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ABSTRACT 

This paper examines the problem of Task Mapping and Scheduling (TMS) in Wireless Sensor Networks (WSNs). 

The application, which is supposed to be executed in WSNs, can be divided into interdependent tasks. The key 

objectives of TMS in WSNs are the   improvement of execution time, energy consumption and network lifetime. A 

modified version of Random Bit Climbing (RBC) optimization method, also called λ-Modified Random Bit 

Climbing (λ-mRBC), is developed to get better and faster optimal or near-optimal solution. In the proposed λ-

mRBC method, a new operator, called transposition operator, is added to improve the exploration of search 

space and hence to escape from the local optima. The deepth of exploration is controlled by using a single 

parameter (λ). Firstly, a number of sensor nodes is selected to cooperatively execute the application with the 

purpose of improving the network lifetime. After that, the proposed λ-mRBC method is performed to get the 

optimal or near-optimal task/sensor pair solution, so that the execution time and energy consumption are 

minimized.  

The simulation results show that λ-mRBC method enhances the TMS performance. Compared with the 

traditional RBC method, the proposed λ-mRBC method converges to better fitness value, make-span and total 

energy consumption by 19.1%, 19.6% and 22.3%, respectively. Furthermore, the network lifetime is prolonged 

through using the proposed selection algorithm. The distribution of remaining energy among sensor nodes is 

improved about three times, compared with the random selection scheme. Furthermore, compared with the 

random selection, the number of neighbours for sensor nodes is improved by 20.1% using the proposed selection 

algorithm. 
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1. INTRODUCTION 

Sophisticated technologies and applications, such as smart homes, Internet of Things (IoT), smart grid, 

precision agriculture and automated control have provoked the need of developing self-organized, 

multi-hop and ad-hoc Wireless Sensor Networks (WSNs). WSNs are made up of hundreds or 

thousands of tiny and cheap sensor nodes with limited resources. Sensor nodes cooperate with each 

other to execute the applications. In addition, sensor nodes are scattered randomly or in a planned 

manner to monitor and control the field of interest [1]. Sensor node consists of energy unit, processing 

unit, sensing unit, wireless communication unit and storage unit [2]. In several applications, WSNs are 

positioned in sites that are difficult to be physically accessed; i.e., forest. Therefore, network lifetime 

is an essential requirement for WSNs to prolong the lifetime of the sensor nodes and the network 

connectively [3, 4]. Lots of civil and military applications employ WSNs. Civil applications, for 

example, include healthcare [5], precision irrigation [6], smart grid [7], home automation [8] and 

surveillance [9], while military-based applications usually include intrusion detection and detection of 

illegal crossings [10].  

Given the fact that the sensor nodes have limited resources, improving the energy-efficiency and 

application execution time of WSNs seems to be plausible to increase the network lifetime [11]. In 

fact, energy is consumed from the battery during sensing, communicating and processing activities. In 
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addition, numerous applications in WSNs require massive in-network processing capability. For 

instance, smart visual sensor networks usually go through several subsequent executional jobs, 

including image processing, computer vision and image sensing [12]-[13]. Furthermore, application 

should complete its execution at the right time, after which the execution of the application will not be 

useful anymore. In most cases, sensor node is not fast enough to execute the complex application in a 

reasonable amount of time. 

Parallel computing refers to the methods that solve a problem within a reasonable amount of time (i.e., 

called make-span) by dividing it into smaller parts and solving the parts using multiple physical 

processors [14]. As a result, a complicated application of WSNs is decomposed into smaller tasks. 

Afterward, Task Mapping and Scheduling (TMS) techniques are developed in order to share the 

execution of divided tasks among sensor nodes [15]. As shown in Figure 1, four phases are required to 

perform a parallel system [35]: The first phase is called task decomposition. In this phase, the 

application is divided into small tasks. These small tasks depend on each other by using dependencies. 

The dependence analysis is performed in the second phase to order the tasks in line with the 

dependencies. Task graphs, such as Direct Acyclic Graphs (DAGs), are employed to model the tasks 

with dependencies. The third phase is called task mapping and scheduling. The main purpose of task 

mapping is to allocate the tasks to the processors or computing nodes. Consequently, the task 

scheduling aims to order the task execution according to the dependencies through determining the 

start times of task execution. The fourth phase is called parallel programming and aims to develop the 

application, based on the result of task mapping and scheduling. This paper considers the mechanism 

of task mapping and scheduling, explained in the third phase. 

 

Figure 1. Task mapping and scheduling concept. 

However, unlike the traditional parallel computing systems, TMS in WSNs focuses not only on the 

execution time of the application, but also on energy-efficient schemes that prolong the network 

lifetime. Therefore, TMS is generally modelled as a multi-objective optimization problem, which has 

been proved to be non-deterministic polynomial-time (NP)-hard [16].  

Metaheuristics are used to get a satisfactory solution of optimization problem that fulfils the required 

objective function. Metaheuristics are strategies that depend on a guide to examine the search space to 

get the optimal (or near-optimal) solution, without the need of testing every solution in the search 

space [17]. A metaheuristic has two main properties: diversification and intensification [18]. 

Diversification is the exploration of search space in order to escape from the local optimal. 

Intensification refers to the process of exploitation of accumulated search space. Indeed, 
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diversification needs a time to be performed, whereas intensification looks deeply and locally for high-

quality solutions. Therefore, dynamic balancing between exploration and exploitation is necessary for 

a good metaheuristic [17]. In literature, metaheuristics are classified into single-solution 

metaheuristics and population-based metaheuristics. According to the operation form of 

metaheuristics, single-solution metaheuristics are of more intensification, while population-based 

metaheuristics are of more diversification [18].  

This paper introduces λ-Modified Random Bit Climbing (λ-mRBC) optimization method to attempt to 

solve the problem of TMS in WSNs. The claim of this research is to improve the traditional RBC 

optimization method. The main contributions of the proposed λ-mRBC optimization method are: (1) a 

novel modification in RBC method is developed to improve the convergence speed and fitness value 

of the final solution. (2) The researcher thinks that this research might be the first one to apply the 

RBC method and its proposed modified version (λ-mRBC) in TMS problem. (3) Lifetime Awareness 

Sensor Node Selection Algorithm (LA-SNSA) is incorporated to select the sensor nodes so that the 

lifetime of the network is improved. (4) Heterogeneous sensor nodes with different processing, energy 

level and energy consumption are used in the proposed algorithms.   

The paper contains seven sections as follows: Section (2) explores work related to task allocation in 

WSNs.  In Section (3), the network framework for TMS is introduced. Then, Section (4) defines and 

formalizes the research problems. After that, the proposed λ-mRBC and LA-SNSA schemes are 

introduced in Section (5). Simulation results are shown and discussed in Section (6). Finally, the paper 

is concluded in Section (7). 

2. RELATED WORK 

Task mapping and scheduling problems have been deeply discussed in WSNs. In [19]-[20], Genetic 

Algorithm (GA) is used to provide well-performing task allocation. A Modified Binary Particle 

Swarm Optimization (MBPSO) algorithm is presented in [21] to find the optimal task allocation 

solution. In [22], logic gate-based evolutionary algorithm is used to solve the problem of task 

allocation in WSNs. However, the population-based metaheuristics used in the above research require 

high processing power, energy consumption and execution time. Furthermore, high complexity 

optimization algorithms are not appropriate for limited resource WSNs.  

Integer linear programming is used in [23] to optimally assign complex tasks to sensor nodes to 

minimize total energy consumption. In [24], task allocation is introduced so that energy consumption 

and network lifetime are improved. However, the execution time (i.e., make-span) has not been taken 

into account [23]-[24], which leads the application to take long time to be executed.  

In [25], a distributed task allocation is introduced. The task is made to move from a sensor node to 

another. The suitable sensor node with enough capacity to execute the task is found. In [26], 

Topology-Aware Task Allocation and Scheduling (TATAS) is introduced to map and schedule the 

tasks to the sensor nodes. However, the task allocation presented in [25]-[26] assumes independent 

tasks which are not practical for complex application, such as visual surveillance [27].  

In [28], a real-time task mapping and scheduling (RT-MapS) algorithm is developed for collaborative 

in-network processing in single-hop cluster WSN using Dynamic Voltage Scaling (DVS) feature. In 

[27], Multi-hop Task Mapping and Scheduling (MTMS) solution is developed for TMS in multi-hop 

cluster WSN. Nevertheless, MTMS and RT-MapS prevent task mapping to sensor nodes that execute 

the immediate predecessors of the task. As a result, this leads to using more sensor nodes for TMS and 

including all sensor nodes in the task mapping decision-making.  

In [29], Biological Task Mapping and Scheduling (BTMS) approach is introduced, where the 

application is executed by a group of sensor nodes so that the execution time and energy consumption 

are improved. However, the network lifetime related to sensor neighbour count is not considered. In 

[30], Light Allocation of Tasks (LAT) algorithm is presented to enhance energy efficiency, network 

lifetime and application execution time. However, LAT algorithm includes all sensor nodes in 

decision-making for TMS.  

Task Level Parallelism (TLP) in WSN is introduced in [31] to parallelize the execution of smart health 

care applications so that the processing time is reduced. Nevertheless, scheduling of the task execution 
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is not considered. An energy-efficient Complicated Task Solution scheme for real-time task 

processing based on node Cooperation (CTSC) is tackled in [32] to allocate more tasks to sensor nodes 

with a higher energy-level. However, CTSC maps all dependent tasks to the same sensor nodes which 

could cause exhaustion for the energy level of sensor node. 

In [33], Machine-to-Machine (M2M) architecture with sensor devices and limited resources is 

considered. Tasks are allocated to the nodes of M2N so that the lifetime is maximized. However, the 

task allocation algorithm proposed in [33] finds all possible task allocation possibilities which need 

high processing and time. In addition, the execution time is not considered in [33]. In [34], complex 

application is allocated for different clustered wireless sensors. Firstly, tasks are distributed to clusters 

so that the energy consumption is minimized. Then, tasks allocated to each cluster are assigned to the 

nodes within the cluster so that energy cost and load balancing are improved. In [35], the problem of 

task allocation in IoT applications is considered, where the embedded devices of IoT are assumed to 

have limited resources. The tasks are allocated so that the energy consumption is minimized. In [36], 

tasks are allocated locally to the slave sensor nodes or globally to the master sensor node, so that the 

network life time is maximized. However, the execution time is not considered in [34]-[36]. 

In this paper, λ-Modified Random Bit Climbing (λ-mRBC) optimization method is developed to solve 

the problem of TMS in WSNs. The proposed method supports heterogeneous sensor nodes. Actually, 

the proposed λ-mRBC method is different from the previous one through the use of a modified version 

of RBC method with faster conversion speed and better final solution. Moreover, the proposed λ-

mRBC is a single-solution metaheuristic with single algorithm parameter. Therefore, it needs less 

processing capabilities to be executed and in turn it is suitable for the sensor nodes with limited 

resources. Finally, Lifetime Awareness Sensor Node Selection Algorithm (LA-SNSA) is developed to 

select the sensor nodes to enhance network lifetime. 

3. NETWORK FRAMEWORK 

As shown in Figure 2, the sensor nodes are randomly distributed in the monitoring area. The sensor 

nodes are connected with each other wirelessly. The sink node aims to pass on the data from the 

monitoring area to the main controller via Internet, satellite or cellular networks. Sensor node knows 

its location using Global Positioning System (GPS) [37]. Nonetheless, only few sensor nodes use GPS 

to know their locations and other sensor nodes can calculate their locations using triangulation [38]. At 

time step (𝑘), the neighbours of a target sensor node (𝑠𝑇𝑆𝑁) are a set 𝑁𝑠𝑇𝑆𝑁
(𝑘). The neighbours with 

remaining energy level above a predefined threshold value (𝐸𝑡ℎ) can participate to execute an 

application DAG (𝐴𝑑). These particular neighbours are saved in an 𝑆𝑠(𝑘, 𝐴𝑑) set of 𝑛𝑠(𝑘, 𝐴𝑑) sensor 

nodes. After that, a set (𝑆𝑔(𝑘, 𝐴𝑑)) of 𝑛𝑔(𝑘, 𝐴𝑑) nodes is selected from 𝑆𝑠(𝑘, 𝐴𝑑) to execute the 

application DAG (𝐴𝑑). The selection of 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes is performed to improve the network 

lifetime. The application DAG (𝐴𝑑) is assumed to be decomposed into interdependent tasks. Then, 

TMS is incorporated to cooperatively execute the application tasks using the selected sensor nodes, so 

that the time and energy required to execute the application DAG are reduced.  
 

 

Figure 2. Network framework. 
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4. PROBLEM DEFINITION AND FORMALIZATION 

4.1 Application Model 

In this paper, the application is modelled using Direct Acyclic Graphs (DAG) [21]. So, the application 

is divided into smaller tasks. DAG can also model the interdependencies among tasks [39]. Figure 3  

shows as example of application DAG.     

 
Figure 3. Application DAG. 

The application DAG is modelled as 𝐴𝑑 = (𝑉, 𝐸). The set 𝑉 represents “𝑛” application tasks, where 

𝑉 = {𝑣𝑖: 𝑖 = 1,2, . . 𝑛} . Similarly, the set E represents “𝑞” communication interdependencies, where 

𝐸 = {𝑒𝑘: 𝑘 = 1,2, . . 𝑞}. The edge 𝑒𝑘 ∈ 𝐸 between the tasks 𝑣𝑖 and 𝑣𝑗 is denoted as 𝑒𝑖𝑗, where 𝑣𝑗 is 

called the immediate successor of 𝑣𝑖 and 𝑣𝑗 is called the immediate predecessor of 𝑣𝑖. Accordingly, 

the task is executed when it receives all of its immediate predecessor’s output. The entry-tasks or 

source-task do not have immediate predecessors. In addition, a task without immediate successors is 

called an exit-task or a sink-task. In WSNs, the entry-tasks are used for sensing or gathering the raw 

data to detect physical phenomena. Therefore, task placement constraints can be defined as an only 

one source task that can be assigned to the sensor node. In Figure 3, 𝑣1 and 𝑣2 are source-tasks, 𝑣9 is 

the sink-task, 𝑣1 and 𝑣2 are the immediate predecessors of 𝑣4 and 𝑣9 is the immediate successor of 𝑣8. 

The task 𝑣6 cannot be executed until it receives the communication interdependencies (e36, e46 and 

e56) from its immediate predecessors (𝑣3 , 𝑣4 and 𝑣5).  

Each task, 𝑣𝑖 ∈ 𝑉 is modelled as a tuple of the form: {𝑁𝑣𝑖
, 𝑡𝑣𝑖

, 𝐸𝑣𝑖
}, where 𝑁𝑣𝑖

 is the number of the 

computational cycles of the task, 𝐸𝑣𝑖
 is computational energy consumption of the task  and 𝑡𝑣𝑖

 is 

computational time of the task. Each edge (𝑒𝑖𝑗) between the tasks vi and 𝑣𝑗 is modelled as a tuple of 

the form: {𝑙𝑒𝑖𝑗
, 𝑡𝑒𝑖𝑗

, 𝐸𝑒𝑖𝑗
}. 𝑙𝑒𝑖𝑗

 is the data size generated from 𝑣𝑖 and  is required to execute 𝑣𝑗. 𝐸𝑒𝑖𝑗
 and 

𝑡𝑒𝑖𝑗
 are the communication energy consumption and communication time required to send 𝑒𝑖𝑗 from the 

sensor node that executes the task 𝑣𝑖  to the sensor node that executes the task 𝑣𝑗. 

4.2 The Wireless Sensor Network Model 

The WSN is composed of a number of heterogeneous sensor nodes distributed randomly in the area of 

interest. The sensor nodes have different specifications, such as processing speed, power consumption 

and transmission distances. WSN is modelled as a graph 𝑊 = (𝑆, 𝐷), where 𝑆 = {𝑠𝑥: 𝑥 = 1,2, . . 𝑚} is 

the set of heterogeneous sensor nodes and 𝐷 = {𝑑𝑘: 𝑘 = 1,2, . . 𝑝} is a set of communication links 

among sensor nodes. The edge 𝑑𝑘 ∈ 𝐷 between the sensor nodes 𝑠𝑥 and 𝑠𝑦 is denoted as 𝑑𝑥𝑦 and is 

the physical distance between sensor nodes 𝑠𝑥 and 𝑠𝑦. 

Sensor node, 𝑠𝑥 is modelled as a tuple of several properties and states as follows: 𝑠𝑥 = {𝐼𝐷𝑠𝑥
, 𝑥𝑠𝑥

,  𝑦𝑠𝑥
,

𝐸𝑟(𝑘, 𝑠𝑥), 𝑓𝑠𝑥
 , 𝑒𝑠𝑥

,  𝑎𝑠𝑥
}, where 𝐼𝐷𝑠𝑥

 is the sensor node identification, 𝑥𝑠𝑥
,  𝑦𝑠𝑥

 are the xy coordination 

of sensor node, 𝐸𝑟(𝑘, 𝑠𝑥) is the battery remaining energy of sensor node at time 𝑘,  𝑒𝑠𝑥
 is the average 

power consumption for the processor of node (𝑠𝑥), 𝑎𝑠𝑥
 is the time at which the sensor node is available 

to execute a task and 𝑓𝑠𝑥
 is the processing speed of sensor node. Sensor nodes  𝑠𝑥 and 𝑠𝑦 can directly 

communicate if the distance between them, 𝑑𝑖𝑗 is less than or equal to the radio range, 𝑅𝑟. The 

distance between sensor nodes (𝑠𝑥 and 𝑠𝑦) is calculated using Euclidean distance according to the 

following equation:  
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𝑑𝑥𝑦 = √(𝑥𝑥 − 𝑥𝑦)2 + ( 𝑦𝑥 −  𝑦𝑦)2.                                                     (1) 

Therefore, at time 𝑘, the sensor node, 𝑠𝑥 has a set of 𝑚𝑠𝑥
(𝑘) neighbours, 𝑁𝑠𝑥

(𝑘), where: 𝑁𝑠𝑥
(𝑘) =

{𝑠𝑙: ∀𝑘 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  𝑑𝑥𝑙 ≤ 𝑅𝑟}. 

4.3 Cost Functions 

4.3.1 Execution Time 

The CPU clock frequency is defined as the number of computational cycles that can be executed per 

second. Therefore, the computational time (𝑡𝑣𝑖
) required to execute the task (𝑣𝑖) is computed using the 

following formula: 

𝑡𝑣𝑖
=

𝑁𝑣𝑖

𝑓𝑠𝑥

                                                                           (2) 

where 𝑓𝑠𝑥
 is the CPU clock frequency of sensor node (𝑠𝑥) which  executes the task (𝑣𝑖). The total 

computational time (called serial execution time) required to computationally execute the application 

tasks is the sum of computational times for all tasks and is calculated as follows: 

𝑡𝑇
𝑝

= ∑ 𝑡𝑣𝑘

𝑛
𝑘=1                                                                     (3) 

The communication time (𝑡𝑒𝑖𝑗
) required to send the 𝑒𝑖𝑗 from the sensor node that executes the task 𝑣𝑖 

to the sensor node that executes the task 𝑣𝑗 is made up of transmission time, queue time and 

propagation time. The queue time is the latency caused by media access to avoid interference and 

collision. Therefore, the communication time (𝑡𝑒𝑖𝑗
) is computed as follows: 

𝑡𝑒𝑖𝑗
= 𝑡𝑒𝑖𝑗

𝑡 + 𝑡𝑒𝑖𝑗

𝑝
+ 𝑡𝑒𝑖𝑗

𝑞
=

𝑙𝑒𝑖𝑗

𝑅𝑏
+

𝑑

𝑐
+ 𝑡𝑒𝑖𝑗

𝑞
                                                         (4) 

where 𝑡𝑒𝑖𝑗
𝑡  is the transmission time which is the data size (𝑙𝑒𝑖𝑗

) divided by the data rate or 

communication bandwidth (𝑅𝑏), 𝑡𝑒𝑖𝑗

𝑝
 is the propagation time which is the distance between the sensor 

nodes that exchange the edge (𝑑) divided by the speed of light (𝑐 = 3 × 108𝑚/𝑠) and 𝑡𝑒𝑖𝑗

𝑞
 is the queue 

time. The total communication time required to exchange all the interdependences of the application 

tasks is the sum of all communication times required to send all dependencies and is determined as 

follows: 

𝑡𝑇
𝑐 = ∑ 𝑡𝑒𝑖𝑗

𝑞
𝑘=1                                                                     (5) 

The node/task pairs are modelled as 𝑃(𝑣, 𝑠), where 𝑃(𝑣, 𝑠)  shows the “𝑛” mapped tasks of 

application DAG (the set) with its corresponding “𝑛𝑔(𝑘, 𝐴𝑑)” assigning sensor nodes which are the set 

𝑆𝑔(𝑘, 𝐴𝑑). Hence, the overall time required to execute the application tasks using node/task pair 

(𝑃(𝑣, 𝑠)) is the sum of the serial execution time and total communication time and is calculated as: 

𝑡𝑇[𝑃(𝑣, 𝑠)] = 𝑡𝑇
𝑝

+𝑡𝑇
𝑐                                                                 (6) 

Each task (𝑣𝑖) mapped to sensor node (𝑠𝑥) is starting to be executed at a time called starting executing 

time of the task (𝑡𝑠(𝑣𝑖 , 𝑠𝑥)). The task is executed when the sensor node is available after it receives all 

the task dependencies. It is assumed that 𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)] is the time at which the last dependency 

(i.e., predecessor) of task (𝑣𝑘) is received by the node (𝑠𝑥). Therefore, after receiving the last 

dependency, the task (𝑣𝑘) can be executed if the CPU of sensor node (𝑠𝑥) is available. The time to 

which the sensor node (𝑠𝑥) is available is referred as (𝑎𝑠𝑥
). Thus, 𝑡𝑠(𝑣𝑖, 𝑠𝑥) is the maximum of one of 

the two:  (𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)]) or (𝑎𝑠𝑥
). 𝑡𝑠(𝑣𝑖 , 𝑠𝑥) and is calculated as: 

𝑡𝑠(𝑣𝑖 , 𝑠𝑥) = 𝑚𝑎𝑥 {𝑎𝑠𝑥
, 𝑡𝑚𝑎𝑥[𝑝𝑟𝑒𝑑(𝑣𝑘)] }                                              (7) 

When the sensor node (𝑠𝑥) starts to execute the tasks, it finishes after a time equal to the task 

execution time. The time at which the task is completely executed is called the finishing execution 

time of the task (𝑡𝑓(𝑣𝑖, 𝑠𝑥)), which is the time at which the task is started to be executed (𝑡𝑠(𝑣𝑖, 𝑠𝑥)) 



23 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019. 

 
plus the task execution time (𝑡𝑣𝑖

) and is given by: 

𝑡𝑓(𝑣𝑖, 𝑠𝑥) = 𝑡𝑠(𝑣𝑖 , 𝑠𝑥) + 𝑡𝑣𝑖
                                                          (8) 

The make-span of the application DAG is the time at which the application execution completely 

finishes. Due to parallelism, the make-span will be less than (𝑡𝑇[𝑃(𝑣, 𝑠)]). The execution of 

application is completed after finishing of execution of last task. Thus, the finishing execution time of 

the last task will be the biggest finishing execution time. Hence, the biggest finishing execution time is 

the make-span and is calculated as follows: 

𝑚𝑠[𝐴𝑑 , 𝑃(𝑣, 𝑠)] = 𝑚𝑎𝑥∀𝑠𝑥∈𝑆𝑔(𝑘,𝐴𝑑){ 𝑡𝑓(𝑣𝑖, 𝑠𝑥) }                                         (9) 

4.3.2 Energy Consumption 

The computational energy consumption (𝐸𝑣𝑖
) required to execute the task (𝑣𝑖) is computed using the 

following formula: 

𝐸𝑣𝑖
= 𝑒𝑠𝑥

. 𝑡𝑣𝑖
                                                                   (10) 

where 𝑒𝑠𝑥
 is the average power consumption for the processor of node (𝑠𝑥). The energy consumption 

(𝐸𝑒𝑖𝑗
) required to send the 𝑒𝑖𝑗 from the sensor node that executes the task 𝑣𝑖 to the sensor node that 

executes the task 𝑣𝑗 is  calculated as: 

𝐸𝑒𝑖𝑗
= 𝐸𝑒𝑖𝑗

𝑇𝑋 + 𝐸𝑒𝑖𝑗
𝑅𝑋                                                                 (11) 

where 𝐸𝑒𝑖𝑗
𝑇𝑋 is the transmitted energy consumption dissipated from the source node and 𝐸𝑒𝑖𝑗

𝑅𝑋 is the 

received energy consumption dissipated from the destination node. 𝐸𝑒𝑖𝑗
 is equal to zero if the tasks 𝑣𝑖 

and 𝑣𝑗 are mapped to the same sensor node. 𝐸𝑒𝑖𝑗
𝑇𝑋 and 𝐸𝑒𝑖𝑗

𝑅𝑋 are calculated as follows [40]-[41]:  

𝐸𝑒𝑖𝑗
𝑇𝑋 = (𝑒𝑒𝑙𝑒𝑐 + 𝜀𝑎𝑚𝑝. 𝑑2). 𝑙𝑒𝑖𝑗

                                                        (12) 

𝐸𝑒𝑖𝑗
𝑅𝑋 = 𝑒𝑒𝑙𝑒𝑐 . 𝑙𝑒𝑖𝑗

                                                                  (13) 

where 𝑒𝑒𝑙𝑒𝑐 is the electronic energy required to transmit a bit that depends on coding, modulation and 

filtering and 𝜀𝑎𝑚𝑝 is related to the radio energy. The total processing energy consumption (called 

serial energy consumption) required to computationally execute the application tasks is determined as 

follows: 

𝐸𝑇
𝑝

= ∑ 𝐸𝑣𝑘

𝑛
𝑘=1                                                                  (14) 

The total communication energy consumption required to exchange the interdependences of the 

application tasks is calculated as follows: 

𝐸𝑇
𝑐 = ∑ 𝐸𝑒𝑖𝑗

𝑞
𝑘=1                                                                  (15) 

The overall energy consumption required to execute the application tasks using node/task pair, 𝑃(𝑣, 𝑠) 

is calculated as: 

𝐸𝑇[𝑃(𝑣, 𝑠)] = 𝐸𝑇
𝑝

+𝐸𝑇
𝑐                                                             (16) 

4.4 Problem Definition 

At time step 𝑘, a target sensor node (𝑠𝑇𝑆𝑁) triggers a request to collaboratively execute an application 

DAG (𝐴𝑑). The number of neighbours of 𝑠𝑇𝑆𝑁 at time step 𝑘 is 𝑛𝑠(𝑘, 𝐴𝑑) and is contained in a set 

𝑆𝑠(𝑘, 𝐴𝑑). 𝑆𝑠(𝑘, 𝐴𝑑) participates to execute the application. However, only 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes are 

selected from 𝑆𝑠(𝑘, 𝐴𝑑) to execute the application DAG (𝐴𝑑). The set  𝑆𝑔(𝑘, 𝐴𝑑) includes  the selected 

𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes. The objective function is defined as the weighted sum of the total energy 

consumption and the make-span. It is calculated as follows: 

𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝑃(𝑣, 𝑠)] = 𝛼 ∗
𝑚𝑠[𝐴𝑑,𝑃(𝑣,𝑠)]

𝑡𝑇
𝑝

[𝐴𝑑,𝑃(𝑣,𝑠)]
+ (1 − 𝛼) ∗

𝐸𝑇[𝐴𝑑,𝑃(𝑣,𝑠)]

𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑,𝑃(𝑣,𝑠)]
                           (17) 

where 0 ≤ α ≤ 1 is a weighted controlled parameter, 𝑚𝑠[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the make-span to execute the 
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application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)), 𝑡𝑇
𝑝

[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the serial execution 

time of application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)), 𝐸𝑇[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the total 

energy consumption to execute the application DAG (𝐴𝑑) using the mapped task/sensor (𝑃(𝑣, 𝑠)) and 

𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑 , 𝑃(𝑣, 𝑠)] is the maximum energy consumption to execute the application DAG 𝐴𝑑 using 

the mapped task/sensor (𝑃(𝑣, 𝑠)). The make-span in Equation (17) is normalized by dividing it by the 

serial execution time (𝑡𝑇
𝑝

[𝐴𝑑 , 𝑃(𝑣, 𝑠)]) which is the maximum time required to execute the application. 

Similarly, the total energy consumption in Equation (17) is normalized by dividing it by the maximum 

total energy consumption (𝐸𝑇(𝑚𝑎𝑥)[𝐴𝑑 , 𝑃(𝑣, 𝑠)]). The main goal is to get the task/node pair (𝑃∗(𝑣, 𝑠)) 

which is used to execute the application. 𝑃∗(𝑣, 𝑠) is obtained so that the objective function defined in 

Equation (17) is minimized according to the following objective function: 

𝑃∗(𝑣, 𝑠) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑃(𝑣,𝑠) {𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝑃(𝑣, 𝑠)]}                               (18) 

5. THE MODIFIED RANDOM BIT CLIMBING 

5.1 Lifetime Awareness Sensor Node Selection Algorithm (LA-SNSA) 

Awareness Sensor Node Selection Algorithm (LA-SNSA) aims to select a number of 𝑛𝑔(𝑘, 𝐴𝑑) sensor 

nodes from the 𝑆𝑠(𝑘, 𝐴𝑑) set. The selected nodes are then kept in the 𝑆𝑔(𝑘, 𝐴𝑑) set. In addition, the 

selected sensor nodes (𝑆𝑔(𝑘, 𝐴𝑑)) are used to execute the application DAG (𝐴𝑑). The LA-SNSA takes 

into account the network lifetime. Since reducing the gaps which appear because of node death in the 

network increases the network lifetime, the sensor nodes with higher number of neighbours are 

preferred to be selected. Furthermore, LA-SNSA also takes into account the current remaining energy 

of the sensor nodes. Thus, sensor nodes with higher remaining energy are favoured to be selected to 

increase the network lifetime. Therefore, the objective function of the LA-SNSA is the weighted sum 

of the ratio of energy of sensor node with respect to the sum of remaining energy for all nodes in 

𝑆𝑠(𝑘, 𝐴𝑑) and the ratio of the number of neighbours of the sensor node with respect to the sum of the 

number of neighbours for all nodes in 𝑆𝑠(𝑘, 𝐴𝑑). It is computed as follows: 

𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥, 𝐴𝑑) = 𝛽 ∗
𝐸𝑟(𝑘,𝑠𝑥)

∑ 𝐸𝑟(𝑘,𝑠𝑙)∀𝑠𝑙∈𝑆𝑠(𝑘,𝐴𝑑)
+ (1 − 𝛽) ∗

𝑁𝑐(𝑘,𝑠𝑥)

∑ 𝑁𝑐(𝑘,𝑠𝑙)∀𝑠𝑙∈𝑆𝑠(𝑘,𝐴𝑑)
                      (19) 

As seen in the above formula, 𝛽 is a weighting parameter and varies in the interval [0, 1]; and 

𝑁𝑐(𝑘, 𝑠𝑥) is the number of neighbours of sensor node 𝑠𝑥 at time 𝑘 . Algorithm 1 shows the LA-SNSA. 

The weighting parameter (𝛽) is firstly selected. Then, the objective function for sensor nodes in 

𝑆𝑔(𝑘, 𝐴𝑑) set is calculated based on Equation (19). After that, a number of 𝑛𝑔(𝑘, 𝐴𝑑) sensor nodes, 

with the highest objective function, are selected and added to 𝑆𝑔(𝑘, 𝐴𝑑) set.  

Algorithm 1: Lifetime Awareness Sensor Node 

Selection Algorithm (LA-SNSA) 

1: select  𝛽; 

2: set ℓ = 0; 

1: while ℓ ≤ 𝑛𝑔(𝑘, 𝐴𝑑) do: 

3:    for each sensor node 𝑠𝑥 ∈ 𝐒𝑠(𝑘, 𝐴𝑑) do: 

4:      calculate 𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥 , 𝐴𝑑) based on Equation (19); 

5:    end for; 

6:    find the sensor 𝑠𝑥
∗ with maximum    

   𝐹𝑜𝑏𝑗(𝑘, 𝑠𝑥 , 𝐴𝑑); 

7:    add 𝑠𝑥
∗ to 𝐒𝑔(𝑘, 𝐴𝑑); 

8:    remove 𝑠𝑥
∗ from next search; 

9:    increment ℓ: ℓ = ℓ + 1; 

10: end while; 

5.2 Random Bit Climbing (RBC) 

Random Bit Climbing (RBC) optimization [42]-[43] is a metaheuristic local search-based algorithm 

that employs a trajectory-based approach to guide the search and obtain a (near) optimal solution. 
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RBC is a single-solution metaheuristic, which adopts the exploitation in its operation through 

memorizing the best current solution. In RBC, single stochastic solution is used for each round. 

Firstly, an initial single-parent (𝑝) is randomly generated and set as the current solution. After that, the 

objective function of the initial parent is evaluated. Then, a random arrangement of the index positions 

for the current solution is created and kept in the 𝜋 vector. Next, a child is produced by mutating a 

single dimension of the current solution at a time. The child replaces the current solution if it fulfils 

the objective function. The evaluation of children either continues for all possible children or is 

terminated when the first better child is found. Then, a new random permutation is generated for the 

current solution. The process continues until a predefined number of iterations have been exhausted. 

However, the main limitation of RBC is the trap of local optimal solution because of its deficiency for 

exploration ability. 

5.3 λ-Modified Random Bit Climbing (λ-mRBC) 

Algorithm 2 shows the proposed λ-Modified Random Bit Climbing (λ-mRBC). Because the 

exploration is tied up to randomness [17], the λ-mRBC adopts a random parameter (λ) to use 

exploration in RBC operation. The solution is represented as a vector of  n elements. The vector index 

represents the task number (from 1 to 𝑛). On the other hand, the vector value represents one of the 

selected sensor node numbers. In Step (1), an initial parent solution (𝑃(𝑣, 𝑠)) is generated randomly. 

This  initial parent solution is then set as the current best solution and is stored in 𝐶𝑠(𝑣, 𝑠). The 

evaluation is performed in Step (2) to calculate the fitness value of the current best solution. In Step 

(3), the random permutation for the current best solution is achieved to produce the permutation vector 

(𝜋). In Step (4), a new operator named random transposition operator (trans) is added into the RBC 

method to escape from local optima and to increase the exploration of the search space. The random 

transposition operator is performed on the current solution according to the following rule: 

𝐶𝑠(𝑣, 𝑠) = {
𝑡𝑟𝑎𝑛𝑠 (𝐶𝑠(𝑣, 𝑠))      𝑟 <  𝜆

𝐶𝑠(𝑣, 𝑠)            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                               (20) 

where 𝑟 is a random number which uniformly distributes between [0, 1], λ an algorithm parameter 

number which ranges between 0 and 1 and  trans is the transposition operation that randomly 

exchanges the places of the current best solution. The children are generated in Step (5) by cloning 

𝐶𝑠(𝑣, 𝑠) and flipping the position 𝜋𝑙. After that, the child is evaluated in Step (6). In Step (7), the child 

replaces the current best solution if it has a better fitness value. In Step (8), the children are generated 

and evaluated. The algorithm flow continues to the next iteration in Step (9). The operations are 

repeated until the maximum iterations are exhausted in Step (10). After termination, the current best 

solution is returned as the suboptimal solution of the problem.  

Algorithm 2: λ-Modified Random Bit Climbing (λ-mRBC)  

Step (1) Compute the initial parent task/node pairs 𝑃(𝑣, 𝑠); set the current best 

solution  𝐶𝑠(𝑣, 𝑠) = 𝑃(𝑣, 𝑠); and set 𝑖𝑡𝑒𝑟 = 1. 

Step (2) Calculate the fitness value 𝐹𝑜𝑏𝑗[𝐴𝑑 , 𝐶𝑠(𝑣, 𝑠)] of 𝐶𝑠(𝑣, 𝑠). 

Step (3) Generate the random permutation 𝝅 = (𝜋1, 𝜋2 … 𝜋𝑚) of the position of 

Cs(𝑣, 𝑠); and set 𝑙 = 1. 

Step (4) if ( r <  λ): execute transposition operation of 𝐶𝑠(𝑣, 𝑠) positions. 

Step (5) Generate the child (offspring) 𝑂𝑙(𝑣, 𝑠) by cloning 𝐶𝑠(𝑣, 𝑠) and flipping 

the position 𝜋𝑙;  

Step (6) Calculate the objective function 𝐹𝑜𝑏𝑗[𝐴𝑗 , 𝑂𝑙(𝑣, 𝑠)] of 𝑂𝑙(𝑣, 𝑠). 

Step (7) If (  𝑭𝒐𝒃𝒋[𝑨𝒅, 𝑶𝒍(𝒗, 𝒔)] <  𝑭𝒐𝒃𝒋[𝑨𝒅, 𝑪𝒔(𝒗, 𝒔)]  ): replace 𝐶𝑠(𝑣, 𝑠) =

𝑂𝑙(𝑣, 𝑠); and go to Step (9). 

Step (8) If (𝒍 > 𝒎): Go to Step (9) 

              else: Increment 𝑙:  𝑙 = 𝑙 + 1; and go to step (5); 

Step (9) Increment 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 +  1. 

Step (10) If ( 𝒊𝒕𝒆𝒓 > 𝒎𝒂𝒙 𝒊𝒕𝒆𝒓 ): go to step (11) 

                else: go to Step (3) 

Step (11) Return 𝐶𝑠 as the suboptimal solution and finish. 
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5.4 The Complete TMS Approach 

Figure 4 explains the proposed TMS approach. First of all, heterogeneous sensor nodes are created and 

WSN is randomly distributed. Then, the algorithm parameters for λ-mRBC and LA-SNSA are set and 

defined. When a target sensor node requests execution of an application, a DAG of the requested 

application is created. LA-SNSA is performed based on Algorithm 1 to select the sensor nodes that 

will cooperatively execute the application so that the network lifetime is improved.  λ-mRBC is 

achieved based on Algorithm 2 to optimally get the best task/node pairs with minimum execution time 

and energy consumption. After that, λ-mRBC method is repeated until termination condition is met. 

Finally, the final solution of task/node pair is obtained and simulation statistics are recorded. 

 

Figure 4. The proposed TMS approach.  

6. SIMULATION RESULTS 

This section evaluates the proposed λ-mRBC method. C++ is used to build the simulation environment 

using core i5 of 2.5 GHz processor and 4 GB memory. 

6.1 Simulation Setting 

6.1.1 The Parameters for Application DAG  

Unless it is clearly stated, the application DAG consists of fifteen tasks (𝑛 = 15) as follows: four tasks 

are used as entry tasks, ten tasks are used as normal tasks and one task is used as an exit task. The 

immediate successors for each entry and normal tasks are selected to be uniformly distributed in the 

range of [1, 3]. The computation load of each task (𝑁𝑣𝑖
) is initialized to be uniformly distributed in the 

range of [300, 600] Kilo Clock Cycles (KCC). The communication load for edges among tasks (𝑒𝑖𝑗) is 

initialized to be uniformly distributed in the range of [500, 800] bytes of data.  

6.1.2 The Parameters for WSN 

WSN is implemented using 224 heterogeneous sensor nodes which are deployed randomly in a 

monitoring region of 200 m × 200 m. The transmission radio is set to 𝑅𝑟 = 100 m. The radio channel 

with bandwidth (i.e., bit rate) of 250 Kbps is used in the simulation environment. The processing 

speed for sensor nodes (𝑓𝑠𝑥
) stands for the total number of clock cycles which can be executed within 
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one second. It is set to be uniformly distributed in the range of [30, 100] Million Cycles per Second 

(MCPS).The power consumption of the processors for sensor nodes (𝑒𝑠𝑥
) is set to be uniformly 

distributed in the range of [4, 10] mJ. The initialized energy level (𝐸𝑟(0, 𝑠𝑖)) of each sensor is set to be 

uniformly distributed in the range of [0, 1] J.  

6.1.3 The Parameters for the λ-mRBC 

The weighting parameters are set as follows:  𝛽=0.5 and 𝛼=0.5. The number of iterations for λ-mRBC 

is assumed to be 100. Unless it is clearly stated, the number of selected nodes to execute the 

application is 𝑛𝑔(𝑘, 𝐴𝑑) = 3 sensor nodes. The λ-mRBC algorithm parameter λ is set to 0.5. 

6.2 Results and Analysis 

6.2.1 Impact of Number of Iterations 

The fitness value of the best solution is plotted in Figure 5 (a) for the RBC and λ-mRBC methods. It 

becomes clear that the RBC method has a lower convergence speed, compared with the proposed λ-

mRBC method. Additionally, the RBC is trapped in local minima. On the other hand, the proposed λ-

mRBC method converges to better fitness value by 19.1%, compared with RBC method. This is 

because of using the transposition operator (trans), where the positions of current best solution 

elements are randomly swapped. The transposition operator (trans) which is controlled by adjusting 

the λ parameter occurs in some selected iterations. When the elements of the current best solution are 

randomly swapped, more exploration in the search space occurs. Hence, the λ-mRBC method tries to 

escape from the trap of local minima. Consequently, better solution can be found. Figure 5 (b) and 

Figure 5 (c) show the make-span and total energy consumption versus iteration for both RBC and λ-

mRBC methods. Compared with RBC method, the proposed λ-mRBC method converges to better 

make-span and total energy consumption by 19.6% and 22.3%, respectively. Since the fitness value of 

λ-mRBC method has better convergence speed and lower values, the performance of the proposed λ-

mRBC method, in terms of make-span and total energy consumption, is improved, compared with the 

RBC method. 

   
(a) Fitness value (b) Make-span (c) Energy consumption 

Figure 5. The effect of iterations for the RBC and proposed λ-mRBC methods. 

6.2.2 Impact of Varying Number of Sensor Nodes 

This section evaluates the effects of selected sensor node size (𝑛𝑔(𝑘, 𝐴𝑑)). The proposed λ-mRBC 

method supports different sizes of the sensor nodes. The size of the sensor nodes is changed from 1 to 

5 with one sensor node for each step.  Figure 6 shows the performance of the RBC and proposed λ-

mRBC methods with the sensor node size. As shown in Figure 6 (a), the fitness value is getting better 

whenever the size of the selected sensor nodes increases. This is because the computational load of 

tasks is parallelized in more powerful fashion whenever the size of the selected sensor nodes rises. 

However, the proposed λ-mRBC method gives lower fitness values, compared with traditional RBC 

method. In addition, the fitness value of RBC method at a sensor node size of 3 does not improve, 

compared with its value at a sensor node size of 3. This is due to the trapping in the local minima. The 

make-span shown in Figure 6 (b) is reduced whenever the sensor node size goes up, because the 

computational load is distributed to more sensor nodes. As shown in Figure 6 (c), the communication 

activities used to exchange the communication edges increase whenever the sensor node size rises up, 

because tasks can be distributed to more sensor nodes. Therefore, according to Equation (15), the total 
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energy consumption rises with increasing the sensor node size. Ultimately, the proposed λ-mRBC 

method improves the energy consumption. Additionally, compared with RBC method, the proposed λ-

mRBC method has better fitness value, make-span and total energy consumption by 11.8% , 10.3% 

and 12.6%, respectively. 

   
(a) Fitness value (b) Make-span (c) Energy consumption 

Figure 6. The effect of node size for the RBC and proposed λ-mRBC methods. 

6.2.3 Impact of Number of Tasks 

The proposed λ-mRBC method supports different numbers of tasks. In Figure 7, the number of tasks 

varies from 5 to 40 with five tasks for each step. The fitness value, make-span and energy 

consumption for each step are plotted. In fact, according to Equation (14) and Equation (15), 

increasing the number of tasks leads to the increasing of the computational and communicational 

loads. Therefore, make-span and energy consumption increase with increasing the number of tasks. 

This is shown in Figure 7 (b) and Figure 7 (c). The aim of the objective function of Equation (17) is to 

reduce the energy consumption and the make-span as well. Thus, some solutions give better 

improvement in terms of energy consumption and other solutions give improvement in terms of make-

span. Therefore, the fitness values shown in Figure 7 (a) fluctuate with increasing the number of tasks. 

It is worth mentioning that the proposed λ-mRBC method can cope with different numbers of tasks 

due to the small fluctuation of fitness values, compared with the RBC method. Besides, λ-mRBC 

method gives better performance in terms of make-span and energy consumption. Furthermore, 

compared with RBC method, the proposed λ-mRBC method has better fitness value, make-span and 

total energy consumption by 3.6%, 2.4% and 8.8%, respectively. 

   
(a) Fitness value (b) Make-span (c) Energy consumption 

Figure 7. The effect of varying number of tasks for the RBC and proposed λ-mRBC methods. 

6.2.4 LA-SNSA Evaluation 

This section evaluates the performance of LA-SNSA. The performance metrics used to evaluate the 

proposed LA-SNSA are the Remaining Energy Performance (REP) and the Neighbour Count 

Performance (NCP). REP is defined as the normalized sum of normalized remaining energy of all 

sensor nodes and NCP is defined as the normalized sum of the number of neighbours of all sensor 

nodes. Therefore, REP and NCP are calculated as follows: 

𝑅𝐸𝑃(𝑘) =
∑ [𝐸𝑟(𝑘,𝑠𝑙)/𝐸𝑟(𝑚𝑎𝑥)(𝑘,𝑠𝑙)]𝑚

𝑙=1

𝑅𝐸𝑃𝑚𝑎𝑥
                                                  (21) 

𝑁𝐶𝑃(𝑘) =
∑ [𝑁𝑐(𝑘,𝑠𝑙)]𝑚

𝑙=1

𝑁𝐶𝑃𝑚𝑎𝑥
                                                            (22) 
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Where 𝑅𝐸𝑃𝑚𝑎𝑥 and 𝑁𝐶𝑃𝑚𝑎𝑥 are the maximum values of REP and NCP which are calculated at the  

beginning of the simulation. Therefore, 𝑅𝐸𝑃(𝑘) and 𝑁𝐶𝑃(𝑘) values are in the range of [0, 1]. In 

Figure 8 and Figure 9, the proposed LA-SNSA and random selection schemes are compared by 

calculating these performance metrics. In random selection scheme, however, the sensor nodes 

(𝑛𝑔(𝑘, 𝐴𝑑)) are chosen randomly from the neighbouring target sensor node (𝑠𝑇𝑆𝑁).  

As shown in Figure 8, the 𝑅𝐸𝑃(𝑘) is decreasing with time. This is due to the increasing energy 

consumption of communication and processing activities, which are caused by the application 

executions. It is observed from Figure 8 that the rate of 𝑅𝐸𝑃(𝑘) reduction with time using the 

proposed LA-SNSA is smaller than those in the random selection scheme. The reason behind this is 

that LA-SNSA aims to select the nodes with higher remaining energy, while the random selection 

scheme selects the sensor nodes randomly without any knowledge of the node remaining energy. The 

proposed LA-SNSA enhances the 𝑅𝐸𝑃(𝑘) about three times, compared with the random selection 

scheme. 

 

Figure 8. REP for the RBC and proposed λ-mRBC methods. 

The value of 𝑁𝐶𝑃(𝑘) remains 1 until the first node death takes place. Thus, 𝑅𝐸𝑃(𝑘) and number of 

dead nodes are calculated and plotted in Figure 9 after the death of the first node. Application 

executions lead to energy consumption, caused by processing and communicating. Therefore, sensor 

node energy level decreases. When the energy level of sensor node is exhausted, the sensor node dies 

and all activities stop. After the first death, 𝑁𝐶𝑃(𝑘) is decreased due to the increasing of death nodes. 

As shown in Figure 9, 𝑁𝐶𝑃(𝑘) is decreased sharply in case of random selection scheme, because there 

are no directional guides to select sensor nodes. Additionally, the rate of increased dead nodes is 

higher in case of random selection scheme. Another advantage of the proposed LA-SNSA is that it 

takes a long time for first node to die. Furthermore, compared with random selection, the 𝑁𝐶𝑃(𝑘) is 

improved by 20.1% using the proposed LA-SNSA. 

 

Figure 9. NCP and number of dead nodes for the RBC and proposed λ-mRBC methods. 
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Table 1 shows the Remaining Energy Performance (REP), Neighbour Count Performance (NCP) and 

first node death time for the proposed LA-SNSA and random selection schemes. The proposed LA-

SNSA ends with better REP which implies that the remaining energy of the sensor nodes is better 

distributed in the network. In addition, there is an improvement in NCP in case of using the proposed 

LA-SNSA. This improvement leads to less gaps without sensor nodes in the network. The network 

lifetime can be defined as the time when the first node dies [44]-[45]. First node death time is bigger in 

case of the proposed LA-SNSA. Since REP, NCP and first node death time are improved in the 

proposed LA-SNSA scheme, the network lifetime is also enhanced in case of using the proposed LA-

SNSA. 

Table 1. REP, NCP and first node death time for random and LA-SNSA schemes. 

Method 
Remaining Energy 

Performance (REP) 

Neighbour Count 

Performance (NCP) 

First Node Death 

time (Hours) 

LA-SNSA 0.51 0.19 324.79 

Random 0.12 0.16 0.03 

6.2.5 The Effect of λ-mRBC Parameter 

Figure 10 shows the fitness values versus the iteration using λ parameter values of 0.1, 0.3, 0.5, 0.7 

and 0.9. According to Equation (20), the probability of running the transposition operation is 

increasing with increasing the λ parameter. Therefore, the convergence speed for λ parameter of 0.1 

and 0.3 is the slowest, compared with other λ parameter values. Furthermore, when using λ parameters 

of 0.1 and 0.3, the λ-mRBC method converges to the highest fitness value. On the other hand, when 

using λ parameters of 0.5 and 0.7, the λ-mRBC method converges to the lowest fitness value.  The 

fastest convergence speed occurs when using λ parameter of 0.9. However, λ-mRBC method 

converges to larger fitness value than the fitness value when using λ parameters of 0.5 and 0.7. It is 

worth mentioning that the number of optimization algorithm parameters increases the complexity of 

the algorithm [17]. λ-mRBC uses only one parameter (λ) which indicates its low complexity.  

 

Figure 10. The effect of λ parameter. 

7. CONCLUSION 

In this paper, a Task Mapping and Scheduling (TMS) approach for WSN is introduced to look for the 

best tasks/nodes mapping solution. The proposed λ-mRBC, which is a modified version of RBC 

optimization method, is proposed to improve the performance of the search. To escape from local 

optima and to increase the exploration of the search space, the λ-mRBC method employs a new 

operator, which is named random transposition. The transposition operator changes the elements’ 

positions of current best solution. The λ-mRBC method is controlled by using only one parameter (λ). 

Energy consumption and application execution time (make-span) are taken into consideration in the 

fitness objective to get the best performance of TMS.  In addition, LA-SNSA is proposed to select a 
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number of sensor nodes needed to execute the applications, so that the network lifetime is improved. 

The simulation results show that the proposed λ-mRBC method improves the energy consumption, 

make-span and fitness value, compared with traditional RBC method. Furthermore, using LA-SNSA 

enhances the network lifetime, compared with random selection approaches.  Although the proposed 

λ-mRBC uses a new operator called transposition operator to escape from local optima, it is still a 

single-solution metaheuristic. Unlike population-based metaheuristics, the proposed λ-mRBC is of less 

exploration of search space. The future work aims to add a new operator that employs more than one 

solution to increase the exploration of search space.  
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 ملخص البحث:

اااااذ اله  ااااالو اال.الاااااملتعاااااذه الااااامشاله تخااااالاهااااااوللات فااااااتالهمجاااااذلاسلااااا سه جذا ااااا ا ااااا وذ الهم   

ااااااذ اله  اااااالوالاامواااااا ات  ااااااام الهاااااا ا جااااااذلاهله ف اااااااتالهمن اااااافياشبااتناااااااما اااااا ا اااااا وذ الهم   

ااع ماااااا اععىااااااجذاملاااااا اععاااااا .است م اااااا الدلاااااا ل الد ذ ااااااالاه  فاااااااتالهمجااااااذلاسلاااااا سه جذا اااااا 

ت اااااا لااتااااااراتفاااااا افا فا اااااالاهع اهااااااللاسمُماااااافالهااااااا ول.اتح ااااااا اتهاااااا اله تناااااااماسل اااااا ج  الهفذخاااااا

ملااااا اله  ااااالتالهعاااااا لل اهااااا اشلااااا الهحكااااا لاملااااا ا لااااا لاش ىااااا اسش اااااف اتوااااا باه ذهاااااالاشسا

اخفا لاه الهم ذهال.

ا اااااا الهففا اااااالالهمع  هاااااالالهم  ف اااااالاااىُااااااذ امذهاااااا ال ااااااا اا اااااام امذهاااااا ال تل اااااالاهاااااا اشلاااااا 

هاااا حورا الهمحلااااال.اسااااا رالتح ااااا ال  واااااذ ا ىااااذثاله حااااماسهاااا الاااارالهجاااافس اهاااا اله ااااارالهم لاااا

 اااااا ا(.ا اااااا اله اااااا ثااااااااا رال  اااااااذتاماااااا  اهاااااا اماλُععمااااااتالف  واااااااذ اعذ اااااا   للاه  ااااااافاسل اااااا ا 

اااااذ اهااااا اشلااااا اله تنااااااماله عاااااذسر اهل ف ااااااتاعجااااا  اتح اااااا امُمااااافالهاااااا ول.اععااااا ا  اهاااااماااااااا رلهم   

الده ااااا اشساله فاااااا اهااااا ال اماااااذاده ااااا ا تتناااااامالهففا ااااالالهمع  هااااالالهم  ف ااااالاهلحكااااا لاملااااا الهحااااا  

اااااذ ااعحاااااامااااااا راله  لاااااا الهااااا الهحااااا الد رااااا الهمما هااااا اوااااا اهااااا ات علاااااتاعااااااتسل/الهمجاااااذل اثالهم   

اله تناماسل  ج  الهفذخل.

ااااااا اش لثات فاااااااات الهمجاااااااذلاسخااااااا اعاتااااااااار اااااااذل الهمحذلاااااااذحاشبالهففا ااااااالالهمع  هااااااالالهم  ف ااااااالاتحُ  

اااااا سلاااااا سه جذ.اسه ذتراااااالاعذهففا اااااالاله  لا ااااااالاا ااااااحبالهففا اااااالالهم  ف اااااالاتاااااا   الهاااااا اتح ماااااالاخاا ُّ

ا%19.6%اسا19.1اعل اااااااااالهم ثهاااااااالاس  اااااااافحالهنلعاااااااا اسلف اااااااا ج  الهولاااااااا اهلفذخاااااااالاعت اااااااا  ا

%املاااااا اله فتااااااا .اهاااااا الذراااااا اك اااااافااتماااااااا  ذهاااااالامُماااااافالهااااااا ولام اااااافال ااااااا   للا22.3س

اااااا ات تااااااا الهفذخاااااالالهم   ااااااالاعااااااا امُ اااااا ال ااااااذ   لتتهااااااالالف  اااااااذتالهم  ف اااااال.اسخاااااا اتح   اهم   

طاه ذترااااالاعففا اااااا3عم ااااا لتا ه ذترااااالاسلالف  ااااااذتالهعاااااا لل .امااااا سحاملااااا ا هااااامااهااااافل ات فا اااااذ

ااااااذ اعت اااااا لا اااااا اماااااا  اله ااااااافلباهعُ اااااا الهم    ذ اااااا   للا%اع20.1عذف  اااااااذتالهعااااااا لل اا  اااااا اتح  

   لتتهالالف  اذتالهم  ف ل.
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