBC method has a lower convergence speed, compared with the proposed λ-

mRBC method. Additionally, the RBC is trapped in local minima. On the other hand, the proposed λ-

mRBC method converges to better fitness value by 19.1%, compared with RBC method. This is

because of using the transposition operator (trans), where the positions of current best solution

elements are randomly swapped. The transposition operator (trans) which is controlled by adjusting

the λ parameter occurs in some selected iterations. When the elements of the current best solution are

randomly swapped, more exploration in the search space occurs. Hence, the λ-mRBC method tries to

escape from the trap of local minima. Consequently, better solution can be found. Figure 5 (b) and

Figure 5 (c) show the make-span and total energy consumption versus iteration for both RBC and λ-

mRBC methods. Compared with RBC method, the proposed λ-mRBC method converges to better

make-span and total energy consumption by 19.6% and 22.3%, respectively. Since the fitness value of

λ-mRBC method has better convergence speed and lower values, the performance of the proposed λ-

mRBC method, in terms of make-span and total energy consumption, is improved, compared with the

RBC method.

(a) Fitness value (b) Make-span (c) Energy consumption

Figure 5. The effect of iterations for the RBC and proposed λ-mRBC methods.

6.2.2 Impact of Varying Number of Sensor Nodes

This section evaluates the effects of selected sensor node size (𝑛𝑔(𝑘, 𝐴𝑑)). The proposed λ-mRBC

method supports different sizes of the sensor nodes. The size of the sensor nodes is changed from 1 to

5 with one sensor node for each step. Figure 6 shows the performance of the RBC and proposed λ-

mRBC methods with the sensor node size. As shown in Figure 6 (a), the fitness value is getting better

whenever the size of the selected sensor nodes increases. This is because the computational load of

tasks is parallelized in more powerful fashion whenever the size of the selected sensor nodes rises.

However, the proposed λ-mRBC method gives lower fitness values, compared with traditional RBC

method. In addition, the fitness value of RBC method at a sensor node size of 3 does not improve,

compared with its value at a sensor node size of 3. This is due to the trapping in the local minima. The

make-span shown in Figure 6 (b) is reduced whenever the sensor node size goes up, because the

computational load is distributed to more sensor nodes. As shown in Figure 6 (c), the communication

activities used to exchange the communication edges increase whenever the sensor node size rises up,

because tasks can be distributed to more sensor nodes. Therefore, according to Equation (15), the total

0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iterations

F
it

n
e
s
s
 v

a
lu

e

mRBC

RBC

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

Iterations

M
a
k
e
s
p

a
n

 (
m

s
)

mRBC

RBC

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

Iterations

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

mRBC

RBC

28

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

energy consumption rises with increasing the sensor node size. Ultimately, the proposed λ-mRBC

method improves the energy consumption. Additionally, compared with RBC method, the proposed λ-

mRBC method has better fitness value, make-span and total energy consumption by 11.8% , 10.3%

and 12.6%, respectively.

(a) Fitness value (b) Make-span (c) Energy consumption

Figure 6. The effect of node size for the RBC and proposed λ-mRBC methods.

6.2.3 Impact of Number of Tasks

The proposed λ-mRBC method supports different numbers of tasks. In Figure 7, the number of tasks

varies from 5 to 40 with five tasks for each step. The fitness value, make-span and energy

consumption for each step are plotted. In fact, according to Equation (14) and Equation (15),

increasing the number of tasks leads to the increasing of the computational and communicational

loads. Therefore, make-span and energy consumption increase with increasing the number of tasks.

This is shown in Figure 7 (b) and Figure 7 (c). The aim of the objective function of Equation (17) is to

reduce the energy consumption and the make-span as well. Thus, some solutions give better

improvement in terms of energy consumption and other solutions give improvement in terms of make-

span. Therefore, the fitness values shown in Figure 7 (a) fluctuate with increasing the number of tasks.

It is worth mentioning that the proposed λ-mRBC method can cope with different numbers of tasks

due to the small fluctuation of fitness values, compared with the RBC method. Besides, λ-mRBC

method gives better performance in terms of make-span and energy consumption. Furthermore,

compared with RBC method, the proposed λ-mRBC method has better fitness value, make-span and

total energy consumption by 3.6%, 2.4% and 8.8%, respectively.

(a) Fitness value (b) Make-span (c) Energy consumption

Figure 7. The effect of varying number of tasks for the RBC and proposed λ-mRBC methods.

6.2.4 LA-SNSA Evaluation

This section evaluates the performance of LA-SNSA. The performance metrics used to evaluate the

proposed LA-SNSA are the Remaining Energy Performance (REP) and the Neighbour Count

Performance (NCP). REP is defined as the normalized sum of normalized remaining energy of all

sensor nodes and NCP is defined as the normalized sum of the number of neighbours of all sensor

nodes. Therefore, REP and NCP are calculated as follows:

𝑅𝐸𝑃(𝑘) =
∑ [𝐸𝑟(𝑘,𝑠𝑙)/𝐸𝑟(𝑚𝑎𝑥)(𝑘,𝑠𝑙)]𝑚

𝑙=1

𝑅𝐸𝑃𝑚𝑎𝑥
 (21)

𝑁𝐶𝑃(𝑘) =
∑ [𝑁𝑐(𝑘,𝑠𝑙)]𝑚

𝑙=1

𝑁𝐶𝑃𝑚𝑎𝑥
 (22)

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of nodes

F
it

n
e
s
s
 v

a
lu

e

mRBC

RBC

1 1.5 2 2.5 3 3.5 4 4.5 5
140

150

160

170

180

190

200

Number of nodes

M
a
k
e
s
p

a
n

 (
m

s
)

mRBC

RBC

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

Number of nodes

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

mRBC

RBC

5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of tasks

F
it

n
e
s
s
 v

a
lu

e

mRBC

RBC

5 10 15 20 25 30 35 40
50

100

150

200

250

300

350

400

450

500

Number of tasks

M
a
k
e
s
p

a
n

 (
m

s
)

mRBC

RBC

5 10 15 20 25 30 35 40

2

4

6

8

10

12

14

16

18

20

Number of tasks

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

mRBC

RBC

29

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Where 𝑅𝐸𝑃𝑚𝑎𝑥 and 𝑁𝐶𝑃𝑚𝑎𝑥 are the maximum values of REP and NCP which are calculated at the

beginning of the simulation. Therefore, 𝑅𝐸𝑃(𝑘) and 𝑁𝐶𝑃(𝑘) values are in the range of [0, 1]. In

Figure 8 and Figure 9, the proposed LA-SNSA and random selection schemes are compared by

calculating these performance metrics. In random selection scheme, however, the sensor nodes

(𝑛𝑔(𝑘, 𝐴𝑑)) are chosen randomly from the neighbouring target sensor node (𝑠𝑇𝑆𝑁).

As shown in Figure 8, the 𝑅𝐸𝑃(𝑘) is decreasing with time. This is due to the increasing energy

consumption of communication and processing activities, which are caused by the application

executions. It is observed from Figure 8 that the rate of 𝑅𝐸𝑃(𝑘) reduction with time using the

proposed LA-SNSA is smaller than those in the random selection scheme. The reason behind this is

that LA-SNSA aims to select the nodes with higher remaining energy, while the random selection

scheme selects the sensor nodes randomly without any knowledge of the node remaining energy. The

proposed LA-SNSA enhances the 𝑅𝐸𝑃(𝑘) about three times, compared with the random selection

scheme.

Figure 8. REP for the RBC and proposed λ-mRBC methods.

The value of 𝑁𝐶𝑃(𝑘) remains 1 until the first node death takes place. Thus, 𝑅𝐸𝑃(𝑘) and number of

dead nodes are calculated and plotted in Figure 9 after the death of the first node. Application

executions lead to energy consumption, caused by processing and communicating. Therefore, sensor

node energy level decreases. When the energy level of sensor node is exhausted, the sensor node dies

and all activities stop. After the first death, 𝑁𝐶𝑃(𝑘) is decreased due to the increasing of death nodes.

As shown in Figure 9, 𝑁𝐶𝑃(𝑘) is decreased sharply in case of random selection scheme, because there

are no directional guides to select sensor nodes. Additionally, the rate of increased dead nodes is

higher in case of random selection scheme. Another advantage of the proposed LA-SNSA is that it

takes a long time for first node to die. Furthermore, compared with random selection, the 𝑁𝐶𝑃(𝑘) is

improved by 20.1% using the proposed LA-SNSA.

Figure 9. NCP and number of dead nodes for the RBC and proposed λ-mRBC methods.

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (hours)

R
E

P
 (

k
)

LA-SNSA

Random Selection

324 326 328 330
0

0.5

1

Simulation time (hours)

N
C

P
 (

k
)

LA-SNSA

324 326 328 330
0

50

100

150

Simulation time (hours)

N
u

m
b

e
r

o
f

d
e

a
d

 n
o

d
e

s

LA-SNSA

0 50 100 150 200
0

0.5

1

Simulation time (hours)

N
C

P
 (

k
)

Random Selection

0 50 100 150 200
0

50

100

150

Simulation time (hours)

N
u

m
b

e
r

o
f

d
e

a
d

 n
o

d
e

s

Random Selection

30

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

Table 1 shows the Remaining Energy Performance (REP), Neighbour Count Performance (NCP) and

first node death time for the proposed LA-SNSA and random selection schemes. The proposed LA-

SNSA ends with better REP which implies that the remaining energy of the sensor nodes is better

distributed in the network. In addition, there is an improvement in NCP in case of using the proposed

LA-SNSA. This improvement leads to less gaps without sensor nodes in the network. The network

lifetime can be defined as the time when the first node dies [44]-[45]. First node death time is bigger in

case of the proposed LA-SNSA. Since REP, NCP and first node death time are improved in the

proposed LA-SNSA scheme, the network lifetime is also enhanced in case of using the proposed LA-

SNSA.

Table 1. REP, NCP and first node death time for random and LA-SNSA schemes.

Method
Remaining Energy

Performance (REP)

Neighbour Count

Performance (NCP)

First Node Death

time (Hours)

LA-SNSA 0.51 0.19 324.79

Random 0.12 0.16 0.03

6.2.5 The Effect of λ-mRBC Parameter

Figure 10 shows the fitness values versus the iteration using λ parameter values of 0.1, 0.3, 0.5, 0.7

and 0.9. According to Equation (20), the probability of running the transposition operation is

increasing with increasing the λ parameter. Therefore, the convergence speed for λ parameter of 0.1

and 0.3 is the slowest, compared with other λ parameter values. Furthermore, when using λ parameters

of 0.1 and 0.3, the λ-mRBC method converges to the highest fitness value. On the other hand, when

using λ parameters of 0.5 and 0.7, the λ-mRBC method converges to the lowest fitness value. The

fastest convergence speed occurs when using λ parameter of 0.9. However, λ-mRBC method

converges to larger fitness value than the fitness value when using λ parameters of 0.5 and 0.7. It is

worth mentioning that the number of optimization algorithm parameters increases the complexity of

the algorithm [17]. λ-mRBC uses only one parameter (λ) which indicates its low complexity.

Figure 10. The effect of λ parameter.

7. CONCLUSION

In this paper, a Task Mapping and Scheduling (TMS) approach for WSN is introduced to look for the

best tasks/nodes mapping solution. The proposed λ-mRBC, which is a modified version of RBC

optimization method, is proposed to improve the performance of the search. To escape from local

optima and to increase the exploration of the search space, the λ-mRBC method employs a new

operator, which is named random transposition. The transposition operator changes the elements’

positions of current best solution. The λ-mRBC method is controlled by using only one parameter (λ).

Energy consumption and application execution time (make-span) are taken into consideration in the

fitness objective to get the best performance of TMS. In addition, LA-SNSA is proposed to select a

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

F
it

e
s
s
 v

a
lu

e

Lambda = 0.1

Lambda = 0.3

Lambda = 0.5

Lambda = 0.7

Lambda = 0.9

31

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

number of sensor nodes needed to execute the applications, so that the network lifetime is improved.

The simulation results show that the proposed λ-mRBC method improves the energy consumption,

make-span and fitness value, compared with traditional RBC method. Furthermore, using LA-SNSA

enhances the network lifetime, compared with random selection approaches. Although the proposed

λ-mRBC uses a new operator called transposition operator to escape from local optima, it is still a

single-solution metaheuristic. Unlike population-based metaheuristics, the proposed λ-mRBC is of less

exploration of search space. The future work aims to add a new operator that employs more than one

solution to increase the exploration of search space.

REFERENCES

[1] B. Sharma and T. C. Aseri, "A Comparative Analysis of Reliable and Congestion-aware Transport

Layer Protocols for Wireless Sensor Networks," International Scholarly Research Network (ISRN),

Sensor Networks, 2012.

[2] M. Katiyar, H. P. Sinha and D. Gupta, "On Reliability Modeling in Wireless Sensor Networks-A

Review," IJCSI International Journal of Computer Science, vol. 9, no. 6, pp. 134–146, 2012.

[3] H. Yetgin, K. T. K. Cheung, M. El-Hajjar and L.H. Hanzo, "A Survey of Network Lifetime

Maximization Techniques in Wireless Sensor Networks," IEEE Communication Surveys &

Tutorials, vol. 19, no. 2, pp. 828-854, 2017.

[4] P. R. Pereira, A. Grilo, F. Rocha, M. S. Nunes, A. Casaca, C. Chaudet, P. Almstrom and M. Johansson,

"End to End Reliability in Wireless Sensor Networks: Survey and Research Challenges," Proceedings

of the EuroFGI Workshop on IP QoS and Traffic Control, 2007.

[5] M. A. Kafi, J. B. Othman, M. Bagaa and N. Badache, "CCS_WHMS: A Congestion Control Scheme

for Wearable Health Management System," Journal of Medical Systems, vol. 39, no. 12, 2015.

[6] Y. E. Hamouda and M. M. Msallam, "Smart Heterogeneous Precision Agriculture Using Wireless

Sensor Network Based on Extended Kalman Filter," Neural Computing and Applications, pp.1-17,

2018.

[7] P. R. C. Araújo, R. H. Filho, J. J. Rodrigues, J. P. Oliveira and S. A. Braga, "Middleware for Integration

of Legacy Electrical Equipment into Smart Grid Infrastructure Using Wireless Sensor Networks," Inter.

 Journal of Communication Systems, vol. 31, no. 1, pp. e3380, 2018.

[8] B. L. R. Stojkoska and K. V. Trivodaliev, "A Review of Internet of Things for Smart Home: Challenges

and Solutions," Journal of Cleaner Production, vol. 140, no. 3, pp.1454-1464, 2017.

[9] Y. E. Hamouda and C. Phillips, "Adaptive Sampling for Energy-efficient Collaborative Multi-Target

Tracking in Wireless Sensor Networks," IET Wireless Sensor Systems, vol. 1, no. 1, pp.15-25, 2011.

[10] J. Luo and S. Zou, "Strong k-barrier Coverage for One-way Intruders Detection in Wireless Sensor

Networks," International Journal of Distributed Sensor Networks, vol. 12, no. 6, 2016.

[11] J. Manikannu and V. Nagarajan, "A Survey of Energy Efficient Routing and Optimization Techniques

in Wireless Sensor Networks," IEEE International Conference on Communication and Signal

Processing (ICCSP), 2018.

[12] M. Wolf, Smart Camera Design, Springer, 2018.

[13] M. Karakaya and H. Qi, "Coverage Estimation in Heterogeneous Visual Sensor Networks,"

Proceedings of the 8th IEEE International Conference on Distributed Computing in Sensor Systems

(DCOSS), pp. 41-49, 2012.

[14] C. A. Navarro, N. Hitschfeld-Kahler and L. Mateu, "A Survey on Parallel Computing and Its

Applications in Data-parallel Problems Using GPU Architectures," Communications in Computational

Physics, vol. 15, no. 2, pp. 285-329, 2014.

[15] L. Dai, H. Xu, T. Chen, Q. Chao and L. Xie, "A Multi-Objective Optimization Algorithm of Task

Scheduling in WSN," International Journal of Computers, Communications & Control, vol. 9, no. 2, pp.

160-171, 2014.

[16] Y. Yang, X. Qiu, L. Meng and K. Long, "Task Coalition Formation and Self-adjustment in the Wireless

Sensor Networks,". Int J. Commun. Syst., vol. 27, no. 10, pp. 2241–2254, 2014.

[17] C. Blum and A. Roli,"Metaheuristics in Combinatorial Optimization: Overview and Conceptual

Comparison," ACM Computing Surveys (CSUR), vol. 35, no. 3, pp. 268-308, 2003.

32

"Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks", Y. E. M. Hamouda.

[18] I. Boussaïd, J. Lepagnot and P. Siarry, "A Survey on Optimization Metaheuristics," Information

Sciences, vol. 237, pp. 82-117, 2013.

[19] Y. Jin, J. Jin, A. Gluhak, K. Moessner and M. Palaniswami, "An Intelligent Task Allocation Scheme for

Multihop Wireless Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 3,

pp. 444-451, 2012.

[20] R. Shams and F. Khan, "Solving Wireless Network Scheduling Problem by Genetic

Algorithm," IAMURE International Journal of Mathematics Engineering & Technology, vol. 2, no. 11,

pp. 63-70, 2012.

[21] J. Yang, H. Zhang, Y. Ling, C. Pan and W. Sun, "Task Allocation for Wireless Sensor Network Using

Modified Binary Particle Swarm Optimization," IEEE Sensors Journal, vol. 14, no. 13, pp. 882-892,

2014.

[22] A. A. Ferjani, N. Liouane and I. Kacem, "Task Allocation for Wireless Sensor Network Using Logic

Gate-based Evolutionary Algorithm," International Conference on Control, Decision and Information

Technologies (CoDIT), pp. 654-658, 2016.

[23] V. Papataxiarhis, "Optimal Task Assignment in Sensor Networks," Proc. of the 17th IEEE International

Conference on Mobile Data Management (MDM), pp. 26-31, 2016.

[24] S. Abdelhak, C. S. Gurram, S. Ghosh and M. Bayoumi, "Energy-balancing Task allocation on Wireless

Sensor Networks for Extending the Lifetime," Proceedings in the 53rd IEEE Int. MWSCAS, pp. 781-

784, 2010.

[25] X. Yin, W. Dai, B. Li, L. Chang and C. Li, "Cooperative Task Allocation in Heterogeneous Wireless

Sensor Networks", Inter. Journal of Distributed Sensor Networks, vol. 13, no. 10, pp. 1-12, 2017.

[26] D. R. Bolla, J. J. Jijesh and M. S. Pramod, "Real-Time Data Fusion Applications in Embedded Sensor

Network Using TATAS," Indian Journal of Science and Technology, vol. 10, no. 13, pp. 1-7, 2017.

[27] Y. Tian and E. Ekici, "Cross-Layer Collaborative in Network Processing in Multihop Wireless Sensor

Networks," IEEE Trans. Mobile Comput., vol. 6, no. 3, pp. 297-310, 2007.

[28] Y. Tian, B. Jarupan, E. Ekici and F. Ozguner, "Real-Time Task Mapping and Scheduling for

Collaborative in Network Processing in DVS-Enabled Wireless Sensor Networks," Proceedings of the

IEEE International Parallel and Distributed Processing Symposium (IPDPS 2006), pp. 1-10, 2006.

[29] Y. E. M. Hamouda and C. Phillips, "Biological Task Mapping and Scheduling

in Wireless Sensor Network," Proc. of the IEEE International Conference on Communications

Technology and Applications, pp. 914 – 919, 2009.

[30] Y. E. M. Hamouda, "Light Allocation of Tasks in Clustered-based Wireless Sensor Networks", Al-Aqsa

University Journal (Natural Sciences Series), vol. 21, pp. 90-119, 2017.

[31] K. N. Devi and R. Muthuselvi, "Parallel Processing of IoT Health Care Applications," Proc. of the 10th

IEEE International Conference on Intelligent Systems and Control (ISCO), pp. 1-6, 2016

[32] J. Jiang, G. Han and C. Zhu, "A Complicated Task Solution Scheme Based on Node Cooperation for

Wireless Sensor Networks," Proc. of the 22nd IEEE International Conference on Parallel and Distributed

Systems (ICPADS), pp. 264-269, 2016.

[33] P. Skocir, M. Kusek and G. Jezic, "Energy-efficient Task Allocation for Service Provisioning in

Machine-to-Machine Systems," Concurrency and Computation: Practice and Experience, vol. 29, no.

23, pp. e4269, 2017.

 [34] X. Yin, K. Zhang, B. Li, A. K. Sangaiah and J. Wang, "A Task Allocation Strategy for Complex

Applications in Heterogeneous Cluster–based Wireless Sensor Networks," International Journal of

Distributed Sensor Networks, vol. 14, no. 8, 2018.

 [35] E. A. Khalil, S. Ozdemir and S. Tosun, "Evolutionary Task Allocation in Internet of Things-based

Application Domains," Future Generation Computer Systems, vol. 86, pp.121-133, 2018.

[36] W. Yu, Y. Huang, E. Ding and A. Garcia-Ortiz, "Joint Task Allocation Approaches for Hierarchical

Wireless Sensor Networks," Proc. of the IEEE 7th International Conference on Modern Circuits and

Systems Technologies (MOCAST), pp. 1-4, 2018.

[37] N. Bulusu, J. Heidemann and D. Estrin, "GPS-less Low-Cost Outdoor Localization for Very Small

Devices," IEEE Personal Communications, vol. 7, no. 5, pp. 28-34, 2000.

[38] T. C. Karalar, S. Yamashita, M. Sheets and J. Rabaey, "A Low-Power Localization Architecture and

33

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

System for Wireless Sensor Networks," IEEE Workshop on Signal Processing Systems, USA: Signal

Processing Society, pp. 89-94, 2004.

[39] O. Sinnen, Task Scheduling for Parallel Systems, New Jersey: John Wiley & Sons, Inc., Hoboken,

2007.

[40] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-efficient Communication Protocol

for Wireless Microsensor Networks," Proceedings of the IEEE 33rd Annual Hawaii International

Conference on System Sciences (HICSS '00), pp. 1-10, 2000.

[41] A. Wang and A. Chandrakasan, "Energy-efficient DSPs for Wireless Sensor Networks," IEEE Trans.

Signal Process. Mag., pp. 68-78, 2002.

[42] L. Davis, "Bit-Climbing, Representational Bias and Test Suite Design," Proc. of the 4th International

Conference on Genetic Algorithms, pp. 18-23, 1991.

[43] H. Aguirre and K. Tanaka, "Random Bit Climbers on Multiobjective MNK-Landscapes: Effects of 49

and Population Climbing," IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, vol. 88, pp. 334-345, 2005.

 [44] M. A. Abd, S. F. M. Al-Rubeaai, B. K. Singh, K. E. Tepe and R. Benlamri, "Extending Wireless Sensor

Network Lifetime with Global Energy Balance," IEEE Sensors Journal, vol. 15, no. 9, pp. 5053–5063,

2015.

[45] I. Dietrich and F. Dressler, "On the Lifetime of Wireless Sensor Networks," ACM Trans. Sen. Netw.,

vol. 5, no. 1, 2009.

 ملخص البحث:

اااااذ اله ااااالو اال.الاااااملتعاااااذه الااااامشاله تخااااالاهااااااوللات فااااااتالهمجاااااذلاسلااااا سه جذا ااااا ا ااااا وذ الهم

ااااااذ اله اااااالوالاامواااااا ات ااااااام الهاااااا ا جااااااذلاهله ف اااااااتالهمن اااااافياشبااتناااااااما اااااا ا اااااا وذ الهم

ااع ماااااا اععىااااااجذاملاااااا اععاااااا .است م اااااا الدلاااااا ل الد ذ ااااااالاه فاااااااتالهمجااااااذلاسلاااااا سه جذا اااااا

ت اااااا لااتااااااراتفاااااا افا فا اااااالاهع اهااااااللاسمُماااااافالهااااااا ول.اتح ااااااا اتهاااااا اله تناااااااماسل اااااا ج الهفذخاااااا

ملااااا اله ااااالتالهعاااااا لل اهااااا اشلااااا الهحكااااا لاملااااا ا لااااا لاش ىااااا اسش اااااف اتوااااا باه ذهاااااالاشسا

اخفا لاه الهم ذهال.

ا اااااا الهففا اااااالالهمع هاااااالالهم ف اااااالاااىُااااااذ امذهاااااا ال ااااااا اا اااااام امذهاااااا ال تل اااااالاهاااااا اشلاااااا

هاااا حورا الهمحلااااال.اسااااا رالتح ااااا ال واااااذ ا ىااااذثاله حااااماسهاااا الاااارالهجاااافس اهاااا اله ااااارالهم لاااا

 اااااا ا(.ا اااااا اله اااااا ثااااااااا رال اااااااذتاماااااا اهاااااا اماλُععمااااااتالف واااااااذ اعذ اااااا للاه ااااااافاسل اااااا ا

اااااذ اهااااا اشلااااا اله تنااااااماله عاااااذسر اهل ف ااااااتاعجااااا اتح اااااا امُمااااافالهاااااا ول.اععااااا ا اهاااااماااااااا رلهم

الده ااااا اشساله فاااااا اهااااا ال اماااااذاده ااااا ا تتناااااامالهففا ااااالالهمع هااااالالهم ف ااااالاهلحكااااا لاملااااا الهحااااا

اااااذ ااعحاااااامااااااا راله لاااااا الهااااا الهحااااا الد رااااا الهمما هااااا اوااااا اهااااا ات علاااااتاعااااااتسل/الهمجاااااذل اثالهم

اله تناماسل ج الهفذخل.

ااااااا اش لثات فاااااااات الهمجاااااااذلاسخااااااا اعاتااااااااار اااااااذل الهمحذلاااااااذحاشبالهففا ااااااالالهمع هااااااالالهم ف ااااااالاتحُ

اااااا سلاااااا سه جذ.اسه ذتراااااالاعذهففا اااااالاله لا ااااااالاا ااااااحبالهففا اااااالالهم ف اااااالاتاااااا الهاااااا اتح ماااااالاخاا ُّ

ا%19.6%اسا19.1اعل اااااااااالهم ثهاااااااالاس اااااااافحالهنلعاااااااا اسلف اااااااا ج الهولاااااااا اهلفذخاااااااالاعت اااااااا ا

%املاااااا اله فتااااااا .اهاااااا الذراااااا اك اااااافااتماااااااا ذهاااااالامُماااااافالهااااااا ولام اااااافال ااااااا للا22.3س

اااااا ات تااااااا الهفذخاااااالالهم ااااااالاعااااااا امُ اااااا ال ااااااذ لتتهااااااالالف اااااااذتالهم ف اااااال.اسخاااااا اتح اهم

طاه ذترااااالاعففا اااااا3عم ااااا لتا ه ذترااااالاسلالف ااااااذتالهعاااااا لل .امااااا سحاملااااا ا هااااامااهااااافل ات فا اااااذ

ااااااذ اعت اااااا لا اااااا اماااااا اله ااااااافلباهعُ اااااا الهم ذ اااااا للا%اع20.1عذف اااااااذتالهعااااااا لل اا اااااا اتح

 لتتهالالف اذتالهم ف ل.

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

